Skip to main content

Advertisement

Log in

Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow.

Objective

Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders.

Conclusion

This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer’s disease, Parkinson’s disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • IUPHAR/BPS Guide to Pharmacology, 2015 (2012) Nobelprize.org.

  • Abou Jamra R, Sircar I, Becker T, Freudenberg-Hua Y, Ohlraun S, Freudenberg J, Brockschmidt F, Schulze TG, Gross M, Spira F, Deschner M, Schmal C, Maier W, Propping P, Rietschel M, Cichon S, Nothen MM, Schumacher J (2005) A family-based and case-control association study of trace amine receptor genes on chromosome 6q23 in bipolar affective disorder. Mol Psychiatry 10:618–620

    CAS  PubMed  Google Scholar 

  • Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569

    CAS  PubMed  Google Scholar 

  • Adams F, Grassie M, Shahid M, Hill DR, Henry B (2003) Acute oral dexamethasone administration reduces levels of orphan GPCR glucocorticoid-induced receptor (GIR) mRNA in rodent brain: potential role in HPA-axis function. Brain Res Mol Brain Res 117:39–46

    CAS  PubMed  Google Scholar 

  • Ahn S, Phillips AG (2002) Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex. J Neurosci 22:10958–10965

    CAS  PubMed  Google Scholar 

  • Aimone JB, Wiles J, Gage FH (2009) Computational influence of adult neurogenesis on memory encoding. Neuron 61:187–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SP, Davenport AP, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Southan C, Davies JA (2015) The concise guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br J Pharmacol 172:5744–5869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alkondon M, Pereira EF, Todd SW, Randall WR, Lane MV, Albuquerque EX (2015) Functional G-protein-coupled receptor 35 is expressed by neurons in the CA1 field of the hippocampus. Biochem Pharmacol 93:506–518

    CAS  PubMed  Google Scholar 

  • Amann D, Avidan N, Kanyas K, Kohn Y, Hamdan A, Ben-Asher E, Macciardi F, Beckmann JS, Lancet D, Lerer B (2006) The trace amine receptor 4 gene is not associated with schizophrenia in a sample linked to chromosome 6q23. Mol Psychiatry 11:119–121

    CAS  PubMed  Google Scholar 

  • Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272

    CAS  PubMed  Google Scholar 

  • Audoy-Remus J, Bozoyan L, Dumas A, Filali M, Lecours C, Lacroix S, Rivest S, Tremblay ME, Vallieres L (2015) GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer’s disease. Brain Behav Immun 46:112–120

    CAS  PubMed  Google Scholar 

  • Barco A, Marie H (2011) Genetic approaches to investigate the role of CREB in neuronal plasticity and memory. Mol Neurobiol 44:330–349

    CAS  PubMed  Google Scholar 

  • Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611

    CAS  PubMed  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    CAS  PubMed  Google Scholar 

  • Barth MC, Ahluwalia N, Anderson TJ, Hardy GJ, Sinha S, Alvarez-Cardona JA, Pruitt IE, Rhee EP, Colvin RA, Gerszten RE (2009) Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions. J Biol Chem 284:19189–19195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batailler M, Mullier A, Sidibe A, Delagrange P, Prevot V, Jockers R, Migaud M (2012) Neuroanatomical distribution of the orphan GPR50 receptor in adult sheep and rodent brains. J Neuroendocrinol 24:798–808

    CAS  PubMed  Google Scholar 

  • Bateup HS, Svenningsson P, Kuroiwa M, Gong S, Nishi A, Heintz N, Greengard P (2008) Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat Neurosci 11:932–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer NG, Richter-Landsberg C, Ffrench-Constant C (2009) Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 57:1691–1705

    PubMed  Google Scholar 

  • Bechtold DA, Sidibe A, Saer BR, Li J, Hand LE, Ivanova EA, Darras VM, Dam J, Jockers R, Luckman SM, Loudon AS (2012) A role for the melatonin-related receptor GPR50 in leptin signaling, adaptive thermogenesis, and torpor. Curr Biol 22:70–77

    CAS  PubMed  Google Scholar 

  • Bedard A, Tremblay P, Chernomoretz A, Vallieres L (2007) Identification of genes preferentially expressed by microglia and upregulated during cuprizone-induced inflammation. Glia 55:777–789

    PubMed  Google Scholar 

  • Befort K, Filliol D, Ghate A, Darcq E, Matifas A, Muller J, Lardenois A, Thibault C, Dembele D, Le Merrer J, Becker JA, Poch O, Kieffer BL (2008) Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur J Neurosci 27:2973–2984

    CAS  PubMed  Google Scholar 

  • Beluche I, Chaudieu I, Norton J, Carriere I, Boulenger JP, Ritchie K, Ancelin ML (2009) Persistence of abnormal cortisol levels in elderly persons after recovery from major depression. J Psychiatr Res 43:777–783

    PubMed  Google Scholar 

  • Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, Sili M, Moroni F, Mannaioni G (2013) GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS One 8:e82180

    PubMed  PubMed Central  Google Scholar 

  • Besser L, Chorin E, Sekler I, Silverman WF, Atkin S, Russell JT, Hershfinkel M (2009) Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci 29:2890–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Luan J, Challis B, Keogh J, Montague C, Brennand J, Morten J, Lowenbeim S, Jenkins S, Farooqi IS, Wareham NJ, O’Rahilly S (2006) Sequence variants in the melatonin-related receptor gene (GPR50) associate with circulating triglyceride and HDL levels. J Lipid Res 47:761–766

    CAS  PubMed  Google Scholar 

  • Biname F, Sakry D, Dimou L, Jolivel V, Trotter J (2013) NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J Neurosci 33:10858–10874

    CAS  PubMed  Google Scholar 

  • Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838

    CAS  PubMed  Google Scholar 

  • Boccazzi M, Lecca D, Marangon D, Guagnini F, Abbracchio MP, Ceruti S (2016) A new role for the P2Y-like GPR17 receptor in the modulation of multipotency of oligodendrocyte precursor cells in vitro. Purinergic Signal 12:661–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boda E, Vigano F, Rosa P, Fumagalli M, Labat-Gest V, Tempia F, Abbracchio MP, Dimou L, Buffo A (2011) The GPR17 receptor in NG2 expressing cells: focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia 59:1958–1973

    PubMed  Google Scholar 

  • Boehm M, Hepworth D, Loria PM, Norquay LD, Filipski KJ, Chin JE, Cameron KO, Brenner M, Bonnette P, Cabral S, Conn E, Ebner DC, Gautreau D, Hadcock J, Lee EC, Mathiowetz AM, Morin M, Rogers L, Smith A, VanVolkenburg M, Carpino PA (2013) Chemical probe identification platform for orphan GPCRs using focused compound screening: GPR39 as a case example. ACS Med Chem Lett 4:1079–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard C, Page J, Bedard A, Tremblay P, Vallieres L (2007) G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia 55:790–800

    PubMed  Google Scholar 

  • Bouskila J, Javadi P, Casanova C, Ptito M, Bouchard JF (2013) Rod photoreceptors express GPR55 in the adult vervet monkey retina. PLoS One 8:e81080

    PubMed  PubMed Central  Google Scholar 

  • Brandish PE, Su M, Holder DJ, Hodor P, Szumiloski J, Kleinhanz RR, Forbes JE, McWhorter ME, Duenwald SJ, Parrish ML, Na S, Liu Y, Phillips RL, Renger JJ, Sankaranarayanan S, Simon AJ, Scolnick EM (2005) Regulation of gene expression by lithium and depletion of inositol in slices of adult rat cortex. Neuron 45:861–872

    CAS  PubMed  Google Scholar 

  • Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822:1442–1452

    CAS  PubMed  Google Scholar 

  • Brites P, Waterham HR, Wanders RJ (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636:219–231

    CAS  PubMed  Google Scholar 

  • Bura SA, Nadal X, Ledent C, Maldonado R, Valverde O (2008) A 2A adenosine receptor regulates glia proliferation and pain after peripheral nerve injury. Pain 140:95–103

    CAS  PubMed  Google Scholar 

  • Campbell JJ, Butcher EC (2000) Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 12:336–341

    CAS  PubMed  Google Scholar 

  • Carlini VP, Varas MM, Cragnolini AB, Schioth HB, Scimonelli TN, de Barioglio SR (2004) Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem Biophys Res Commun 313:635–641

    CAS  PubMed  Google Scholar 

  • Carmon KS, Gong X, Lin Q, Thomas A, Liu Q (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108:11452–11457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cartier L, Hartley O, Dubois-Dauphin M, Krause KH (2005) Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 48:16–42

