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Abstract
Rationale  Substance use disorders (SUDs) rank among the most severely debilitating psychiatric conditions. Among oth-
ers, decreased response inhibition capacities could make it more difficult for patients to abstain from drug use and maintain 
abstinence. However, meta-analyses on the neural basis of response inhibition in SUDs yielded conflicting results.
Objective  In this study, we revisited the neuroimaging research field and summarized the existing fMRI literature on overt 
response inhibition (Go/NoGo and stop-signal paradigms) across different SUDs.
Methods  We performed a systematic literature review and an activation likelihood estimation (ALE) meta-analysis to investi-
gate the actual convergence of functional deviations observed in SUD samples. Results were further supplied by consecutive 
robustness measures and a post-hoc random-effects meta-analysis of behavioural data.
Results  We identified k = 21 eligible studies for our analysis. The ALE analysis indicated a significant cluster of convergence 
with its statistical peak in the right anterior insula. Consecutive analyses, however, indicated this result was not robust and 
susceptible towards publication bias. Additionally, a post-hoc random effects meta-analysis of the behavioural parameters of 
Go/NoGo and stop-signal paradigms reported by the included studies revealed no significant differences in task performance 
comparing SUD samples and controls.
Conclusion  We discuss that the role of task-based response inhibition may require some refinement as an overarching marker 
for SUD pathology. Finally, we give a few prospects for future research that should be further explored in this context.

Keywords  Substance use disorder · Response inhibition · Functional magnetic resonance imaging · Meta-analysis · 
Inhibitory control

Introduction

Substance use disorders (SUDs) list among the most seri-
ous mental illnesses. Lifetime prevalence ranges from 8.0 to 
17.5% for alcohol-associated disorders and 1.8 to 3.0% for 
disorders associated with the use of illicit substances mainly 

in industrialised countries (Kessler et al. 2004, 2007; Hasin 
et al. 2007; Merikangas and McClair 2012; Geschwind and 
Flint 2015). Purposes of consumption include social drink-
ing, satisfaction of curiosity, recreational use, and maladap-
tive strategies of emotion regulation (Parks and Kennedy 
2004; Terry-McElrath et al. 2009).

Aside from considerable diversity in incentives to initi-
ate substance use, all SUDs that require treatment share 
that they come along with a severe craving for the respec-
tive substance as well as a deficient ability to resist con-
sumption despite long-term harmful effects (American 
Psychiatric Association 2013; MacCoun 2013; Comp-
ton et al. 2013; Sayette 2016). These core symptoms of 
SUD promoted the rationale that inhibition might serve 
as a promising prospect to be further investigated in SUD 
patients as a common factor of disease. Inhibition can be 
defined as the ability to suppress automated or prepotent 
responding tendencies that are no longer adaptive in a 
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given situation (Nigg 2000; Miyake et al. 2000; Liddle 
et al. 2001; Aron 2007; Chambers et al. 2009). Impaired 
capacity for behavioural inhibition is of clinical impor-
tance, as it is associated with an increased likelihood 
of developing and maintaining pathological drug use in 
SUDs, as well as with a poor prognosis for treatment (Mül-
ler et al. 2008; de Wit 2009; Bakhshani 2014; Stevens 
et al. 2014). Recent findings suggest that patients with 
SUDs compared to unaffected controls show poorer task-
related performances in paradigms measuring response 
inhibition (Groman et al. 2009; Elton et al. 2014; Smith 
et al. 2014; Weafer et al. 2014; Morris et al. 2016; Byrne 
and Worthy 2019).

The latest data-driven meta-analyses on response inhibi-
tion aberrations in SUDs, however, show inconsistent find-
ings. Le et al. (2021) demonstrated reduced activity in the 
dorsal anterior cingulate and middle frontal gyrus in non-
abstinent samples with SUD compared to controls. The 
authors did not report a contrast independent of consump-
tion status. In contrary, the meta-analysis by Qiu and Wang 
(2021) shows that aberrations in SUDs were expressed by 
reduced activity in areas of the inferior frontal gyrus (IFG), 
supramarginal gyrus, temporal areas, and insula but showed 
increased activity in the cerebellum. It seems astonishing 
that both meta-analyses report considerably different results, 
although they used the same meta-analytical algorithm (ES-
SDM; Radua et al. 2012).

However, previous meta-analyses both included Go/
NoGo, Stop-Signal as well as Stroop tasks (Stroop 1935) 
as response inhibition measures in their analysis. The Go/
NoGo task (GNGT; Donders 1969; Verbruggen and Logan 
2008) and the Stop-Signal task (SST; Logan et al. 1984) 
both require the repeated execution of a motor response to 
presented Go-stimuli. However, next to Go-stimuli, NoGo- 
or Stop-stimuli are presented over the course of trials dur-
ing the GNGT and the SST, respectively. On these stimuli, 
the subjects are instructed to refrain from responding which 
demands the subject to inhibit prepotent motor tendencies. 
Similar to a variety of other cognitive tasks subsumed as 
incongruency tasks (Cieslik et al. 2015) which also require 
supressing a response in incongruent trials, there is strong 
indication that these are associated with other cognitive 
functions exceeding the requirements to inhibit a prepotent 
response only (interference resolution, distractor resistance, 
etc.). The perception of GNGT and SST as particularly rel-
evant measures concerning SUDs may be due to their exclu-
sive focus on inhibiting overt behavioural responses, which 
could translate into the ability to stop continuous drug use. 
The predominance of inhibition training in SUDs following 
a GNGT or SST scheme favours perceiving these tasks as 
particularly relevant, whereas to the best of our knowledge 
such therapeutic regimes for Stroop tasks have not been 
designed (Verdejo-Garcia 2016; Verdejo-Garcia et al. 2023).

Debating Stroop interference as sufficiently different 
from GNGT and SST response inhibition is also sup-
ported by neuroimaging meta-analyses. When investi-
gated in parallel, these studies demonstrate that separat-
ing response inhibition (GNGT and SST) and cognitive 
inhibition (Stroop) in two taxonomic divisions accrued 
due to considerably distinctive recruitment of neuronal 
networks and participating areas (e.g. lacking basal gan-
glia involvement in Stroop tasks) (Zhang et al. 2017; Hung 
et al. 2018; Rodríguez-Nieto et al. 2022). In particular, 
Zhang et al. (2017) were able to show that interference 
resolution shows stronger associations with the ventral 
attention network (VAN) than response inhibition (GNGT 
& SST), whereas response inhibition can be assigned more 
to the fronto-parietal network (FPN). At the same time, 
both GNGT and SST place more converging demands on 
brain areas involved following their execution (Chambers 
et al. 2009; Swick et al. 2011; Sebastian et al. 2013; Zhang 
et al. 2017; Raud et al. 2020).

Based on these considerations, the understanding of our 
work is to exclude the Stroop task from our meta-analysis 
due to its entanglement in interference and conflict resolu-
tion. We therefore reduce data eligible to a narrower notion 
of response inhibition by only including GNGT and SST 
paradigms as an embodiment of response inhibition. Thus, 
we aim to re-examine the field of altered neural signa-
tures of response inhibition in SUDs to negotiate conflict-
ing findings of previous works with our meta-analysis by 
utilizing the Activation-Likelihood-Estimation approach 
(ALE; Laird et al. 2009; Eickhoff et al. 2012) testing for 
actual convergence of neuroimaging results in this regard. 
ALE makes use of the idea to find the most likely spa-
tial convergence of activation patterns that are reported 
across studies and that false-positive results should not 
be replicable. It accounts for the spatial uncertainty of 
fMRI measurements by treating each statistical peak of 
an activation event as a Gaussian distribution function of 
activation likelihood. This approach diverges from model-
ling the significance of a finding based on effect sizes as 
previous studies did. We have further supplied our results 
by consecutive analyses. First, we analysed these ALE-
derived clusters with a behavioural characterization and 
paradigm class analysis method to provide further insight 
into cluster co-activation across behavioural experi-
ments and experimental tasks. Second, we performed a 
meta-analytic connectivity modelling (MACM) approach 
to investigate whether convergence clusters exhibit co-
activation patterns with larger brain networks and con-
secutively calculated the robustness of the results towards 
publication bias using noise data. Third, we performed a 
post-hoc meta-analysis of behavioural measures reported 
across GNGT and SST experiments comparing SUD sam-
ples and controls.
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Methods

Search strategy and data acquisition

For the literature research, we followed the PRISMA 
guidelines and state-of-the-art guidelines for neuroimag-
ing meta-analysis (Müller et al. 2018; Tahmasian et al. 
2019; Page et al. 2021). We preregistered our meta-analy-
sis using PROSPERO (https://​www.​crd.​york.​ac.​uk/​prosp​
ero/​displ​ay_​record.​php?​ID=​CRD42​02237​4754). Aside the 
consideration of the PRISMA guidelines, adherence to the 
guidelines of coordinates-based meta-analyses is essential 
to generate robust and unbiased findings. The guidelines 
ensure that the results are adequately powered and can be 
confidently interpreted by meeting all the assumptions of 
the applied meta-analytic algorithm and that the results 
are generalisable. Checklists for PRISMA-guidelines and 
for neuroimaging meta-analyses recommendations can 
be obtained through Table S1 and Table S2 in the sup-
plement, respectively. In the following, we report on the 
literature search inclusion and exclusion criteria. For the 
literature search, we used EBSCOhost (https://​search.​
ebsco​host.​com/) which includes a wide range of databases 
such as PsycINFO, PsycARTICLES, Medline Complete, 
CINAHL Complete, and Psychology and Behavioral Sci-
ences Collection databases. Furthermore, we also extended 
our search to the PubMed database. Due to the revision of 
diagnostic taxonomies regarding SUDs which have been 
introduced by DSM-5, disorder classifications deviate 
from previous versions of the DSM (Jones et al. 2012; 
American Psychiatric Association 2013). Yet, we also con-
sidered studies that still refer to the recently omitted cat-
egories of ‘substance dependence’, ‘substance abuse’, and 
‘harmful use’. We then formulated some necessary inclu-
sion criteria: (1) Only studies that are written in English 
and peer-reviewed were used for our review. (2) Since this 
type of meta-analysis is based on coordinates that must be 
comparable, only those studies that reported coordinates 
in standardized reference space (Talairach or MNI) were 
used. (3) All contrasts used in this analysis must contain 
a population with SUDs and compare it with a sample of 
control participants. Control groups did not meet criteria 
for psychiatric disorders and also had no history of prob-
lematic substance use, no SUD diagnosis, or scored in a 
normative range for SUD-relevant self-report instruments 
(e.g. AUDIT). The following characteristics led to exclu-
sion: First, there are a few methodological limitations to 
the admissibility of studies, which we list successively. (1) 
Studies that are not primary studies, but any review arti-
cles are inappropriate for a coordinates-based meta-analy-
sis and were not considered. (2) For this form of data inte-
gration, we only considered studies reporting whole-brain 

fMRI measurements. We excluded explicit and hidden 
region-of-interest (ROI) studies, as they narrow the focus 
to brain regions that have been pre-selected by researchers 
in the first place. ROI studies face the limitation that true 
effects at the whole-brain level could be overseen since 
statistical testing is limited to a given pre-defined volume. 
Instead, it offers a statistical advantage, as the number of 
multiple comparisons is significantly reduced and is there-
fore more suitable for hypothesis-driven comparisons of 
isolated brain volumes. Regarding ALE, the inclusion 
of ROI-based comparisons nevertheless would create a 
statistical bias in favour of some high-frequently inves-
tigated brain areas for which it is uncertain whether they 
would survive correction for multiple comparisons on the 
whole-brain level. (3) Studies were only considered if they 
recruited at least n ≥ 10 participants per group to ensure 
minimum power of comparisons. (4) Since null findings do 
not allow any spatial allocation of coordinates, they can-
not be meaningfully integrated in an ALE meta-analysis 
(Eickhoff et al. 2012). The same applies to studies that do 
not make coordinates accessible. We will describe how we 
accounted for this confirmation tendency of our analysis in 
a later paragraph within the method section (see Methods 
paragraph ‘Fail-Safe-N’ (FSN)).

