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Abstract
Rationale Therapeutic administration of psychedelics has shown significant potential in historical accounts and recent 
clinical trials in the treatment of depression and other mood disorders. A recent randomized double-blind phase-IIb study 
demonstrated the safety and efficacy of COMP360, COMPASS Pathways’ proprietary synthetic formulation of psilocybin, 
in participants with treatment-resistant depression.
Objective While the phase-IIb results are promising, the treatment works for a portion of the population and early prediction 
of outcome is a key objective as it would allow early identification of those likely to require alternative treatment.
Methods Transcripts were made from audio recordings of the psychological support session between participant and thera-
pist 1 day post COMP360 administration. A zero-shot machine learning classifier based on the BART large language model 
was used to compute two-dimensional sentiment (valence and arousal) for the participant and therapist from the transcript. 
These scores, combined with the Emotional Breakthrough Index (EBI) and treatment arm were used to predict treatment 
outcome as measured by MADRS scores. (Code and data are available at https:// github. com/ compa sspat hways/ Senti ment2D.)
Results Two multinomial logistic regression models were fit to predict responder status at week 3 and through week 12. 
Cross-validation of these models resulted in 85% and 88% accuracy and AUC values of 88% and 85%.
Conclusions A machine learning algorithm using NLP and EBI accurately predicts long-term patient response, allowing rapid 
prognostication of personalized response to psilocybin treatment and insight into therapeutic model optimization. Further 
research is required to understand if language data from earlier stages in the therapeutic process hold similar predictive power.
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Introduction

Psilocybin and depression

Major depressive disorder (MDD) affects one in six adults 
in their lifetime, is characterized by at least one depressive 
episode with a duration of 2 weeks or more, and involves 
clear changes in mood, cognition, and the ability to experi-
ence pleasure (Otte et al. 2016). While MDD can often be 
effectively managed using psychotherapy and/or pharmaco-
logical treatments, a significant number of MDD patients do 
not respond to multiple treatment attempts. These patients 
form a distinct subgroup referred to as treatment-resistant 
depression (TRD) (Rush et al. 2006b; Otte et al. 2016).

Patients with TRD suffer severe hardship with an 
increased risk of impaired cognitive (Vancappel et al. 2021; 
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Gregory et al. 2020) and social functioning (Judd et al. 2000; 
Hirschfeld et al. 2000; Thase and Howland 1994), reduced 
quality of life (Rathod et al. 2022; Lex et al. 2019), an 
increased risk of somatic morbidity (Lawrence et al. 2013), 
especially cardiovascular diseases (van Melle et al. 2004), 
and suicidality (Souery et al. 2007). In addition, the burden 
to caregivers, which is often overlooked, includes financial, 
emotional, physical, and social difficulties related to the care 
for the depressed person (Tabeleão et al. 2018; van Wijn-
gaarden et al. 2004). Financially, the national cost of TRD 
in the USA has been estimated to be between $29 and $48 
billion annually, assuming that 12–20% of all patients with 
depression have TRD (Mrazek et al. 2014). However, esti-
mates of the prevalence of TRD vary widely in the literature 
(12–55%) (Wiles et al. 2014; Nemeroff 2007; Rush et al. 
2006a; Corey-Lisle et al. 2002) and the actual costs might 
be higher. Existing options for next step treatment are vari-
ous but often unsatisfactory leading to a high rate of relapse 
(Jain et al. 2022; Culpepper et al. 2015; Judd et al. 1998) or 
serious side effects such as sexual dysfunction, weight gain, 
and sleep disturbance (Ferguson 2001). The development 
of alternative therapeutic options for TRD patients with 
improved efficacy and acceptability remains an important 
and open challenge within healthcare.

Recently, therapies involving psychedelic treatment 
have shown positive results in addressing this challenge. 
Specifically, psilocybin, a tryptamine alkaloid (Passie 
et al. 2002), has shown potential as an antidepressant in 
preliminary studies involving patients with MDD (Davis 
et al. 2021; Carhart-Harris et al. 2021), TRD (Carhart-
Harris et al. 2016), and anxiety in life-threatening cancer 
(Grob et al. 2011; Ross et al. 2016; Griffiths et al. 2016). 
More recently, the efficacy of COMP360 psilocybin ther-
apy for TRD patients (at a 25 mg dose), was demonstrated 
in the first adequately powered multi-site, randomized, 
double-blind phase IIb study (Goodwin et  al. 2022). 
MADRS score change at week 3 was the primary outcome 
of the study though a large reduction in depressive symp-
toms was evident on the day following psilocybin dosing 
and a subsequent durable response was observed in 20% 
of the 25 mg group at week 12.

