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Abstract
Rationale Since substance use disorders have few or no effective pharmacotherapies, researchers have developed vaccines as
immune-therapies against nicotine, cocaine, methamphetamine, and opioids including fentanyl.
Objectives We focus on enhancing antibody (AB) production through stimulation of toll-like receptor-5 (TLR5) during active
vaccination. The stimulating adjuvant is Entolimod, a novel protein derivative of flagellin. We review the molecular and cellular
mechanisms underlying Entolimod’s actions on TLR5.
Results Entolimod shows excellent efficacy for increasing AB levels to levels well beyond those produced by anti-addiction
vaccines alone in animal models and humans. These ABs also significantly block the behavioral effects of the targeted drug of
abuse. The TLR5 stimulation involves a wide range of immune cell types such as dendritic, antigen presenting, T and B cells.
Entolimod binding to TLR5 initiates an intracellular signaling cascade that stimulates cytokine production of tumor necrosis
factor and two interleukins (IL-6 and IL-12). While cytokine release can be catastrophic in cytokine storm, Entolimod produces a
modulated release with few side effects even at doses 30 times greater than doses needed in these vaccine studies. Entolimod has
markedly increased AB responses to all of our anti-addiction vaccines in rodent models, and in normal humans.
Conclusions Entolimod and TLR5 stimulation has broad application to vaccines and potentially to other psychiatric disorders like
depression, which has critical inflammatory contributions that Entolimod could reduce.
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Anti-drug vaccines: immunotherapy
for substance use disorders

Increasing research on treating substance use disorders
(SUDs) has considered not only neurobiological, but also
immunological approaches for these chronic medical con-
ditions. Moreover, approved and effective pharmacother-
apies continue to be limited to only a few specific sub-
stances such as opioids and alcohol. Therefore, investiga-
tors have examined immunological approaches for SUDs
including active immunization with vaccines (Martell et al.

2009; Esterlis et al. 2013; Haile et al. 2015), passive im-
munization with anti-drug monoclonal antibodies (mAB)
(Stevens et al. 2014; Harris et al. 2015; Kvello et al. 2016),
administration of metabolic enzymes to inactivate abused
drugs (Nasser et al. 2014; Cohen-Barak et al. 2015), and
gene transfer of antidrug proteins including mAB and met-
abolic enzymes (Hicks et al. 2012; Rosenberg et al. 2012;
Murthy et al. 2016; Smethells et al. 2016).

The theoretical basis for the anti-addiction vaccines is
that the production of adequate levels of specific antibod-
ies (AB) can capture and sequester the drug of abuse in the
peripheral circulation, as the large AB-drug compound
molecules cannot cross the blood-brain barrier, thereby
diminishing the physical and psychological reinforcing ef-
fects of the drugs. Even if the AB can only hamper the
speed of the drug entry without fully preventing them from
entering the brain, the reinforcing effects of the drugs are
reduced (Woolverton and Wang 2004; Nelson et al. 2006;
Schindler et al. 2009). The diminished reinforcing effects
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subsequently lead to reduced drug use. These vaccines also
can block the priming effect of drug use and prevent the
conversion of drug use lapses into full relapses. These vac-
cines can usually produce sufficient AB levels to block
modest doses of the abused substances (Martell et al.
2009; Haney et al. 2010). However, they are unlikely to
block purposeful high-dose use, in which the abuser wants
to over-ride these AB, unless the drug is highly potent and
very small amounts produce substantial effects. For exam-
ple, the fentanyl class of opioids is highly potent and typ-
ical AB levels elicited from fentanyl vaccine could proba-
bly block even overdoses with relatively large fentanyl
doses (Bremer et al. 2016; Raleigh et al. 2019).

