Skip to main content
Log in

Comparing the effects of subchronic phencyclidine and medial prefrontal cortex dysfunction on cognitive tests relevant to schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

It is becoming increasingly clear that the development of treatments for cognitive symptoms of schizophrenia requires urgent attention, and that valid animal models of relevant impairments are required. With subchronic psychotomimetic agent phencyclidine (scPCP), a putative model of such impairment, the extent to which changes following scPCP do or do not resemble those following dysfunction of the prefrontal cortex is of importance.

Objectives

The present study carried out a comparison of the most common scPCP dosing regimen with excitotoxin-induced medial prefrontal cortex (mPFC) dysfunction in rats, across several cognitive tests relevant to schizophrenia.

Methods

ScPCP subjects were dosed intraperitoneal with 5 mg/kg PCP or vehicle twice daily for 1 week followed by 1 week washout prior to behavioural testing. mPFC dysfunction was induced via fibre-sparing excitotoxin infused into the pre-limbic and infralimbic cortex. Subjects were tested on spontaneous novel object recognition, touchscreen object-location paired-associates learning and touchscreen reversal learning.

Results

A double-dissociation was observed between object-location paired-associates learning and object recognition: mPFC dysfunction impaired acquisition of the object-location task but not spontaneous novel object recognition, while scPCP impaired spontaneous novel object recognition but not object-location associative learning. Both scPCP and mPFC dysfunction resulted in a similar facilitation of reversal learning.

Conclusions

The pattern of impairment following scPCP raises questions around its efficacy as a model of cognitive impairment in schizophrenia, particularly if importance is placed on faithfully replicating the effects of mPFC dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul-Monim Z, Neill JC, Reynolds GP (2007) Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat. Psychopharmacology 21(2):198–205

    Article  CAS  Google Scholar 

  • Aggleton JP, Mishkin M (1983) Memory impairments following restricted medial thalamic lesions in monkeys. Exp Brain Res 52(2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Amitai N, Kuczenski R, Behrens MM, Markou A (2012) Repeated phencyclidine administration alters glutamate release and decreases GABA markers in the prefrontal cortex of rats. Neuropharmacology 62(3):1422–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andreasen NC, Rezai K, Alliger R, Swayze VW 2nd, Flaum M, Kirchner P et al (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49(12):943–958

    Article  CAS  PubMed  Google Scholar 

  • Arnt J, Bang-Andersen B, Grayson B, Bymaster FP, Cohen MP, DeLapp NW et al (2010) Lu AE58054, a 5-HT6 antagonist, reverses cognitive impairment induced by subchronic phencyclidine in a novel object recognition test in rats. Int J Neuropsychopharmacol 13(8):1021–1033

    Article  CAS  PubMed  Google Scholar 

  • Aubin G, Stip E, Gelinas I, Rainville C, Chaparro C (2009) Daily functioning and information-processing skills among persons with schizophrenia. Psychiatr Serv 60(6):817–822

    Article  PubMed  Google Scholar 

  • Barker GR, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31(29):10721–10731

    Article  CAS  PubMed  Google Scholar 

  • Barker GR, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27(11):2948–2957

    Article  CAS  PubMed  Google Scholar 

  • Barnes SA, Young JW, Neill JC (2012) Rats tested after a washout period from sub-chronic PCP administration exhibited impaired performance in the 5-choice continuous performance test (5C-CPT) when the attentional load was increased. Neuropharmacology 62(3):1432–1441

    Article  CAS  PubMed  Google Scholar 

  • Barnett JH, Sahakian BJ, Werners U, Hill KE, Brazil R, Gallagher O et al (2005) Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol Med 35(7):1031–1041

    Article  PubMed  Google Scholar 

  • Bartok E, Berecz R, Glaub T, Degrell I (2005) Cognitive functions in prepsychotic patients. Prog Neuropsychopharmacol Biol Psychiatry 29(4):621–625

