Skip to main content
Log in

Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Pain is one of the most common reasons to seek medical attention, and chronic pain is a worldwide epidemic. Anecdotal reports suggest cannabis may be an effective analgesic. As cannabis contains the terpenes α-terpineol, β-caryophyllene, and γ-terpinene, we hypothesized these terpenes would produce analgesia in a mouse model of neuropathic pain. We used the chronic constriction injury of the sciatic nerve mouse model, which produces mechanical allodynia, assessed via the von Frey assay, as well as thermal hyperalgesia assessed via the hotplate assay. Compounds were further assessed in tests of locomotor activity, hypothermia, and acute antinociception. Each terpene produced dose-related reversal of mechanical allodynia and thermal hyperalgesia. Thermal hyperalgesia displayed higher sensitivity to the effects of each terpene than mechanical allodynia, and the rank order potency of the terpenes was α-terpineol > β-caryophyllene > γ-terpinene. To examine the involvement of cannabinoid receptors, further tests were conducted in mice lacking either functional cannabinoid type 1 receptors (CB1R (−/−)) or cannabinoid type 2 receptors (CB2R (−/−)). Compared to wild type mice, CB1R (−/−) mice treated with α-terpineol displayed a 2.91-fold decrease in potency to reverse mechanical allodynia; in CB2R (−/−) mice, the potency of α-terpineol was decreased 11.73-fold. The potency of β-caryophyllene to reverse mechanical allodynia decreased 1.80-fold in CB2R (−/−) mice. Each terpene produced a subset of effects in tests of locomotor activity, hypothermia, and acute antinociception. These findings suggest α-terpineol, β-caryophyllene, and γ-terpinene may have differential cannabinoid receptor activity and a pharmacological profile that may yield new efficacious analgesics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BL:

baseline

CB1R:

cannabinoid type 1 receptor

CB2R:

cannabinoid type 2 receptor

CCI:

chronic constriction injury

CL:

confidence limits

ED:

effective dose

iNOS:

inducible nitric oxide synthase

i.p.:

intraperitoneal

% MPE:

percent maximum possible effect

NF-κβ:

nuclear factor-kappa beta

References

  • Aguilar-Avila DS, Flores-Soto ME, Tapia-Vazquez C, Pastor-Zarandona OA, Lopez-Roa RI, Viveros-Paredes JM (2019) beta-Caryophyllene, a natural sesquiterpene, attenuates neuropathic pain and depressive-like behavior in experimental diabetic mice. J Med Food 22:460–468

    Article  CAS  Google Scholar 

  • Aly E, Khajah MA, Masocha W (2019) beta-Caryophyllene, a CB2-receptor-selective phytocannabinoid, suppresses mechanical allodynia in a mouse model of antiretroviral-induced neuropathic pain. Molecules 25

  • Aripiprazole/Abilify [package insert] (2014) Princeton: Bristol-Myers Squibb Company

  • Atakan Z (2012) Cannabis, a complex plant: different compounds and different effects on individuals. Therapeutic Advances Psychopharmacol 2(6):241–254. https://doi.org/10.1177/2045125312457586

    Article  CAS  Google Scholar 

  • Baser KHC, Buchbauer G (2016) Handbook of essential oils: science, technology, and applications, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Carayon P, Marchand J, Dussossoy D, Derocq JM, Jbilo O, Bord A, Bouaboula M, Galiegue S, Mondiere P, Penarier G, Fur GL, Defrance T, Casellas P (1998) Modulation and functional involvement of CB2 peripheral cannabinoid receptors during B-cell differentiation. Blood 92:3605–3615

    Article  CAS  Google Scholar 

  • Castane A, Valjent E, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 43:857–867

    Article  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Meth 53:55–63

    Article  CAS  Google Scholar 

  • Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DLH, Dworkin RH, Raja SN (2017) HHS public access - pain. Nature Rev Disease Primers 3(Imi):1–45. https://doi.org/10.1038/nrdp.2017.2.Neuropathic

    Article  Google Scholar 

  • Compton DR, Johnson MR, Melvin LS, Martin BR (1992) Pharmacological profile of a series of bicyclic cannabinoid analogs: classification as cannabimimetic agents. J Pharmacol Exp Therapeutics 260(1):201–209

