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1  Introduction

Valence bond (VB) theory is an old theory, going back to 
the first quantum mechanics study of the hydrogen mol-
ecule by Heitler and London [1], which was followed by 
many other studies listed by McLean et  al. [2]. It contin-
ues to have relevance in the way we think about molecules 
and the covalent bond, and, in the guise of various meth-
ods that are often called “modern valence bond” theory, it 
is proving a useful computational method. The concept of 
the complete basis set (CBS) limit is also an old one, with 
the Hartree–Fock limit [3, 4] introduced early in the devel-
opment of the Hartree–Fock method. More recently, it has 
become common to use extrapolation formula for results 
obtained from a systematically chosen series of basis sets 
to estimate the energy at this limit [5]. Sometimes differ-
ent extrapolation formulas are used for the Hartree–Fock 
energy and the correlation energy [6, 7].

The CBS limit can be reached by many different 
choices of basis set. It is unique, and it removes the uncer-
tainty in the choice of the basis set. The idea of a CBS 
limit is that if enough functions in a given space are used, 
any function in that space can be expanded in that basis 
set of functions.

While the extrapolation method is valuable, the idea of 
the CBS limit is much more valuable. It underpins quantum 
chemical methods by showing that they are approximations 
which have a definite limit. The limit is independent of the 
choice of basis set or other means of approximating a par-
ticular wavefunction. The Hartree–Fock limit, for example, 
means that there is a best result for the Hartree–Fock sin-
gle determinant and a set of best molecular orbitals that are 
used to form the single determinant. While we rarely aim 
to obtain that limit, or indeed need to, its presence gives 
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validity to more approximate methods and also shows that 
orbitals that give a lower total energy are better orbitals 
than those in methods that give a higher energy.

VB theory is about obtaining insight and simple pic-
tures. Such insight should not depend on the choice of basis 
set. Just considering the CBS limit allows us to remove the 
influence of the basis set, and can gain better insight into 
the nature of any particular method. Here we use the CBS 
limit to understand and gain insight into a range of valence 
bond methods, using the simplest system of molecular 
hydrogen. Although it is an exceptional system because 
of the lack of core electrons [8], molecular hydrogen pro-
vides illustrative insight into chemical bonding. We also 
use the idea that valence bond methods are related to com-
plete active space self-consistent field (CASSCF) meth-
ods. This is implicit in the work of Cooper et al. [9] where 
spin-coupled (SC) [10–14] VB wavefunctions are projected 
out from CASSCF functions. This idea is important and 
allows VB methods to be grouped according to the CAS-
SCF method that they approximate or, in some cases, are 
equal to.

VB theory uses one, or a linear combination of sev-
eral, n-electron function(s). These functions are known as 
structures, although strictly structures are pictures of bond-
ing that map to the n-electron functions. These n-electron 
functions can be constructed in various ways such as one 
or more Slater determinants. These Slater determinants are 
built from 1-electron functions, called valence bond orbit-
als (VBOs). The 1-electron functions are identified, in 
some sense, with atomic orbitals. Indeed, the very first VB 
calculation, the Heitler–London method, used the exact 1s 
atomic orbital for the free hydrogen atom. For many elec-
tron molecules, solutions of the atomic Hartree–Fock equa-
tions could be used. However, this use is not satisfactory, 
as atomic orbitals change on molecular formation, so the 
use of these atomic orbitals gives rather poor energies. For 
the hydrogen molecule, for example, Wang [15] showed 
that optimising the exponent of the 1s atomic orbitals gave 
better results. In modern VB theory, the 1-electron orbitals 
are chosen to be a linear combination of a set of basis func-
tions. The coefficients of these basis functions and the coef-
ficients of the valence bond structures are then optimised 
simultaneously.

Questions then arise about the choice of basis functions, 
both in the general sense that is common to other ab initio 
quantum chemistry methods, such as the size of the basis 
set and the choice of polarisation functions, and in a more 
specific VB sense. It has been argued that the basis func-
tions for a given VBO must be restricted to those centred 
on a specific atom to ensure a strict local character and 
mapping to an atomic orbital [16]. An alternative argu-
ment is to use the full basis set, without any restriction, and 

then examine the VBOs to determine whether they can still 
be considered as atomic orbitals. In general, those result-
ing orbitals are reasonably localised but distorted slightly 
towards neighbouring atoms compared to the VBOs from 
the more restricted approach. Such distortions are reason-
able because the atomic orbital in a molecule is now sub-
ject to the field of other nuclei. These two approaches have 
recently been labelled “VB-local” and “VB-delocal” [17], 
and these terms will be used here. The VBOs from the 
“VB-local” approach have been described as “strictly local-
ised”, while those from the “VB-delocal” approach have 
been described as “overlap enhanced orbitals” (OEOs) [18, 
19]. These descriptions will be critically reviewed later in 
this report. “Bond distorted orbitals” (BDOs) [20] have 
also been introduced, which are delocalised over the two 
atoms in the bond. The VB-local approach is of course 
restricted to a basis set of atom-centred functions, while the 
VB-delocal approach can use a more general basis.