As part of the COMP360 treatment, psychological sup-
port was provided to ensure the participants’ physical and 
psychological safety and consisted of three phases: prepa-
ration, administration, and integration. In the preparation 
phase, the participant met with a qualified therapist at least 
three times in order to receive psychoeducational material, 
prepare for the psychedelic experience, and build trust. Dur-
ing the psilocybin administration session, typically lasting 
6–8 h, the same therapist was present and participants were 
encouraged to attend to their full range of internal expe-
riences. Subsequently, during the integration sessions, the 
participants were encouraged to reflect on their experiences 

and any emerging insights (Tai et al. 2021). These integra-
tion sessions were lead by the same therapist who guided the 
participant through preparation and the psilocybin admin-
istration session.

Here we employ a novel measure of the average linguis-
tic sentiment scores of the participant and therapist com-
puted from transcripts of the integration session 1 day after 
psilocybin administration, together with items from the par-
ticipant’s self-reported Emotional Breakthrough Inventory 
(EBI) and the participant’s psilocybin dose, to predict endur-
ing responses at 3 and 12 weeks post psilocybin administra-
tion. Sentiment, specifically valence and arousal in speech, 
reflects mood states and has been implicated as a classifier 
of depression (Stasak et al. 2016). Similarly, EBI scores, 
which are believed to index experiences of emotional release 
or catharsis, have been shown to predict outcome in a recent 
psilocybin trial as well (Roseman et al. 2019). Our hypoth-
esis was that the NLP and EBI information collected during 
the integration session would predict the primary outcome 
(MADRS scores) measured at 3, 6, 9, and 12 weeks after the 
psilocybin administration session.

Methods and materials

Study overview

COMP001 was a phase IIb, international multicenter ran-
domized, double-blind study of COMP360, which ran-
domized 233 adults with TRD in 1:1:1 ratio to a single 
fixed-dose (25 mg, 10 mg, or 1 mg) of COMP360 that was 
administered with a well-defined psychological support 
model that emphasizes safety and self-directed enquiry 
(Tai et al. 2021). The primary efficacy endpoint was change 
from baseline at week 3 in the Montgomery-Åsberg Depres-
sion Rating Scale (MADRS) total score. The primary study 
results and the details of the protocol have been previously 
published (Goodwin et al. 2022).

Study participants The analysis was restricted to the clinical 
trial participants whose sessions were conducted in English 
and the therapists who provided psychological support to 
those participants. We note that all therapists were licensed 
mental healthcare professionals specially trained in the 
COMPASS psychological support model (Tai et al. 2021), 
but were not necessarily certified in clinical psychology. As 
per the study protocol, participants had the option to opt-out 
of recording their psychological support sessions. From the 
233 participants enrolled in the main study, 185 consented 
to having their psychological support sessions recorded, 107 
of these integration sessions were conducted in English. Five 
of these participants were excluded from the present analysis 
due to not having a MADRS score recorded at week 3, and 
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one was excluded due to having a baseline MADRS score 
that was in the normal range, resulting in 101 participants 
for the week 3 target outcome prediction. Of these, 11 were 
missing MADRS scores at 6, 9, and/or 12 weeks, leaving 90 
participants for that analysis. More information about both 
clinical trial participants and the therapists providing the psy-
chological support can be found in Goodwin et al. (2022).

MADRS outcome measure For each trial participant, seven 
MADRS scores were collected by a remote blinded rater: 
at baseline, the day after administration, and then at 1, 3, 6, 
9, and 12 weeks post-administration. Here we focus on the 
change from baseline at week 3, and sustained change from 
baseline through week 12.

A responder was defined as a participant whose MADRS 
score at week 3 post treatment was reduced by at least 50% 
relative to that participant’s baseline MADRS score and a 
sustained responder was defined as a participant with at least 
a 50% reduction in MADRS score at each of weeks 3, 6, 9, 
and 12 after treatment.