    CAS  PubMed  Google Scholar 

  • Caruso V, Hagglund MG, Badiali L, Bagchi S, Roshanbin S, Ahmad T, Schioth HB, Fredriksson R (2014) The G protein-coupled receptor GPR162 is widely distributed in the CNS and highly expressed in the hypothalamus and in hedonic feeding areas. Gene 553:1–6

    CAS  PubMed  Google Scholar 

  • Caruso V, Sreedharan S, Carlini VP, Jacobsson JA, Haitina T, Hammer J, Stephansson O, Crona F, Sommer WH, Riserus U, Lannfelt L, Marcus C, Heilig M, de Barioglio SR, Fredriksson R, Schioth HB (2016) mRNA GPR162 changes are associated with decreased food intake in rat, and its human genetic variants with impairments in glucose homeostasis in two Swedish cohorts. Gene 581:139–145

    CAS  PubMed  Google Scholar 

  • Castane A, Celerier E, Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2006) Development and expression of neuropathic pain in CB1 knockout mice. Neuropharmacology 50:111–122

    CAS  PubMed  Google Scholar 

  • Ceruti S, Villa G, Genovese T, Mazzon E, Longhi R, Rosa P, Bramanti P, Cuzzocrea S, Abbracchio MP (2009) The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain 132:2206–2218

    PubMed  Google Scholar 

  • Chen D, Liu X, Zhang W, Shi Y (2012a) Targeted inactivation of GPR26 leads to hyperphagia and adiposity by activating AMPK in the hypothalamus. PLoS One 7:e40764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Kogan JH, Gross AK, Zhou Y, Walton NM, Shin R, Heusner CL, Miyake S, Tajinda K, Tamura K, Matsumoto M (2012b) SREB2/GPR85, a schizophrenia risk factor, negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent learning and memory. Eur J Neurosci 36:2597–2608

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, Hoang J, Escobar SS, Gow A, Arnett HA, Trapp BD, Karandikar NJ, Hsieh J, Lu QR (2009) The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 12:1398–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherif H, Argaw A, Cecyre B, Bouchard A, Gagnon J, Javadi P, Desgent S, Mackie K, Bouchard JF (2015) Role of GPR55 during axon growth and target innervation. eNeuro 2(5)

  • Chorin E, Vinograd O, Fleidervish I, Gilad D, Herrmann S, Sekler I, Aizenman E, Hershfinkel M (2011) Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci 31:12916–12926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Funakoshi T, Civelli O (2008) Orphan GPCR research. Br J Pharmacol 153(Suppl 1):S339–S346

    CAS  PubMed  Google Scholar 

  • Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbracchio MP (2006) The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 25:4615–4627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cieslak M, Kukulski F, Komoszynski M (2011) Emerging role of extracellular nucleotides and adenosine in multiple sclerosis. Purinergic Signal 7:393–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cikos S, Gregor P, Koppel J (2001) Cloning of a novel biogenic amine receptor-like G protein-coupled receptor expressed in human brain. Biochim Biophys Acta 1521:66–72

    CAS  PubMed  Google Scholar 

  • Collins AG, Frank MJ (2012) How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. Eur J Neurosci 35:1024–1035

    PubMed  PubMed Central  Google Scholar 

  • Combs CK (2009) Inflammation and microglia actions in Alzheimer’s disease. J Neuroimmune Pharmacol 4:380–388

    PubMed  Google Scholar 

  • Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP, Bilbe G, Hoyer D, Bartfai T (2007) Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 12:167–189

    CAS  PubMed  Google Scholar 

  • Cosi C, Mannaioni G, Cozzi A, Carla V, Sili M, Cavone L, Maratea D, Moroni F (2011) G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology 60:1227–1231

    CAS  PubMed  Google Scholar 

  • Crociara P, Parolisi R, Conte D, Fumagalli M, Bonfanti L (2013) Cellular and molecular characterization of multipolar Map5-expressing cells: a subset of newly generated, stage-specific parenchymal cells in the mammalian central nervous system. PLoS One 8:e63258

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    PubMed  Google Scholar 

  • Del Zompo M, Deleuze JF, Chillotti C, Cousin E, Niehaus D, Ebstein RP, Ardau R, Mace S, Warnich L, Mujahed M, Severino G, Dib C, Jordaan E, Murad I, Soubigou S, Koen L, Bannoura I, Rocher C, Laurent C, Derock M, Faucon Biguet N, Mallet J, Meloni R (2014) Association study in three different populations between the GPR88 gene and major psychoses. Mol Genet Genomic Med 2:152–159

    PubMed  Google Scholar 

  • Deliu E, Sperow M, Console-Bram L, Carter RL, Tilley DG, Kalamarides DJ, Kirby LG, Brailoiu GC, Brailoiu E, Benamar K, Abood ME (2015) The lysophosphatidylinositol receptor GPR55 modulates pain perception in the periaqueductal gray. Mol Pharmacol 88:265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Hu H, Fang Y (2012) Multiple tyrosine metabolites are GPR35 agonists. Scientific Reports 2:373

    PubMed  PubMed Central  Google Scholar 

  • Divorty N, Mackenzie AE, Nicklin SA, Milligan G (2015) G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Front Pharmacol 6:41

    PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    CAS  PubMed  Google Scholar 

  • Dong C, Wang S, Li WD, Li D, Zhao H, Price RA (2003) Interacting genetic loci on chromosomes 20 and 10 influence extreme human obesity. Am J Hum Genet 72:115–124

    CAS  PubMed  Google Scholar 

  • Drew JE, Barrett P, Mercer JG, Moar KM, Canet E, Delagrange P, Morgan PJ (2001) Localization of the melatonin-related receptor in the rodent brain and peripheral tissues. J Neuroendocrinol 13:453–458

    CAS  PubMed  Google Scholar 

  • Duan J, Martinez M, Sanders AR, Hou C, Saitou N, Kitano T, Mowry BJ, Crowe RR, Silverman JM, Levinson DF, Gejman PV (2004) Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am J Hum Genet 75:624–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubins JS, Sanchez-Alavez M, Zhukov V, Sanchez-Gonzalez A, Moroncini G, Carvajal-Gonzalez S, Hadcock JR, Bartfai T, Conti B (2012) Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin. Metab Clin Exp 61:1486–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eberwine J, Bartfai T (2011) Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol Ther 129:241–259

    CAS  PubMed  Google Scholar 

  • Eggerickx D, Denef JF, Labbe O, Hayashi Y, Refetoff S, Vassart G, Parmentier M, Libert F (1995) Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. Biochem J 309(Pt 3):837–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehninger D, Kempermann G (2008) Neurogenesis in the adult hippocampus. Cell Tissue Res 331:243–250

    PubMed  Google Scholar 

  • Eichenbaum H, Fortin NJ (2009) The neurobiology of memory based predictions. Philos Trans R Soc Lond Ser B Biol Sci 364:1183–1191

    Google Scholar 

  • Ena S, de Kerchove d’Exaerde A, Schiffmann SN (2011) Unraveling the differential functions and regulation of striatal neuron sub-populations in motor control, reward, and motivational processes. Front Behav Neurosci 5:47

    PubMed  PubMed Central  Google Scholar 

  • Fallarini S, Magliulo L, Paoletti T, de Lalla C, Lombardi G (2010) Expression of functional GPR35 in human iNKT cells. Biochem Biophys Res Commun 398:420–425

    CAS  PubMed  Google Scholar 

  • Fang Y, Kenakin T, Liu C (2015) Editorial: Orphan GPCRs as emerging drug targets. Front Pharmacol 6:295

    PubMed  PubMed Central  Google Scholar 

  • Fanous AH, Neale MC, Webb BT, Straub RE, Amdur RL, O’Neill FA, Walsh D, Riley BP, Kendler KS (2007) A genome-wide scan for modifier loci in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 144b:589–595

    CAS  PubMed  Google Scholar 

  • Felder CC, Briley EM, Axelrod J, Simpson JT, Mackie K, Devane WA (1993) Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc Natl Acad Sci U S A 90:7656–7660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–288

    CAS  PubMed  Google Scholar 

  • Franke H, Parravicini C, Lecca D, Zanier ER, Heine C, Bremicker K, Fumagalli M, Rosa P, Longhi L, Stocchetti N, De Simoni MG, Weber M, Abbracchio MP (2013) Changes of the GPR17 receptor, a new target for neurorepair, in neurons and glial cells in patients with traumatic brain injury. Purinergic Signal 9:451–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    CAS  PubMed  Google Scholar 