Using the minimum basis set approach of a single 
atomic orbital on each atom in the hydrogen molecule, the 
Heitler–London (HL) method used the two orbitals coupled 
together as in Eq. 1. The two atomic orbitals on atoms A 
and B are designated ψa and ψb.

Ionic-covalent resonance (ICR), originally proposed by 
Weinbaum [21], adds ionic structures as in Eq. 2.

The approach by Coulson and Fischer (CF) [22] used 
combinations of the two orbitals in the VBOs to give a 
function similar to HL, as in Eq. 3.

The CF function is identical to the HL function, except 
that the latter is VB-local and the former is VB-delocal. 
For a minimal basis set, ICR is identical to CF, which is 
also equal to full configuration interaction between the two 
molecular orbitals of hydrogen.

In modern VB theory, we expand the VBOs (designated 
ФA and ФB for VB-delocal and φA and φB for VB-local) in 
terms of a basis set, as used in MO theory. This extends the 
idea of Heitler–London, ionic-covalent resonance and Coul-
son and Fischer by giving flexibility to the VBOs used. The 
extended Heitler–London wavefunction is a generalisation of 
the Wang wavefunction [15] and is here denoted as G-Wang:

(1)ψ(HL) = [ψa(1)ψb(2)+ ψb(1)ψa(2)][α(1)β(2)− β(1)α(2)]

(2)

ψ(ICR) = {[ψa(1)ψb(2)+ ψb(1)ψa(2)] + �[ψa(1)ψa(2)

+ ψb(1)ψb(2)]}[α(1)β(2)− β(1)α(2)]

(3)
ψ(CF) = [(ψa + �

′ψb)(1)(ψb + �
′ψa)(2)+ (ψb + �

′ψa)(1)

(ψa + �
′ψb)(2)][α(1)β(2)− β(1)α(2)]

(4)
ψ(G-Wang) = [φA(1)φB(2)+ φB(1)φA(2)]

[α(1)β(2)− β(1)α(2)]
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Extension of the ionic-covalent resonance wavefunction cor-
responds to a generalisation of the Weinbaum wavefunction 
[21] and is here denoted as G-Weinbaum:

Extension of the Coulson-Fischer wavefunction is equivalent 
to the generalised valence bond (GVB) method [23, 24] of 
Goddard:

It is important to note that, in modern VB theory, the opti-
mised form of the VBOs is different in Eqs. 4, 5 and 6. This 
point will be discussed further later in this report. G-Wang 
and G-Weinbaum expand the VB orbitals using the VB-
local approach, while the GVB method uses the VB-delocal 
approach.

Note there is always a resemblance between the VB 
and MCSCF/CASSCF wavefunctions, in spite of the non-
orthogonality of the VB orbitals. The GVB wavefunction 
is equivalent to the CASSCF(2,2), which in turn is equiva-
lent to the spin-coupled function [11–14]. Methods that use 
additional VBOs that have a similarity to 2s or 2p hydrogen 
atomic orbitals will be related to higher levels of CASSCF, 
such as CASSCF(2,4) where two additional molecular 
orbitals with high s character are added to those in CAS-
SCF(2,2), CASSCF(2,6) where four molecular orbitals 
with high p character are added to those in CASSCF(2,2), 
and CASSCF(2,8) where both sets of orbitals are added to 
those in CASSCF(2,2). Of particular interest here is the 
breathing orbital method [25–28], which, by using different 
VBOs for the ionic structures from the covalent structure in 
G-Weinbaum, can include more correlation for the hydro-
gen molecule than obtained by CASSCF(2,2). The best 
possible energy for a particular basis set is full configura-
tion interaction (FCI), which for the hydrogen molecule is 
just configuration interaction with single and double excita-
tions (CISD).