Furthermore, we limited the inclusion of studies for 
our analysis by a few sample-related boundaries. (5) Chil-
dren and adolescent samples (aged < 18) were not included 
due to anatomical incomparability to adults and deviating 
developmental stages. (6) Comorbid conditions have been 
regularly described in psychiatric populations (Wittchen 
1996; Lépine et al. 2005; Kessler et al. 2007). Comorbidi-
ties with depressive disorders, ADHD or personality, and 
trauma-associated disorders can be found almost regularly 
and are often underreported. SUDs can therefore rarely be 
examined in isolation. However, due to considerable dif-
ferences in functional architecture, populations with severe 
comorbidities such as psychotic or delusional disorders 
were not included. Since we examined a wide range of dif-
ferent SUDs in our analysis, we decided to include samples 
who show polysubstance use and polytoxicomanic behav-
iours. Moreover, comorbid tobacco use is observable in 
almost every SUD population (Anthony et al. 1997; Bobo 
and Husten 2000; Subramaniam et al. 2016). We applied 
the following search mask: ((“alcohol*” OR “tobacco” 
OR “nicotine” OR “smok*” OR “cannabi*” OR “mari-
juana” OR “thc” OR “cocaine” OR “amphetamine*” OR 
“methamphetamine” OR “stimulant*” OR “ecstasy” OR 
“mdma” OR “opiate*” OR “morphine” OR “heroin” OR 
“benzodiazepine*” OR “analgetic*” OR “hallucinogen*” 
OR “lsd” OR “ketamine” OR “fentanyl” OR “drug*” OR 
“substance”) AND (“functional magnetic resonance imag-
ing” OR “fmri” OR “functional MRI”) AND (“response 
inhibition” OR “go nogo” OR “stop signal”)).

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022374754
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022374754
https://search.ebscohost.com/
https://search.ebscohost.com/
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Activation likelihood estimation (ALE) meta‑analysis

ALE models the spatial uncertainty of the extracted coordi-
nates of functional alterations using a 3D-Gaussian function 
(Eickhoff et al. 2009, 2012; Laird et al. 2009; Turkeltaub 
et al. 2012). It thus takes account of the spatial uncertainty 
of highly processed fMRI data. Small sample studies are 
contemplated with a correspondingly higher spatial uncer-
tainty as reported statistical maxima of coordinates are less 
likely to be sufficiently precise, whereas larger studies should 
demonstrate more reliable effects resulting in a less spatially 
broad 3D-Gaussian function. Therefore, probability maps 
of the reported local maxima of coordinates were built and 
tested against the null hypothesis of a random spatial dis-
tribution aiming to find the most likely spatial convergence 
of activation patterns observed across contributing studies. 
We used BrainMap GingerALE v3.0.2 (http://​brain​map.​org) 
for our meta-analysis. Since there were more studies that 
reported their results in the Montreal Neurologic Institute 
(MNI) reference space than those that chose the Talairach 
space (see the “Results” section), the latter were transferred 
to the MNI space using the Lancaster transformation that 
is implemented in abovementioned used software (Lancas-
ter et al. 2007; Laird et al. 2010), thus keeping the transfer 
costs as low as possible. This allows the acquisition of an 
integrated density function of above-chance convergence in 
the human brain (Eickhoff et al. 2009; Laird et al. 2011a). 
Following this procedure, we subjected these accumulated 
ALE values to further statistical testing: ALE values can be 
converted to p-values to identify regions that withstand test-
ing against a randomly generated empirical null distribution. 
We tested against 1000 permutations based on the identical 
number of extracted foci, contrasts, and subjects using these 
randomly generated datasets. Due to a considerable number 
of voxels being tested against the null hypothesis of random 
convergence, it is crucial to correct for multiple testing to 
prevent from accumulations of type-I alpha errors (Laird 
et al. 2005; Eickhoff et al. 2012). We accounted for this by 
setting cluster-level family-wise-error correction (cFWE) 
with p < 0.05 for the cluster-forming threshold and p < 0.001 
for the voxel-wise threshold (Eickhoff et al. 2016; Flandin 
and Friston 2019) as this is the gold-standard among cor-
rection methods within ALE (Frahm et al. 2022). Before 
quantitative integration, we checked any mask outliers for 
plausibility.

Behavioural characterization and paradigm class 
analysis

Any ALE clusters identified in this way were subjected 
to a behavioural domain analysis and a paradigm class 
analysis in a subsequent step. We performed these analyses 
with the respective tools provided by Mango v4.1 (http://​

ric.​uthsc​sa.​edu/​mango/; behavioural domain v3.1; para-
digm analysis v1.6) provided by Lancaster et al. (Lancaster 
et al. 2012). Significant ALE clusters were then masked 
as ROIs and underwent comparison with the vast meta-
data of thousands of fMRI studies provided by BrainMap 
database. This further leads to a characterization of behav-
ioural or task-related processes in which the activation of 
a respective cluster has been involved in previous experi-
ments (Laird et al. 2011b). The domains of the behav-
ioural domain analysis are divided into the superordinate 
categories action, perception, cognition, emotion, and 
interoception, in which 60 subcategories can be identified. 
The paradigm class analysis draws information from data 
including 111 different experimental paradigms investi-
gated in fMRI. Depending on the cluster characteristics, 
it is feasible to create a profile of behavioural domains for 
a specific cluster and investigate the clusters relevance to 
certain experimental paradigms. To conduct this analysis, 
the masks had to be transformed into Talairach reference 
space. Regarding these analyses, it is fundamental to apply 
a more conservative correction for multiple testing (Bon-
ferroni-correction-alike). Consequently, we classify the 
behavioural domain and paradigm class analyses as sig-
nificant if they exceed a threshold of z = 3.0 (with p < 0.05) 
and z = 3.3 (with p < 0.05), respectively (Lancaster et al. 
2012). For further information, see http://​ric.​uthsc​sa.​edu/​
mango/​versi​onhis​tory.​html#​v401.

Meta‑analytic connectivity modelling (MACM)

MACM is a valuable method for investigating how ALE-
derived clusters are functionally organized within larger 
brain networks (Eickhoff et  al. 2011; Fox et  al. 2014; 
Langner et al. 2014). The cluster is taken as the ROI in 
an analysis measuring co-activation of spatially separated 
neural activation patterns using the vast fMRI data avail-
able in the BrainMap database. MACM has been shown 
to be a reasonable network co-activation estimator analo-
gous to resting-state functional connectivity (Robinson 
et al. 2012). Using Mango v4.1, we masked significant 
clusters of convergence as ROIs and transferred them into 
the Talairach reference space. This mask has been entered 
into Sleuth and can be compared with the database. As 
searching filters for studies of co-activation, we applied 
“Diagnosis: Normals”, “Context: Normal Mapping”, and 
“Activations: Activations Only”. The acquired co-activated 
coordinates from a plethora of fMRI studies were saved 
as a coordinate file and applied to GingerALE in the same 
way as we perform the main ALE analysis, using iden-
tical thresholding. The results then show distinct neural 
networks based on convergence resulted from observed 
co-activated sights across the brain.

http://brainmap.org
http://ric.uthscsa.edu/mango/
http://ric.uthscsa.edu/mango/
http://ric.uthscsa.edu/mango/versionhistory.html#v401
http://ric.uthscsa.edu/mango/versionhistory.html#v401
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Fail‑safe‑N (FSN)

A central limitation of ALE analyses is that they are not 
sensitive to publication bias and vulnerable to unilateral 
confirmation tendencies. Samartsidis et al. (2020) estimate 
that in neuroimaging, approximately 6–30% of studies are 
not published because they show negative or null results, 
an effect known as the “file drawer problem”. To estimate 
robustness of our results against this type of publications 
bias, we performed a fail-safe-N (FSN) calculation explicitly 
adapted to ALE meta-analyses by Acar et al. (2018). First, 
we defined the critical lower bound of the FSN below which 
the data cannot be considered robust, because publication 
bias can be assumed. According to Samartsidis et al. (2020), 
we conservatively set this threshold at 30%, which corre-
sponds to seven studies. Noise studies were then generated 
which matched the original included studies in sample size 
and number of foci, but in which the foci were randomly 
distributed across the brain. The FSN calculation is an itera-
tive procedure that starts with the number of noise studies 
specified for the lower boundary. The noise studies were 
added to the original dataset, and the ALE meta-analysis 
was repeated. Then, noise studies were added successively 
until the cluster under consideration is no longer significant 
and the FSN is reached. Noise studies were generated using 
R Studio v4.1.0 following the algorithm of Acar and col-
leagues (2018) (https://​github.​com/​Neuro​Stat/​FailS​afeN).

