Skip to main content
Log in

The interaction between first-episode drug-naïve schizophrenia and age based on gray matter volume and its molecular analysis: a multimodal magnetic resonance imaging study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Objectives

Schizophrenia is a neurodevelopmental disorder characterized by progressive and widespread gray matter (GM) atrophy. Studies have shown that normal brain development has an impact on schizophrenia-induced GM alterations. However, the neuropathology and underlying molecular mechanisms of interaction between age and schizophrenia are unclear.

Methods

This study enrolled 66/84 first-episode drug-naïve patients with early-onset/adult-onset schizophrenia ((EOS)/(AOS)) and matched normal controls (NC) (46 adolescents/73 adults), undergoing T1-weighted high-resolution magnetic resonance imaging. Gray matter volume (GMV) in four groups was detected using 2-way analyses of variance with diagnosis and age as factors. Then, factors-related volume maps and neurotransmitter maps were spatially correlated using JuSpace to determine the relationship to molecular structure.

Results

Compared to AOS, EOS and adult NC had larger GMV in right middle frontal gyrus. Compared to adolescent NC, EOS and adult NC had smaller GMV in right lingual gyrus, right fusiform gyrus, and right cerebellum_6. Disease-induced GMV reductions were mainly distributed in frontal, parietal, thalamus, visual, motor cortex, and medial temporal lobe structures. Age-induced GMV alterations were mainly distributed in visual and motor cortex. The changed GMV induced by schizophrenia, age, and their interaction was related to dopaminergic and serotonergic receptors. Age is also related to glutamate receptors, and schizophrenia is also associated with GABAaergic and noradrenergic receptors.

Conclusions

Our results revealed the multimodal neural mechanism of interaction between disease and age. We emphasized age-related GM abnormalities of ventral stream of visual perceptual pathways and high-level cognitive brain in EOS, which may be affected by imbalance of excitatory and inhibitory neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Adamek P, Langova V, Horacek J (2022) Early-stage visual perception impairment in schizophrenia, bottom-up and back again. Schizophr (Heidelb) 8:27

    Article  Google Scholar 

  • Ahn K, An SS, Shugart YY, Rapoport JL (2016) Common polygenic variation and risk for childhood-onset schizophrenia. Mol Psychiatry 21:94–96

    Article  CAS  PubMed  Google Scholar 

  • Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7:268–277

    Article  CAS  PubMed  Google Scholar 

  • Andreasen NC, Pierson R (2008) The role of the cerebellum in schizophrenia. Biol Psychiat 64:81–88

    Article  PubMed  Google Scholar 

  • Antonova E, Kumari V, Morris R, Halari R, Anilkumar A, Mehrotra R, Sharma T (2005) The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol Psychiatry 58:457–467

    Article  PubMed  Google Scholar 

  • Arango C, Buitelaar JK, Correll CU, Diaz-Caneja CM, Figueira ML, Fleischhacker WW, Marcotulli D, Parellada M, Vitiello B (2022) The transition from adolescence to adulthood in patients with schizophrenia: challenges, opportunities and recommendations. Eur Neuropsychopharmacol 59:45–55

    Article  CAS  PubMed  Google Scholar 

  • Bar M (2003) A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci 15

  • Bossong MG, Jansma JM, Bhattacharyya S, Ramsey NF (2014) Role of the endocannabinoid system in brain functions relevant for schizophrenia: an overview of human challenge studies with cannabis or 9-tetrahydrocannabinol (THC). Prog Neuropsychopharmacol Biol Psychiatry 52:53–69

    Article  CAS  PubMed  Google Scholar 

  • Burton BK, Hjorthoj C, Jepsen JR, Thorup A, Nordentoft M, Plessen KJ (2016) Research review: Do motor deficits during development represent an endophenotype for schizophrenia? A meta-analysis. J Child Psychol Psychiatry 57:446–456