    CAS  Google Scholar 

  • Curry ZA, Wilkerson JL, Bagdas D, Kyte SL, Patel N, Donvito G, Mustafa MA, Poklis JL, Niphakis MJ, Hsu KL, Cravatt BF, Gewirtz DA, Damaj MI, Lichtman AH (2018) Monoacylglycerol lipase inhibitors reverse paclitaxel-induced nociceptive behavior and proinflammatory markers in a mouse model of chemotherapy-induced neuropathy. J Pharmacol Exp Ther 366:169–183

    Article  CAS  Google Scholar 

  • Deng L, Guindon J, Cornett BL, Makriyannis A, Mackie K, Hohmann AG (2015) Chronic cannabinoid receptor 2 activation reverses paclitaxel neuropathy without tolerance or cannabinoid receptor 1-dependent withdrawal. Biol Psychiatry 77:475–487

    Article  CAS  Google Scholar 

  • de Oliveira MGB, Marques RB, de Santana MF, Santos ABD, Brito FA, Barreto EO, de Sousa DP, Almeida FRC, Badauê-Passos D, Antoniolli ÂR, Quintans-Júnior LJ (2012) α-Terpineol reduces mechanical hypernociception and inflammatory response. Basic Clin Pharmacol Toxicol 111(2):120–125. https://doi.org/10.1111/j.1742-7843.2012.00875.x

    Article  CAS  PubMed  Google Scholar 

  • Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, Lichtman AH (2018) The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology 43:52–79

    Article  CAS  Google Scholar 

  • Gabapentin/Neurontin [package insert]. New York: Pfizer Inc; 2017.

  • Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  CAS  Google Scholar 

  • Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105(26):9099–9104. https://doi.org/10.1073/pnas.0803601105

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouveia DN, Costa JS, Oliveira MA, Rabelo TK, de Silva AMO, Carvalho AA, Miguel-dos-Santos R, Lauton-Santos S, Scotti L, Scotti MT, dos Santos MRV, Quintans-Júnior LJ, de Albuquerque Junior RLC, Guimarães AG (2018) α-Terpineol reduces cancer pain via modulation of oxidative stress and inhibition of iNOS. Biomed Pharmacother 105(March):652–661. https://doi.org/10.1016/j.biopha.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  • Guindon J, Hohmann AG (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153:319–334

    Article  CAS  Google Scholar 

  • Hajhashemi V, Sajjadi SE, Zomorodkia M (2011) Antinociceptive and anti-inflammatory activities of Bunium persicum essential oil, hydroalcoholic and polyphenolic extracts in animal models. Pharm Biol 49:146–151

    Article  Google Scholar 

  • Haloperidol/Haldol [package insert] (2009) Beerse, Belgium: Janssen Pharmaceutica N.V

  • Hanus LO, Meyer SM, Munoz E, Taglialatela-Scafati O, Appendino G (2016) Phytocannabinoids: a unified critical inventory. Natural Product Reports 33(12):1357–1392. https://doi.org/10.1039/c6np00074f

    Article  CAS  PubMed  Google Scholar 

  • Howlett AC, Abood ME (2017) CB1 and CB2 receptor pharmacology. In Advances in Pharmacology, vol 80. Academic Press Inc., pp 169–206. https://doi.org/10.1016/bs.apha.2017.03.007

    Book  Google Scholar 

  • Irwin S, Houde RW, Bennett DR, Hendershot LC, Seevers MH (1951) The effects of morphine methadone and meperidine on some reflex responses of spinal animals to nociceptive stimulation. J Pharmacol Exp Ther 101:132–143

    CAS  PubMed  Google Scholar 

  • Katsuyama S, Mizoguchi H, Kuwahata H, Komatsu T, Nagaoka K, Nakamura H, Bagetta G, Sakurada T, Sakurada S (2013) Involvement of peripheral cannabinoid and opioid receptors in b-caryophyllene-induced antinociception. Eur J Pain (United Kingdom) 17(5):664–675. https://doi.org/10.1002/j.1532-2149.2012.00242.x

    Article  CAS  Google Scholar 

  • Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160:1577–1579

    Article  CAS  Google Scholar 

  • Kinsey SG, Mahadevan A, Zhao B, Sun H, Naidu PS, Razdan RK, Selley DE, Imad Damaj M, Lichtman AH (2011) The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects. Neuropharmacology 60:244–251