Post‑hoc exploratory meta‑analysis of behavioural 
data

When seeing through the included studies, it was noticeable 
that only some studies report an inferior task performance in 
SUD samples compared to the respective control groups on 
task relevant measures. Therefore, we performed a post-hoc 
random-effects meta-analysis of the most frequently reported 
behavioural data (commission errors, CE; omission errors, 
OE; Go-reaction time, Go-RT; and stop-signal reaction time, 
SSRT). As some studies reported CE and others reported 
NoGo-accuracy, we treated NoGo-accuracy as the inverse 
of CE and pooled these data into one estimator, which we 
subsume as CE in the following sections. The rationale 
behind this is that a lower NoGo-accuracy should logically 
be accompanied by an increased rate of CEs. This was done 
in an analogous way for the OEs. We refrained from calcu-
lating further usual meta-analytic metrics such as publica-
tion bias estimates, since our systematic literature search 
was not designed to analyse behavioural data initially. We 
fitted a random-effects model with the effect size hedge’s g 
for standardized mean differences wherever data were avail-
able and tau2 as well as I2 as estimates of heterogeneity. All 
analyses were performed using R statistics (R Core Team 
2021) with the package metafor (Viechtbauer 2010).

Results

We identified k = 21 studies yielding k = 22 experiments eli-
gible for inclusion and meta-analytic integration, containing 
n = 538 participants with SUD and 163 peak coordinates 
reported across the brain. Different phases of the literature 
search can be obtained via Fig. 1. We did not suspect any 
overlap between the studies because the studies with the 
same authors differed in terms of the sample studied, the col-
lection parameters, the study design, and the demographic 
characteristics. The study by Gerhardt et al. (2021) investi-
gated both GNGT and SST paradigm in the same sample. 
We have treated these data as a single experiment because 
splitting the experiments into two different ones would sug-
gest statistical independence, which we argue is not given 
by using the same sample. Furthermore, in this study we 
suspected errors in 2 peak coordinates that were outside the 
mask when first checked or incongruent with the brain loca-
tion declared. The first coordinate (x =  − 38, y = 72, z = 44) 
should indicate a peak in the inferior parietal lobule, whereas 
this is located far outside the mask (Gerhardt et al. 2021). 
The sign of the y-coordinate seems to be incorrect, so that 
we assume, in line with the reported brain area, that the 
coordinate should have been x = 38, y =  − 72, z = 44. Simi-
larly, we suspect another error regarding the coordinate 
x =  − 4, y = 12, z =  − 26. The coordinate label denotes a sight 
in the temporal pole, so we assume the coordinate should be 
x =  − 40, y = 12, z =  − 26 which would then correspond to 
the respective labelling. After adjusting the coordinate to the 
latter version, we integrated the coordinate into the analysis. 
The inclusion of the k = 21 studies led to a composition of 
SUD samples with alcohol use disorder being most prevalent 
(42%), followed by stimulants (28%), tobacco (24%), and 
heroin (5%). A total of k = 16 studies investigated response 
inhibition using the GNGT and k = 5 studies used SST in this 
regard. Study characteristics containing information regard-
ing demographics and experimental design can be obtained 
through Table 1 whereas Fig. 2 displays foci distribution of 
contributing experiments.

ALE meta‑analytic results

ALE analysis revealed a cluster with significant conver-
gence of altered activation between SUD samples and 
controls in the right hemisphere (cFWE p < 0.05 cor-
rected for multiple comparisons). The cluster shows a 
significant peak in the right anterior insula (rAI), where 
the insula accounts for 31.6% of the cluster volume and 
extends over the right claustrum and the orbital part of the 
IFG with 31.6% and 10.5% of the cluster extent, respec-
tively. 26.3% could not be labelled (see Table 2, Fig. 3). 

https://github.com/NeuroStat/FailSafeN
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Contributing studies (n = 3) include samples of alcohol- 
(Grieder et al. 2022), tobacco- (Nestor et al. 2011), and 
cocaine-associated (Morein-Zamir et al. 2013) SUDs once 
each (Table 1). All contributing studies used voxel-wise 
or cluster-wise thresholds that can be perceived as liberal. 
Regarding the direction of the effects, one contributing 
study reported an increased activation in the respective 
cluster in samples with SUD (Grieder et al. 2022) whereas 

two studies reported a decreased activation (Nestor et al. 
2011; Morein-Zamir et al. 2013). The subsequent behav-
ioural domain and paradigm class analysis showed no 
significant associations. Our consecutive FSN analysis 
showed that the significance cluster withstands n = 2 
(9.5%) noise studies and therefore showed strong suscep-
tibility to potential publication bias. The ALE results thus 
turn out not to be a very stable finding.

Fig. 1   Prisma flow diagram displaying the procedure of the systematic literature search (PRISMA-statement; Page et al. 2021)
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MACM results

After the convergence cluster was fed as an ROI mask to the 
MACM analysis to create a functional connectivity map, 
the BrainMap database reported coactivations from 137 
experiments, with 1939 foci respectively, examining 2115 
participants. This allowed 8 clusters (C1-C8) of significant 
coactivation to be identified (Supplemental Table S1, Fig. 4). 
These include areas of the cingulate gyrus and medial frontal 
gyrus (C1), the region around the seed ROI of the rAI (C2) 
and its contralateral counterpart spanning the left claustrum, 
left AI and precentral gyrus (C3). Other cortical areas with 
significant coactivation were observed in bilateral clusters 
of middle and IFG (C5, C6), as well as left lateral inferior 
parietal lobule and precuneus (C8). Furthermore, subcortical 
coactivation was seen in clusters of thalamo-striatal regions 
extending over the right caudate head and body, the right 
medial-dorsal and ventral-lateral thalamic nuclei, and all the 
way to the bilateral mammillary body in the brainstem (C4). 
Contralaterally, there were significant peaks with nucleus 
lentiformis in more ventral areas of the striatum (C7).

Post‑hoc exploratory meta‑analysis of behavioural 
data

The meta-analysis of behavioural data shows no significant 
difference in task performance for CE, OE, Go-RT as well as 
SSRT between SUD samples and controls with effect sizes 
ranging from g = 0.13–0.27 within respective measures. We 
observed mediocre, but significant, heterogeneity within 
measures of response inhibition with I2 ranging from 61 to 
67%. Results are displayed in Fig. 5.

Discussion

With this coordinate-based meta-analysis, we integrated 
functionally altered haemodynamic response patterns 
observed in response inhibition tasks (GNGT and SST) com-
paring SUD samples and control samples. We were able to 
show a significant convergence cluster that has its statistical 
peak in the rAI. Behavioural domain and paradigm class 
analyses yielded no significant associations. The consecutive 
MACM analysis highlighted a fronto-parieto-striatal circuit 
to significantly co-activate with the rAI cluster. The FSN 
analysis of robustness towards publication bias revealed a 
FSN of n = 2, and finally, a subsequent random effects 
meta-analysis demonstrated no significant differences in 
any behavioural GNGT or SST measurement between SUD 
samples and controls.

The rAI is an often-replicated meta-analytically derived 
area to be involved in the performances of both GNGT 
and SST (Swick et al. 2011; Criaud and Boulinguez 2013; SU
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Fig. 2   Foci-distribution of 
experiments integrated in the 
ALE meta-analysis. Every red 
data point represents a peak 
coordinate (foci) of included 
studies. Foci are displayed on a 
MNI152 reference space glass 
brain surface (Colin27_T1_
seg_MNI template). A anterior; 
L left; P posterior; R right; S 
superior. Mango v4.1 was used 
to create the image. (http://​ric.​
uthsc sa.edu/mango/)

Table 2   ALE-derived cluster of 
significant convergence

x, y, z coordinates are displayed in MNI reference space
BA Brodmann area, R right
a Anatomical labelling refers to MNI atlas (nearest grey matter) of peaking coordinate
b Maximum ALE value of the cluster

Peak voxel coor-
dinate (MNI)

Anatomical 
Labela

x y z BA Cluster Size 
(mm3)

ALE * (10−2)b No. of contributing 
experiments (%)

Fail-Safe-N

R Cerebrum.
Sub-lobar.
Insula

32 20  − 12 13 800 1.95 3 (14.3%) 2 (9.5%)

Fig. 3   ALE-derived cluster of 
significant convergent hemo-
dynamic alterations comparing 
SUD samples and controls dur-
ing response inhibition tasks. 
The peak is located at (x = 32, 
y = 20, z =  − 12) in the rAI. 
Coordinates refer to MNI152 
reference space (Colin27_T1_
seg_MNI template). A anterior; 
L left; P posterior; R right; S 
superior. Image has been cre-
ated with Mango v4.1 (http://​
ric.​uthsc sa.edu/mango/)

http://ric.uthsc
http://ric.uthsc
http://ric.uthsc
http://ric.uthsc
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Sebastian et al. 2013; Zhang et al. 2017; Hung et al. 2018; 
Puiu et al. 2020). However, the rAI has also been found to be 
one of the most consistently reported meta-analytic findings 
of functional aberrations across a vast variety of psychiatric 
disorders during cognitive and inhibitory control (McTeague 
et al. 2017; Yan et al. 2022). This suggests that the cluster of 
convergence we identified might be difficult to disentangle 
from comorbid conditions. The rAI is an essential node of 
the salience network (Uddin et al. 2019) involved in a whole 
range of cognitive functions (Niendam et al. 2012). Recently, 
the AI has been described as providing a gate keeping func-
tion that couples required neuronal resources for relevant 
tasks facilitating the processing of task-relevant stimuli at 
an early stage (Molnar-Szakacs and Uddin 2022). In their 
neuroimaging meta-analysis of response inhibition based 
on the GNGT, Criaud and Boulinguez (2013) were able to 
show that rAI functioning is associated with identification 
properties of complex stimuli rather than sensitivity towards 
low-frequency NoGo stimuli or working memory load. Thus, 
it suggests the rAI to support early and basal aspects of sali-
ence detection in response inhibition tasks.