Predictive model

Our goal was to predict, with a logistic regression model 
(see Supplementary Material §2 for details on the model 
fitting), which participants would be week 3 responders and 
sustained responders through week 12 using information 
available immediately after treatment. This included NLP 
metrics from the transcript of the first integration session 
post psilocybin administration (i.e., 1 day after the adminis-
tration session), items of the EBI that were measured at the 
same integration session, and the treatment dose.

The NLP pipeline begins with an audio recording of the 
integration session following psilocybin administration and 
ends with four numbers: two to summarize the average senti-
ment (valence and arousal) of the utterances spoken by par-
ticipant, and two corresponding numbers for the therapist. 
Key steps in this process include:

• The creation of the audio recording,
• The transcription of recordings into text,
• Parsing the text into utterances,
• Computing sentiment scores for each utterance,
• And computing session averages of sentiment values.

We describe these steps in detail in the Supplementary Mate-
rial, see §1.

Integration session sentiment All psychological support ses-
sions were audio recorded with an Apple iPhone (see Sup-
plementary Material §1.1 for full details on audio record-
ing). The audio recordings of the integration sessions were 

manually transcribed into dialog text, and each of these 
transcripts was then parsed into individual “utterances” (see 
Supplementary Material §1.2 and §1.3 for transcription and 
utterance parsing details). These utterances were used to esti-
mate session sentiment for the therapist and participant using 
a novel sentiment model based on a large-language model 
that was inspired by the two-dimensional scale of emotion 
described in Russell (1980). Specifically, this model produces 
valence and arousal scores for each utterance. The valence 
score corresponds to the positive (pleasantness) or negative 
(unpleasantness) score typically used in sentiment analysis. 
The arousal score characterizes the physiological arousal 
expressed in the utterance and indicates where it lies on the 
spectrum from bored/calm to tense/alert/excited (see Supple-
mentary Material §1.4 for utterance sentiment, §1.4.1 for the 
sentiment model and §1.4.2 for the session sentiment score).

Large language models To compute our sentiment valence 
and arousal scores, we used a zero-shot classifier built on 
the BART autoencoder and the MNLI language inference 
dataset (Lewis et al. 2020; Yin et al. 2019; Williams et al. 
2018). The classifier is available on the Hugging Face web-
site https:// huggi ngface. co/ faceb ook/ bart- large- mnli/ tree/ 
main.

Emotional breakthrough inventory The EBI is an eight-item 
questionnaire introduced by Roseman et al. (2019) which can 
predict change in wellbeing following psychedelic therapy 
(Roseman et al. 2019). The EBI summary score is typically 
computed by taking the average of the eight items. However, 
we found that summarizing the EBI with a weighted average 
of the eight items based on the first component of a principal 
component analysis (PCA) performed slightly better than 
the simple average (see Supplementary Material §2.1 for 
details), and thus used the weighted average for our analysis.

Results

Logistic regression model fits

Before exploring cross-validated predictions for the two 
outcome measures, the logistic regression models created 
(see Supplementary Material §2.2) were fit to all the data 
to confirm that the models resulted in an adequate fit. The 
pseudo R-square values and chi-square significance test for 

Table 1  Logistic regression model fit summaries

Model Pseudo R-squared Chi-square p-value df N

Week 3 0.514 64.78 1.66e−11 7 101
Sustained 0.435 39.18 1.8e−06 7 90

https://huggingface.co/facebook/bart-large-mnli/tree/main
https://huggingface.co/facebook/bart-large-mnli/tree/main
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each of the models are shown in Table 1. These results sug-
gest that the models are well-fit to the data and worthy of 
further evaluation.

Logistic regression models predict class membership 
(responder vs. non-responder) probability for each subject. It 
is useful to inspect the distributions of these class probability 
predictions to evaluate class separability; the distributions 
for the models are shown in Fig. 1 and suggest that the two 
classes should be quite separable.

Cross‑validated predictions

The results from the leave-one-out cross-validation for the 
models described above are shown in Table 2. Leave-one-
out cross-validation simulates the case where a model that 
was trained on existing data is used to predict the responder 
status of a new participant, and is thus ideal for estimating 
the real-world performance of a predictive model (see Sup-
plementary Material §2 for details). For each model, results 
are shown for all participants together, as well as for each 
of the three treatment groups. A simple bootstrap was also 
used to compute 95% confidence intervals for the AUC val-
ues, which are shown in Table 3. The full receiver operating 
characteristic plots for these predictions are shown in Fig. 2.