  • Frick KK, Krieger NS, Nehrke K, Bushinsky DA (2009) Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J Bone Miner Res 24:305–313

    CAS  PubMed  Google Scholar 

  • Fujita-Jimbo E, Tanabe Y, Yu Z, Kojima K, Mori M, Li H, Iwamoto S, Yamagata T, Momoi MY, Momoi T (2015) The association of GPR85 with PSD-95-neuroligin complex and autism spectrum disorder: a molecular analysis. Mol Autism 6:17

    PubMed  PubMed Central  Google Scholar 

  • Fumagalli M, Daniele S, Lecca D, Lee PR, Parravicini C, Fields RD, Rosa P, Antonucci F, Verderio C, Trincavelli ML, Bramanti P, Martini C, Abbracchio MP (2011) Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. J Biol Chem 286:10593–10604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli M, Lecca D, Abbracchio MP (2016) CNS remyelination as a novel reparative approach to neurodegenerative diseases: the roles of purinergic signaling and the P2Y-like receptor GPR17. Neuropharmacology 104:82–93

    CAS  PubMed  Google Scholar 

  • Gamo K, Kiryu-Seo S, Konishi H, Aoki S, Matsushima K, Wada K, Kiyama H (2008) G-protein-coupled receptor screen reveals a role for chemokine receptor CCR5 in suppressing microglial neurotoxicity. J Neurosci 28:11980–11988

    CAS  PubMed  Google Scholar 

  • Geuze E, Vermetten E, Bremner JD (2005) MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry 10:160–184

    CAS  PubMed  Google Scholar 

  • Ghate A, Befort K, Becker JA, Filliol D, Bole-Feysot C, Demebele D, Jost B, Koch M, Kieffer BL (2007) Identification of novel striatal genes by expression profiling in adult mouse brain. Neuroscience 146:1182–1192

    CAS  PubMed  Google Scholar 

  • Gilad D, Shorer S, Ketzef M, Friedman A, Sekler I, Aizenman E, Hershfinkel M (2015) Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol Dis 81:4–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gloriam DE, Schioth HB, Fredriksson R (2005) Nine new human rhodopsin family G-protein coupled receptors: identification, sequence characterisation and evolutionary relationship. Biochim Biophys Acta 1722:235–246

    CAS  PubMed  Google Scholar 

  • Gomes I, Aryal DK, Wardman JH, Gupta A, Gagnidze K, Rodriguiz RM, Kumar S, Wetsel WC, Pintar JE, Fricker LD, Devi LA (2013) GPR171 is a hypothalamic G protein-coupled receptor for BigLEN, a neuropeptide involved in feeding. Proc Natl Acad Sci U S A 110:16211–16216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes I, Bobeck EN, Margolis EB, Gupta A, Sierra S, Fakira AK, Fujita W, Muller TD, Muller A, Tschop MH, Kleinau G, Fricker LD, Devi LA (2016) Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Sci Signal 9:ra43

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez NS, Communi D, Hannedouche S, Boeynaems JM (2004) The fate of P2Y-related orphan receptors: GPR80/99 and GPR91 are receptors of dicarboxylic acids. Purinergic Signal 1:17–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, Aguzzi A, Staufenbiel M, Mathews PM, Wolburg H, Heppner FL, Jucker M (2009) Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin JD, Saper CB, Boulant JA (2001) Synaptic and morphological characteristics of temperature-sensitive and -insensitive rat hypothalamic neurones. J Physiol 537:521–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grunewald E, Tew KD, Porteous DJ, Thomson PA (2012) Developmental expression of orphan G protein-coupled receptor 50 in the mouse brain. ACS Chem Neurosci 3:459–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan X, Duan Y, Zeng Q, Pan H, Qian Y, Li D, Cao X, Liu M (2014) Lgr4 protein deficiency induces ataxia-like phenotype in mice and impairs long term depression at cerebellar parallel fiber-Purkinje cell synapses. J Biol Chem 289:26492–26504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guy AT, Nagatsuka Y, Ooashi N, Inoue M, Nakata A, Greimel P, Inoue A, Nabetani T, Murayama A, Ohta K, Ito Y, Aoki J, Hirabayashi Y, Kamiguchi H (2015) Neuronal development. Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord. Science 349:974–977

    CAS  PubMed  Google Scholar 

  • Hardie DG (2007) AMPK and SNF1: snuffing out stress. Cell Metab 6:339–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrigan MT, Baughman G, Campbell NF, Bourgeois S (1989) Isolation and characterization of glucocorticoid- and cyclic AMP-induced genes in T lymphocytes. Mol Cell Biol 9:3438–3446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrigan MT, Campbell NF, Bourgeois S (1991) Identification of a gene induced by glucocorticoids in murine T-cells: a potential G protein-coupled receptor. Mol Endocrinol 5:1331–1338

    CAS  PubMed  Google Scholar 

  • Hellebrand S, Schaller HC, Wittenberger T (2000) The brain-specific G-protein coupled receptor GPR85 with identical protein sequence in man and mouse maps to human chromosome 7q31. Biochim Biophys Acta 1493:269–272

    CAS  PubMed  Google Scholar 

  • Henstridge CM, Balenga NA, Ford LA, Ross RA, Waldhoer M, Irving AJ (2009) The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 23:183–193

    CAS  PubMed  Google Scholar 

  • Henstridge CM, Balenga NA, Kargl J, Andradas C, Brown AJ, Irving A, Sanchez C, Waldhoer M (2011) Minireview: Recent developments in the physiology and pathology of the lysophosphatidylinositol-sensitive receptor GPR55. Mol Endocrinol 25:1835–1848

    CAS  PubMed  Google Scholar 

  • Henstridge CM, Balenga NA, Schroder R, Kargl JK, Platzer W, Martini L, Arthur S, Penman J, Whistler JL, Kostenis E, Waldhoer M, Irving AJ (2010) GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 160:604–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    CAS  PubMed  Google Scholar 

  • Holst B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach LO, Storjohann L, Stidsen CE, Jones R, Beck-Sickinger AG, Schwartz TW (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148:13–20

    CAS  PubMed  Google Scholar 

  • Horiguchi K, Higuchi M, Yoshida S, Nakakura T, Tateno K, Hasegawa R, Takigami S, Ohsako S, Kato T, Kato Y (2014) Proton receptor GPR68 expression in dendritic-cell-like S100beta-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification. Cell Tissue Res 358:515–525

    CAS  PubMed  Google Scholar 

  • Hossain MS, Ifuku M, Take S, Kawamura J, Miake K, Katafuchi T (2013) Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PLoS One 8:e83508

    PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Mineno K, Katafuchi T (2016) Neuronal orphan G-protein coupled receptor proteins mediate plasmalogens-induced activation of ERK and Akt signaling. PLoS One 11:e0150846

    PubMed  PubMed Central  Google Scholar 

  • Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101:16659–16664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Deng H, Fang Y (2016) Label-free cell phenotypic identification of D-Luciferin as an agonist for GPR35. Methods Mol Biol 1461:3–17

    PubMed  Google Scholar 

  • Huang XP, Karpiak J, Kroeze WK, Zhu H, Chen X, Moy SS, Saddoris KA, Nikolova VD, Farrell MS, Wang S, Mangano TJ, Deshpande DA, Jiang A, Penn RB, Jin J, Koller BH, Kenakin T, Shoichet BK, Roth BL (2015a) Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 527:477–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Skwarek-Maruszewska A, Horre K, Vandewyer E, Wolfs L, Snellinx A, Saito T, Radaelli E, Corthout N, Colombelli J, Lo AC, Van Aerschot L, Callaerts-Vegh Z, Trabzuni D, Bossers K, Verhaagen J, Ryten M, Munck S, D’Hooge R, Swaab DF, Hardy J, Saido TC, De Strooper B, Thathiah A (2015b) Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer’s disease mouse models. Sci Transl Med 7:309ra164

    PubMed  Google Scholar 

  • Ifuku M, Katafuchi T, Mawatari S, Noda M, Miake K, Sugiyama M, Fujino T (2012) Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. J Neuroinflammation 9:197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatov A, Lintzel J, Hermans-Borgmeyer I, Kreienkamp HJ, Joost P, Thomsen S, Methner A, Schaller HC (2003) Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development. J Neurosci 23:907–914