2 � Computational details

One popular choice for systematically improving basis sets 
is the use of the correlation consistent basis sets of Dunning 
[29, 30], denoted cc-pVnZ, with n = D, T, Q, 5 and 6. All 
calculations reported here use these basis sets. Even for the 
hydrogen molecule the size of the basis set gets quite large. 
The h orbitals of the cc-pV6Z basis set have been removed, 
due to limitations in the integral codes used here. Elimi-
nation of the h functions leads to very small errors (RHF: 
1.7 × 10−7 EH; MP2: 5.5 × 10−5 EH; FCI: 2.4 × 10−5 EH; 
GVB: 2.0 × 10−8 EH).

(5)

ψ(G-Weinbaum) = {[φA(1)φB(2)+ φB(1)φA(2)] + �[φA(1)φA(2)

+ φB(1)φB(2)]}[α(1)β(2)− β(1)α(2)]

(6)

ψ(GVB) = [ΦA(1)ΦB(2)+ΦB(1)ΦA(2)]

[α(1)β(2)− β(1)α(2)]

Calculations have been performed with the Tur-
tle VB program [31] as implemented in GAMESS-UK 
[32], and the VB2000 program [33, 34] incorporated into 
GAMESS(US) [35, 36]. CASSCF calculations were per-
formed with both GAMESS-UK and GAMESS(US). Some 
breathing orbital calculations have been performed with the 
XMVB program [37, 38]. The H–H bond length was fixed 
at 0.74 Å.

3 � Results and discussion

3.1 � CASSCF(2,2)‑related methods

The simple methods discussed earlier, G-Wang, G-Wein-
baum and GVB all employ two electrons in two orbitals. 
G-Wang and GVB differ only in that G-Wang uses a VB-
local basis set and GVB uses a VB-delocal basis set. Since 
the latter is more flexible, the energy of GVB is lower than 
the energy of G-Wang. However, the CBS limit orbitals and 
energy will be identical, because either VB-local or VB-
delocal can give the best possible VB orbitals at the CBS 
limit.

The G-Weinbaum function is only equivalent to the 
GVB function for minimal basis sets; for larger basis sets, 
the GVB wavefunction is more flexible as the use of the 
VB-delocal basis sets leads to a different use of the basis 
functions in the GVB orbitals on the two atoms. This means 
that the energy of G-Weinbaum cannot be lower in energy 
than GVB. However, G-Weinbaum is more flexible than 
G-Wang, so the energy of G-Wang cannot be lower than 
that of G-Weinbaum. For any basis set, G-Weinbaum is 
bounded by G-Wang above and GVB below. Since G-Wang 
and GVB have the same CBS limit, G-Weinbaum must also 
have that same CBS limit. For larger than minimal basis 
sets, GVB is no longer the same as full configuration inter-
action; however, it is equivalent to CASSCF(2,2) (full con-
figuration interaction for the two electrons in two molecular 
orbitals, which are also fully optimised). All three methods 
can be labelled as belonging to the CASSCF(2,2) group of 
methods.

The results for the energies of the three methods as a 
function of basis set are shown in Fig. 1 as the three low-
est curves. All three methods are converging to the same 
limit, although the use of the VB-local basis set means that 
G-Wang, in particular, is slow to converge. For comparison, 
the energy of the RHF wavefunction is also shown. The 
other two “s-only” curves will be discussed later.

These results can be used to examine some of the argu-
ments that are used to distinguish, justify or label the VB-
local and VB-delocal approaches. The use of the term 
“overlap enhanced orbitals” (OEOs) for the VB-delocal 
approach can be investigated by inspecting the overlaps 
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(Table  1). Results for the minimal basis set, STO-6G, 
with optimised Slater exponents are also included as the 
enhancement of the overlap was first noticed with a mini-
mal basis set. The results are striking. The overlap is cer-
tainly enhanced, but the enhancement decreases rapidly 
with the inclusion of higher angular momentum functions 
in the basis set. The 16  % enhancement with a minimal 
basis set falls to 1  % or less with the cc-pVQZ or larger 
basis sets. This is because the main features of the VB 
orbitals converge much faster than the energy converges 
to the CBS limit. Getting the energy to converge requires 
converging the wavefunction to the cusp at the nucleus. 
Convergence there is much slower than convergence of 
the orbital away from the nucleus, and it is the latter that 
largely determines the overlap between the two VB orbitals.