Our ALE results partially converge with those of a recent 
meta-analysis investigating response inhibition related brain 
alterations in SUDs. Qiu and Wang (2021) found reduced 
activity in samples with SUD in an area including the rAI 
and right IFG. Due to certain study overlap in the authors 
design and ours, this offers a plausible explanation for yield-
ing a similar result in this respect. Nevertheless, their cluster 
expands to a larger number of voxels in the brain. We were 

not able to replicate other findings reported by Qui and Wang 
including reduced activity in the supramarginal gyrus, the 
middle temporal gyrus and temporal pole or even increased 
activity of SUD samples in the cerebellum during response 
inhibition. Some design-related nonconformities may have 
contributed to the differences. First, their meta-analysis also 
integrated Stroop tasks as a measure of response inhibition. 
Our reasoning of response inhibition thus differs from that 
of previous work but might partly explain that we could not 
replicate other results. Second, Qiu and Wang used an effect 
size-based algorithm (ES-SDM; Radua and Mataix-Cols 
2009; Radua et al. 2012) for their meta-analytic integration, 
which differs from the ALE approach in that their compu-
tations are based on effect sizes of coordinates and their 
polarity. In contrast, ALE calculates spatial convergence 
weighting foci as a function of sample size considering all 
coordinates irrespective of their effect-size and polarity. An 
alternative option is that other results are possibly single 
study driven wherever studies reported high effect-sizes. 
Remarkably, considering effect size polarity it might be of 
particular importance in this case. We would assume that 
since the recently published study by Grieder et al. (2022) 
showing increased activity rather than reduced activity of 
the rAI in SUD samples during response inhibition, the out-
come cluster using ES-SDM might average out. This sug-
gests that a considerably salient result from this previous 
meta-analysis may be challenged by an update of eligible 
data. In the following paragraphs, however, we will discuss 
why we offer a different conclusion than previous work did, 

Fig. 4   Resulting MACM map. Significant coactivations with the ALE-derived convergence cluster displayed in MNI152 reference space 
(Colin27_T1_seg_MNI template). L left, R right. Image has been created with Mango v4.1 (http://​ric.​uthsc sa.edu/mango/)

http://ric.uthsc
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incorporating the results of our subsequent analyses. For 
although the ALE-derived cluster marks a significant result, 
relevant measures of robustness and necessary adherence to 
gold-standard-guidelines intertwined with the validity of this 
finding must be addressed.

First, the number of studies contributing to the con-
vergence cluster in this meta-analysis is small, with k = 3 
(14%). Although, after visual inspection of the unthresh-
olded ALE maps, we cannot rule out the possibility that 

few probability maps reported in other studies may protrude 
into cluster-containing voxels. The comparison of contribut-
ing vs. non-contributing studies did not suggest a noticeable 
pattern in study characteristics such as the sample exam-
ined or experimental design. While contributing studies 
contained SUD populations, including alcohol, tobacco, 
and cocaine, we advise the greatest caution in inferring an 
overarching and consistent disease mechanism in SUDs 
based on this observation. Moreover, the direction of the 

Fig. 5   Forest-plot showing 
meta-analytic computations of 
behavioural task measures of 
GNGT and SST



12	 Psychopharmacology (2024) 241:1–17

1 3

effect in the convergence cluster is not uniform. This could 
make the interpretation of reduced or increased activity in 
SUD samples in the respective area rather volatile. Second, 
the FSN we subsequently calculated resulted in n = 2, sug-
gesting low robustness towards potential publication bias. 
Consequently, adding 3 or more noise studies would have led 
us to no longer identify the cluster as significant, therefore 
suggesting that not much noise data is in need to provoke 
a zero distribution. Third, this result would not withstand 
quality requirements for fMRI meta-analyses (Müller et al. 
2018; Tahmasian et al. 2019), as fMRI results of included 
studies were often corrected too liberally or not corrected. If 
the criteria for neuroimaging meta-analyses would have been 
applied strictly, the ALE would have led to a null finding 
as it would lead to a partially exclusion of now contribut-
ing studies’ results. Too liberal or missing corrections for 
multiple comparisons inflate false positives. Remarkably, 
despite liberal corrections the results of the eligible studies 
do not give the impression of overall inflated data since the 
number of reported foci per study tends to be rather small. A 
low foci-count per study contrast serves as a further indica-
tor of a high probability of studies remain in the file-drawer 
(Samartsidis et al. 2020) which is then reinforced by the con-
sideration of the liberal corrections. We must also empha-
sise that the included studies overall examined small SUD 
populations, often less than n = 20 participants per group. 
This questions how original studies’ estimators can add up 
to a convincing meta-analytic result. Considering the evi-
dence level of included studies, some studies with sufficient 
power might be needed to draw a more confident conclusion. 
Yet, if all these limitations are now noted, this signifies that 
the fMRI results of response inhibition alterations in SUDs 
are less replicable than expected, show clear indicators of 
susceptibility towards publication bias and, finally, are not 
in line with state-of-the-art methodological guidelines for 
coordinate-based meta-analyses.

Besides limited fMRI evidence we report additional 
results that fuel a reconsideration of response inhibition in 
SUDs. After initial inspection of behavioural task measures 
of response inhibition, we observed little or no impairments 
in many of the SUD samples compared to respective con-
trol groups. We decided to analyse them in a subsequent 
random-effects meta-analysis. Examining the individual 
task parameters CE, OE, GO-RT and SSRT, we found no 
significant differences between the SUD populations and 
those of controls that could suggest an impairment in per-
formance replicated in included fMRI studies. This is in 
contradiction to other meta-analytical data demonstrating 
that different SUDs show inferior performances in these 
task measures (Wright et al. 2014; Smith et al. 2014). Smith 
et al. (2014) were able to show in their analysis that different 
substance classes had very different patterns of impairments 
in these task parameters but did not carry out an analysis of 

publication bias. Wright et al. (Wright et al. 2014), on the 
other hand, did not differentiate by substance classes, but 
were able to demonstrate an equal deficit in CE as well as 
OE and slower reaction times of small effect size magnitude 
that are comparable to our results. They had also found evi-
dence of possible publication bias, which, when corrected, 
resulted in a further reduction of effect sizes. However, they 
also discussed that the findings of equivalent deficits in CE 
and OE associated with slower reaction times in SUDs make 
it difficult to infer a pattern of disinhibited performance in 
the accomplishment of the respective tasks. We agree that 
a pattern of behavioural disinhibition should reveal higher 
commission errors, lower or no omission errors, and faster 
reaction times, given that participants are compliant to 
adhere to the tasks. Our results are most comparable to a 
recent mega-analysis of original patient data, which showed 
that for GNGT and SST, only 37.5% and 25% of addicted 
patients (including pathological gambling), respectively, 
showed any behavioural inferiority at all (Liu et al. 2019). 
Thus, these meta-analyses of behavioural data seem to have 
come across similar limitation as our work did. The issues 
appear in low effect sizes, heterogeneous findings, and an 
uncertainty about the role of potential publication bias. Of 
course, we must caveat that our systematic literature review 
on fMRI studies did not a priori aim to integrate behavioural 
data and cannot replace a full and systematic research in 
this regard. Further, not all task parameters were feasible to 
include in our behavioural data meta-analysis due to being 
reported inconsistently or without sufficient information 
for random-effects meta-analyses (e.g., only p-values avail-
able) thus limiting our inferences. However, we speculate 
that neuroimaging studies may not face as high hurdles in 
the publication process as pure behavioural studies if their 
task measures cannot show a significant group difference. 
In the case of a null finding, behavioural studies could thus 
have greater difficulties in submitting their results to scien-
tific discourse, perhaps leading to an uneven ratio of pub-
lication bias probability. Yet, finding no clear behavioural 
deficit in our analysis adds a further explanation for why 
we have not been able to find substantial evidence for func-
tional aberrations in our ALE analysis. Future work should 
therefore address publication bias of behavioural measures 
of response inhibition in SUD, which is now beyond the 
scope of our review.

To conclude this work, we would like to draw attention 
to a few aspects that could be considered in future studies. 
Looking at the evidence on the therapeutic use of response 
inhibition trainings, they often yield unsatisfactory treat-
ment effect sizes if significant at all (Houben et al. 2011; 
Bartsch et al. 2016; Cristea et al. 2016; Batschelet et al. 
2020; Schenkel et al. 2023; Reichl et al. 2023). Even in 
non-clinical samples there is no substantial evidence, that 
inhibition training leads to improvements in new, untrained 
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transfer situations beyond the training situation in a labo-
ratory context (Enge et  al. 2014; Strobach et  al. 2014; 
Strobach and Karbach 2016). There is evidence indicating 
that response inhibition and impulsive behaviours in the 
everyday life of SUD patients should not be perceived as 
closely related constructs by default. Response inhibition 
and trait impulsivity measures often appear uncorrelated 
(Horn et al. 2003; Aichert et al. 2012; Wilbertz et al. 2014; 
Šašinka et al. 2023). This becomes particularly significant 
when we consider that self-reported impulsive behaviours 
of patients are among the targets for therapeutic strategies to 
achieve substance abstinence. It needs to be addressed in the 
future whether response inhibition paradigms performed in 
laboratory tasks are indeed capable of simulating conflict-
ing affective, cognitive, and motivational states of patients’ 
daily lives that warrants these trainings to work. However, 
these approaches are still largely based on the assumption 
that response inhibition is a rather stable deficit in SUDs. 
Recent work by Hildebrandt et al. (2023) offers a new per-
spective on the intricate relationship between response inhi-
bition and SUD symptoms. In their work, they showed that 
activity in the right IFG during a stop-signal task in SUD 
participants was associated with SUD problems (e.g. losing 
control over the consumption, continue using despite impair-
ing their social relations) when statistically controlling for 
the degree of substance use. In earlier work, they pointed out 
that both the degree of use and SUD problems usually cor-
relate, but can vary considerably between as well as within 
subjects, potentially impeding brain-behaviour associations 
(Hildebrandt et al. 2021). These results also suggest that a 
closer look may be needed to better understand the neural 
correlates of altered response inhibition and its clinical sig-
nificance in SUDs. For example, analysing the subcompo-
nents of inhibition and viewing it as a dynamic multivariate 
system may be an important step.

We conclude that the evidence to date for response inhibi-
tion as an overarching marker of SUDs in relation to fMRI 
has some significant limitations in terms of replicability, and 
that the reputation of the construct differs from the over-
all robustness of the findings that we would have initially 
expected. With our work we would take the opportunity to 
stimulate a conceptual refinement of response inhibition in 
SUDs. More appropriate methodological approaches, e.g. 
conducting well powered studies and stricter correction 
thresholds, as well as conceptual expansion, are now crucial 
to further address this research topic.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00213-​023-​06498-1.

Acknowledgements  We would like to thank the research groups and 
their respective authors Grieder et al. and Alderson-Myers et al. for 
kindly providing us with data via personal correspondence that was 
not reported in the original studies.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Data availability  Data supporting the findings of this study are avail-
able within the article and its supplementary materials.

Declarations 

Ethics approval  Not applicable.