    CAS  PubMed  Google Scholar 

  • Ignatov A, Robert J, Gregory-Evans C, Schaller HC (2006) RANTES stimulates Ca2+ mobilization and inositol trisphosphate (IP3) formation in cells transfected with G protein-coupled receptor 75. Br J Pharmacol 149:490–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingallinesi M, Le Bouil L, Biguet NF, Thi AD, Mannoury la Cour C, Millan MJ, Ravassard P, Mallet J, Meloni R (2015) Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats. Mol Psychiatry 20:951–958

    CAS  PubMed  Google Scholar 

  • Ivanova EA, Bechtold DA, Dupre SM, Brennand J, Barrett P, Luckman SM, Loudon AS (2008) Altered metabolism in the melatonin-related receptor (GPR50) knockout mouse. Am J Phys Endocrinol Metab 294:E176–E182

    CAS  Google Scholar 

  • Jackson VR, Nothacker HP, Civelli O (2006) GPR39 receptor expression in the mouse brain. Neuroreport 17:813–816

    CAS  PubMed  Google Scholar 

  • Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40:1291–1299

    CAS  PubMed  Google Scholar 

  • Jin C, Decker AM, Huang XP, Gilmour BP, Blough BE, Roth BL, Hu Y, Gill JB, Zhang XP (2014) Synthesis, pharmacological characterization, and structure-activity relationship studies of small molecular agonists for the orphan GPR88 receptor. ACS Chem Neurosci 5:576–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin C, Decker AM, Langston TL (2017) Design, synthesis and pharmacological evaluation of 4-hydroxyphenylglycine and 4-hydroxyphenylglycinol derivatives as GPR88 agonists. Bioorg Med Chem 25:805–812

    CAS  PubMed  Google Scholar 

  • Jones PG, Nawoschik SP, Sreekumar K, Uveges AJ, Tseng E, Zhang L, Johnson J, He L, Paulsen JE, Bates B, Pausch MH (2007) Tissue distribution and functional analyses of the constitutively active orphan G protein coupled receptors, GPR26 and GPR78. Biochim Biophys Acta 1770:890–901

    CAS  PubMed  Google Scholar 

  • Joost P, Methner A (2002) Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol 3:Research0063

    PubMed  PubMed Central  Google Scholar 

  • Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    CAS  PubMed  Google Scholar 

  • Kallendrusch S, Kremzow S, Nowicki M, Grabiec U, Winkelmann R, Benz A, Kraft R, Bechmann I, Dehghani F, Koch M (2013) The G protein-coupled receptor 55 ligand l-alpha-lysophosphatidylinositol exerts microglia-dependent neuroprotection after excitotoxic lesion. Glia 61:1822–1831

    PubMed  Google Scholar 

  • Kempermann G, Krebs J, Fabel K (2008) The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 21:290–295

    PubMed  Google Scholar 

  • Khan M, He L, Zhuang X (2016a) The emerging role of GPR50 receptor in brain. Biomed Pharmacother 78:121–128

    CAS  PubMed  Google Scholar 

  • Khan MZ, He L (2017) The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 113:639–651

    CAS  PubMed  Google Scholar 

  • Khan MZ, Nawaz W (2016) The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomed Pharmacother 83:439–449

    CAS  PubMed  Google Scholar 

  • Khan MZ, Zhuang X, He L (2016b) GPR40 receptor activation leads to CREB phosphorylation and improves cognitive performance in an Alzheimer’s disease mouse model. Neurobiol Learn Mem 131:46–55

    CAS  PubMed  Google Scholar 

  • Kobilka BK, MacGregor C, Daniel K, Kobilka TS, Caron MG, Lefkowitz RJ (1987) Functional activity and regulation of human beta 2-adrenergic receptors expressed in Xenopus oocytes. J Biol Chem 262:15796–15802

    CAS  PubMed  Google Scholar 

  • Kola B (2008) Role of AMP-activated protein kinase in the control of appetite. J Neuroendocrinol 20:942–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komarova SV, Pereverzev A, Shum JW, Sims SM, Dixon SJ (2005) Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc Natl Acad Sci U S A 102:2643–2648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu H (2015) Novel therapeutic GPCRs for psychiatric disorders. Int J Mol Sci 16:14109–14121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu H, Maruyama M, Yao S, Shinohara T, Sakuma K, Imaichi S, Chikatsu T, Kuniyeda K, Siu FK, Peng LS, Zhuo K, Mun LS, Han TM, Matsumoto Y, Hashimoto T, Miyajima N, Itoh Y, Ogi K, Habata Y, Mori M (2014) Anatomical transcriptome of G protein-coupled receptors leads to the identification of a novel therapeutic candidate GPR52 for psychiatric disorders. PLoS One 9:e90134

    PubMed  PubMed Central  Google Scholar 

  • Koza RA, Nikonova L, Hogan J, Rim JS, Mendoza T, Faulk C, Skaf J, Kozak LP (2006) Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet 2:e81

    PubMed  PubMed Central  Google Scholar 

  • Vollmer EL, Ghosal S, Rush AJ, Sallee RF, Herman PJ, Weinert M, Sah R (2013) Attenuated stress-evoked anxiety, increased sucrose preference and delayed spatial learning in glucocorticoid-induced receptor-deficient mice. Genes Brain Behav 12:241–249

    CAS  Google Scholar 

  • Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105:2699–2704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauwers E, Landuyt B, Arckens L, Schoofs L, Luyten W (2006) Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochem Biophys Res Commun 351:21–25

    CAS  PubMed  Google Scholar 

  • Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI Jr, Faraone SV, Tsuang MT, Niculescu AB (2007a) Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 144b:129–158

    CAS  PubMed  Google Scholar 

  • Le-Niculescu H, McFarland MJ, Mamidipalli S, Ogden CA, Kuczenski R, Kurian SM, Salomon DR, Tsuang MT, Nurnberger JI Jr, Niculescu AB (2007b) Convergent functional genomics of bipolar disorder: from animal model pharmacogenomics to human genetics and biomarkers. Neurosci Biobehav Rev 31:897–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G, Verderio C, Grumelli C, Guerrini U, Tremoli E, Rosa P, Cuboni S, Martini C, Buffo A, Cimino M, Abbracchio MP (2008) The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 3:e3579

    PubMed  PubMed Central  Google Scholar 

  • Lee DK, George SR, Cheng R, Nguyen T, Liu Y, Brown M, Lynch KR, O’Dowd BF (2001a) Identification of four novel human G protein-coupled receptors expressed in the brain. Brain Res Mol Brain Res 86:13–22

    CAS  PubMed  Google Scholar 

  • Lee DK, Lynch KR, Nguyen T, Im DS, Cheng R, Saldivia VR, Liu Y, Liu IS, Heng HH, Seeman P, George SR, O’Dowd BF, Marchese A (2000) Cloning and characterization of additional members of the G protein-coupled receptor family. Biochim Biophys Acta 1490:311–323

    CAS  PubMed  Google Scholar 

  • Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O’Dowd BF (2001b) Discovery and mapping of ten novel G protein-coupled receptor genes. Gene 275:83–91

    CAS  PubMed  Google Scholar 

  • Leung L, Cahill CM (2010) TNF-alpha and neuropathic pain—a review. J Neuroinflammation 7:27

    PubMed  PubMed Central  Google Scholar 

  • Li DY, Smith DG, Hardeland R, Yang MY, Xu HL, Zhang L, Yin HD, Zhu Q (2013a) Melatonin receptor genes in vertebrates. Int J Mol Sci 14:11208–11223

    PubMed  PubMed Central  Google Scholar 

  • Li J, Guo B, Wang J, Cheng X, Xu Y, Sang J (2013b) Ovarian cancer G protein coupled receptor 1 suppresses cell migration of MCF7 breast cancer cells via a Galpha12/13-Rho-Rac1 pathway. J Mol Signal 8:6

    PubMed  PubMed Central  Google Scholar 

  • Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, Sun C, Liu X, Jefferson LS, Xiong J, Lanoue KF, Chang Z, Lynch CJ, Wang H, Shi Y (2010) Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab 12:154–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin ZJ, Lu XM, Zhu TJ, Fang YC, Gu QQ, Zhu W (2008) GPR12 selections of the metabolites from an endophytic Streptomyces sp. associated with Cistanches deserticola. Arch Pharm Res 31:1108–1114

    CAS  PubMed  Google Scholar 

  • Lindsley CW (2013) The top prescription drugs of 2012 globally: biologics dominate, but small molecule CNS drugs hold on to top spots. ACS Chem Neurosci 4:905–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsley CW, Shipe WD, Wolkenberg SE, Theberge CR, Williams DL Jr, Sur C, Kinney GG (2006) Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr Top Med Chem 6:771–785