    Article  PubMed  Google Scholar 

  • Butler PD, S I, Zemon V, Schwartz SG, Greenstein VC, Gordon J, Schroeder CE, Javitt DC (2001) Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry 158

  • Cameron HA, H TG, McKay RDG (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 31

  • Chieffi S, Ilardi CR, Iavarone A (2018) Parietal lobe dysfunction in schizophrenia: a review. Curr Psychiatry Rev 14:71–83

    Article  Google Scholar 

  • Cui Y, Liu B, Song M, Lipnicki DM, Li J, Xie S, Chen Y, Li P, Lu L, Lv L, Wang H, Yan H, Yan J, Zhang H, Zhang D, Jiang T (2018) Auditory verbal hallucinations are related to cortical thinning in the left middle temporal gyrus of patients with schizophrenia. Psychol Med 48:115–122

    Article  CAS  PubMed  Google Scholar 

  • D’Ambrosio E, Jauhar S, Kim S, Veronese M, Rogdaki M, Pepper F, Bonoldi I, Kotoula V, Kempton MJ, Turkheimer F, Kwon JS, Kim E, Howes OD (2019) The relationship between grey matter volume and striatal dopamine function in psychosis: a multimodal 18F-DOPA PET and voxel-based morphometry study. Mol Psychiatry 26:1332–1345

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLisi LE, Szulc KU, Bertisch HC, Majcher M, Brown K (2022) Understanding structural brain changes in schizophrenia. Dialogues Clin Neurosci 8:71–78

    Article  Google Scholar 

  • Dempster K, Norman R, Theberge J, Densmore M, Schaefer B, Williamson P (2017) Cognitive performance is associated with gray matter decline in first-episode psychosis. Psychiatry Res Neuroimaging 264:46–51

    Article  PubMed  Google Scholar 

  • Diaz-Caneja CM, Pina-Camacho L, Rodriguez-Quiroga A, Fraguas D, Parellada M, Arango C (2015) Predictors of outcome in early-onset psychosis: a systematic review. NPJ Schizophr 1:14005

    Article  PubMed  PubMed Central  Google Scholar 

  • Dukart J, Holiga S, Rullmann M, Lanzenberger R, Hawkins PCT, Mehta MA, Hesse S, Barthel H, Sabri O, Jech R, Eickhoff SB (2021) JuSpace: a tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps. Hum Brain Mapp 42:555–566

    Article  PubMed  Google Scholar 

  • Premi E, Dukart J, Mattioli I, Libri I, Pengo M, Gadola Y, Cotelli M, Manenti R, Binetti G, Gazzina S, Alberici A, Magoni M, Koch G, Gasparotti R, Padovani A, Borroni B (2022) Unravelling neurotransmitters impairment in Primary Progressive Aphasias. NeuroImage: Clinical

  • Ettinger U, Mohr C, Gooding DC, Cohen AS, Rapp A, Haenschel C, Park S (2015) Cognition and brain function in schizotypy: a selective review. Schizophr Bull 41(Suppl 2):S417-426

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan YS, Xu Y, Li Q, Chen Y, Guo X, Yang S, Guo J, Sheng W, Wang C, Gao Q and Chen H (2022) Systematically mapping gray matter abnormal patterns in drug-naive first-episode schizophrenia from childhood to adolescence. Cereb Cortex. https://doi.org/10.1093/cercor/bhac148

  • Friston KJ, H AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2

  • Froemke RC (2015) Plasticity of cortical excitatory-inhibitory balance. Annu Rev Neurosci 38:195–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao R, Penzes P (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15

  • Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67:728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogtay N (2008) Cortical brain development in schizophrenia: insights from neuroimaging studies in childhood-onset schizophrenia. Schizophr Bull 34:30–36

    Article  PubMed  Google Scholar 

  • Gogtay N*†, G JN, Lusk L*, Hayashi KM‡, Greenstein D*, A. Vaituzis C*, Nugent III TF*, Herman DH*, Clasen LS*, Toga AW‡, Rapoport JL*, Thompson PM‡ (2004) Dynamic mapping of human cortical development during childhood through early adulthood. PNAS 101

  • Gogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C (2011) Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 37:504–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. TINS 15

  • Goodale MA, Milner AD (2018) Two visual pathways - where have they taken us and where will they lead in future? Cortex 98:283–292

    Article  PubMed  Google Scholar 

  • Gottesman II, Psych FRC, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160

  • Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS (2013) Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull 39:1129–1138

    Article  PubMed  Google Scholar 

  • Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27:549–579

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK, Fagiolini M (2005) Excitatory–inhibitory balance and critical period plasticity in developing visual cortex, in Development, Dynamics and Pathiology of Neuronal Networks: from Molecules to Functional Circuits 147:115–124. https://doi.org/10.1016/S0079-6123(04)47009-5

  • Howes OD, Shatalina E (2022) Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance. Biol Psychiatry 92:501–513

    Article  PubMed  Google Scholar 

  • Jacobsen LK, Rapoport JL (1998) Research update: Childhood-onset schizophrenia: implications of clinical and neurobiological research. J Child Psychol Psychiatry 39:101–113

    CAS  PubMed  Google Scholar 

  • Kaur A, Basavanagowda DM, Rathod B, Mishra N, Fuad S, Nosher S, Alrashid ZA, Mohan D, Heindl SE (2020) Structural and functional alterations of the temporal lobe in schizophrenia: a literature review. Cureus 12:e11177

    PubMed  PubMed Central  Google Scholar 

  • Keshavan MS, Anderson S, Pettegrew JW (1994) Is Schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28

  • Kim JY, Paredes MF (2021) Implications of extended inhibitory neuron development. Int J Mol Sci 22(10):5113. https://doi.org/10.3390/ijms22105113

  • Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, Essock S, Fenton WS, Frese III FJ, Gold JM, Goldberg T, Heaton RK, Keefe RSE, Kraemer H, Mesholam-Gately R, Seidman LJ, Stover E, Weinberger DR, Young AS, MSHS, Zalcman S, Marder SR (2008) The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. Am J Psychiatry 165

  • Kikinis Z, Fallon JH, Niznikiewicz M, Nestor P, Davidson C, Bobrow L, Pelavin PE, Fischl B, Yendiki A, McCarley RW, Kikinis R, Kubicki M, Shenton ME (2010) Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia. Schizophr Res 123:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsouleris N, Davatzikos C, Borgwardt S, Gaser C, Bottlender R, Frodl T, Falkai P, Riecher-Rossler A, Moller HJ, Reiser M, Pantelis C, Meisenzahl E (2014) Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull 40:1140–1153

    Article  PubMed  Google Scholar 

  • Kringelbach ML, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris R, Whybrow PC, Logothetis NK, Deco G (2020) Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc Natl Acad Sci U S A 117:9566–9576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakopoulos M, Perez-Iglesias R, Woolley JB, Kanaan RA, Vyas NS, Barker GJ, Frangou S, McGuire PK (2009) Effect of age at onset of schizophrenia on white matter abnormalities. Br J Psychiatry 195:346–353

    Article  PubMed  Google Scholar 

  • Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729

    Article  PubMed  Google Scholar 

  • Lesh TA, Tanase C, Geib BR, Niendam TA, Yoon JH, Minzenberg MJ, Ragland JD, Solomon M, Carter CS (2015) A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia. JAMA Psychiat 72:226–234

    Article  Google Scholar 

  • Lisman J (2012) Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol 22:537–544

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Xiao Y, Zhang W, Tang B, Zeng J, Hu N, Chandan S, Gong Q, Lui S (2020) Characteristics of gray matter alterations in never-treated and treated chronic schizophrenia patients. Transl Psychiatry 10:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ouyang P, Zheng Y, Mi L, Zhao J, Ning Y, Guo W (2021) A selective review of the excitatory-inhibitory imbalance in schizophrenia: underlying biology, genetics, microcircuits, and symptoms. Front Cell Dev Biol 9:664535