    Article  CAS  Google Scholar 

  • Klauke AL, Racz I, Pradier B, Markert A, Zimmer AM, Gertsch J, Zimmer A (2014) The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur Neuropsychopharmacol 24(4):608–620. https://doi.org/10.1016/j.euroneuro.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  • Klein D (2015) Organic Chemistry, 2nd edn. John Wiley Sons Inc, Hoboken

    Google Scholar 

  • Kruk-Slomka M, Michalak A, Biala G (2015) Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system. Behav Brain Res 284:24–36

    Article  CAS  Google Scholar 

  • Lariviere WR, Chesler EJ, Mogil JS (2001) Transgenic studies of pain and analgesia: mutation or background genotype? J Pharmacol Exp Ther 297:467–473

    CAS  PubMed  Google Scholar 

  • Little PJ, Compton DR, Johnson MR, Melvin LS, Martin BR (1988) Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J Pharmacol Exp Ther 247:1046–1051

    CAS  PubMed  Google Scholar 

  • McGrath J, Drummond G, McLachlan E, Kilkenny C, Wainwright C (2010) Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol 160:1573–1576

    Article  CAS  Google Scholar 

  • National Research Council (2011) Guide for the Care and Use of Laboratory Animals. National Academies Press, Washington, DC

    Google Scholar 

  • Nogueira MN, Aquino SG, Rossa Junior C, Spolidorio DM (2014) Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1beta, IL-6 and IL-10 on human macrophages. Inflamm Res 63:769–778

    Article  CAS  Google Scholar 

  • Oliveira MG, Brito RG, Santos PL, Araujo-Filho HG, Quintans JS, Menezes PP, Serafini MR, Carvalho YM, Silva JC, Almeida JR, Scotti L, Scotti MT, Shanmugam S, Thangaraj P, Araujo AA, Quintans-Junior LJ (2016) alpha-Terpineol, a monoterpene alcohol, complexed with beta-cyclodextrin exerts antihyperalgesic effect in animal model for fibromyalgia aided with docking study. Chem Biol Interact 254:54–62

    Article  CAS  Google Scholar 

  • Otsubo Y, Satoh Y, Kodama M, Araki Y, Satomoto M, Sakamoto E, Pages G, Pouyssegur J, Endo S, Kazama T (2012) Mechanical allodynia but not thermal hyperalgesia is impaired in mice deficient for ERK2 in the central nervous system. Pain 153:2241–2252

    Article  CAS  Google Scholar 

  • Parvardeh S, Moghimi M, Eslami P, Masoudi A (2016) α-Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide. Iranian J Basic Med Sci 19(2):201–208. https://doi.org/10.22038/ijbms.2016.6546

    Article  Google Scholar 

  • Passos FF, Lopes EM, de Araujo JM, de Sousa DP, Veras LM, Leite JR, Almeida FR (2015) Involvement of cholinergic and opioid system in gamma-terpinene-mediated antinociception. Evid Based Complement Alternat Med 2015:829414

    Article  Google Scholar 

  • Paula-Freire LIG, Andersen ML, Gama VS, Molska GR, Carlini ELA (2014) The oral administration of trans-caryophyllene attenuates acute and chronic pain in mice. Phytomedicine 21(3):356–362. https://doi.org/10.1016/j.phymed.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  • Ramalho TR, Filgueiras LR, Pacheco de Oliveira MT, Lima AL, Bezerra-Santos CR, Jancar S, Piuvezam MR (2016) Gamma-Terpinene modulation of LPS-stimulated macrophages is dependent on the PGE2/IL-10 axis. Planta Med 82:1341–1345

    Article  CAS  Google Scholar 

  • Ramalho TR, Oliveira MT, Lima AL, Bezerra-Santos CR, Piuvezam MR (2015) Gamma-Terpinene modulates acute inflammatory response in mice. Planta Med 81:1248–1254

    Article  CAS  Google Scholar 

  • Richardson JD, Kilo S, Hargreaves KM (1998) Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75:111–119

    Article  CAS  Google Scholar 

  • Safaripour S, Nemati Y, Parvardeh S, Ghafghazi S, Fouladzadeh A, Moghimi M (2018) Role of l-arginine/SNAP/NO/cGMP/KATP channel signalling pathway in antinociceptive effect of alpha-terpineol in mice. J Pharm Pharmacol 70:507–515