    CAS  PubMed  Google Scholar 

  • Liu C, Shi J, Badner JA, Zou H, Qian Y, Gershon ES (2007) No association of trace amine receptor genes with bipolar disorder. Mol Psychiatry 12:979–981

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhang Q, Chen LH, Yang H, Lu W, Xie X, Nan FJ (2016) Design and synthesis of 2-alkylpyrimidine-4,6-diol and 6-alkylpyridine-2,4-diol as potent GPR84 agonists. ACS Med Chem Lett 7:579–583

    CAS  PubMed  Google Scholar 

  • Lobo MK, Cui Y, Ostlund SB, Balleine BW, Yang XW (2007) Genetic control of instrumental conditioning by striatopallidal neuron-specific S1P receptor Gpr6. Nat Neurosci 10:1395–1397

    CAS  PubMed  Google Scholar 

  • Logue SF, Grauer SM, Paulsen J, Graf R, Taylor N, Sung MA, Zhang L, Hughes Z, Pulito VL, Liu F, Rosenzweig-Lipson S, Brandon NJ, Marquis KL, Bates B, Pausch M (2009) The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders? Mol Cell Neurosci 42:438–447

    CAS  PubMed  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    CAS  PubMed  Google Scholar 

  • Lu X, Zhang N, Dong S, Hu Y (2012) Involvement of GPR12 in the induction of neurite outgrowth in PC12 cells. Brain Res Bull 87:30–36

    CAS  PubMed  Google Scholar 

  • Lucassen PJ, Heine VM, Muller MB, van der Beek EM, Wiegant VM, De Kloet ER, Joels M, Fuchs E, Swaab DF, Czeh B (2006) Stress, depression and hippocampal apoptosis. CNS Neurol Disord Drug Targets 5:531–546

    PubMed  Google Scholar 

  • Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93–98

    CAS  PubMed  Google Scholar 

  • Luo J, Zhou W, Zhou X, Li D, Weng J, Yi Z, Cho SG, Li C, Yi T, Wu X, Li XY, de Crombrugghe B, Hook M, Liu M (2009) Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development 136:2747–2756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma YX, Wu ZQ, Feng YJ, Xiao ZC, Qin XL, Ma QH (2015) G protein coupled receptor 50 promotes self-renewal and neuronal differentiation of embryonic neural progenitor cells through regulation of notch and wnt/beta-catenin signalings. Biochem Biophys Res Commun 458:836–842

    CAS  PubMed  Google Scholar 

  • Macintyre DJ, McGhee KA, Maclean AW, Afzal M, Briffa K, Henry B, Thomson PA, Muir WJ, Blackwood DH (2010) Association of GPR50, an X-linked orphan G protein-coupled receptor, and affective disorder in an independent sample of the Scottish population. Neurosci Lett 475:169–173

    CAS  PubMed  Google Scholar 

  • Mackenzie AE, Lappin JE, Taylor DL, Nicklin SA, Milligan G (2011) GPR35 as a novel therapeutic target. Front Endocrinol 2:68

    CAS  Google Scholar 

  • Mackenzie AE, Milligan G (2017) The emerging pharmacology and function of GPR35 in the nervous system. Neuropharmacology 113:661–671

    CAS  PubMed  Google Scholar 

  • Manto M, Marmolino D (2009) Cerebellar ataxias. Curr Opin Neurol 22:419–429

    PubMed  Google Scholar 

  • Mao XG, Song SJ, Xue XY, Yan M, Wang L, Lin W, Guo G, Zhang X (2013) LGR5 is a proneural factor and is regulated by OLIG2 in glioma stem-like cells. Cell Mol Neurobiol 33:851–865

    CAS  PubMed  Google Scholar 

  • Maravillas-Montero JL, Burkhardt AM, Hevezi PA, Carnevale CD, Smit MJ, Zlotnik A (2015) Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17. J Immunol 194:29–33

    CAS  PubMed  Google Scholar 

  • Massart R, Mignon V, Stanic J, Munoz-Tello P, Becker JA, Kieffer BL, Darmon M, Sokoloff P, Diaz J (2016) Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: establishment of a dual nuclear-cytoplasmic localization. J Comp Neurol 524:2776–2802

    CAS  PubMed  Google Scholar 

  • Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329:836–838

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Beltaifa S, Weickert CS, Herman MM, Hyde TM, Saunders RC, Lipska BK, Weinberger DR, Kleinman JE (2005) A conserved mRNA expression profile of SREB2 (GPR85) in adult human, monkey, and rat forebrain. Brain Res Mol Brain Res 138:58–69

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Straub RE, Marenco S, Nicodemus KK, Matsumoto S, Fujikawa A, Miyoshi S, Shobo M, Takahashi S, Yarimizu J, Yuri M, Hiramoto M, Morita S, Yokota H, Sasayama T, Terai K, Yoshino M, Miyake A, Callicott JH, Egan MF, Meyer-Lindenberg A, Kempf L, Honea R, Vakkalanka RK, Takasaki J, Kamohara M, Soga T, Hiyama H, Ishii H, Matsuo A, Nishimura S, Matsuoka N, Kobori M, Matsushime H, Katoh M, Furuichi K, Weinberger DR (2008) The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia. Proc Natl Acad Sci U S A 105:6133–6138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12:1007–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKee KK, Tan CP, Palyha OC, Liu J, Feighner SD, Hreniuk DL, Smith RG, Howard AD, Van der Ploeg LH (1997) Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics 46:426–434

    CAS  PubMed  Google Scholar 

  • Meirsman AC, Le Merrer J, Pellissier LP, Diaz J, Clesse D, Kieffer BL, Becker JA (2016a) Mice lacking GPR88 show motor deficit, improved spatial learning, and low anxiety reversed by delta opioid antagonist. Biol Psychiatry 79:917–927

    CAS  PubMed  Google Scholar 

  • Meirsman AC, Robe A, de Kerchove d’Exaerde A (2016b) GPR88 in A2AR neurons enhances anxiety-like behaviors. eNeuro 3(4)

  • Mennicken F, Maki R, de Souza EB, Quirion R (1999) Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci 20:73–78

    CAS  PubMed  Google Scholar 

  • Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP, Quinn M, Bruck W, Bechmann I, Heneka MT, Priller J, Prinz M (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 31:11159–11171

    CAS  PubMed  Google Scholar 

  • Milligan G (2011) Orthologue selectivity and ligand bias: translating the pharmacology of GPR35. Trends Pharmacol Sci 32:317–325

    CAS  PubMed  Google Scholar 

  • Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47

    CAS  PubMed  Google Scholar 

  • Miyagi T, Tanaka S, Hide I, Shirafuji T, Sakai N (2016) The subcellular dynamics of the Gs-linked receptor GPR3 contribute to the local activation of PKA in cerebellar granular neurons. PLoS One 11:e0147466

    PubMed  PubMed Central  Google Scholar 

  • Mizushima K, Miyamoto Y, Tsukahara F, Hirai M, Sakaki Y, Ito T (2000) A novel G-protein-coupled receptor gene expressed in striatum. Genomics 69:314–321

    CAS  PubMed  Google Scholar 

  • Mlyniec K, Budziszewska B, Holst B, Ostachowicz B, Nowak G (2014a) GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus. Int J Neuropsychopharmacol 18(3)

  • Mlyniec K, Budziszewska B, Reczynski W, Sowa-Kucma M, Nowak G (2013) The role of the GPR39 receptor in zinc deficient-animal model of depression. Behav Brain Res 238:30–35

    CAS  PubMed  Google Scholar 

  • Mlyniec K, Doboszewska U, Szewczyk B, Sowa-Kucma M, Misztak P, Piekoszewski W, Trela F, Ostachowicz B, Nowak G (2014b) The involvement of the GPR39-Zn(2+)-sensing receptor in the pathophysiology of depression. Studies in rodent models and suicide victims. Neuropharmacology 79:290–297

    CAS  PubMed  Google Scholar 

  • Mlyniec K, Gawel M, Librowski T, Reczynski W, Bystrowska B, Holst B (2015a) Investigation of the GPR39 zinc receptor following inhibition of monoaminergic neurotransmission and potentialization of glutamatergic neurotransmission. Brain Res Bull 115:23–29

    CAS  PubMed  Google Scholar 

  • Mlyniec K, Gawel M, Nowak G (2015b) Study of antidepressant drugs in GPR39 (zinc receptor(−)/(−)) knockout mice, showing no effect of conventional antidepressants, but effectiveness of NMDA antagonists. Behav Brain Res 287:135–138