As the drug molecules are not inherently immunogenic,
vaccines for SUDs consist of drug-based haptens conjugat-
ed to immunogenic carrier proteins (e.g., keyhole limpet
hemocyanin, cholera toxin, or tetanus toxoid) combined
with adjuvants to increase immunogenicity. Several studies
have demonstrated reduced brain/plasma ratios of the drug
in vaccinated or passively immunized animals compared to
controls (Hieda et al. 1997; Keyler et al. 1999; Pravetoni
et al. 2012a, b). Subsequently, studies of vaccines for nic-
otine, cocaine, heroin, and methamphetamine (MA)
showed promising anti-addiction effects. Preclinical stud-
ies of these vaccines were reviewed in detail elsewhere
(Ohia-Nwoko et al. 2016; Pravetoni 2016). To date, vac-
cines against nicotine and cocaine have undergone human
clinical trials. While several of these first-generation for-
mulations demonstrated efficacy in the subset of patients
with the highest anti-drug AB concentrations, post-
immunization serum AB response varied substantially
among individuals, with only about half of the subjects
attaining clinically effective AB responses (Martell et al.
2009; Hatsukami et al. 2011). Given the high degree of
variability in individual responses, overall results have
been modest, and no SUD vaccines to date have demon-
strated efficacy in phase III trials.

Despite the lack of demonstrated efficacy from the
pooled data, cocaine and nicotine anti-addiction vaccines
can be efficacious when the vaccine produces sufficiently
high AB levels (Cornuz et al. 2008; Martell et al. 2009;
Hatsukami et al. 2011). But the required AB concentrations
for effective vaccination against SUDs are much higher
than that needed for adequate immunization against
microbe/toxin in an infectious disease. Peak plasma co-
caine concentrations are ~ 500 nM in a typical recreational
cocaine abuser who takes a dose of 40 mg free-base co-
caine (Jenkins et al. 2002). A vaccine that elicits anti-
cocaine AB exceeding 250 nM (~ 40 μg/mL), equal to
500 nM antibody binding sites, would be able to sequester
a large fraction of that dose. However, in published clinical
trials of both cocaine (Martell et al. 2009) and nicotine
(Hatsukami et al. 2011) conjugate vaccines, one half to

two thirds of patients receiving vaccine did not produce
the adequate concentration of AB to effectively reduce
CNS drug uptake. Additionally, the AB concentration rap-
idly diminishes within a few months after the initial boost-
er doses in the clinical trials for cocaine and nicotine vac-
cination (Martell et al. 2009; Hatsukami et al. 2011).
Therefore, the blocking of drugs in even the high AB level
responders was too brief to be optimally beneficial, and
patients would need repeated boosters every 2 to 3 months.

Approaches to improve antibody quantities

Researchers have developed various strategies to increase
AB production by SUD vaccinations including improve-
ments in immune-adjuvants, carriers, hapten, and hapten
and carrier protein linker design, as well as the incorpora-
tion of multivalent immunization strategies and novel
particle-based delivery systems, reviewed elsewhere
(Ohia-Nwoko et al. 2016; Pravetoni 2016). For carriers,
the responses in mice to keyhole limpet hemocyanin
succinylnorcocaine (KLH-SNC) and tetanus toxoid
succinylnorcocaine (TT-SNC) using an alum adjuvant are
substantially higher than that to cholera toxin B (CTB)-
SNC in both initial and later response periods (Orson
et al. 2014). Three MA vaccines using KLH as a carrier
protein have generated substantial AB concentrations with
good affinity for MA (Moreno et al. 2011). The TT protein
carrier conjugated to succinyl-methamphetamine (SMA)
has produced stronger immune responses than a vaccine
with a diphtheria toxoid carrier (Collins et al. 2016).
Current strategies to modify the hapten and linkers are
aiming to enhance the affinity and specificity of the anti-
drug AB (Cai et al. 2013a, b; Ramakrishnan et al. 2014).

The simplest approach to improve immunity might be ap-
plying adjuvants, which are primarily derived from microbial
components and include killed mycobacteria, such as com-
plete Freund’s adjuvant, Bordetella pertussis toxin, extracts
of Toxoplasma gondii, Mycobacterium-derivedmuramyl pep-
tides, lipopolysaccharide (LPS) or its toxic components, lipid
A and CpG–rich DNAmotifs (Akira et al. 2001). The immune
system recognizes the structurally conserved molecules on the
bacteria, virus, and other microbes through the pattern recog-
nition receptors (PRRs). The toll-like receptors (TLRs) con-
stitute a subgroup of PRRs that recognize the microbial anti-
gens (Mogensen 2009). Macrophages, endothelial and epithe-
lial cells, and dendritic cells (DCs) all express TLRs. These
receptors rapidly respond to the pathogens through the activa-
tion of an array of immune cells and through AB production
(Honko and Mizel 2005). Thus, AB production can be im-
proved by targeting TLRs via adjuvants, which potently en-
gage both the innate and adaptive immune responses (Loré
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et al. 2003; Giannini et al. 2006; Cooper et al. 2008;
Didierlaurent et al. 2009; Søgaard et al. 2010).

