Skip to main content
Log in

Chrysin attenuates traumatic brain injury-induced recognition memory decline, and anxiety/depression-like behaviors in rats: Insights into underlying mechanisms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

A Correction to this article was published on 22 April 2023

This article has been updated

Abstract

Rationale

Cortical and hippocampal neuronal apoptosis and neuroinflammation are associated with behavioral deficits following traumatic brain injury (TBI).

Objectives

The present study was designed to investigate the potential protective effects of flavonoid chrysin against TBI-induced vestibulomotor impairment, exploratory/locomotor dysfunctions, recognition memory decline, and anxiety/depression-like behaviors, as well as the verified possible involved mechanisms.

Methods

Chrysin (25, 50, or 100 mg/kg/day; P.O.) was administered to rats immediately after diffuse TBI induction, and it was continued for 3 or 14 days. Behavioral functions were assessed by employing standard behavioral paradigms at scheduled points in time. Three days post-TBI, inflammation status was assayed in both cerebral cortex and hippocampus using ELISA kits. Moreover, apoptosis and expression of Bcl-2 family proteins were examined by TUNEL staining and immunohistochemistry, respectively.

Results

The results indicated that treatment with chrysin improved vestibulomotor dysfunction, ameliorated recognition memory deficit, and attenuated anxiety/depression-like behaviors in the rats with TBI. Chrysin treatment also modulated inflammation status, reduced apoptotic index, and regulated Bcl-2 family proteins expression in the brains of rats with TBI.

Conclusions

In conclusion, the results suggest that chrysin could be beneficial for protection against TBI-associated behavioral deficits, owing to its anti-apoptotic and anti-inflammatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Alderfer BS, Arciniegas DB, Silver JM (2005) Treatment of depression following traumatic brain injury. J Head Trauma Rehabil 20:544–562

    Article  PubMed  Google Scholar 

  • Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF (2014) Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS One 9:e102627

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand KV, Anandhi R, Pakkiyaraj M, Geraldine P (2011) Protective effect of chrysin on carbon tetrachloride (CCl4)—induced tissue injury in male Wistar rats. Toxicol Ind Health 27:923–933

    Article  CAS  PubMed  Google Scholar 

  • Arciniegas DB, Silver JM (2006) Pharmacotherapy of posttraumatic cognitive impairments. Behav Neurol 17:25–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Arciniegas DB, Anderson CA, Topkoff J, McAllister TW (2005) Mild traumatic brain injury: a neuropsychiatric approach to diagnosis, evaluation, and treatment. Neuropsychiatr Dis Treat 1(4):311–327

    PubMed  PubMed Central  Google Scholar 

  • Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, Greig NH, Pick CG (2011) Tumor necrosis factor-α synthesis inhibitor, 3, 6′-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem 118:1032–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barha CK, Ishrat T, Epp JR, Galea LA, Stein DG (2011) Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Exp Neurol 231:72–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker GR, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31:10721–10731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges Filho C, Jesse CR, Donato F, Del Fabbro L, de Gomes MG, Goes ATR, Souza LC, Boeira SP (2016) Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice. Chem Biol Interact 260:154–162

    Article  Google Scholar 

  • Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17:5–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown E, Hurd NS, McCall S, Ceremuga TE (2007) Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J 75:333–337

    PubMed  Google Scholar 

  • Cernak I, Chapman SM, Hamlin GP, Vink R (2002) Temporal characterisation of pro-and anti-apoptotic mechanisms following diffuse traumatic brain injury in rats. J Clin Neurosci 9:565–572

    Article  PubMed  Google Scholar 

  • Cheng T, Wang W, Li Q, Han X, Xing J, Qi C, Lan X, Wan J, Potts A, Guan F, Wang J (2016) Cerebroprotection of flavanol (−)-epicatechin after traumatic brain injury via Nrf2-dependent and-independent pathways. Free Radic Biol Med 92:15–28