    CAS  PubMed  Google Scholar 

  • Mlyniec K, Singewald N, Holst B, Nowak G (2015c) GPR39 Zn(2+)-sensing receptor: a new target in antidepressant development? J Affect Disord 174:89–100

    CAS  PubMed  Google Scholar 

  • Mlyniec K, Starowicz G, Gawel M, Frackiewicz E, Nowak G (2016) Potential antidepressant-like properties of the TC G-1008, a GPR39 (zinc receptor) agonist. J Affect Disord 201:179–184

    CAS  PubMed  Google Scholar 

  • Moechars D, Depoortere I, Moreaux B, de Smet B, Goris I, Hoskens L, Daneels G, Kass S, Ver Donck L, Peeters T, Coulie B (2006) Altered gastrointestinal and metabolic function in the GPR39-obestatin receptor-knockout mouse. Gastroenterology 131:1131–1141

    CAS  PubMed  Google Scholar 

  • Mogi C, Tomura H, Tobo M, Wang JQ, Damirin A, Kon J, Komachi M, Hashimoto K, Sato K, Okajima F (2005) Sphingosylphosphorylcholine antagonizes proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1)-mediated inositol phosphate production and cAMP accumulation. J Pharmacol Sci 99:160–167

    CAS  PubMed  Google Scholar 

  • Mohebbi N, Benabbas C, Vidal S, Daryadel A, Bourgeois S, Velic A, Ludwig MG, Seuwen K, Wagner CA (2012) The proton-activated G protein coupled receptor OGR1 acutely regulates the activity of epithelial proton transport proteins. Cell Physiol Biochem 29:313–324

    CAS  PubMed  Google Scholar 

  • Mori F, Tanji K, Miki Y, Toyoshima Y, Yoshida M, Kakita A, Takahashi H, Utsumi J, Sasaki H, Wakabayashi K (2016) G protein-coupled receptor 26 immunoreactivity in intranuclear inclusions associated with polyglutamine and intranuclear inclusion body diseases. Neuropathology 36:50–55

    CAS  PubMed  Google Scholar 

  • Muller A, Kleinau G, Piechowski CL, Muller TD, Finan B, Pratzka J, Gruters A, Krude H, Tschop M, Biebermann H (2013) G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc(II)-induced activity. PLoS One 8:e53347

    PubMed  PubMed Central  Google Scholar 

  • Naert G, Rivest S (2011) CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31:6208–6220

    CAS  PubMed  Google Scholar 

  • Nakatani H, Martin E, Hassani H, Clavairoly A, Maire CL, Viadieu A, Kerninon C, Delmasure A, Frah M, Weber M, Nakafuku M, Zalc B, Thomas JL, Guillemot F, Nait-Oumesmar B, Parras C (2013) Ascl1/Mash1 promotes brain oligodendrogenesis during myelination and remyelination. J Neurosci 33:9752–9768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nambu H, Fukushima M, Hikichi H, Inoue T, Nagano N, Tahara Y, Nambu T, Ito J, Ogawa Y, Ozaki S, Ohta H (2011) Characterization of metabolic phenotypes of mice lacking GPR61, an orphan G-protein coupled receptor. Life Sci 89:765–772

    CAS  PubMed  Google Scholar 

  • Nicol LS, Dawes JM, La Russa F, Didangelos A, Clark AK (2015) The role of G-protein receptor 84 in experimental neuropathic pain. J Neurosci 35:8959–8969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niedernberg A, Tunaru S, Blaukat A, Ardati A, Kostenis E (2003) Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cell Signal 15:435–446

    CAS  PubMed  Google Scholar 

  • Obara Y, Ueno S, Yanagihata Y, Nakahata N (2011) Lysophosphatidylinositol causes neurite retraction via GPR55, G13 and RhoA in PC12 cells. PLoS One 6:e24284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oeckl P, Hengerer B, Ferger B (2014) G-protein coupled receptor 6 deficiency alters striatal dopamine and cAMP concentrations and reduces dyskinesia in a mouse model of Parkinson’s disease. Exp Neurol 257:1–9

    CAS  PubMed  Google Scholar 

  • Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB, Kuczenski R, Niculescu AB (2004) Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 9:1007–1029

    CAS  PubMed  Google Scholar 

  • Ohshiro H, Tonai-Kachi H, Ichikawa K (2008) GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochem Biophys Res Commun 365:344–348

    CAS  PubMed  Google Scholar 

  • Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362:928–934

    CAS  PubMed  Google Scholar 

  • Oka S, Ota R, Shima M, Yamashita A, Sugiura T (2010) GPR35 is a novel lysophosphatidic acid receptor. Biochem Biophys Res Commun 395:232–237

    CAS  PubMed  Google Scholar 

  • Oka S, Toshida T, Maruyama K, Nakajima K, Yamashita A, Sugiura T (2009) 2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. J Biochem 145:13–20

    CAS  PubMed  Google Scholar 

  • Pae CU, Drago A, Kim JJ, Patkar AA, Jun TY, De Ronchi D, Serretti A (2010) TAAR6 variations possibly associated with antidepressant response and suicidal behavior. Psychiatry Res 180:20–24

    CAS  PubMed  Google Scholar 

  • Pae CU, Yu HS, Amann D, Kim JJ, Lee CU, Lee SJ, Jun TY, Lee C, Paik IH, Patkar AA, Lerer B (2008) Association of the trace amine associated receptor 6 (TAAR6) gene with schizophrenia and bipolar disorder in a Korean case control sample. J Psychiatr Res 42:35–40

    PubMed  Google Scholar 

  • Pietr M, Kozela E, Levy R, Rimmerman N, Lin YH, Stella N, Vogel Z, Juknat A (2009) Differential changes in GPR55 during microglial cell activation. FEBS Lett 583:2071–2076

    CAS  PubMed  Google Scholar 

  • Quintana A, Sanz E, Wang W, Storey GP, Guler AD, Wanat MJ, Roller BA, La Torre A, Amieux PS, McKnight GS, Bamford NS, Palmiter RD (2012) Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat Neurosci 15:1547–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590

    CAS  PubMed  Google Scholar 

  • Regard JB, Sato IT, Coughlin SR (2008) Anatomical profiling of G protein-coupled receptor expression. Cell 135:561–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehncrona S (1985) Brain acidosis. Ann Emerg Med 14:770–776

    CAS  PubMed  Google Scholar 

  • Reppert SM, Perlow MJ, Ungerleider LG, Mishkin M, Tamarkin L, Orloff DG, Hoffman HJ, Klein DC (1981) Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. J Neurosci 1:1414–1425

    CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR, Ebisawa T, Mahle CD, Kolakowski LF Jr (1996) Cloning of a melatonin-related receptor from human pituitary. FEBS Lett 386:219–224

    CAS  PubMed  Google Scholar 

  • Resta F, Masi A, Sili M, Laurino A, Moroni F, Mannaioni G (2016) Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation. Neuropharmacology 108:136–143

    CAS  PubMed  Google Scholar 

  • Rishton GM (2008) Small molecules that promote neurogenesis in vitro. Recent Pat CNS Drug Discov 3:200–208

    CAS  PubMed  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    CAS  PubMed  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul, Integr Comp Physiol 287:R502–R516

    CAS  Google Scholar 

  • Rossi L, Lemoli RM, Goodell MA (2013) Gpr171, a putative P2Y-like receptor, negatively regulates myeloid differentiation in murine hematopoietic progenitors. Exp Hematol 41:102–112

    CAS  PubMed  Google Scholar 

  • Roth BL, Kroeze WK (2015) Integrated approaches for genome-wide interrogation of the druggable non-olfactory G protein-coupled receptor superfamily. J Biol Chem 290:19471–19477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Medina J, Ledent C, Valverde O (2011) GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception. Neuropharmacology 61:43–50

    CAS  PubMed  Google Scholar 

  • Russell JL, Goetsch SC, Aguilar HR, Coe H, Luo X, Liu N, van Rooij E, Frantz DE, Schneider JW (2012) Regulated expression of pH sensing G protein-coupled receptor-68 identified through chemical biology defines a new drug target for ischemic heart disease. ACS Chem Biol 7:1077–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan J, Carriere I, Ritchie K, Ancelin ML (2015) Involvement of GPR50 polymorphisms in depression: independent replication in a prospective elderly cohort. Brain Behav 5:e00313