    Article  PubMed  Google Scholar 

  • Beninger RJ, Beuk J, Banasikowski TJ, van Adel M, Boivin GA, Reynolds JN (2010) Subchronic phencyclidine in rats: alterations in locomotor activity, maze performance, and GABA(A) receptor binding. Behav Pharmacol 21(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20(11):4320–4324

  • Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci 28(44):11124–11130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bissonette GB, Powell EM, Roesch MR (2013) Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behav Brain Res 250:91–101

    Article  PubMed Central  PubMed  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179(2):219–228

    Article  PubMed  Google Scholar 

  • Brigman JL, Padukiewicz KE, Sutherland ML, Rothblat LA (2006) Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav Neurosci 120(4):984–988

    Article  PubMed  Google Scholar 

  • Brigman JL, Feyder M, Saksida LM, Bussey TJ, Mishina M, Holmes A (2008) Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn Mem 15(2):50–54

    Article  PubMed Central  PubMed  Google Scholar 

  • Brigman JL, Ihne J, Saksida LM, Bussey TJ, Holmes A (2009) Effects of subchronic phencyclidine (PCP) treatment on social behaviors, and operant discrimination and reversal learning in C57BL/6J mice. Front Behav Neurosci 3:2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brigman JL, Graybeal C, Holmes A (2010) Predictably irrational: assaying cognitive inflexibility in mouse models of schizophrenia. Front Neurosci 4:13

    PubMed Central  PubMed  Google Scholar 

  • Burke KA, Takahashi YK, Correll J, Leon Brown P, Schoenbaum G (2009) Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with ‘disinhibition’ of responding for previously unrewarded cues. Eur J Neurosci 30(10):1941–1946

    Article  PubMed Central  PubMed  Google Scholar 

  • Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1997) Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav Neurosci 111(5):920–936

    Article  CAS  PubMed  Google Scholar 

  • Bussey TJ, Saksida LM, Murray EA (2003) Impairments in visual discrimination after perirhinal cortex lesions: testing ‘declarative’ vs. ‘perceptual-mnemonic’ views of perirhinal cortex function. Eur J Neurosci 17(3):649–660

    Article  PubMed  Google Scholar 

  • Bussey TJ, Padain TL, Skillings E, Winters BD, Morton AJ, Saksida LM (2008) The touchscreen cognitive testing method for rodents: How to get the best out of your rat. Learn Mem 15(7):516–523

    Article  PubMed Central  PubMed  Google Scholar 

  • Bussey TJ, Barch DM, Baxter MG (2013) Testing long-term memory in animal models of schizophrenia: suggestions from CNTRICS. Neurosci Biobehav Rev 37(9 Pt B):2141–2148

    Article  PubMed  Google Scholar 

  • Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD (1998) Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 155(9):1285–1287

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Goldman-Rakic PS, Williams GV (2004) Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology 174(1):111–125

    Article  CAS  PubMed  Google Scholar 

  • Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI (2009) Subchronic effects of phencyclidine on dopamine and serotonin receptors: implications for schizophrenia. J Mol Neurosci 38(3):227–235

    Article  CAS  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23(25):8771–8780

    CAS  PubMed  Google Scholar 

  • Chudasama Y, Bussey TJ, Muir JL (2001) Effects of selective thalamic and prelimbic cortex lesions on two types of visual discrimination and reversal learning. Eur J Neurosci 14:1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Dawson N, Thompson RJ, McVie A, Thomson DM, Morris BJ, Pratt JA (2010) Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity. Schizophr Bull 38(3):457–474

    Article  PubMed Central  PubMed  Google Scholar 

  • de Rover M, Pironti VA, McCabe JA, Acosta-Cabronero J, Arana FS, Morein-Zamir S et al (2011) Hippocampal dysfunction in patients with mild cognitive impairment: a functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia 49(7):2060–2070

    Article  PubMed  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31(5):673–704

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin card sorting test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110(5):872–886

    Article  CAS  PubMed  Google Scholar 

  • Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ et al (2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325(5940):621–625