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Acar F, Seurinck R, Eickhoff SB, Moerkerke B (2018) Assessing 
robustness against potential publication bias in Activation Like-
lihood Estimation (ALE) meta-analyses for fMRI. PLoS ONE 
13:e0208177. https://​doi.​org/​10.​1371/​journ​al.​pone.​02081​77

Ahmadi A, Pearlson GD, Meda SA et al (2013) Influence of alcohol 
use on neural response to Go/No-Go Task in college drinkers. 
Neuropsychopharmacol 38:2197–2208. https://​doi.​org/​10.​1038/​
npp.​2013.​119

Aichert DS, Wöstmann NM, Costa A et al (2012) Associations between 
trait impulsivity and prepotent response inhibition. J Clin Exp 
Neuropsychol 34:1016–1032. https://​doi.​org/​10.​1080/​13803​395.​
2012.​706261

Alderson Myers AB, Arienzo D, Molnar SM, Marinkovic K (2021) 
Local and network-level dysregulation of error processing is 
associated with binge drinking. NeuroImage: Clinical 32:102879. 
https://​doi.​org/​10.​1016/j.​nicl.​2021.​102879

Ames SL, Wong SW, Bechara A et al (2014) Neural correlates of a Go/
NoGo task with alcohol stimuli in light and heavy young drink-
ers. Behav Brain Res 274:382–389. https://​doi.​org/​10.​1016/j.​bbr.​
2014.​08.​039

American Psychiatric Association (2013) Diagnostic and statistical 
manual of mental disorders: DSM-5™, 5th edn. American Psy-
chiatric Publishing Inc, Arlington, VA, US

Anthony JC, Warner LA, Kessler RC (1997) Comparative epidemiol-
ogy of dependence on tobacco, alcohol, controlled substances, 
and inhalants: basic findings from the National Comorbidity Sur-
vey. American Psychological Association, Washington, DC, US

Aron AR (2007) The neural basis of inhibition in cognitive control. 
Neuroscientist 13:214–228. https://​doi.​org/​10.​1177/​10738​58407​
299288

Bakhshani N-M (2014) Impulsivity: a predisposition toward risky 
behaviors. Int J High Risk Behav Addict 3:e20428. https://​doi.​
org/​10.​5812/​ijhrba.​20428

Bartsch AL, Kothe E, Allom V, Mullan B, Houben K (2016) The 
effect of non-specific response inhibition training on alcohol 

https://doi.org/10.1007/s00213-023-06498-1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0208177
https://doi.org/10.1038/npp.2013.119
https://doi.org/10.1038/npp.2013.119
https://doi.org/10.1080/13803395.2012.706261
https://doi.org/10.1080/13803395.2012.706261
https://doi.org/10.1016/j.nicl.2021.102879
https://doi.org/10.1016/j.bbr.2014.08.039
https://doi.org/10.1016/j.bbr.2014.08.039
https://doi.org/10.1177/1073858407299288
https://doi.org/10.1177/1073858407299288
https://doi.org/10.5812/ijhrba.20428
https://doi.org/10.5812/ijhrba.20428


14	 Psychopharmacology (2024) 241:1–17

1 3

consumption: an intervention. J Addict Res Ther 7:260. https://​
doi.​org/​10.​4172/​2155-​6105.​10002​60

Batschelet HM, Stein M, Tschuemperlin RM et al (2020) Alcohol-
specific computerized interventions to alter cognitive biases: 
a systematic review of effects on experimental tasks, drinking 
behavior, and neuronal activation. Front Psychiatry 10:871. 
https://​doi.​org/​10.​3389/​fpsyt.​2019.​00871

Bobo JK, Husten C (2000) Sociocultural influences on smoking and 
drinking. Alcohol Res Health 24:225–232

Byrne KA, Worthy DA (2019) Examining the link between reward 
and response inhibition in individuals with substance abuse ten-
dencies. Drug Alcohol Depend 194:518–525. https://​doi.​org/​10.​
1016/j.​druga​lcdep.​2018.​11.​014

Campanella S, Absil J, Carbia Sinde C et al (2017) Neural correlates of 
correct and failed response inhibition in heavy versus light social 
drinkers: an fMRI study during a go/no-go task by healthy par-
ticipants. Brain Imaging Behav 11:1796–1811. https://​doi.​org/​
10.​1007/​s11682-​016-​9654-y

Ceceli AO, Parvaz MA, King S et al (2023) Altered prefrontal signal-
ing during inhibitory control in a salient drug context in cocaine 
use disorder. Cereb Cortex 33:597–611. https://​doi.​org/​10.​1093/​
cercor/​bhac0​87

Chaarani B, Spechler PA, Ivanciu A et al (2019) Multimodal neuroim-
aging differences in nicotine abstinent smokers versus satiated 
smokers. Nicotine Tob Res 21:755–763. https://​doi.​org/​10.​1093/​
ntr/​nty070

Chambers CD, Garavan H, Bellgrove MA (2009) Insights into the 
neural basis of response inhibition from cognitive and clinical 
neuroscience. Neurosci Biobehav Rev 33:631–646. https://​doi.​
org/​10.​1016/j.​neubi​orev.​2008.​08.​016

Cieslik EC, Mueller VI, Eickhoff CR et al (2015) Three key regions 
for supervisory attentional control: evidence from neuroimaging 
meta-analyses. Neurosci Biobehav Rev 48:22–34. https://​doi.​org/​
10.​1016/j.​neubi​orev.​2014.​11.​003

Compton WM, Dawson DA, Goldstein RB, Grant BF (2013) Crosswalk 
between DSM-IV dependence and DSM-5 substance use disor-
ders for opioids, cannabis, cocaine and alcohol. Drug Alcohol 
Depend 132:387–390. https://​doi.​org/​10.​1016/j.​druga​lcdep.​2013.​
02.​036

Criaud M, Boulinguez P (2013) Have we been asking the right ques-
tions when assessing response inhibition in go/no-go tasks with 
fMRI? A meta-analysis and critical review. Neurosci Biobehav 
Rev 37:11–23. https://​doi.​org/​10.​1016/j.​neubi​orev.​2012.​11.​003

Cristea IA, Kok RN, Cuijpers P (2016) The Effectiveness of cognitive 
bias modification interventions for substance addictions: a meta-
analysis. PLoS ONE 11:e0162226. https://​doi.​org/​10.​1371/​journ​
al.​pone.​01622​26

Czapla M, Baeuchl C, Simon JJ et al (2017) Do alcohol-dependent 
patients show different neural activation during response inhibi-
tion than healthy controls in an alcohol-related fMRI go/no-go-
task? Psychopharmacol 234:1001–1015. https://​doi.​org/​10.​1007/​
s00213-​017-​4541-9

de Wit H (2009) Impulsivity as a determinant and consequence of drug 
use: a review of underlying processes. Addict Biol 14:22–31. 
https://​doi.​org/​10.​1111/j.​1369-​1600.​2008.​00129.x

Donders FC (1969) On the speed of mental processes. Acta Physiol 
(oxf) 30:412–431. https://​doi.​org/​10.​1016/​0001-​6918(69)​
90065-1

Eickhoff SB, Laird AR, Grefkes C et al (2009) Coordinate-based acti-
vation likelihood estimation meta-analysis of neuroimaging data: 
a random-effects approach based on empirical estimates of spa-
tial uncertainty. Hum Brain Mapp 30:2907–2926. https://​doi.​org/​
10.​1002/​hbm.​20718

Eickhoff SB, Bzdok D, Laird AR et al (2011) Co-activation patterns 
distinguish cortical modules, their connectivity and functional 

differentiation. Neuroimage 57:938–949. https://​doi.​org/​10.​
1016/j.​neuro​image.​2011.​05.​021

Eickhoff SB, Bzdok D, Laird AR et al (2012) Activation likelihood 
estimation meta-analysis revisited. Neuroimage 59:2349–2361. 
https://​doi.​org/​10.​1016/j.​neuro​image.​2011.​09.​017

Eickhoff SB, Nichols TE, Laird AR et al (2016) Behavior, sensitivity, 
and power of activation likelihood estimation characterized by 
massive empirical simulation. Neuroimage 137:70–85. https://​
doi.​org/​10.​1016/j.​neuro​image.​2016.​04.​072

Elton A, Young J, Smitherman S et al (2014) Neural network activation 
during a stop-signal task discriminates cocaine-dependent from 
non-drug-abusing men. Addict Biol 19:427–438. https://​doi.​org/​
10.​1111/​adb.​12011

Enge S, Behnke A, Fleischhauer M et al (2014) No evidence for true 
training and transfer effects after inhibitory control training in 
young healthy adults. J Exp Psychol Learn Mem Cogn 40:987–
1001. https://​doi.​org/​10.​1037/​a0036​165

Flandin G, Friston KJ (2019) Analysis of family-wise error rates in 
statistical parametric mapping using random field theory. Hum 
Brain Mapp 40:2052–2054. https://​doi.​org/​10.​1002/​hbm.​23839

Fox PT, Lancaster JL, Laird AR, Eickhoff SB (2014) Meta-analysis 
in human neuroimaging: computational modeling of large-scale 
databases. Annu Rev Neurosci 37:409–434. https://​doi.​org/​10.​
1146/​annur​ev-​neuro-​062012-​170320

Frahm L, Cieslik EC, Hoffstaedter F et al (2022) Evaluation of thresh-
olding methods for activation likelihood estimation meta-anal-
ysis via large-scale simulations. Human Brain Mapping HBM 
43:25898. https://​doi.​org/​10.​1002/​hbm.​25898

Fu L, Bi G, Zou Z et al (2008) Impaired response inhibition function 
in abstinent heroin dependents: an fMRI study. Neurosci Lett 
438:322–326. https://​doi.​org/​10.​1016/j.​neulet.​2008.​04.​033

Gerhardt S, Luderer M, Bumb JM et  al (2021) Stop what you’re 
doing!—An fMRI study on comparisons of neural subproc-
esses of response inhibition in ADHD and alcohol use disorder. 
Front Psychiatry 12:691930. https://​doi.​org/​10.​3389/​fpsyt.​2021.​
691930

Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric 
disease. Science 349:1489–1494. https://​doi.​org/​10.​1126/​scien​
ce.​aaa89​54

Grieder M, Soravia LM, Tschuemperlin RM et al (2022) Right infe-
rior frontal activation during alcohol-specific inhibition increases 
with craving and predicts drinking outcome in alcohol use disor-
der. Front Psych 13:909992. https://​doi.​org/​10.​3389/​fpsyt.​2022.​
909992

Groman SM, James AS, Jentsch JD (2009) Poor response inhibition: at 
the nexus between substance abuse and attention deficit/hyperac-
tivity disorder. Neurosci Biobehav Rev 33:690–698. https://​doi.​
org/​10.​1016/j.​neubi​orev.​2008.​08.​008

Hasin DS, Stinson FS, Ogburn E, Grant BF (2007) Prevalence, cor-
relates, disability, and comorbidity of dsm-iv alcohol abuse and 
dependence in the United States: results from the national epi-
demiologic survey on alcohol and related conditions. Arch Gen 
Psychiatry 64:830. https://​doi.​org/​10.​1001/​archp​syc.​64.7.​830

Hester R (2004) Executive dysfunction in cocaine addiction: evidence 
for discordant frontal, cingulate, and cerebellar activity. J Neu-
rosci 24:11017–11022. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​
3321-​04.​2004