Targeting the TLR system to improve
antibody production of anti-drug vaccines

In the presence of TLR agonists, antigen presenting cells
(APC) undergo a process of maturation, which renders an
initially non-immunogenic antigen immunogenic and allows
the immune system to effectively respond to pathogenic anti-
gens (Blander and Medzhitov 2006; Garaude et al. 2012). The
enhanced immunity by TLR agonists is highly relevant to
anti-drug vaccine immunity. With the presence of TLR ago-
nists, the immune cells are sensitized to the encounter with the
novel non-endogenous stimulus, which is the abused drug
attached to a portion of an inherently immunogenic protein
such as tetanus toxoid. In this way, adjuvants based on the
TLR system can increase the potency of an anti-drug vaccine
through pre-activation of the immune system to respond with
the cascade of processes leading to a specific AB response.

Different TLR agonists have been tried in various vaccines:
TLR-9 (CpG ODN 1826), TLR-4, and TLR-2 (Duthie et al.
2011; Bremer et al. 2014; Collins et al. 2016). The TLR-9
adjuvant is DNA based. The TLR-2 and TLR-4 adjuvants
are based on various lipids: lipopolysaccharide, liposomes
containing monophosphoryl lipid, lipid A derived from
Gram-negative bacteria, and glucopyranoside lipid A
(Ishizaka and Hawkins 2007; Morefield et al. 2007; Lockner
et al. 2013; Stevens et al. 2016). One of the most effective
vaccines, the live attenuated yellow fever vaccine 17D (YF-
17D) is able to activate multiple TLRs (2, 7, 8, and 9) on DCs
to elicit a broad spectrum of innate and adaptive immune
responses (Querec et al. 2006).

The TLR-5 adjuvant, Entolimod, is a pharmacologically
optimized protein derivative from flagellin protein in
Salmonella thyphimurium, retaining the two constant regions
of flagellin essential for TLR5 binding (Burdelya et al. 2008).
Studies have established Entolimod as a potential treatment
for lethal radiation exposure, for which it has an excellent
safety profile (Burdelya et al. 2008; Vijay-Kumar et al.
2008). Entolimod can alleviate bone marrow and intestinal
injuries in mice and rhesus monkeys by stimulating stem cells
and thereby promoting regeneration of radiosensitive tissues
(Jones et al. 2011; Krivokrysenko et al. 2015). This review
examines the possible cellular role of the adjuvant Entolimod
(also known as CBLB502), in enhancing the efficacy of anti-
drug vaccines and discusses its application in anti-drug vac-
cine development.

TLR systems have gained attention as promising therapeu-
tic targets to stimulate antitumor immunity by initiating innate
responses and subsequent adaptive T cell-based immunity, as
reviewed previously (Akira et al. 2001; Kanzler et al. 2007).

However, the activation of many TLR systems could lead to a
cascade of systemic cytokine release (cytokine storm), which
can be life-threatening (Islam et al. 2016; Voss et al. 2016;
Murakami et al. 2017; Perrin-Cocon et al. 2017). In addition,
even relatively lower levels of cytokine activation often pro-
duce a variety of psychiatric symptoms, which has limited the
application of cytokine and TLR activation treatments in psy-
chiatric patients (Dantzer and Kelley 2007). The TLR5 system
activation with Entolimod seems to have unique advantages
over the activation of other TLR systems in psychiatric pa-
tients, because of Entolimod’s safety profile evenwith system-
ic delivery. Interestingly, there are no endogenous ligands that
bind to TLR5, and flagellin is its only known natural ligand
(Hayashi et al. 2001). Flagellin, when used as a fusion protein
with particular antigens or as a separate adjuvant combined
with vaccines, has shown great potency in generating antibod-
ies in both animal studies and clinical trials (Taylor et al. 2011;
Holbrook et al. 2016; Mardanova et al. 2016; Labastida-conde
et al. 2018). For example, for an anti-cocaine vaccine in mice,
using flagellin protein itself as the carrier rather than an adju-
vant, these cocaine-flagellin conjugates enhanced the dose-
dependent production of anti-cocaine AB better than other
protein carriers (Lockner et al. 2015).