The term “strictly localised” is often used to describe 
the VB-local approach. While basis functions are cen-
tred at a particular atom, linear combinations used for the 
VBOs are not similarly centred once polarisation functions 
are included. The centre of the VBO can be determined by 
calculating the centroid of charge, relative to the atom on 

which the VBO is essentially localised. Another measure of 
localisation is the extent of the orbital along the molecu-
lar axis determined as 〈Z2〉. The centroids and extents are 
also shown in Table 1. As with the overlaps, the difference 
between VB-local and VB-delocal rapidly decreases as 
the basis set size is increased. The VB-delocal orbitals are 
distorted into the bond, but the VB-local orbitals are also 
becoming distorted into the bond with increasing basis set 
size. Distortion is not solely a characteristic of VB-delocal.

Further insight can be obtained by considering the com-
position of the VB orbitals with the smallest cc-pVDZ 
basis set. This basis set has only three basis functions on 
each atom that contribute to the VBOs—an inner and an 
outer s function and a p function along the molecular axis. 
A simple measure of the weight of each basis function is 
the coefficient squared divided by the sum of squares of 
the three (inner s, outer s and p) coefficients for the atom 
A. The weight of the p function is always quite small, but 
it is larger in G-Wang than RHF, because it is attempting 
to simulate the GVB orbital. The weight of the inner s is 
generally larger than the weight of the outer s orbital. In 
G-Wang, the weight of the outer s is slightly larger than in 
the GVB, as it is also doing the work of trying to fit the best 
function on atom B by being larger on atom A. The GVB 
function is (ψa + λψb′). In ψa, the weight of the p func-
tion is almost zero—0.01 % compared to 0.26 % for RHF 
and 0.35 % for G-Wang. The weight in ψa of the outer s is 
much smaller than in RHF or G-Wang. For ψb′, the func-
tion is quite different from ψb. The weights of the inner and 
outer s functions are almost equal, and the weight of the p 
function is much larger—4.4 %.

The single p function in the cc-pVDZ basis set is 
clearly fulfilling a different role, in the G-Wang function, 
from its role as a polarisation function in the RHF wave-
function. Polarisation functions are designed to distort the 
electron density away from a nucleus in molecular orbit-
als that reflects the symmetry of the molecule. They clearly 
can also modify the electron density on the neighbouring 
nucleus from an orbital that does not reflect the symmetry 

Fig. 1   RHF, s-only G-Wang, s-only GVB, G-Wang, G-Weinbaum 
and GVB energies as a function of basis set

Table 1   Comparison of the 
overlap between the two VBOs 
in H2, movement of the centroid 
of charge from the nucleus (in 
Å) into the bond and extent 
of the orbitals as measured 
by 〈Z2〉 (in Å2), using the 
G-Wang (VB-local) and GVB 
(VB-delocal) methods

The STO-6G results are for optimised Slater exponents of 1.170 for VB-local and 1.201 for VB-delocal
a  % enhancement

Basis Overlap Centroids Extent 〈Z2〉

G-Wang GVB % en.a G-Wang GVB G-Wang GVB

STO-6G 0.687 0.797 16.0 0.000 0.067 0.205 0.227

cc-pVDZ 0.733 0.803 9.5 0.034 0.083 0.205 0.221

cc-pVTZ 0.770 0.802 4.2 0.061 0.082 0.213 0.223

cc-pVQZ 0.793 0.802 1.1 0.072 0.083 0.219 0.221

cc-pV5Z 0.797 0.802 0.6 0.076 0.084 0.219 0.221

cc-pV6Z 0.799 0.802 0.4 0.080 0.084 0.219 0.220
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of the molecule. They are not intended to keep the elec-
tron density local. This function is a single Gaussian, with 
exponent α =  0.727. This value is most appropriate for a 
hydrogen atom bonded to a heavier element, not another 
hydrogen atom. For RHF, GVB and G-Weinbaum, the 
optimum values are α = 1.065, α = 1.166 and α = 1.163, 
respectively, indicating that the orbital shrinks. In contrast, 
for G-Wang the optimum exponent decreases to α = 0.608, 
indicating that the orbital expands, as it is reaching out to 
the other atom to match GVB.