Hester R, Bell RP, Foxe JJ, Garavan H (2013) The influence of mon-
etary punishment on cognitive control in abstinent cocaine-users. 
Drug Alcohol Depend 133:86–93. https://​doi.​org/​10.​1016/j.​
druga​lcdep.​2013.​05.​027

Hildebrandt MK, Dieterich R, Endrass T (2021) Neural correlates of 
inhibitory control in relation to the degree of substance use and 
substance-related problems – a systematic review and perspec-
tive. Neurosci Biobehav Rev 128:1–11. https://​doi.​org/​10.​1016/j.​
neubi​orev.​2021.​06.​011

https://doi.org/10.4172/2155-6105.1000260
https://doi.org/10.4172/2155-6105.1000260
https://doi.org/10.3389/fpsyt.2019.00871
https://doi.org/10.1016/j.drugalcdep.2018.11.014
https://doi.org/10.1016/j.drugalcdep.2018.11.014
https://doi.org/10.1007/s11682-016-9654-y
https://doi.org/10.1007/s11682-016-9654-y
https://doi.org/10.1093/cercor/bhac087
https://doi.org/10.1093/cercor/bhac087
https://doi.org/10.1093/ntr/nty070
https://doi.org/10.1093/ntr/nty070
https://doi.org/10.1016/j.neubiorev.2008.08.016
https://doi.org/10.1016/j.neubiorev.2008.08.016
https://doi.org/10.1016/j.neubiorev.2014.11.003
https://doi.org/10.1016/j.neubiorev.2014.11.003
https://doi.org/10.1016/j.drugalcdep.2013.02.036
https://doi.org/10.1016/j.drugalcdep.2013.02.036
https://doi.org/10.1016/j.neubiorev.2012.11.003
https://doi.org/10.1371/journal.pone.0162226
https://doi.org/10.1371/journal.pone.0162226
https://doi.org/10.1007/s00213-017-4541-9
https://doi.org/10.1007/s00213-017-4541-9
https://doi.org/10.1111/j.1369-1600.2008.00129.x
https://doi.org/10.1016/0001-6918(69)90065-1
https://doi.org/10.1016/0001-6918(69)90065-1
https://doi.org/10.1002/hbm.20718
https://doi.org/10.1002/hbm.20718
https://doi.org/10.1016/j.neuroimage.2011.05.021
https://doi.org/10.1016/j.neuroimage.2011.05.021
https://doi.org/10.1016/j.neuroimage.2011.09.017
https://doi.org/10.1016/j.neuroimage.2016.04.072
https://doi.org/10.1016/j.neuroimage.2016.04.072
https://doi.org/10.1111/adb.12011
https://doi.org/10.1111/adb.12011
https://doi.org/10.1037/a0036165
https://doi.org/10.1002/hbm.23839
https://doi.org/10.1146/annurev-neuro-062012-170320
https://doi.org/10.1146/annurev-neuro-062012-170320
https://doi.org/10.1002/hbm.25898
https://doi.org/10.1016/j.neulet.2008.04.033
https://doi.org/10.3389/fpsyt.2021.691930
https://doi.org/10.3389/fpsyt.2021.691930
https://doi.org/10.1126/science.aaa8954
https://doi.org/10.1126/science.aaa8954
https://doi.org/10.3389/fpsyt.2022.909992
https://doi.org/10.3389/fpsyt.2022.909992
https://doi.org/10.1016/j.neubiorev.2008.08.008
https://doi.org/10.1016/j.neubiorev.2008.08.008
https://doi.org/10.1001/archpsyc.64.7.830
https://doi.org/10.1523/JNEUROSCI.3321-04.2004
https://doi.org/10.1523/JNEUROSCI.3321-04.2004
https://doi.org/10.1016/j.drugalcdep.2013.05.027
https://doi.org/10.1016/j.drugalcdep.2013.05.027
https://doi.org/10.1016/j.neubiorev.2021.06.011
https://doi.org/10.1016/j.neubiorev.2021.06.011


15Psychopharmacology (2024) 241:1–17	

1 3

Hildebrandt MK, Schwarz K, Dieterich R, Endrass T (2023) Dissoci-
ating the link of neural correlates of inhibition to the degree of 
substance use and substance-related problems: a preregistered, 
multimodal, combined cross-sectional and longitudinal study. 
Biol Psychiatry 94(11):898–905. https://​doi.​org/​10.​1016/j.​biops​
ych.​2023.​06.​017

Horn NR, Dolan M, Elliott R et al (2003) Response inhibition and 
impulsivity: an fMRI study. Neuropsychologia 41:1959–1966. 
https://​doi.​org/​10.​1016/​S0028-​3932(03)​00077-0

Houben K, Nederkoorn C, Wiers RW, Jansen A (2011) Resisting temp-
tation: decreasing alcohol-related affect and drinking behavior by 
training response inhibition. Drug Alcohol Depend 116:132–136. 
https://​doi.​org/​10.​1016/j.​druga​lcdep.​2010.​12.​011

Hung Y, Gaillard SL, Yarmak P, Arsalidou M (2018) Dissociations of 
cognitive inhibition, response inhibition, and emotional interfer-
ence: Voxelwise ALE meta-analyses of fMRI studies. Hum Brain 
Mapp 39:4065–4082. https://​doi.​org/​10.​1002/​hbm.​24232

Jones KD, Gill C, Ray S (2012) Review of the proposed DSM-5 
substance use disorder. J Addict Offender Couns 33:115–123. 
https://​doi.​org/​10.​1002/j.​2161-​1874.​2012.​00009.x

Kalhan S, Chen LPE, Garrido MI, Hester R (2022) People with 
tobacco use disorder exhibit more prefrontal activity during 
preparatory control but reduced anterior cingulate activity dur-
ing reactive control. Addict Biol 27:e13159. https://​doi.​org/​10.​
1111/​adb.​13159

Kaufman JN, Ross TJ, Stein EA, Garavan H (2003) Cingulate hypo-
activity in cocaine users during a GO-NOGO task as revealed 
by event-related functional magnetic resonance imaging. J 
Neurosci 23:7839–7843. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​
23-​21-​07839.​2003

Kessler RC, Berglund P, Chiu WT et al (2004) The US National 
Comorbidity Survey Replication (NCS-R): design and field 
procedures. Int J Methods Psychiatr Res 13:69–92. https://​doi.​
org/​10.​1002/​mpr.​167

Kessler RC, Angermeyer M, Anthony JC et al (2007) Lifetime prev-
alence and age-of-onset distributions of mental disorders in 
the World Health Organization’s World Mental Health Survey 
Initiative. World Psychiatry 6:168–176

Laird AR, Fox PM, Price CJ et al (2005) ALE meta-analysis: con-
trolling the false discovery rate and performing statistical con-
trasts. Hum Brain Mapp 25:155–164. https://​doi.​org/​10.​1002/​
hbm.​20136

Laird AR, Robinson JL, McMillan KM et al (2010) Comparison of 
the disparity between Talairach and MNI coordinates in func-
tional neuroimaging data: validation of the Lancaster trans-
form. Neuroimage 51:677–683. https://​doi.​org/​10.​1016/j.​neuro​
image.​2010.​02.​048

Laird AR, Eickhoff SB, Fox PM et al (2011a) The BrainMap strategy 
for standardization, sharing, and meta-analysis of neuroim-
aging data. BMC Res Notes 4:349. https://​doi.​org/​10.​1186/​
1756-​0500-4-​349

Laird AR, Fox PM, Eickhoff SB et al (2011b) Behavioral interpre-
tations of intrinsic connectivity networks. J Cogn Neurosci 
23:4022–4037. https://​doi.​org/​10.​1162/​jocn_a_​00077

Laird A, Eickhoff S, Kurth F et al (2009) ALE meta-analysis work-
flows via the BrainMap database: progress towards a probabil-
istic functional brain atlas. Front Neuroinform 3:598. https://​
doi.​org/​10.​3389/​neuro.​11.​023.​2009

Lancaster JL, Tordesillas-Gutiérrez D, Martinez M et al (2007) Bias 
between MNI and Talairach coordinates analyzed using the 
ICBM-152 brain template. Hum Brain Mapp 28:1194–1205. 
https://​doi.​org/​10.​1002/​hbm.​20345

Lancaster JL, Laird AR, Eickhoff SB et al (2012) Automated regional 
behavioral analysis for human brain images. Front Neuroin-
form 6:23. https://​doi.​org/​10.​3389/​fninf.​2012.​00023

Langner R, Rottschy C, Laird AR et al (2014) Meta-analytic con-
nectivity modeling revisited: controlling for activation base 
rates. Neuroimage 99:559–570. https://​doi.​org/​10.​1016/j.​neuro​
image.​2014.​06.​007

Le TM, Potvin S, Zhornitsky S, Li C-SR (2021) Distinct patterns 
of prefrontal cortical disengagement during inhibitory control 
in addiction: a meta-analysis based on population characteris-
tics. Neurosci Biobehav Rev 127:255–269. https://​doi.​org/​10.​
1016/j.​neubi​orev.​2021.​04.​028

Lépine J-P, Gasquet I, Kovess V et al (2005) Prevalence and comor-
bidity of psychiatric disorders in the French general popula-
tion. Encephale 31:182–194. https://​doi.​org/​10.​1016/​s0013-​
7006(05)​82385-1

Li CR, Luo X, Yan P et al (2009) Altered impulse control in alcohol 
dependence: neural measures of stop signal performance. Alcohol 
Clin Exp Res 33:740–750. https://​doi.​org/​10.​1111/j.​1530-​0277.​
2008.​00891.x

Liddle PF, Kiehl KA, Smith AM (2001) Event-related fMRI study of 
response inhibition. Hum Brain Mapp 12:100–109. https://​doi.​
org/​10.​1002/​1097-​0193(200102)​12:2%​3c100::​AID-​HBM10​
07%​3e3.0.​CO;2-6

Liu Y, van den Wildenberg WPM, de Graaf Y et al (2019) Is (poly-) 
substance use associated with impaired inhibitory control? A 
mega-analysis controlling for confounders. Neurosci Biobehav 
Rev 105:288–304. https://​doi.​org/​10.​1016/j.​neubi​orev.​2019.​07.​
006

Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit sim-
ple and choice reaction time responses: a model and a method. J 
Exp Psychol Hum Percept Perform 10:276–291. https://​doi.​org/​
10.​1037/​0096-​1523.​10.2.​276