Flagellin binding to TLR5 initiates an NF-κB-mediated
signal transduction cascade and stimulates productions of
TNF-α, IL-6, and IL-12 (Eaves-Pyles et al. 2001). This re-
sponse is thought to contribute to the promotion of both innate
and humoral responses (McSorley et al. 2002; Honko et al.
2006a; Sfondrini et al. 2006). The maximum tolerated dose of
flagellin is relatively limited, as AB response towards flagellin
itself markedly reduces its ability to enhance AB responses to
other antigens. In contrast, Entolimod can be as efficacious as
flagellin to induce NF-κB nuclear translocation, yet elicit a
significantly weaker AB response to itself (Burdelya et al.
2008). More importantly, in all tested species, including
humans, Entolimod led to robust production of a spectrum
of cytokines with particular hematopoietic and immunity reg-
ulatory implications, but minimal or absent induction of cyto-
kines implicated in cytokine storm (Gribble et al. 2007;
Tarrant 2010).

In addition to its role in enhancing AB production against
foreign antigens, Entolimod has protective effects that likely
vary in different diseases. These protective mechanisms can
involve TLR5-dependent NF-kB-mediated induction of anti-
apoptotic pathways, of scavengers for reactive oxygen spe-
cies, of cytokines, and of anti-inflammatory agents
(Burdelya et al. 2008, 2013; Fukuzawa et al. 2011). Practical
applications of these multiple mechanisms have been tested in
tumor immunity. Entolimod exerts antitumor effects in several
tumor models (Sfondrini et al. 2006; Rhee et al. 2008; Cai
et al. 2011; Burdelya et al. 2012) and has significantly im-
proved the survival of mice with metastatic tumors upon the
treatment with donor-derived immune cells (Ding et al. 2012).
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Overall, activation of TLR5 by flagellin or Entolimod triggers
a robust immunological response that engages a broad range
of immune cell types that participate in both innate and adap-
tive immune systems (Honko and Mizel 2005; Mizel and
Bates 2010; Hossain et al. 2014; Brackett et al. 2016; Shim
et al. 2016).

Cellular mechanisms of enhanced immunity
by Entolimod

Enhanced innate immunity by Entolimod mediated
through the activation of natural killer (NK) cells

Entolimod can engage both natural killer (NK) cell-
dependent innate immunity and T cell-dependent adaptive
immunity pathways. The NK cells play an important role
in innate immune responses that are non-specific to any
particular pathogen and may contribute to anti-pathogen
immunity as well as to the side effects of local inflamma-
tion at the site of vaccinations. This rapid, non-specific
innate immunity effect of Entolimod has important thera-
peutic and preventative applications. For example, single
doses of Entolimod administered 48 to 72 h prior to mu-
rine cytomegalovirus (CMV) infection protected mice
against CMV lethality. This protection from CMV was
unrelated to AB production and adaptive immunity, but
instead was due to Entolimod enhancing innate immunity
by stimulation of TLR5 receptors on NK cells and thereby
enhancing the cytotoxic activity of these cells (Hossain
et al. 2014). In addition, flagellin promotes several innate
immune processes, including the induction of pro-
inflammatory cytokines and chemokines (Means et al.
2003; Rolli et al. 2010; Kozlova et al. 2014; Ma et al.
2016) and recruitment of immune cells to peripheral lym-
phoid sites (Bates et al. 2008; Flores-langarica et al.
2012). These innate immune processes involve a variety
of flagellin-responsive cell types (e.g., DCs, epithelial
cells, and lymph node stromal cells) (Sanders et al.
2008). Entolimod interacts directly with TLR5 on these
immunological cells leading to their maturation. In two
syngeneic lymphoma models, Leigh et al. showed that
Entolimod directly activated TLR5-expressing CD11b+
and CD11c+ accessory cells, provoking an immunological
microenvironment conducive to enhanced immunogenici-
ty against any antigen entering that microenvironment.
This microenvironment, in turn, stimulates a robust im-
mune response (and potentially vaccine AB) by NK cell-
dependent immunity and activation of CD8+ cytotoxic T
cells (Leigh et al. 2014). The above innate immune pro-
cesses enhanced by flagellin or Entolimod are the crucial
priming for the AB production during the adaptive im-
mune response that follows vaccination.