    PubMed  PubMed Central  Google Scholar 

  • Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saadi RA, He K, Hartnett KA, Kandler K, Hershfinkel M, Aizenman E (2012) SNARE-dependent upregulation of potassium chloride co-transporter 2 activity after metabotropic zinc receptor activation in rat cortical neurons in vitro. Neuroscience 210:38–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saeki Y, Ueno S, Mizuno R, Nishimura T, Fujimura H, Nagai Y, Yanagihara T (1993) Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system. FEBS Lett 336:317–322

    CAS  PubMed  Google Scholar 

  • Sagud M, Mihaljevic-Peles A, Pivac N, Jakovljevic M, Muck-Seler D (2009) Lipid levels in female patients with affective disorders. Psychiatry Res 168:218–221

    CAS  PubMed  Google Scholar 

  • Sah R, Pritchard LM, Richtand NM, Ahlbrand R, Eaton K, Sallee FR, Herman JP (2005) Expression of the glucocorticoid-induced receptor mRNA in rat brain. Neuroscience 133:281–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Alavez M, Osborn O, Tabarean IV, Holmberg KH, Eberwine J, Kahn CR, Bartfai T (2011) Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J Biol Chem 286:14983–14990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Alavez M, Tabarean IV, Osborn O, Mitsukawa K, Schaefer J, Dubins J, Holmberg KH, Klein I, Klaus J, Gomez LF, Kolb H, Secrest J, Jochems J, Myashiro K, Buckley P, Hadcock JR, Eberwine J, Conti B, Bartfai T (2010) Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons. Diabetes 59:43–50

    CAS  PubMed  Google Scholar 

  • Sapunar D, Kostic S, Banozic A, Puljak L (2012) Dorsal root ganglion—a potential new therapeutic target for neuropathic pain. J Pain Res 5:31–38

    PubMed  PubMed Central  Google Scholar 

  • Satoh J, Obayashi S, Tabunoki H, Wakana T, Kim SU (2010) Stable expression of neurogenin 1 induces LGR5, a novel stem cell marker, in an immortalized human neural stem cell line HB1.F3. Cell Mol Neurobiol 30:415–426

    CAS  PubMed  Google Scholar 

  • Sauer CG, White K, Stohr H, Grimm T, Hutchinson A, Bernstein PS, Lewis RA, Simonelli F, Pauleikhoff D, Allikmets R, Weber BH (2001) Evaluation of the G protein coupled receptor-75 (GPR75) in age related macular degeneration. Br J Ophthalmol 85:969–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sawzdargo M, Nguyen T, Lee DK, Lynch KR, Cheng R, Heng HH, George SR, O’Dowd BF (1999) Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64:193–198

    CAS  PubMed  Google Scholar 

  • Schall TJ, Jongstra J, Dyer BJ, Jorgensen J, Clayberger C, Davis MM, Krensky AM (1988) A human T cell-specific molecule is a member of a new gene family. J Immunol 141:1018–1025

    CAS  PubMed  Google Scholar 

  • Schneider JW, Goetsch SC, Leng X, Ludwig SM, Russell JL, Yang CP, Zhang QJ (2012) Coupling hippocampal neurogenesis to brain pH through proneurogenic small molecules that regulate proton sensing G protein-coupled receptors. ACS Chem Neurosci 3:557–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Setoh M, Ishii N, Kono M, Miyanohana Y, Shiraishi E, Harasawa T, Ota H, Odani T, Kanzaki N, Aoyama K, Hamada T, Kori M (2014) Discovery of the first potent and orally available agonist of the orphan G-protein-coupled receptor 52. J Med Chem 57:5226–5237

    CAS  PubMed  Google Scholar 

  • Shore DM, Reggio PH (2015) The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front Pharmacol 6:69

    PubMed  PubMed Central  Google Scholar 

  • Sidibe A, Mullier A, Chen P, Baroncini M, Boutin JA, Delagrange P, Prevot V, Jockers R (2010) Expression of the orphan GPR50 protein in rodent and human dorsomedial hypothalamus, tanycytes and median eminence. J Pineal Res 48:263–269

    CAS  PubMed  Google Scholar 

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    CAS  PubMed  Google Scholar 

  • Singh LS, Berk M, Oates R, Zhao Z, Tan H, Jiang Y, Zhou A, Kirmani K, Steinmetz R, Lindner D, Xu Y (2007) Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J Natl Cancer Inst 99:1313–1327

    CAS  PubMed  Google Scholar 

  • Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, Kim HD, Tahara K, Lalonde R, Fukuchi K (2011) TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song SJ, Mao XG, Wang C, Han AG, Yan M, Xue XY (2015) LGR5/GPR49 is implicated in motor neuron specification in nervous system. Neurosci Lett 584:135–140

    CAS  PubMed  Google Scholar 

  • Song ZH, Modi W, Bonner TI (1995) Molecular cloning and chromosomal localization of human genes encoding three closely related G protein-coupled receptors. Genomics 28:347–349

    CAS  PubMed  Google Scholar 

  • Song ZH, Young WS 3rd, Brownstein MJ, Bonner TI (1994) Molecular cloning of a novel candidate G protein-coupled receptor from rat brain. FEBS Lett 351:375–379

    CAS  PubMed  Google Scholar 

  • Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS, Davenport AP, Brown AJ, Green A, Wigglesworth MJ, Rees S (2013) Screening beta-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. J Biomol Screen 18:599–609

    PubMed  Google Scholar 

  • Sreedharan S, Almen MS, Carlini VP, Haitina T, Stephansson O, Sommer WH, Heilig M, de Barioglio SR, Fredriksson R, Schioth HB (2011) The G protein coupled receptor Gpr153 shares common evolutionary origin with Gpr162 and is highly expressed in central regions including the thalamus, cerebellum and the arcuate nucleus. FEBS J 278:4881–4894

    CAS  PubMed  Google Scholar 

  • Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S (2006) Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 18:1197–1209

    CAS  PubMed  Google Scholar 

  • Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H, Komai T, Oda T (2013) Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem 288:10684–10691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296

    CAS  PubMed  Google Scholar 

  • Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 110:5193–5198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabarean IV, Conti B, Behrens M, Korn H, Bartfai T (2005) Electrophysiological properties and thermosensitivity of mouse preoptic and anterior hypothalamic neurons in culture. Neuroscience 135:433–449

    CAS  PubMed  Google Scholar 

  • Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129:3006–3019

    PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Ishii K, Kasai K, Yoon SO, Saeki Y (2007) Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth. J Biol Chem 282:10506–10515

    CAS  PubMed  Google Scholar 

  • Tanaka S, Miyagi T, Dohi E, Seki T, Hide I, Sotomaru Y, Saeki Y, Antonio Chiocca E, Matsumoto M, Sakai N (2014) Developmental expression of GPR3 in rodent cerebellar granule neurons is associated with cell survival and protects neurons from various apoptotic stimuli. Neurobiol Dis 68:215–227

    CAS  PubMed  Google Scholar 

  • Tanaka S, Shaikh IM, Chiocca EA, Saeki Y (2009) The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development. PLoS One 4:e5922

    PubMed  PubMed Central  Google Scholar 

  • Taniguchi Y, Tonai-Kachi H, Shinjo K (2006) Zaprinast, a well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett 580:5003–5008

    CAS  PubMed  Google Scholar 

  • Tarttelin EE, Kirschner LS, Bellingham J, Baffi J, Taymans SE, Gregory-Evans K, Csaky K, Stratakis CA, Gregory-Evans CY (1999) Cloning and characterization of a novel orphan G-protein-coupled receptor localized to human chromosome 2p16. Biochem Biophys Res Commun 260:174–180

    CAS  PubMed  Google Scholar 

  • Thathiah A, Horre K, Snellinx A, Vandewyer E, Huang Y, Ciesielska M, De Kloe G, Munck S, De Strooper B (2013) Beta-arrestin 2 regulates Abeta generation and gamma-secretase activity in Alzheimer’s disease. Nat Med 19:43–49

    CAS  PubMed  Google Scholar 

  • Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horre K, Vanbrabant M, Coun F, Baekelandt V, Delacourte A, Fischer DF, Pollet D, De Strooper B, Merchiers P (2009) The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science (New York, NY) 323:946–951

    CAS  Google Scholar 

  • Thomson PA, Wray NR, Thomson AM, Dunbar DR, Grassie MA, Condie A, Walker MT, Smith DJ, Pulford DJ, Muir W, Blackwood DH, Porteous DJ (2005) Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. Mol Psychiatry 10:470–478