To further investigate the ability of basis functions to 
modify an orbital far from the point where individual basis 
functions are centred, the use of a single basis set at the 
midpoint of the bond was investigated to form the GVB 
orbitals. Clearly the basis set must include asymmetric 
functions such as p, f to form two different GVB orbitals. 
The basis set selected was the H atom cc-pVnZ basis at the 
midpoint and not at the atoms. Both cc-pVDZ and cc-pVTZ 
give orbitals that are very different from the GVB orbit-
als, and the energy is very high. However, from cc-pVQZ 
to cc-pV6Z the orbital has the same features as the GVB 
orbital. For cc-pV6Z, the function along the line of the two 
atoms is indistinguishable from the GVB function except 
for close to each nucleus. The energies are poor, due to the 
inability to easily match the cusp at the nucleus. However, 
from cc-pVDZ to cc-pV6Z the energy with basis functions 
centred at the midpoint goes from −0.9942 to −1.1458 Eh, 
close to the cc-pVDZ GVB energy of −1.1469 Eh.

Further insight can be gained by removing the p basis 
function from the cc-pVDZ basis. This gives an over-
lap of 0.688 for the G-Wang orbitals [Table  2; cf. 0.733 
(Table  1)]. Thus the overlap enhancement due to the p 
function is quite significant. The extent of the orbital is 
slightly reduced (Table 2), and the centroid of charge is of 
course now at the nucleus. VB-local orbitals are thus over-
lap enhanced orbitals, even with the addition of a single p 
polarisation function. However, in spite of the small weight 
of the p function, there is a significant increase in energy, 
−1.13645 Eh compared to −1.14289 Eh when the standard 
p function is excluded.

If all polarisation functions are removed from the cc-
pVnZ, leaving only n s-type basis functions, the G-Wang 
energy converges fairly rapidly, and the GVB energy con-
verges slightly less rapidly. This is shown in Fig. 1 relative 
to the results when the polarisation functions are included 
as discussed earlier. The overlap is essentially constant 
as n increases for both G-Wang and GVB functions (see 
Table  2). The overlap between the GVB orbitals is larger 
than that of the G-Wang orbitals. With the full basis set, 
the overlap enhancement is entirely due to the presence 
of polarisation functions and is already present even when 
only a single p polarisation function is added.

The G-Weinbaum function uses the VB-local approach, 
but what happens if the VB-delocal approach is used? 
Resonance between the GVB function and ionic structures 
with the same VB orbitals is arbitrary for all basis sets as 
the two types of structures have zero interaction—the ionic 
structures are single excitations from the GVB functions—
an extended Brillouin’s theorem [39]. At the CBS limit, the 
G-Wang function is identical to the GVB function, so the 
ionic terms will also have zero interaction with the G-Wang 
function. Hence, the ionic-covalent ratio becomes unde-
fined at the CBS limit, in much the same way that Mulliken 
charges do. This is a serious weakness for the idea of ionic-
covalent resonance for homonuclear diatomics.

While it is not the purpose of this study to obtain the 
CBS limit energy, it is interesting to see how close the cor-
relation consistent basis sets can get. The complete basis set 
limit for the GVB function has been closely approached by 
Glushkov and Wilson [40, 41] using a large fully optimised 
basis set of s-type Gaussian functions distributed on a grid 
starting from even-tempered exponents and an harmonic 
model for the basis set positions. Their basis functions are 
distributed over the whole space and are not atom-centred, 
reminding us that basis functions do not have to be atom-
centred to approximate the 1-electron functions in VB the-
ory and that they are indeed just a tool to get the 1-electron 
functions, balancing accuracy and cost. They used a bond 
length of 1.4 a0 (slightly different from the value of 0.74 Å 
used here) and obtain an energy of −1.152160 Eh. For the 
GVB function in GAMESS(US), but not for VB functions 
in VB2000 and GAMESS-UK, we can use h basis func-
tions in the cc-pV6Z and aug-cc-pV6Z basis sets, lead-
ing to acceptable extropolations to the CBS limit. This is 
not possible for the G-Wang function. Using the cc-pV6Z 
and aug-cc-pV6Z basis sets and Cartesian basis functions 
for H2 at 1.4 a0, energies are found that are 2.9 × 10−6 Eh 
and 2.2  ×  10−7 Eh higher, respectively. Convergence of 
the energy to the CBS limit is always slow. Jensen [42] 

Table 2   Comparison of the overlap between the two VBOs and the 
orbital extents (in Å2) in H2 using the G-Wang (VB-local) and GVB 
(VB-delocal) methods using only the s-type basis functions from the 
cc-pVnZ basis sets (+STO-6G for comparison)