    Article  PubMed  PubMed Central  Google Scholar 

  • Maki-Marttunen V, Andreassen OA, Espeseth T (2020) The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Biobehav Rev 118:298–314

    Article  CAS  PubMed  Google Scholar 

  • Makowski C, Bodnar M, Malla AK, Joober R, Lepage M (2016) Age-related cortical thickness trajectories in first episode psychosis patients presenting with early persistent negative symptoms. NPJ Schizophr 2:16029

    Article  PubMed  PubMed Central  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31

  • Minatogawa-Chang TM, Schaufelberger MS, Ayres AM, Duran FL, Gutt EK, Murray RM, Rushe TM, McGuire PK, Menezes PR, Scazufca M, Busatto GF (2009) Cognitive performance is related to cortical grey matter volumes in early stages of schizophrenia: a population-based study of first-episode psychosis. Schizophr Res 113:200–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Molinari MLMG (2007) Cerebellar information processing and visuospatial functions. Cerebellum 6:214–220

    Article  PubMed  Google Scholar 

  • Parellada E, Gasso P (2021) Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry 11:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce D, Gould RL, Roughley M, Reynolds G, Ward EV, Bhome R, Reeves S (2022) Paranoid and misidentification subtypes of psychosis in dementia. Neurosci Biobehav Rev 134:104529

    Article  PubMed  Google Scholar 

  • Potts GF, O'Donnell BF, Hirayasu Y, McCarley RW (2002) Disruption of neural systems of visual attention in schizophrenia. Arch Gen Psychiatry 59

  • Pycock CJ, Kerwin RW, Carter CJ (1980) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nat 286

  • Rapoport JL, Giedd JN, Gogtay N (2012) Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 17:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakreida K, Chiu WH, Dukart J, Eickhoff SB, Frodl T, Gaser C, Landgrebe M, Langguth B, Mirlach D, Rautu IS, Wittmann M, Poeppl TB (2022) Disentangling dyskinesia from parkinsonism in motor structures of patients with schizophrenia. Brain Commun 4:fcac190

    Article  PubMed  PubMed Central  Google Scholar 

  • Salgado-Pineda P, Baeza I, Pérez-Gómez M, Vendrell P, Junqué C, Bargalló N, Bernardo M (2003) Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients. Neuroimage 19:365–375

    Article  PubMed  Google Scholar 

  • Salgado-Pineda P, Junque C, Vendrell P, Baeza I, Bargallo N, Falcon C, Bernardo M (2004) Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage 21:840–847

    Article  PubMed  Google Scholar 

  • Selemon LD, Zecevic N (2015) Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry 5:e623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sendi MSE, Pearlson GD, Mathalon DH, Ford JM, Preda A, van Erp TGM, Calhoun VD (2021) Multiple overlapping dynamic patterns of the visual sensory network in schizophrenia. Schizophr Res 228:103–111

    Article  PubMed  Google Scholar 

  • Shepherd AM, Laurens KR, Matheson SL, Carr VJ, Green MJ (2012) Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci Biobehav Rev 36:1342–1356

    Article  PubMed  Google Scholar 

  • Toga AW, Thompson PM, Sowell ER (2006) Mapping brain maturation. J Lifelong Learn Psychiatry 378

  • Thompson PM*†, V C, Giedd JN‡, Gochman P‡, Blumenthal J‡, Nicolson R‡, Toga AW*, Rapoport JL‡ (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Acad Sci U S A 98

  • Stahl SM (2018) Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr 23:187–191

    Article  PubMed  Google Scholar 

  • Tohid H, Faizan M, Faizan U (2015) Alterations of the occipital lobe in schizophrenia. Neurosci (Riyadh) 20:213–224