Univariate scatterplots

To further understand the relationship between each of the 
exogenous variables in the predictive models described above 
and the MADRS scores, we plot each of these variables against 
the MADRS week 3 change. These scatter plots are shown in 
Fig. 3, along with a regression line. All six variables are nega-
tively correlated with the week 3 MADRS change, meaning 
that a higher value on the exogenous variable is associated with 
a greater MADRS reduction at week 3. This pattern is con-
sistent with the regression model coefficients being generally 
positive (i.e., higher scores are associated with a higher prob-
ability of being a responder). The results are also consistent 
for the exogenous variables with agreed upon interpretations. 
For example, as the EBI PCA summary score increases, the 
MADRS reduction, as expected, increases as well.

Fig. 1  Model fit probability 
distributions estimated using 
Gaussian kernel density estima-
tion for the week 3 model (top) 
and the sustained responder 
model (bottom). We note that 
the distributions are quite differ-
ent between the non-responder 
and responder participants. This 
difference is used to success-
fully classify patient response 
status as shown in §3.2
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Table 2  Cross-validated model 
prediction results, where MCC 
is the Matthews correlation 
coefficient and f1 is the 
harmonic mean of precision and 
recall

Model Group Accuracy MCC f1 AUC TN FP FN TP N

Week 3 ALL 0.851 0.650 0.754 0.877 63 6 9 23 101
Sustained ALL 0.878 0.610 0.686 0.853 67 5 6 12 90
Week 3 25 mg 0.821 0.641 0.829 0.886 15 3 4 17 39
Sustained 25 mg 0.833 0.639 0.769 0.880 20 3 3 10 36
Week 3 10 mg 0.935 0.746 0.750 0.862 26 0 2 3 31
Sustained 10 mg 0.963 0.693 0.667 0.760 25 0 1 1 27
Week 3 1 mg 0.806 0.380 0.500 0.820 22 3 3 3 31
Sustained 1 mg 0.852 0.250 0.333 0.722 22 2 2 1 27

Table 3  AUC values with bootstrapped lower and upper 95% confi-
dence intervals

Model AUC Lower Upper

Week 3 0.877 0.794 0.946
Sustained 0.853 0.747 0.943
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Discussion

For individuals undergoing psilocybin therapy for TRD, 
response outcomes at 3 and 12 weeks post-dosing could 
be predicted using the EBI measure or with NLP methods, 
achieving high accuracy with AUCs ranging from 85 to 88%.

The quality of the interaction between participants and 
therapists has been shown to be a mediating factor in over-
all outcome of psilocybin therapy for depression by facili-
tating a stronger emotional response (Murphy et al. 2022), 
and the NLP metrics described here capture key aspects 
of this interaction as it relates to the emotional response. 
Therapists trained in the COMPASS psychological sup-
port model encourage participants to engage with their 
emotional experiences in the present moment. Engagement 
with these experiences (without attempting to avoid or 
control them) is thought to decrease anxiety and enable 
the participant to have a more therapeutic COMP360 expe-
rience. As such it is believed that a stronger emotional 
experience, as measured by EBI and the NLP metrics, may 

0 0.5 1
0

0.2

0.4

0.6

0.8

Model
Week 3
Sustained

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Fig. 2  Receiver operating characteristic curves for the week 3 and 
sustained responder model predictions

Fig. 3  The relationship between 
the six predictors and week 
3 MADRS change ( n = 101 ) 
is shown for therapist arousal 
(a, r = −0.370 , p = 0.0001 ), 
therapist valence (b, 
r = −0.407 , p = 2e − 05 ), 
participant arousal (c, 
r = −0.397 , p = 4e − 05 ), par-
ticipant valence (d, r = −0.322 , 
p = 0.001 ), EBI summary score 
(e, r = −0.556 , p = 2e-09) and 
treatment group (f, r = −0.230 , 
p = 0.02)
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underlie the basis for sustained response to COMP360 
treatment. However, we note that while therapists were 
trained and evaluated in this psychological support model, 
the lack of fidelity metrics precludes us from evaluating 
the impact of adherence on outcome and suggests this is a 
ripe topic for future work.