Basis Overlap Extent 〈Z2〉

s-only G-Wang s-only GVB s-only G-Wang s-only GVB

STO-6G 0.687 0.797 0.205 0.227

cc-pVDZ 0.688 0.797 0.203 0.225

cc-pVTZ 0.687 0.794 0.205 0.229

cc-pVQZ 0.686 0.793 0.206 0.228

cc-pV5Z 0.686 0.793 0.206 0.228

cc-pV6Z 0.686 0.793 0.205 0.228
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investigated the Hartree–Fock CBS limit for H2 in detail. 
This allows us to conclude that the exponential formula 
[43] for obtaining the CBS limit is better than the power 
formula [44]. For the GVB limit, there is little direct expe-
rience of which method to use. The aug-cc-pp-V6Z basis 
gives an estimate for the CBS limit at 0.74 Å of −1.152168 
Eh using the exponential formula to fit the HF energy and 
the correlation energy separately. Using the energy differ-
ence with the aug-cc-pp-V6Z basis, this suggests a CBS 
limit at 1.4 a0 of −1.152184 Eh, about 2.0 × 10−6 Eh below 
Wilson’s estimate.

This convergence of VB-local and VB-delocal has led 
some valence bond groups to limit the basis sets with the 
VB-local approach to rather small basis sets in order to 
keep the VB orbitals closer to the local nature that they 
deem to be essential for describing classical VB structures 
[45]. This is controversial, with other groups suggesting 
that the VB-delocal orbitals are localised enough to match 
the classical structures, even if they are slightly distorted 
[46]. It is clear from this work on the hydrogen molecule 
that the addition of any polarisation function enhances 
the overlap and displaces the centroid of charge from the 
nucleus and distorts the VBO into the bond. These orbit-
als cannot be considered to be “strictly localised”. The use 
of “strictly” in this context should be discouraged. With a 
small number of polarisation functions, they are certainly 
more localised than the VB-delocal orbitals, but the term 
“strictly localised” should be restricted to basis sets with 
no polarisation functions using the VB-local approach. 
This is the s-only G-Wang method shown in Fig. 1. It con-
verges well to a limit, but this s-only limit is well above 
the CBS limit. It has also been reported that this is close 
to the OPTX density functional method for distances close 
to the equilibrium distance with similar amounts of both 
dynamic correlation and left–right correlation [47, 48]. 
The VB-delocal approach with s-only basis sets lowers the 

energy, but its limit is higher than that for the full G-Wang 
VB-local. It has no advantages over other methods.

The orbitals for the G-Wang and GVB VB-delocal meth-
ods are compared in Fig.  2 for three different basis sets. 
Only the very largest basis sets begin to show the cusp cor-
rectly at both nuclei. Small basis sets give differences over 
most of the range. For cc-pVQZ and above, the differences 
are large only close to the two nuclei. But a natural ques-
tion is whether the cusp at the second nucleus is actually 
correct. If the best form of the VB orbital is obtained, there 
will be a response near both nuclei to the discontinuity in 
the potential, leading to cusps. A cusp will appear for VB-
local expansions of the VB orbitals in G-Wang if a suffi-
ciently large basis set including very high angular momen-
tum functions is used. The application of orbital restrictions 
to maintain the orbitals local is equivalent to a limitation of 
the 1-electron basis set, and thus the VB-local expansions 
do not use the full flexibility of the basis.

3.2 � CASSCF(2,4)‑related methods

The use of four orbitals rather than two orbitals allows the 
introduction of different orbitals in the covalent and ionic 
terms of the G-Weinbaum method. The G-Weinbaum func-
tion of Eq. 5 is replaced by:

with φA1 and φA2 centred on atom A and φB1 and φB2 on 
atom B.

This is an example of the breathing orbital approach 
[25–28]. The four molecular orbitals used in the CAS-
SCF(2,4) are the 1s and 2s bonding and antibonding 
combinations. For the breathing orbital functions, the 
VB-local approach is used. Energies are plotted in Fig. 3, 
where the energies for all methods from the G-Wang to 

(7)

ψ = {[φA1(1)φB1(2)+ φB1(1)φA1(2)]

+�[φA2(1)φA2(2)+ φB2(1)φB2(2)]}[α(1)β(2)− β(1)α(2)]