    CAS  PubMed  Google Scholar 

  • Tourino C, Valjent E, Ruiz-Medina J, Herve D, Ledent C, Valverde O (2012) The orphan receptor GPR3 modulates the early phases of cocaine reinforcement. Br J Pharmacol 167:892–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay F, Perreault M, Klaman LD, Tobin JF, Smith E, Gimeno RE (2007) Normal food intake and body weight in mice lacking the G protein-coupled receptor GPR39. Endocrinology 148:501–506

    CAS  PubMed  Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211

    CAS  PubMed  Google Scholar 

  • Uhlenbrock K, Gassenhuber H, Kostenis E (2002) Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 14:941–953

    CAS  PubMed  Google Scholar 

  • Underwood SL, Christoforou A, Thomson PA, Wray NR, Tenesa A, Whittaker J, Adams RA, Le Hellard S, Morris SW, Blackwood DH, Muir WJ, Porteous DJ, Evans KL (2006) Association analysis of the chromosome 4p-located G protein-coupled receptor 78 (GPR78) gene in bipolar affective disorder and schizophrenia. Mol Psychiatry 11:384–394

    CAS  PubMed  Google Scholar 

  • Valverde O, Celerier E, Baranyi M, Vanderhaeghen P, Maldonado R, Sperlagh B, Vassart G, Ledent C (2009) GPR3 receptor, a novel actor in the emotional-like responses. PLoS One 4:e4704

    PubMed  PubMed Central  Google Scholar 

  • van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685

    PubMed  PubMed Central  Google Scholar 

  • Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100:4903–4908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venken T, Alaerts M, Adolfsson R, Broeckhoven CV, Del-Favero J (2006) No association of the trace amine-associated receptor 6 with bipolar disorder in a northern Swedish population. Psychiatr Genet 16:1–2

    PubMed  Google Scholar 

  • Viitanen T, Ruusuvuori E, Kaila K, Voipio J (2010) The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol 588:1527–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villeneuve J, Tremblay P, Vallieres L (2005) Tumor necrosis factor reduces brain tumor growth by enhancing macrophage recruitment and microcyst formation. Cancer Res 65:3928–3936

    CAS  PubMed  Google Scholar 

  • Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M, Malli R, Graier WF (2008) Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 121:1704–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace GR, John Curnow S, Wloka K, Salmon M, Murray PI (2004) The role of chemokines and their receptors in ocular disease. Prog Retin Eye Res 23:435–448

    CAS  PubMed  Google Scholar 

  • Wang F, Zhang X, Wang J, Chen M, Fan N, Ma Q, Liu R, Wang R, Li X, Liu M, Ning G (2014) LGR4 acts as a link between the peripheral circadian clock and lipid metabolism in liver. J Mol Endocrinol 52:133–143

    CAS  PubMed  Google Scholar 

  • Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006a) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    CAS  PubMed  Google Scholar 

  • Wang J, Wu X, Simonavicius N, Tian H, Ling L (2006b) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281:34457–34464

    CAS  PubMed  Google Scholar 

  • Wardman JH, Gomes I, Bobeck EN, Stockert JA, Kapoor A, Bisignano P, Gupta A, Mezei M, Kumar S, Filizola M, Devi LA (2016) Identification of a small-molecule ligand that activates the neuropeptide receptor GPR171 and increases food intake. Sci Signal 9:ra55

    PubMed  PubMed Central  Google Scholar 

  • Whitney LW, Ludwin SK, McFarland HF, Biddison WE (2001) Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J Neuroimmunol 121:40–48

    CAS  PubMed  Google Scholar 

  • Wittenberger T, Schaller HC, Hellebrand S (2001) An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol 307:799–813

    CAS  PubMed  Google Scholar 

  • Wood PL, Mankidy R, Ritchie S, Heath D, Wood JA, Flax J, Goodenowe DB (2010) Circulating plasmalogen levels and Alzheimer Disease Assessment Scale-Cognitive scores in Alzheimer patients. J Psychiatry Neurosci 35:59–62

    PubMed  PubMed Central  Google Scholar 

  • Wu CS, Chen H, Sun H, Zhu J, Jew CP, Wager-Miller J, Straiker A, Spencer C, Bradshaw H, Mackie K, Lu HC (2013) GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination. PLoS One 8:e60314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao XQ, Grove KL, Lau SY, McWeeney S, Smith MS (2005) Deoxyribonucleic acid microarray analysis of gene expression pattern in the arcuate nucleus/ventromedial nucleus of hypothalamus during lactation. Endocrinology 146:4391–4398

    CAS  PubMed  Google Scholar 

  • Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanai T, Kurosawa A, Nikaido Y, Nakajima N, Saito T, Osada H, Konno A, Hirai H, Takeda S (2016) Identification and molecular docking studies for novel inverse agonists of SREB, super conserved receptor expressed in brain. Genes Cells 21:717–727

    CAS  PubMed  Google Scholar 

  • Yang M, Mailhot G, Birnbaum MJ, MacKay CA, Mason-Savas A, Odgren PR (2006) Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. J Biol Chem 281:23598–23605

    CAS  PubMed  Google Scholar 

  • Yang Y, Lu JY, Wu X, Summer S, Whoriskey J, Saris C, Reagan JD (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86:1–5

    CAS  PubMed  Google Scholar 

  • Yasuda S, Miyazaki T, Munechika K, Yamashita M, Ikeda Y, Kamizono A (2007) Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum. J Recept Signal Transduct Res 27:235–246

    CAS  PubMed  Google Scholar 

  • Ye C, Zhang Z, Wang Z, Hua Q, Zhang R, Xie X (2014) Identification of a novel small-molecule agonist for human G protein-coupled receptor 3. J Pharmacol Exp Ther 349:437–443

    PubMed  Google Scholar 

  • Yi T, Weng J, Siwko S, Luo J, Li D, Liu M (2014) LGR4/GPR48 inactivation leads to aniridia-genitourinary anomalies-mental retardation syndrome defects. J Biol Chem 289:8767–8780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA (2009) Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 284:12328–12338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi S, Cooper PR, Potter SL, Mueck B, Jarai G (2001) Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes. J Leukoc Biol 69:1045–1052

    CAS  PubMed  Google Scholar 

  • Zeltser LM, Seeley RJ, Tschop MH (2012) Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci 15:1336–1342

    CAS  PubMed  Google Scholar 

  • Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416

    PubMed  Google Scholar 

  • Zhang LL, Wang JJ, Liu Y, Lu XB, Kuang Y, Wan YH, Chen Y, Yan HM, Fei J, Wang ZG (2011) GPR26-deficient mice display increased anxiety- and depression-like behaviors accompanied by reduced phosphorylated cyclic AMP responsive element-binding protein level in central amygdala. Neuroscience 196:203–214

    CAS  PubMed  Google Scholar 

  • Zhang Q, Yang H, Li J, Xie X (2016) Discovery and characterization of a novel small-molecule agonist for medium-chain free fatty acid receptor G protein-coupled receptor 84. J Pharmacol Exp Ther 357:337–344

    CAS  PubMed  Google Scholar 

  • Zhao B, Zhao CZ, Zhang XY, Huang XQ, Shi WZ, Fang SH, Lu YB, Zhang WP, Xia Q, Wei EQ (2012) The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats. Neuroscience 202:42–57

    CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    CAS  PubMed  Google Scholar 

  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    CAS  PubMed  Google Scholar 

  • Zhu L, Lovinger D, Delpire E (2005) Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J Neurophysiol 93:1557–1568

    CAS  PubMed  Google Scholar 

  • Zlotnik A, Yoshie O (2012) The chemokine superfamily revisited. Immunity 36:705–716

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding from the National 12th Five Year Plan “Major Scientific and Technological Special Project for Significant New Drugs Creation” project of “Novel G protein coupled receptor targeted drug screening system and key technology research” (No. 2012ZX09504001-001) and the Program for New Century Excellent Talents in University (No. NCET-10-0817), which have supported aspects of our research covered in this review. We are highly thankful to Professor Atlas Khan for his expert comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zahid Khan.

Additional information

Highlights

• Orphan receptors of rhodopsin (class A) family of GPCR are expressed in the mammalian brain.

• Orphan receptors of rhodopsin (class A) family of GPCR play significant physiological roles in the mammalian brain.

• Orphan receptors of rhodopsin (class A) family of GPCR play significant roles in neurodegenerative diseases and psychiatric disorder including Alzheimer’s disease, Parkinson’s disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z., He, L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology 234, 1181–1207 (2017). https://doi.org/10.1007/s00213-017-4586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4586-9

Keywords

Navigation