    Article  CAS  PubMed  Google Scholar 

  • Domino EF, Luby ED (2012) Phencyclidine/schizophrenia: one view toward the past, the other to the future. Schizophr Bull 38(5):914–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Donohoe G, Spoletini I, McGlade N, Behan C, Hayden J, O'Donoghue T et al (2008) Are relational style and neuropsychological performance predictors of social attributions in chronic schizophrenia? Psychiatry Res 161(1):19–27

    Article  PubMed  Google Scholar 

  • Egerton A, Reid L, McKerchar CE, Morris BJ, Pratt JA (2005) Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia. Psychopharmacology 179(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Egerton A, Reid L, McGregor S, Cochran S, Morris BJ, Pratt JA (2008) Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats. Psychopharmacology 198(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113(3):509–519

    Article  CAS  PubMed  Google Scholar 

  • Fellini L, Kumar G, Gibbs S, Steckler T, Talpos J (2014) Re-evaluating the PCP challenge as a pre-clinical model of impaired cognitive flexibility in schizophrenia. Eur Neuropsychopharmacol 24(11):1836–1849

    Article  CAS  PubMed  Google Scholar 

  • Forwood SE, Winters BD, Bussey TJ (2005) Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 15(3):347–355

    Article  CAS  PubMed  Google Scholar 

  • Gilmour G, Arguello A, Bari A, Brown VJ, Carter C, Floresco SB et al (2013) Measuring the construct of executive control in schizophrenia: defining and validating translational animal paradigms for discovery research. Neurosci Biobehav Rev 37(9 Pt B):2125–2140

    Article  PubMed  Google Scholar 

  • Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE et al (2005) Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 25(1):60–69

    Article  PubMed  Google Scholar 

  • Graybeal C, Feyder M, Schulman E, Saksida LM, Bussey TJ, Brigman JL et al (2011) Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat Neurosci 14:1507–1509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grayson B, Idris NF, Neill JC (2007) Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res 184(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Grayson B, Adamson L, Harte M, Leger M, Marsh S, Piercy C et al (2014) The involvement of distraction in memory deficits induced by NMDAR antagonism: relevance to cognitive deficits in schizophrenia. Behav Brain Res 266:188–192

    Article  CAS  PubMed  Google Scholar 

  • Hannesson DK, Howland JG, Phillips AG (2004) Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. J Neurosci 24(19):4569–4606

    Article  CAS  Google Scholar 

  • Haring L, Mottus R, Koch K, Trei M, & Maron E (2014) Factorial validity, measurement equivalence and cognitive performance of the Cambridge Neuropsychological Test Automated Battery (CANTAB) between patients with first-episode psychosis and healthy volunteers. Psychol Medicine 1–11

  • Hill K, Mann L, Laws KR, Stephenson CM, Nimmo-Smith I, McKenna PJ (2004) Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand 110(4):243–256

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011) Interaction of mGlu2/3 agonism with clozapine and lurasidone to restore novel object recognition in subchronic phencyclidine-treated rats. Psychopharmacology 217(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SR et al (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8(10):1961–1984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. Psychopharmacology 29(2):97–115

    Article  CAS  Google Scholar 

  • Huron C, Danion J, Giacomoni F, Grange D (1995) Impairment of recognition memory with, but not without, conscious recollection in schizophrenia. Am J Psychiatr 152(2):1737–1742

    CAS  PubMed  Google Scholar 

  • Idris N, Neill J, Grayson B, Bang-Andersen B, Witten LM, Brennum LT et al (2010) Sertindole improves sub-chronic PCP-induced reversal learning and episodic memory deficits in rodents: involvement of 5-HT(6) and 5-HT (2A) receptor mechanisms. Psychopharmacology 208(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Ingvar DH, Franzen G (1974) Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 50(4):425–462

    Article  CAS  PubMed  Google Scholar 

  • Itil T, Keskiner A, Kiremitci N, Holden JM (1967) Effect of phencyclidine in chronic schizophrenics. Can Psychiatr Assoc J 12(2):209–212

    CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D (2012) Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr Bull 38(5):958–966

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim CH, Heath CJ, Kent BA, Bussey TJ, Saksida LM (2015) The role of the dorsal hippocampus in two versions of the touchscreen automated paired associates learning (PAL) task for mice. Psychopharmacology (in press)