    Article  CAS  PubMed  Google Scholar 

  • Chua KS, Ng Y-S, Yap SG, Bok CW (2007) A brief review of traumatic brain injury rehabilitation. Ann Acad Med Singapore 36:31

    Article  PubMed  Google Scholar 

  • Daumas S, Halley H, Francés B, Lassalle J-M (2005) Encoding, consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn Mem 12:375–382

    Article  PubMed  PubMed Central  Google Scholar 

  • DeKosky ST, Blennow K, Ikonomovic MD, Gandy S (2013) Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat Rev Neurol. 9:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Khashab IH, Abdelsalam RM, Elbrairy AI, Attia AS (2019) Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis. Biomed Pharmacother 112:108619

    Article  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113:509–519

    Article  CAS  PubMed  Google Scholar 

  • Farbood Y, Rashno M, Ghaderi S, Khoshnam SE, Sarkaki A, Rashidi K, Rashno M, Badavi M (2019) Ellagic acid protects against diabetes-associated behavioral deficits in rats: Possible involved mechanisms. Life Sci 225:8–19

    Article  CAS  PubMed  Google Scholar 

  • Filho CB, Jesse CR, Donato F, Giacomeli R, Del Fabbro L, Antunes MS, Gomes MG, Goes ATR, Boeira SP, Prigol M, Souza LC (2015) Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience 268:367–380

    Article  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Griffiths S, Scott H, Glover C, Bienemann A, Ghorbel MT, Uney J, Brown MW, Warburton EC, Bashir ZI (2008) Expression of long-term depression underlies visual recognition memory. Neuron 58:186–194

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Zheng C, Cai W, Cheng J, Wang H, Li H, Sun Y, Cui W, Wang Y, Han Y, Zhang Z (2016) Multifunction of chrysin in Parkinson’s model: anti-neuronal apoptosis, neuroprotection via activation of MEF2D, and inhibition of monoamine oxidase-B. J Agric Food Chem 64:5324–5333

    Article  CAS  PubMed  Google Scholar 

  • Gupta S (2002) A decision between life and death during TNF-α-induced signaling. J Clin Immunol 22:185–194

    Article  CAS  PubMed  Google Scholar 

  • Habr SF, Bernardi MM, Conceição IM, Freitas TA, Felicio LF (2011) Open field behavior and intra-nucleus accumbens dopamine release in vivo in virgin and lactating rats. Psychol Neurosci 4:115–121

    Article  Google Scholar 

  • Hardman JM, Manoukian A (2002) Pathology of head trauma. Neuroimaging Clin N Am 12(175–87):vii

    PubMed  Google Scholar 

  • Hicks R, Smith D, Lowenstein D, MARIE RS, McIntosh TK (1993) Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J Neurotrauma 10:405–414

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Gong F-L, Zhao G-B, Li J (2014) Chrysin suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats. Int J Mol Sci 15:12270–12279

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamm K, VanderKolk W, Lawrence C, Jonker M, Davis AT (2006) The effect of traumatic brain injury upon the concentration and expression of interleukin-1β and interleukin-10 in the rat. J Trauma 60:152–157

    Article  PubMed  Google Scholar 

  • Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Abbasi MM, Salari A-A (2018a) Hesperidin attenuates depression-related symptoms in mice with mild traumatic brain injury. Life Sci. 213:198–205

    Article  CAS  PubMed  Google Scholar 

  • Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Abbasi MM, Salari A-A (2018b) Anxiolytic-and antidepressant-like effects of Silymarin compared to diazepam and fluoxetine in a mouse model of mild traumatic brain injury. Toxicol Appl Pharmacol 338:159–173

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy A, Sevanan M, Mani S, Balu M, Balaji S, Ramajayan P (2019) Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model. Neurosci Lett 709:134382

  • Lim S-W, Sung K-C, Shiue Y-L, Wang C-C, Chio C-C, Kuo J-R (2017) Hyperbaric oxygen effects on depression-like behavior and neuroinflammation in traumatic brain injury rats. World Neurosurg 100:128–137