    Google Scholar 

  • Tordesillas-Gutierrez D, Koutsouleris N, Roiz-Santianez R, Meisenzahl E, Ayesa-Arriola R, Marco de Lucas E, Soriano-Mas C, Suarez-Pinilla P, Crespo-Facorro B (2015) Grey matter volume differences in non-affective psychosis and the effects of age of onset on grey matter volumes: a voxelwise study. Schizophr Res 164:74–82

    Article  PubMed  Google Scholar 

  • Torres US, Duran FL, Schaufelberger MS, Crippa JA, Louza MR, Sallet PC, Kanegusuku CY, Elkis H, Gattaz WF, Bassitt DP, Zuardi AW, Hallak JE, Leite CC, Castro CC, Santos AC, Murray RM, Busatto GF (2016) Patterns of regional gray matter loss at different stages of schizophrenia: a multisite, cross-sectional VBM study in first-episode and chronic illness. Neuroimage Clin 12:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrey EF (2007) Schizophrenia and the inferior parietal lobule. Schizophr Res 97:215–225

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ (2011) The adolescent brain: implications for the understanding, pathophysiology, and treatment of schizophrenia. Schizophr Bull 37:480–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Ungerleider LG, Haxby JV (1994) What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4

  • Vita A, De Peri L, Deste G, Sacchetti E (2012) Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry 2:e190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehurst TS, Osugo M, Townsend L, Shatalina E, Vava R, Onwordi EC, Howes O (2020) Proton magnetic resonance spectroscopy of N-acetyl aspartate in chronic schizophrenia, first episode of psychosis and high-risk of psychosis: a systematic review and meta-analysis. Neurosci Biobehav Rev 119:255–267

    Article  CAS  PubMed  Google Scholar 

  • Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690

    Article  CAS  PubMed  Google Scholar 

  • Xing L, Huttner WB (2020) Neurotransmitters as modulators of neural progenitor cell proliferation during mammalian neocortex development. Front Cell Dev Biol 8:391

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaple Z, Arsalidou M (2018) N-back working memory task: meta-analysis of normative fMRI studies with children. Child Dev 89:2010–2022

    Article  PubMed  Google Scholar 

  • Zhang C, Wang Q, Ni P, Deng W, Li Y, Zhao L, Ma X, Wang Y, Yu H, Li X, Zhang P, Meng Y, Liang S, Li M, Li T (2017) Differential cortical gray matter deficits in adolescent- and adult-onset first-episode treatment-naive patients with schizophrenia. Sci Rep 7:10267

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang Y, Liao J, Jiang S, Yan J, Yue W, Zhang D, Yan H (2018) Progressive grey matter volume changes in patients with schizophrenia over 6 weeks of antipsychotic treatment and their relationship to clinical improvement. Neurosci Bull 34:816–826

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Voon V, Xue K, Xie C, Kang J, Lin CP, Wang J, Cheng J, Feng J (2022) Common abnormal connectivity in first-episode and chronic schizophrenia in pre- and post-central regions: implications for neuromodulation targeting. Prog Neuropsychopharmacol Biol Psychiatry 117:110556

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the individuals who participated in this study. We also express our gratitude to the technical staff of the Magnetic Resonance Department of the First Affiliated Hospital of Zhengzhou University, who helped to acquire images of patients, and the staff of the Department of Psychiatry of the First Affiliated Hospital of Zhengzhou University

Funding

This work was supported by the Natural Science Foundation of China (81601467, 81871327), the Medical Science and Technology Research Project of Henan Province (201701011), and the Medical Science and Technology Research Project of Henan province (SBGJ202101013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingliang Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wei, Y., Xue, K. et al. The interaction between first-episode drug-naïve schizophrenia and age based on gray matter volume and its molecular analysis: a multimodal magnetic resonance imaging study. Psychopharmacology 240, 813–826 (2023). https://doi.org/10.1007/s00213-023-06323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06323-9

Keywords

Navigation