Moreover, the four NLP metrics and EBI perform about 
equally well when each is used alone in a partial model (see 
Supplementary Material §2.3) and statistical performance 
is improved only moderately when EBI and NLP features 
are combined into the same model. This suggests that the 
therapeutic effects may be driven by the same latent varia-
ble. Our interpretation is that the fundamental mechanism of 
COMP360 treatment is to drive emotional breakthrough and 
a more positive integration session sentiment, which produces 
a more productive, psychologically insightful session (Peill 
et al. 2022), and thus results in a positive therapeutic outcome.

We note that the algorithm described in this paper is very 
fast to train and execute because it relies only upon logis-
tic regression and PCA. As such, a new model may be fit 
on a standard consumer laptop within seconds of new data 
becoming available. Moreover, with modern cloud archi-
tecture, the transcription and sentiment analysis that forms 
part of the input to this ML model can be computed in real 
time. Taken together, this allows model updates to occur at 
whatever cadence is deemed desirable and allows physician 
insight into the participant’s ultimate response to the treat-
ment immediately after the participant’s integration session 
instead of weeks to months later.

Finally, it is striking that NLP alone gives such a good 
measure of immediate and early drug effect without recourse 
to subjective rating scales or even the EBI. It suggests key 
elements of the participant’s mental state can be captured by 
a passively measured behavioral measure in real time. By 
utilizing similar information from the preparation and drug 
administration sessions, we may be able to identify addi-
tional signals that improve the accuracy of our predictive 
model. Furthermore, by using NLP signals from preparation 
sessions alone, it may be possible to identify which partici-
pants are likely to be more responsive to COMP360 therapy 
prior to the drug administration session. Preparedness may 
be an important variable for selecting patients for COMP360 
therapy, and possibly other psychedelic treatments (Haijen 
et al. 2018). Additionally, we see future potential for this 
approach to offer insight into the quality of the psychological 
support that we assume to be essential for the safe delivery 
of psychedelic treatments. NLP analysis of the preparation 
and integration session dialog may also shed light on how 
treatments may need to be adapted or improved for those 
who do not respond to an initial treatment.

Limitations of this study include that we were only able 
to analyze a cohort of 101 participants at 3 weeks and 90 
individuals at 12 weeks. While this sample size is more than 

sufficient for the logistic regression models used in this study, 
additional subjects from future studies will allow us to fur-
ther validate the current findings and utilize more advanced 
machine learning models for prediction such as random for-
ests (Breiman 2001) and neural nets (Mikolov et al. 2013; 
Vaswani et al. 2017; Devlin et al. 2018; Brown et al. 2020) 
while reducing the risk of overfitting. Also, because all thera-
pists were trained to follow a specific, well-defined, and non-
directive psychological support model (Tai et al. 2021) and 
not all of the therapists were clinical psychologist, the results 
may not generalize to other psychedelic therapy contexts. 
Finally, the burgeoning field of digital biomarkers (Coravos 
et al. 2019; Jacobson et al. 2019; Cavedoni et al. 2020) may 
also be integrated to provide signals that correlate with par-
ticipant response before, during, and after treatment.

In summary, recent advances in utilizing psychedelic 
treatment for participants with depression show promising 
results (Goodwin et al. 2022; Davis et al. 2021; Muttoni 
et al. 2019). In this paper, we demonstrate that we are able 
to accurately predict treatment response to COMP360 in 
combination with the associated psychological support 
model (Goodwin et al. 2022; Tai et al. 2021) using a logis-
tic regression machine learning model that includes NLP 
metrics from the first integration session, participant’s self-
response on the EBI scale, and treatment arm. In turn, this 
ability to predict outcomes has substantial beneficial impli-
cations to providers, payers, and participants with respect to 
future additional treatment or interventions. As additional 
language and EBI data are collected and combined with 
digital biomarkers from tools such as smart devices, we 
expect that this methodology, along with more powerful 
machine learning models, will further increase our ability 
to predict participant response to psychedelic treatment. 
Ultimately, this will allow for more objective, real-time, 
and personalized care for future patients.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00213- 023- 06432-5.
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