    Article  PubMed  Google Scholar 

  • Liu H, Rose ME, Culver S, Ma X, Dixon CE, Graham SH (2016) Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats. Biochem Biophys Res Commun 472:648–655

    Article  CAS  PubMed  Google Scholar 

  • Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147:S232–S240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmarou A, Foda MAA-E, Van Den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats: Part I: Pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  • McQuade JMS, Vorhees CV, Xu M, Zhang J (2002) DNA fragmentation factor 45 knockout mice exhibit longer memory retention in the novel object recognition task compared to wild-type mice. Physiol Behav 76:315–320

    Article  CAS  Google Scholar 

  • Mitkovski M, Dahm L, Heinrich R, Monnheimer M, Gerhart S, Stegmüller J, Hanisch U-K, Nave K-A, Ehrenreich H (2015) Erythropoietin dampens injury-induced microglial motility. J Cereb Blood Flow Metab 35:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mychasiuk R, Hehar H, Candy S, Ma I, Esser M (2016) The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. J Neurosci Methods 257:168–178

    Article  PubMed  Google Scholar 

  • Ng C-F, Ko C-H, Koon C-M, Chin W-C, Kwong HCST, Lo AW-I, Wong H-L, Fung K-P, Bik-San Lau C, Lam P-K, Poon WS, Leung PC (2016) The aqueous extract of rhizome of Gastrodia elata Blume attenuates locomotor defect and inflammation after traumatic brain injury in rats. J Ethnopharmacol. 185:87–95

    Article  PubMed  Google Scholar 

  • Pavlides C, Miyashita E, Asanuma H (1993) Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol. 70:733–741

    Article  CAS  PubMed  Google Scholar 

  • Pawlak A, Gładkowski W, Kutkowska J, Mazur M, Obmińska-Mrukowicz B, Rapak A (2018) Enantiomeric trans β-aryl-δ-iodo-γ-lactones derived from 2, 5-dimethylbenzaldehyde induce apoptosis in canine lymphoma cell lines by downregulation of anti-apoptotic Bcl-2 family members Bcl-xL and Bcl-2. Bioorg Med Chem Lett 28:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Rao JS, Kellom M, Kim H-W, Rapoport SI (2012) Neuroinflammation and synaptic loss. Neurochem Res 37:903–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashno M, Sarkaki A, Farbood Y, Rashno M, Khorsandi L, Naseri MKG, Dianat M (2019) Therapeutic effects of chrysin in a rat model of traumatic brain injury: a behavioral, biochemical, and histological study. Life Sci 228:285–294

    Article  CAS  PubMed  Google Scholar 

  • Rimel RW, Giordani B, Barth JT, Boll TJ, Jane JA (1981) Disability caused by minor head injury. Neurosurgery 9:221–228

    CAS  PubMed  Google Scholar 

  • Sarkaki A, Farbood Y, Mansouri SMT, Badavi M, Khorsandi L, Dehcheshmeh MG, Shooshtari MK (2019) Chrysin prevents cognitive and hippocampal long-term potentiation deficits and inflammation in rat with cerebral hypoperfusion and reperfusion injury. Life Sci. 226:202–209

    Article  CAS  PubMed  Google Scholar 

  • Schaue D, Kachikwu EL, McBride WH (2012) Cytokines in radiobiological responses: a review. Radiat Res 178:505–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwab N, Tator C, Hazrati L-N (2019) DNA damage as a marker of brain damage in individuals with history of concussions. Lab Invest:1

  • Shi W, Zhao W, Shen A, Shao B, Wu X, Yang J, Ni L, Wu Q, Chen J (2011) Traumatic brain injury induces an up-regulation of Hs1-associated protein X-1 (Hax-1) in rat brain cortex. Neurochem Res 36:375–382