Entolimod enhances adaptive immunity

Entolimod’s enhancement of AB production from vaccines
largely involves adaptive immunity, which is a slower but
more sustained process leading to specific immunological
memory. Induction of the innate immunity via flagellin/
Entolimod, as discussed above, contributes to maximum anti-
body productions. It is likely that only a threshold level of
innate immunity triggered by flagellin/Entolimod can drive
the antigen-specific humoral response (Honko et al. 2006b;
Bates et al. 2008).

While flagellin or Entolimod-induced DC activation is the
indirect mechanism enhancing AB production (Salazar-
Gonzalez et al. 2007; Ding et al. 2012), recognition of flagel-
lin by TLR5 on the DCs can also directly trigger the antigen-
specific differentiation of naive B cells into plasma cells and
differentiation of T helper cells, both of which are important
components of antibody-producing adaptive immunity
(Uematsu et al. 2008). Numerous studies have demonstrated
that flagellin significantly enhances Tcell-dependent AB produc-
tion (Honko et al. 2006b; Holbrook et al. 2016; Qian et al. 2016;
Kim et al. 2018). In addition, Entolimod engages chemotactic
actions in these adaptive immune responses. For example,
Entolimod drives the recruitment of NK cells to the liver of
animals with liver metastatic tumors (Brackett et al. 2016) and
the activation of DCs by NK cells. Flagellin can also markedly
induce the recruitment of T and B lymphocytes to draining
lymph nodes (Bates et al. 2008), which increases the likelihood
of antigen-specific lymphocytes encountering their cognate anti-
gen. These chemotactic effects of Entolimod are relevant to anti-
addiction vaccination as Entolimod attracting immune cells to the
site of vaccination will enhance the vaccine’s AB production.

The establishment of an antigen-specific durable immune
memory for AB production is the basis for the antitumor
(Burdelya et al. 2013; Yang et al. 2015) and antiviral efficacy
(Hossain et al. 2014) of vaccines adjuvanted with Entolimod.
This enhancement of AB responses also occurs in humans
(our unpublished data). Based on its efficacy to enhance
antigen-specific immune memory in animal tumor models
and humans, we postulated that Entolimod could also enhance
vaccine-specific immune memory and enhance AB produc-
tion in an anti-addiction vaccine. Entolimod significantly in-
creases AB levels beyond those produced using conventional
adjuvants such as aluminum (Kim et al. 2018). The synergism
of aluminum and Entolimod probably resulted from alumi-
num inducing a Th2 (T helper cell type 2) response of the
Bdepot^ effect and from Entolimod triggering TLR-5 activa-
tion of the MyD88 (myeloid differentiation primary response
88) and TRIF (TIR-domain-containing adaptor-inducing
interferon-β) dependent pathways leading to Th1 (T helper
cell type 1) responses through IL-12p70 induction (Netea
et al. 2005; Stills 2005; Khong and Overwijk 2016). This
mixed Th1/Th2 response was observed in the staphylococcal
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enterotoxin B vaccine co-administered with aluminum and a
TLR adjuvant (Morefield et al. 2007). Both Th1 and Th2 cells
support antigen-specific B cell expansion and AB production,
contributing to the enhanced AB production (Smith et al.
2000). These polyclonal AB also showed a broad but accept-
able range of AB affinities (20 nM to 110 nM) (Miller et al.
2013). In rodent studies, anti-MA monoclonal ABs with Kd
affinity values for MA of 20 nM can be sufficient for MA
binding that substantially reduces MA brain entry and MA-
induced behaviors (Carroll et al. 2009).

In berief, Entolimod adjuvant activates immune cells in
complex interacting cascades to enhance AB production, sub-
sequently increasing the overall potency of Entolimod/
flagellin-based vaccines. These interacting cascades await fur-
ther exploration.