Luijten M, Veltman DJ, Hester R, et al (2013) The role of dopamine 
in inhibitory control in smokers and nonsmokers: a pharmaco-
logical fMRI study. Eur Neuropsychopharmacol 23:1247–1256. 
https://​doi.​org/​10.​1016/j.​euron​euro.​2012.​10.​017

Ma L, Steinberg JL, Cunningham KA et al (2015) Inhibitory behavioral 
control: a stochastic dynamic causal modeling study compar-
ing cocaine dependent subjects and controls. NeuroImage Clin 
7:837–847. https://​doi.​org/​10.​1016/j.​nicl.​2015.​03.​015

MacCoun R (2013) The puzzling unidimensionality of DSM-5 sub-
stance use disorder diagnoses. Front Psychiatry 4:153

McTeague LM, Huemer J, Carreon DM et al (2017) Identification of 
common neural circuit disruptions in cognitive control across 
psychiatric disorders. AJP 174:676–685. https://​doi.​org/​10.​1176/​
appi.​ajp.​2017.​16040​400

Merikangas KR, McClair VL (2012) Epidemiology of substance use 
disorders. Hum Genet 131:779–789. https://​doi.​org/​10.​1007/​
s00439-​012-​1168-0

Miyake A, Friedman NP, Emerson MJ et al (2000) The unity and diver-
sity of executive functions and their contributions to complex 
“frontal lobe” tasks: a latent variable analysis. Cogn Psychol 
41:49–100. https://​doi.​org/​10.​1006/​cogp.​1999.​0734

Molnar-Szakacs I, Uddin LQ (2022) Anterior insula as a gatekeeper of 
executive control. Neurosci Biobehav Rev 139:104736. https://​
doi.​org/​10.​1016/j.​neubi​orev.​2022.​104736

Morein-Zamir S, Simon Jones P, Bullmore ET et al (2013) Prefrontal 
hypoactivity associated with impaired inhibition in stimulant-
dependent individuals but evidence for hyperactivation in their 
unaffected siblings. Neuropsychopharmacol 38:1945–1953. 
https://​doi.​org/​10.​1038/​npp.​2013.​90

Morris LS, Kundu P, Baek K et al (2016) Jumping the gun: mapping 
neural correlates of waiting impulsivity and relevance across 
alcohol misuse. Biol Psychiatry 79:499–507. https://​doi.​org/​10.​
1016/j.​biops​ych.​2015.​06.​009

Müller SE, Weijers H-G, Böning J, Wiesbeck GA (2008) Personality 
traits predict treatment outcome in alcohol-dependent patients. 
NPS 57:159–164. https://​doi.​org/​10.​1159/​00014​7469

https://doi.org/10.1016/j.biopsych.2023.06.017
https://doi.org/10.1016/j.biopsych.2023.06.017
https://doi.org/10.1016/S0028-3932(03)00077-0
https://doi.org/10.1016/j.drugalcdep.2010.12.011
https://doi.org/10.1002/hbm.24232
https://doi.org/10.1002/j.2161-1874.2012.00009.x
https://doi.org/10.1111/adb.13159
https://doi.org/10.1111/adb.13159
https://doi.org/10.1523/JNEUROSCI.23-21-07839.2003
https://doi.org/10.1523/JNEUROSCI.23-21-07839.2003
https://doi.org/10.1002/mpr.167
https://doi.org/10.1002/mpr.167
https://doi.org/10.1002/hbm.20136
https://doi.org/10.1002/hbm.20136
https://doi.org/10.1016/j.neuroimage.2010.02.048
https://doi.org/10.1016/j.neuroimage.2010.02.048
https://doi.org/10.1186/1756-0500-4-349
https://doi.org/10.1186/1756-0500-4-349
https://doi.org/10.1162/jocn_a_00077
https://doi.org/10.3389/neuro.11.023.2009
https://doi.org/10.3389/neuro.11.023.2009
https://doi.org/10.1002/hbm.20345
https://doi.org/10.3389/fninf.2012.00023
https://doi.org/10.1016/j.neuroimage.2014.06.007
https://doi.org/10.1016/j.neuroimage.2014.06.007
https://doi.org/10.1016/j.neubiorev.2021.04.028
https://doi.org/10.1016/j.neubiorev.2021.04.028
https://doi.org/10.1016/s0013-7006(05)82385-1
https://doi.org/10.1016/s0013-7006(05)82385-1
https://doi.org/10.1111/j.1530-0277.2008.00891.x
https://doi.org/10.1111/j.1530-0277.2008.00891.x
https://doi.org/10.1002/1097-0193(200102)12:2%3c100::AID-HBM1007%3e3.0.CO;2-6
https://doi.org/10.1002/1097-0193(200102)12:2%3c100::AID-HBM1007%3e3.0.CO;2-6
https://doi.org/10.1002/1097-0193(200102)12:2%3c100::AID-HBM1007%3e3.0.CO;2-6
https://doi.org/10.1016/j.neubiorev.2019.07.006
https://doi.org/10.1016/j.neubiorev.2019.07.006
https://doi.org/10.1037/0096-1523.10.2.276
https://doi.org/10.1037/0096-1523.10.2.276
https://doi.org/10.1016/j.euroneuro.2012.10.017
https://doi.org/10.1016/j.nicl.2015.03.015
https://doi.org/10.1176/appi.ajp.2017.16040400
https://doi.org/10.1176/appi.ajp.2017.16040400
https://doi.org/10.1007/s00439-012-1168-0
https://doi.org/10.1007/s00439-012-1168-0
https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1016/j.neubiorev.2022.104736
https://doi.org/10.1016/j.neubiorev.2022.104736
https://doi.org/10.1038/npp.2013.90
https://doi.org/10.1016/j.biopsych.2015.06.009
https://doi.org/10.1016/j.biopsych.2015.06.009
https://doi.org/10.1159/000147469


16	 Psychopharmacology (2024) 241:1–17

1 3

Müller VI, Cieslik EC, Laird AR et al (2018) Ten simple rules for neu-
roimaging meta-analysis. Neurosci Biobehav Rev 84:151–161. 
https://​doi.​org/​10.​1016/j.​neubi​orev.​2017.​11.​012

Nestor L, McCabe E, Jones J et al (2011) Differences in “bottom-up” 
and “top-down” neural activity in current and former cigarette 
smokers: evidence for neural substrates which may promote 
nicotine abstinence through increased cognitive control. Neu-
roimage 56:2258–2275. https://​doi.​org/​10.​1016/j.​neuro​image.​
2011.​03.​054

Nestor LJ, Paterson LM, Murphy A et al (2019) Naltrexone differen-
tially modulates the neural correlates of motor impulse control 
in abstinent alcohol-dependent and polysubstance-dependent 
individuals. Eur J Neurosci 50:2311–2321. https://​doi.​org/​10.​
1111/​ejn.​14262

Niendam TA, Laird AR, Ray KL et al (2012) Meta-analytic evidence 
for a superordinate cognitive control network subserving diverse 
executive functions. Cogn Affect Behav Neurosci 12:241–268. 
https://​doi.​org/​10.​3758/​s13415-​011-​0083-5

Nigg JT (2000) On inhibition/disinhibition in developmental psychopa-
thology: views from cognitive and personality psychology and a 
working inhibition taxonomy. Psychol Bull 126:220–246. https://​
doi.​org/​10.​1037/​0033-​2909.​126.2.​220

Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 
statement: an updated guideline for reporting systematic reviews. 
Int J Surg 88:105906. https://​doi.​org/​10.​1016/j.​ijsu.​2021.​105906

Parks KA, Kennedy CL (2004) Club Drugs: reasons for and conse-
quences of use. J Psychoactive Drugs 36:295–302. https://​doi.​
org/​10.​1080/​02791​072.​2004.​10400​030

Puiu AA, Wudarczyk O, Kohls G et al (2020) Meta-analytic evidence 
for a joint neural mechanism underlying response inhibition 
and state anger. Hum Brain Mapp 41:3147–3160. https://​doi.​
org/​10.​1002/​hbm.​25004

Qiu Z, Wang J (2021) Altered neural activities during response inhi-
bition in adults with addiction: a voxel-wise meta-analysis. 
Psychol Med 51:387–399. https://​doi.​org/​10.​1017/​S0033​29172​
10003​62

R Core Team (2021) R: a language and environment for statistical 
computing. https://​www.R-​proje​ct.​org/

Radua J, Mataix-Cols D (2009) Voxel-wise meta-analysis of grey mat-
ter changes in obsessive–compulsive disorder. Br J Psychiatry 
195:393–402. https://​doi.​org/​10.​1192/​bjp.​bp.​108.​055046

Radua J, Mataix-Cols D, Phillips ML et al (2012) A new meta-ana-
lytic method for neuroimaging studies that combines reported 
peak coordinates and statistical parametric maps. Eur Psychiatr 
27:605–611. https://​doi.​org/​10.​1016/j.​eurpsy.​2011.​04.​001

Raud L, Westerhausen R, Dooley N, Huster RJ (2020) Differences in 
unity: the go/no-go and stop signal tasks rely on different mecha-
nisms. Neuroimage 210:116582. https://​doi.​org/​10.​1016/j.​neuro​
image.​2020.​116582

Reichl D, Enewoldsen N, Müller A, Steins-Loeber S (2023) Pilot test-
ing of an adaptive, individualized inhibitory control training for 
binge drinking: first evidence on feasibility, acceptance, and 
efficacy. Psychol Res 87:1267–1283. https://​doi.​org/​10.​1007/​
s00426-​022-​01725-4

Robinson JL, Laird AR, Glahn DC et al (2012) The functional con-
nectivity of the human caudate: an application of meta-analytic 
connectivity modeling with behavioral filtering. Neuroimage 
60:117–129. https://​doi.​org/​10.​1016/j.​neuro​image.​2011.​12.​010

Rodríguez-Nieto G, Seer C, Sidlauskaite J et al (2022) Inhibition, 
Shifting and Updating: Inter and intra-domain commonalities 
and differences from an executive functions activation likelihood 
estimation meta-analysis. Neuroimage 264:119665. https://​doi.​
org/​10.​1016/j.​neuro​image.​2022.​119665

Samartsidis P, Montagna S, Laird AR et al (2020) Estimating the preva-
lence of missing experiments in a neuroimaging meta-analysis. 