    Article  CAS  Google Scholar 

  • Segat GC, Manjavachi MN, Matias DO, Passos GF, Freitas CS, Costa R, Calixto JB (2017) Antiallodynic effect of beta-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology 125:207–219

    Article  CAS  Google Scholar 

  • Smith HS (2012) Opioids and neuropathic pain. Pain Physician 15(3 Suppl):93–110. https://doi.org/10.1016/s1734-1140(10)71119-1

    Article  Google Scholar 

  • Smith MD, Woodhead JH, Handy LJ, Pruess TH, Vanegas F, Grussendorf E, Grussendorf J, White K, Bulaj KK, Krumin RK, Hunt M, Wilcox KS (2017) Preclinical comparison of mechanistically different antiseizure, antinociceptive, and/or antidepressant drugs in a battery of rodent models of nociceptive and neuropathic pain. Neurochem Res 42:1995–2010

    Article  CAS  Google Scholar 

  • Spicakova A, Bazgier V, Skalova L, Otyepka M, Anzenbacher P (2019) beta-caryophyllene oxide and trans-nerolidol affect enzyme activity of CYP3A4 - in vitro and in silico studies. Physiol Res 68:S51–S58

    Article  CAS  Google Scholar 

  • Stempel AV, Stumpf A, Zhang HY, Ozdogan T, Pannasch U, Theis AK, Otte DM, Wojtalla A, Racz I, Ponomarenko A, Xi ZX, Zimmer A, Schmitz D (2016) Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron 90:795–809

    Article  CAS  Google Scholar 

  • Tallarida RJ (2000) Drug synergism and dose-effect data analysis. Chapman Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  • van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155(4):654–662. https://doi.org/10.1016/j.pain.2013.11.013

    Article  PubMed  Google Scholar 

  • Vieira G, Cavalli J, Goncalves ECD, Braga SFP, Ferreira RS, Santos ARS, Cola M, Raposo NRB, Capasso R and Dutra RC (2020) Antidepressant-like effect of terpineol in an inflammatory model of depression: involvement of the cannabinoid system and D2 dopamine receptor. Biomolecules 10.

  • Wilkerson JL, Alberti LB, Kerwin AA, Ledent CA, Thakur GA, Makriyannis A and Milligan ED (2020) Peripheral versus central mechanisms of the cannabinoid type 2 receptor agonist AM1710 in a mouse model of neuropathic pain. Brain Behav:e01850

  • Wilkerson JL, Gentry KR, Dengler EC, Wallace JA, Kerwin AA, Armijo LM, Kuhn MN, Thakur GA, Makriyannis A, Milligan ED (2012) Intrathecal cannabilactone CB(2)R agonist, AM1710, controls pathological pain and restores basal cytokine levels. Pain 153:1091–1106

    Article  CAS  Google Scholar 

  • Wilkerson JL, Ghosh S, Mustafa M, Abdullah RA, Niphakis MJ, Cabrera R, Maldonado RL, Cravatt BF, Lichtman AH (2017) The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. Neuropharmacology 114:156–167

    Article  CAS  Google Scholar 

  • Wilkerson JL, Niphakis MJ, Grim TW, Mustafa MA, Abdullah RA, Poklis JL, Dewey WL, Akbarali H, Banks ML, Wise LE, Cravatt BF, Lichtman AH (2016) The selective monoacylglycerol lipase inhibitor MJN110 produces opioid-sparing effects in a mouse neuropathic pain model. J Pharmacol Exp Ther 357:145–156

    Article  CAS  Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A 96:5780–5785

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Institute on Drug Abuse DA25267 and DA48353 (LRM) and funding from the Florida Consortium for Medical Marijuana Clinical Outcomes Research (JLW).

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: McMahon and Wilkerson. Conducted experiments: Bilbrey, Felix, and Ortiz. Performed data analysis: Felix, Ortiz, and Wilkerson. Wrote or contributed to the writing of the manuscript: Bilbrey, McMahon, and Wilkerson.

Corresponding author

Correspondence to Jenny L. Wilkerson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Special Issue on Cannabis and Cannabinoids

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilbrey, J.A., Ortiz, Y.T., Felix, J.S. et al. Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement. Psychopharmacology 239, 1475–1486 (2022). https://doi.org/10.1007/s00213-021-06031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-06031-2

Keywords

Navigation