    Article  CAS  PubMed  Google Scholar 

  • Shijo K, Ghavim S, Harris NG, Hovda DA, Sutton RL (2015) Glucose administration after traumatic brain injury exerts some benefits and no adverse effects on behavioral and histological outcomes. Brain Res 1614:94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver JM, McAllister TW, Arciniegas DB (2009) Depression and cognitive complaints following mild traumatic brain injury. Am J Psychiatry 166:653–661

    Article  PubMed  Google Scholar 

  • Sullivan P, Rabchevsky A, Waldmeier P, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res. 79:231–239

    Article  CAS  PubMed  Google Scholar 

  • Tabatabaei SRF, Rashno M, Ghaderi S, Askaripour M (2016) The aqueous extract of Portulaca oleracea ameliorates neurobehavioral dysfunction and hyperglycemia related to streptozotocin-diabetes induced in ovariectomized rats. Iran J Pharm Res 15:561

    CAS  Google Scholar 

  • Tabatabaei SRF, Ghaderi S, Bahrami-Tapehebur M, Farbood Y, Rashno M (2017) Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats. Biomed Pharmacother. 96:279–290

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Li D, Liu H, Jiang F, Xu Y, Cao Y, Gao R, Chen G (2018) Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Res Bull 140:154–161

    Article  CAS  PubMed  Google Scholar 

  • Thangarajan S, Ramachandran S, Krishnamurthy P (2016) Chrysin exerts neuroprotective effects against 3-Nitropropionic acid induced behavioral despair—Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax—Bad genes in male wistar rats. Biomed Pharmacother 84:514–525

  • Thau-Zuchman O, Shohami E, Alexandrovich AG, Trembovler V, Leker RR (2012) The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury. J Neurotrauma 29:375–384

    Article  PubMed  Google Scholar 

  • Turtzo LC, Lescher J, Janes L, Dean DD, Budde MD, Frank JA (2014) Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J Neuroinflammation 11:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Villapol S, Byrnes KR, Symes AJ (2014) Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte–vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury. Front Neurol 5:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker KR, Tesco G (2013) Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 5:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber JT (2012) Altered calcium signaling following traumatic brain injury. Front Pharmacol. 3:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Zhang J, Nakanishi H (2005) Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation. J Neuroimmunol. 167:90–98

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood–brain barrier: in vitro studies. J Neurochem 85:180–192

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Shan H, Gu Z, Wang D, Wang T, Wang Z, Tao L (2012) Increased expression of calcium/calmodulin-dependent protein kinase type II subunit delta after rat traumatic brain injury. J Mol Neurosci. 46:631–643

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Rasmussen L, Saraswati M, Koehler RC, Robertson C, Kannan S (2018) Traumatic injury leads to inflammation and altered tryptophan metabolism in the juvenile rabbit brain. J Neurotrauma 36:74–86

    Article  Google Scholar 

  • Zink BJ, Szmydynger-Chodobska J, Chodobski A (2010) Emerging concepts in the pathophysiology of traumatic brain injury. Psychiatr Clin North Am 33:741–756

    Article  PubMed  Google Scholar 

  • Zogg CK, Haring RS, Canner JK, AlSulaim HA, Scully R, Wolf L, Engineer LD, Haider AH, Schneider EB (2016) Burden of pediatric traumatic brain injury beyond the emergency department: the untold story of the silent epidemic. Journal of the American College of Surgeons 223:S158

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Baback Dadizadeh for proofreading this article.

Funding

This research was supported financially by a grant (APRC-9704) from Ahvaz Physiology Research Center, funded by the Vice Chancellor of Research, Ahvaz Jundishapur University of Medical Sciences (Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Sarkaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: This article was originally published with an incorrect figure 6a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashno, M., Ghaderi, S., Nesari, A. et al. Chrysin attenuates traumatic brain injury-induced recognition memory decline, and anxiety/depression-like behaviors in rats: Insights into underlying mechanisms. Psychopharmacology 237, 1607–1619 (2020). https://doi.org/10.1007/s00213-020-05482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05482-3

Keywords

Navigation