Research Synthesis Methods 11:866–883. https://​doi.​org/​10.​
1002/​jrsm.​1448

Šašinka Č, Lacko D, Čeněk J et al (2023) ImGo: a novel tool for behav-
ioral impulsivity assessment based on Go/NoGo tasks. Psychol 
Rep 126:434–476. https://​doi.​org/​10.​1177/​00332​94121​10404​31

Sayette MA (2016) The Role of craving in substance use disor-
ders: theoretical and methodological issues. Annu Rev Clin 
Psychol 12:407–433. https://​doi.​org/​10.​1146/​annur​ev-​clinp​
sy-​021815-​093351

Schenkel EJ, Schöneck R, Wiers RW et al (2023) Does selective inhibi-
tion training reduce relapse rates when added to standard treat-
ment of alcohol use disorder? A randomized controlled trial. 
Alcohol Clinical and Experimental Research 47:963–974. https://​
doi.​org/​10.​1111/​acer.​15055

Sebastian A, Pohl MF, Klöppel S et al (2013) Disentangling common 
and specific neural subprocesses of response inhibition. Neuro-
image 64:601–615. https://​doi.​org/​10.​1016/j.​neuro​image.​2012.​
09.​020

Smith JL, Mattick RP, Jamadar SD, Iredale JM (2014) Deficits in 
behavioural inhibition in substance abuse and addiction: a 
meta-analysis. Drug Alcohol Depend 145:1–33. https://​doi.​
org/​10.​1016/j.​druga​lcdep.​2014.​08.​009

Stevens L, Verdejo-García A, Goudriaan AE et al (2014) Impulsivity 
as a vulnerability factor for poor addiction treatment outcomes: 
a review of neurocognitive findings among individuals with sub-
stance use disorders. J Subst Abuse Treat 47:58–72. https://​doi.​
org/​10.​1016/j.​jsat.​2014.​01.​008

Strobach T, Karbach J (eds) (2016) Cognitive training. Springer Inter-
national Publishing, Cham

Strobach T, Salminen T, Karbach J, Schubert T (2014) Practice-
related optimization and transfer of executive functions: a gen-
eral review and a specific realization of their mechanisms in 
dual tasks. Psychol Res 78:836–851. https://​doi.​org/​10.​1007/​
s00426-​014-​0563-7

Stroop JR (1935) Studies of interference in serial verbal reactions. J 
Exp Psychol 18:643–662. https://​doi.​org/​10.​1037/​h0054​651

Subramaniam P, McGlade E, Yurgelun-Todd D (2016) Comorbid can-
nabis and tobacco use in adolescents and adults. Curr Addict Rep 
3:182–188. https://​doi.​org/​10.​1007/​s40429-​016-​0101-3

Swick D, Ashley V, Turken U (2011) Are the neural correlates of stop-
ping and not going identical? Quantitative meta-analysis of two 
response inhibition tasks. Neuroimage 56:1655–1665. https://​
doi.​org/​10.​1016/j.​neuro​image.​2011.​02.​070

Tahmasian M, Sepehry AA, Samea F et al (2019) Practical recommen-
dations to conduct a neuroimaging meta-analysis for neuropsy-
chiatric disorders. Hum Brain Mapp 40:5142–5154. https://​doi.​
org/​10.​1002/​hbm.​24746

Terry-McElrath YM, O’Malley PM, Johnston LD (2009) Reasons for 
drug use among american youth by consumption level, gender, 
and race/ethnicity: 1976–2005. Journal of Drug Issues 39:677–
713. https://​doi.​org/​10.​1177/​00220​42609​03900​310

Turkeltaub PE, Eickhoff SB, Laird AR et al (2012) Minimizing within-
experiment and within-group effects in activation likelihood esti-
mation meta-analyses. Hum Brain Mapp 33:1–13. https://​doi.​org/​
10.​1002/​hbm.​21186

Uddin LQ, Yeo BTT, Spreng RN (2019) Towards a universal taxonomy 
of macro-scale functional human brain networks. Brain Topogr 
32:926–942. https://​doi.​org/​10.​1007/​s10548-​019-​00744-6

Verbruggen F, Logan GD (2008) Automatic and controlled response 
inhibition: associative learning in the go/no-go and stop-signal 
paradigms. J Exp Psychol Gen 137:649–672. https://​doi.​org/​10.​
1037/​a0013​170

Verdejo-Garcia A (2016) Cognitive training for substance use dis-
orders: neuroscientific mechanisms. Neurosci Biobehav Rev 
68:270–281. https://​doi.​org/​10.​1016/j.​neubi​orev.​2016.​05.​018

https://doi.org/10.1016/j.neubiorev.2017.11.012
https://doi.org/10.1016/j.neuroimage.2011.03.054
https://doi.org/10.1016/j.neuroimage.2011.03.054
https://doi.org/10.1111/ejn.14262
https://doi.org/10.1111/ejn.14262
https://doi.org/10.3758/s13415-011-0083-5
https://doi.org/10.1037/0033-2909.126.2.220
https://doi.org/10.1037/0033-2909.126.2.220
https://doi.org/10.1016/j.ijsu.2021.105906
https://doi.org/10.1080/02791072.2004.10400030
https://doi.org/10.1080/02791072.2004.10400030
https://doi.org/10.1002/hbm.25004
https://doi.org/10.1002/hbm.25004
https://doi.org/10.1017/S0033291721000362
https://doi.org/10.1017/S0033291721000362
https://www.R-project.org/
https://doi.org/10.1192/bjp.bp.108.055046
https://doi.org/10.1016/j.eurpsy.2011.04.001
https://doi.org/10.1016/j.neuroimage.2020.116582
https://doi.org/10.1016/j.neuroimage.2020.116582
https://doi.org/10.1007/s00426-022-01725-4
https://doi.org/10.1007/s00426-022-01725-4
https://doi.org/10.1016/j.neuroimage.2011.12.010
https://doi.org/10.1016/j.neuroimage.2022.119665
https://doi.org/10.1016/j.neuroimage.2022.119665
https://doi.org/10.1002/jrsm.1448
https://doi.org/10.1002/jrsm.1448
https://doi.org/10.1177/00332941211040431
https://doi.org/10.1146/annurev-clinpsy-021815-093351
https://doi.org/10.1146/annurev-clinpsy-021815-093351
https://doi.org/10.1111/acer.15055
https://doi.org/10.1111/acer.15055
https://doi.org/10.1016/j.neuroimage.2012.09.020
https://doi.org/10.1016/j.neuroimage.2012.09.020
https://doi.org/10.1016/j.drugalcdep.2014.08.009
https://doi.org/10.1016/j.drugalcdep.2014.08.009
https://doi.org/10.1016/j.jsat.2014.01.008
https://doi.org/10.1016/j.jsat.2014.01.008
https://doi.org/10.1007/s00426-014-0563-7
https://doi.org/10.1007/s00426-014-0563-7
https://doi.org/10.1037/h0054651
https://doi.org/10.1007/s40429-016-0101-3
https://doi.org/10.1016/j.neuroimage.2011.02.070
https://doi.org/10.1016/j.neuroimage.2011.02.070
https://doi.org/10.1002/hbm.24746
https://doi.org/10.1002/hbm.24746
https://doi.org/10.1177/002204260903900310
https://doi.org/10.1002/hbm.21186
https://doi.org/10.1002/hbm.21186
https://doi.org/10.1007/s10548-019-00744-6
https://doi.org/10.1037/a0013170
https://doi.org/10.1037/a0013170
https://doi.org/10.1016/j.neubiorev.2016.05.018


17Psychopharmacology (2024) 241:1–17	

1 3

Verdejo-Garcia A, Rezapour T, Giddens E et al (2023) Cognitive train-
ing and remediation interventions for substance use disorders: a 
Delphi consensus study. Addiction 118:935–951. https://​doi.​org/​
10.​1111/​add.​16109

Viechtbauer W (2010) Conducting meta-analyses in R with the meta-
for Package. J Stat Soft 36:1–48. https://​doi.​org/​10.​18637/​jss.​
v036.​i03

Weafer J, Mitchell SH, de Wit H (2014) Recent translational findings 
on impulsivity in relation to drug abuse. Curr Addict Rep 1:289–
300. https://​doi.​org/​10.​1007/​s40429-​014-​0035-6

Weywadt CR, Kiehl KA, Claus ED (2017) Neural correlates of 
response inhibition in current and former smokers. Behav Brain 
Res 319:207–218. https://​doi.​org/​10.​1016/j.​bbr.​2016.​11.​030

Wilbertz T, Deserno L, Horstmann A et al (2014) Response inhibition 
and its relation to multidimensional impulsivity. Neuroimage 
103:241–248. https://​doi.​org/​10.​1016/j.​neuro​image.​2014.​09.​021

Wittchen H-U (1996) Critical Issues in the evaluation of comorbidity 
of psychiatric disorders. Br J Psychiatry 168:9–16. https://​doi.​
org/​10.​1192/​S0007​12500​02983​6X

Wright L, Lipszyc J, Dupuis A et al (2014) Response inhibition and 
psychopathology: a meta-analysis of go/no-go task performance. 
J Abnorm Psychol 123:429–439. https://​doi.​org/​10.​1037/​a0036​
295

Yan H, Lau WKW, Eickhoff SB et al (2022) Charting the neural circuits 
disruption in inhibitory control and its subcomponents across 
psychiatric disorders: a neuroimaging meta-analysis. Prog Neu-
ropsychopharmacol Biol Psychiatry 119:110618. https://​doi.​org/​
10.​1016/j.​pnpbp.​2022.​110618

Zhang R, Geng X, Lee TMC (2017) Large-scale functional neural net-
work correlates of response inhibition: an fMRI meta-analysis. 
Brain Struct Funct 222:3973–3990. https://​doi.​org/​10.​1007/​
s00429-​017-​1443-x

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1111/add.16109
https://doi.org/10.1111/add.16109
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.1007/s40429-014-0035-6
https://doi.org/10.1016/j.bbr.2016.11.030
https://doi.org/10.1016/j.neuroimage.2014.09.021
https://doi.org/10.1192/S000712500029836X
https://doi.org/10.1192/S000712500029836X
https://doi.org/10.1037/a0036295
https://doi.org/10.1037/a0036295
https://doi.org/10.1016/j.pnpbp.2022.110618
https://doi.org/10.1016/j.pnpbp.2022.110618
https://doi.org/10.1007/s00429-017-1443-x
https://doi.org/10.1007/s00429-017-1443-x

	Neural underpinnings of response inhibition in substance use disorders: weak meta-analytic evidence for a widely used construct
	Abstract
	Rationale 
	Objective 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Search strategy and data acquisition
	Activation likelihood estimation (ALE) meta-analysis
	Behavioural characterization and paradigm class analysis
	Meta-analytic connectivity modelling (MACM)
	Fail-safe-N (FSN)
	Post-hoc exploratory meta-analysis of behavioural data

	Results
	ALE meta-analytic results
	MACM results
	Post-hoc exploratory meta-analysis of behavioural data

	Discussion
	Anchor 21
	Acknowledgements 
	References