Fig. 2   a G-Wang local orbitals 
for different basis sets, and b 
GVB delocal orbitals for differ-
ent basis sets
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CASSCF(2,4) are shown. An interesting feature arises. 
There appears to be two breathing orbital wavefunctions. 
The first, designated BO-U (breathing orbital upper), 
differs only slightly from those in the G-Weinbaum 
wavefunction. The energy is also only lowered slightly, 
and it still lies above the GVB/CASSCF(2,2) energy. 
This breathing orbital function is still part of the CAS-
SCF(2,2) family of methods. This breathing orbital func-
tion is the one generated by the XMVB program with 
the recommended choice of initial orbitals from the 
G-Weinbaum function. If VB-delocal orbitals are used 
for BO-U, the function would be identical to GVB. The 
second wavefunction, designated BO-L, gives VB orbit-
als for the ionic structure that are much more diffuse than 
those for the covalent structure. They contain a node and 
look like 2s functions. This is not unexpected as CAS-
SCF(2,4) includes 2s MOs. This breathing orbital func-
tion with VB-local is clearly part of the CASSCF(2,4) 
family of methods. When VB-delocal orbitals are used 
for BO-L, the energy is so close to that of CASSCF(2,4) 
that it cannot be distinguished when plotted. However, 
it appears that it does not include some very minor con-
tributing structures to CASSCF(2,4). BO-L will have this 
same CBS limit.

3.3 � CASSCF(2,6)‑ and CASSCF(2,8)‑related methods

If the s-like orbitals [φA2(1)φA2(2) + φB2(1)φB2(2)] in Eq. 7 
are replaced by p-like orbitals giving [pAx(1)pAx(2  )  +  
pBx(1)pBx(2) +  pAy(1)pAy(2) +  pBy(1)pBy(2)], where pAx 
and pBx are px orbitals centred on atoms A and B, and 
pAy and pBy are py orbitals on atoms A and B, they add 
a different kind of correlation. The x axis and y axis are 
perpendicular to the molecular axis. This belongs to the 
CASSCF(2,6) family of methods where the 6 MOs are 

the σ1s bonding and antibonding MOs and the px and py 
π bonding and antibonding MOs. This has a lower energy 
than CASSCF(2,4). This method was used by Wilson and 
Gerratt [49] who named it the generalised Hirschfelder–
Linnett method as it replaced single atomic orbitals in the 
original Hirschfelder–Linnett method by optimised VBOs 
[50]. We designate this method as GHL-1. However, for 
consistency, we use VB-local orbitals, while Wilson and 
Gerratt use VB-delocal orbitals. If the above VB wave-
function is solved with VB-delocal orbitals, the energy 
is so close to that of CASSCF(2,6) that it cannot be dis-
tinguished when plotted. However, it appears that it does 
not include some very minor contributing structures to 
CASSCF(2,6).

If the four p-based structures are added to the s-based 
breathing orbital structures, rather than replacing 
them, a function in the CASSCF(2,8) family of meth-
ods is obtained. This, a further generalisation of the 
Hirschfelder–Linnett method is designated as GHL-2. 
Again the VB-local approach is used. When VB-delocal 
orbitals are used for GHL-2, the energy is indistinguisha-
ble when plotted from the CASSCF(2,8), and again, minor 
contributing structures are missing from GHL-2 compared 
to CASSCF(2,8).

Results for these methods are shown in Fig.  4. Also 
shown in Fig. 4 is the energy of the full CI method, which 
for the hydrogen molecule is identical to configuration 
interaction and coupled cluster with all single and double 
excitations—CISD and CCSD. The MP2 energy lies just 
above the GHL-2 energy, and CASSCF(2,8) is close to full 
CI. The VB-local energies are converging to the same limit 
as their VB-delocal counterparts as the functions are for-
mally identical.

Fig. 3   G-Wang, G-Weinbaum, BO-U, GVB, BO-L and CAS-
SCF(2,4) energies as a function of basis set

Fig. 4   GHL-1, CASSCF(2,6), GHL-2, CASSCF(2,8), and full CI 
energies as a function of basis set
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4 � Conclusion

The simplest picture of bond formation is that as two 
hydrogen atoms approach, they overlap and couple exactly 
as Heitler and London told us back in 1927. However, the 
VB orbitals do not remain as unaltered free atom functions 
but contract and distort to give the best VB orbitals for the 
molecule itself. As we see here, they remain associated in 
turn with the two atoms and in that sense they are localised.

Plotting the “VB-local” and “VB-delocal” energies 
highlights that VB functions are in families related to par-
ticular levels of CASSCF. If two VB functions that are for-
mally identical but have 1-electron orbitals that belong to 
different sets of basis sets that can converge to the complete 
basis set (CBS) limit, it is clear that the two basis set limits 
are identical. This is the case where the two VB functions 
differ in one using the “VB-local” approach and one using 
the “VB-delocal” approach. They have the same CBS limit.