Entolimod suppresses immune-mediated diseases

Flagellin and its derivative Entolimod are potent activa-
tors of innate and adaptive immunity and enhance AB and
antitumor immunology, as reviewed above. Paradoxically,
in inflammatory disease, Entolimod decreases immune re-
actions, therefore mitigating inflammatory diseases such
as hepatitis. Entolimod pretreatment completely protected
mice from anti-Fas AB-induced fulminant liver injury by
increasing hepatocyte resistance (Burdelya et al. 2013).
Entolimod’s protective role in attenuating hepatitis in
these Entolimod pretreated mice depended on the
MyD88/NF-κB signaling pathway. Using the concanava-
lin A (Con A)-induced hepatitis mouse model, Wang et al.
found that Entolimod acted as a negative regulator limit-
ing T cell/NK T cell activity and pro-inflammatory cyto-
kine production (Wang et al. 2017). Suppressive activities
of flagellin on NK T cells were also demonstrated in both
animal (Kim et al. 2008) and human studies (Shim et al.
2016). In the in vitro experimental study, flagellin treat-
ment of the peripheral blood mononuclear cell in asthma
patients suppressed the circulating Th2- and Th17-like
invariant natural killer T (iNKT) cells in an IL-10-
dependent mechanism, indicating the immunomodulatory
role of flagellin (Shim et al. 2016).

This anti-inflammatory role of Entolimod as a negative
regulator of cytokines may be more broadly relevant to psy-
chiatric disorders, to which cytokine activation contributes
(Dantzer and Kelley 2007). Entolimod’s AB enhancing prop-
erties can increase the potency of monoclonal AB or vaccine-
induced AB against specific pro-inflammatory cytokines such
as tumor necrosis factor (TNF). The pathophysiology of major
depressive disorders involves inflammation related to TNF,
and monoclonal ABs against TNF in particular have success-
fully reduced symptoms in patients with treatment-resistant
depression (Raison et al. 2013).

Potential enhancement of Tregs by Entolimod

Regulatory T cells (Tregs), formerly known as suppressor T
cells, are immune-suppressive and generally suppress or down-
regulate the induction and proliferation of effector T cells. Tregs
express high levels of TLR5 mRNA, and treatment of Tregs
with flagellin enhances the regulatory activity of these cells
(Crellin et al. 2005). In the experimental models of Con A-
induced hepatitis, Entolimod pretreatment increased the num-
bers of Tregs of the CD4 +CD25 + FoxP3+ types (Wang et al.
2017). These Tregs protect Con A-induced hepatitis by sup-
pressing immune responses. The relevance of this Treg suppres-
sion to optimizingAB production is that transient suppression of
Tregs at an appropriate time point can boost the maximal AB
level, as has been studied in tumor vaccination (Elia et al. 2007;
Rech and Vonderheide 2009; Rolla et al. 2010). Manipulation of
Tregs can improve the immunization potential of various anti-
tumor vaccines. If Entolimod enhances the activity of Tregs at
appropriate time points, this might be yet another pathway that
enhances AB responses through TLR5 on Tregs.

Future directions

Several vaccines have used Entolimod as a separate adjuvant and
shown excellent efficacy in animal models. Using Entolimod
itself as the protein carrier might further improve this efficacy.
Flagellin fusion proteins have elicited markedly enhanced AB
responses, roughly 10-fold greater than those vaccines using
flagellin as a separate adjuvant. This enhancement was likely
due to the more efficient delivery of adjuvant and antigen to
the same TLR5+APC (Mizel and Bates 2010). In another study,
flagellin-functionalized nanoparticles are noted to have more
pronounced immunostimulation than free flagellin (Kozlova
et al. 2014). Thus, potential future strategies to further enhance
the adjuvant activity of Entolimod in anti-addiction vaccines
may include the development of covalent conjugates of drug
haptens with Entolimod as the carrier protein or calcium phos-
phate nanoparticles loaded with flagellin/Entolimod, which may
further increase the AB quantity.

As discussed in this article, Entolimod, as well as its pre-
cursor flagellin, can both promote immunity and dampen im-
munity in different contexts. Themolecular and cellular mech-
anisms for TLR5 stimulation on a wide range of immune cell
types are complex, and they remain only partially understood.
In the literature, both tumor-promoting and antitumor immu-
nity, as well as pro-inflammatory and anti-inflammatory ef-
fects, have been linked to TLR5 (Honko and Mizel 2005;
Shim et al. 2016). Further exploration of Entolimod’s role in
suppressing and stimulating networks of the immune system
clearly will advance vaccine research in addictions and devel-
op new approaches to immunotherapies for a broadening
range of psychiatric disorders.
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