For the CASSCF(2,2) case, GVB is identical to CAS-
SCF(2,2). GVB and G-Wang bracket the covalent-ionic res-
onance G-Weinbaum energy. The equality of the “VB-local” 
and “VB-delocal” approach CBS limits is not disputed, but 
it is sometimes suggested that the CBS limit is so difficult to 
achieve that they really are different. If the cc-pVnZ basis is 
used, or better the aug-cc-pVnZ, particularly if the molecule 
has regions that are negatively charged, then the CBS limit 
with the “VB-delocal” approach is as easy to obtain as it is 
with the Hartree–Fock or coupled cluster methods.

Both the overlap between the VBOs converges and the 
centroids of charge converge for “VB-local” and “VB-
delocal” to the same value. While “VB-local” and “VB-
delocal” are very different with a minimum basis set, it is 
remarkable how “VB-local” catches up when polarisation 
functions are added. The “VB-local” orbitals with the cc-
pV6Z basis set are essentially just as distorted towards the 
other atom as are the “VB-delocal” orbitals. Similarly the 
extent of the orbital in the “VB-local” case is converging 
well to the “VB-delocal” result.

Convergence of the energy to the CBS limit is slower. If 
the energy lowering from the G-Wang/cc-pVDZ energy to 
the best estimate of the CBS limit is used for comparison, 
then the “VB-local” approach with cc-pV6Z has achieved 
a 84.4  % lowering compared with a 99.7  % lowering for 
the “VB-delocal” approach. The “VB-local” lowering of 
84.4 % is not insignificant. The reason for the slower con-
vergence of the “VB-local” approach is failure to match the 
“VB-delocal” approach close to the second nucleus. Nev-
ertheless, the “VB-local” with larger basis sets is begin-
ning to match to the changes in the function at the second 
nucleus. More significantly, there is no clear point when the 
orbitals cease to be “strictly localised” and become delocal-
ised. As soon as polarisation functions are included in the 

basis set, the “VB-local” orbitals start to move out towards 
the neighbour atom.

One advantage of the “VB-delocal” approach over the 
“VB-local” approach is that it is not restricted to atom-cen-
tred basis sets. The GVB orbitals built from basis functions 
centred on the bond midpoint give good agreement with the 
cc-pV6Z results from the atom-centred “VB-local” orbit-
als and “VB-delocal” orbitals for overlap (0.802), position 
of centroid of charge (0.0846 from a H atom) and extent 
(〈Z2〉 = 0.2186).

Two breathing orbital function solutions have been 
observed. Choosing an inner basis function as the ini-
tial guess for the VBOs leads to the BO-U solution, while 
choosing an outer basis function leads to the BO-L solu-
tion. A second lower energy breathing orbital function may 
be important in other systems, but will not be found using 
the standard XMVB guess of the G-Weinbaum orbitals for 
breathing orbitals.

Going beyond the use of two orbitals leads to significant 
lowering of the energy while retaining a simple VB picture. 
This is particularly so by adding the p functions perpendic-
ular to the molecular axis. If VB-delocal orbitals are used 
for the GHL-1 method, the energy is indistinguishable from 
CASSCF(2,6). Adding the 2s-like functions as well gives 
a VB picture indistinguishable from CASSCF(2,8), which 
is close to full CI. In both cases, the VB-local approach is 
converging well to the VB-delocal limit.

Increasing the basis set towards the CBS limit clearly 
shows that while the energy converges slowly due to dif-
ficulties with Gaussian functions to fit VBOs close to both 
nuclei, the general form of the VBOs converges much 
faster as shown by the enhancement of the overlap, the 
movement of the centroid of charge from the nucleus and 
the extent of the orbitals. The VB orbitals cannot remain 
strictly localised if polarisation functions are included. This 
supports the general use of VB-delocal orbitals over VB-
local orbitals. The difference between these approaches 
blurs as the basis set is increased. A further advantage of 
the VB-delocal orbital approach is it leaves open the possi-
bility that the final orbitals will not be like atomic orbitals. 
Experience with the SC method shows that this can occur 
but is not common. The VB-delocal orbitals reported here 
are only slightly distorted atomic orbitals thus retaining 
the valence bond view of bonding due to overlap between 
atom-based orbitals.
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