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al (1994) Subanesthetic effects of the noncompetitive NMDA receptor antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendro-crine responses. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25(4):455–467

    Article  CAS  PubMed  Google Scholar 

  • Laurent V, Podhorna J (2004) Subchronic phencyclidine treatment impairs performance of C57BL/6 mice in the attentional set-shifting task. Behav Pharmacol 15(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Le Cozannet R, Fone KC, Moran PM (2010) Phencyclidine withdrawal disrupts episodic-like memory in rats: reversal by donepezil but not clozapine. Int J Neuropsychopharmacol 13(8):1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Leeson VC, Robbins TW, Matheson E, Hutton SB, Ron MA, Barnes TR et al (2009) Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry 66(6):586–593

    Article  PubMed Central  PubMed  Google Scholar 

  • Lyon L, Saksida LM, Bussey TJ (2012) Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology 220(4):647–672

    Article  CAS  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D et al (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14(5):301–307

    Article  CAS  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D et al (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17(3):141–150

    Article  CAS  PubMed  Google Scholar 

  • McAllister KAL, Saksida LM, Busset TJ (2013) Dissociation between memory retention across a delay and pattern separation following medial prefrontal cortex lesions in the touchscreen TUNL task. Neurobiol Learn Mem 101:120–126

    Article  PubMed Central  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146(1-2):97–103

    Article  PubMed  Google Scholar 

  • McKibben CE, Jenkins TA, Adams HN, Harte MK, Reynolds GP (2010) Effect of pretreatment with risperidone on phencyclidine-induced disruptions in object recognition memory and prefrontal cortex parvalbumin immunoreactivity in the rat. Behav Brain Res 208(1):132–136

    Article  CAS  PubMed  Google Scholar 

  • McKirdy J, Sussmann JE, Hall J, Lawrie SM, Johnstone EC, McIntosh AM (2009) Set shifting and reversal learning in patients with bipolar disorder or schizophrenia. Psychol Med 39(8):1289–1293

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Beck JP, Woolley ML, Neill JC (2008) A preliminary investigation into the effects of antipsychotics on sub-chronic phencyclidine-induced deficits in attentional set-shifting in female rats. Behav Brain Res 189(1):152–158

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Idris NF, Woolley ML, Neill JC (2009) D1-like receptor activation improves PCP-induced cognitive deficits in animal models: Implications for mechanisms of improved cognitive function in schizophrenia. Eur Neuropsychopharmacol 19(6):440–450

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Neill JC, Idris NF, Marston HM, Wong EH, Shahid M (2010) Effects of asenapine, olanzapine, and risperidone on psychotomimetic-induced reversal-learning deficits in the rat. Behav Brain Res 214(2):240–247

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Idris NF, Grayson B, Gendle DF, Mackie C, Lesage AS et al (2012) PNU-120596, a positive allosteric modulator of alpha7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. Psychopharmacology 26(9):1265–1270

    Article  CAS  Google Scholar 

  • Meltzer HY, Rajagopal L, Huang M, Oyamada Y, Kwon S, Horiguchi M (2013) Translating the N-methyl-d-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 16(10):2181–2194

    Article  CAS  PubMed  Google Scholar 

  • Minzenberg MJ, Carter CS (2012) Developing treatments for impaired cognition in schizophrenia. Trends Cogn Sci 16(1):35–42

    Article  PubMed  Google Scholar 

  • Mumby DG, Pinel JP, Dastur FN (1993) Mediodorsal thalamic lesions and object recognition in rats. Psychobiology 21(1):27–36

    Google Scholar 

  • Murray GK, Cheng F, Clark L, Barnett JH, Blackwell AD, Fletcher PC et al (2008) Reinforcement and reversal learning in first-episode psychosis. Schizophr Bull 34(5):848–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL et al (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128(3):419–432

    Article  CAS  PubMed  Google Scholar 

  • Neill JC, Harte MK, Haddad PM, Lydall ES, Dwyer DM (2014) Acute and chronic effects of NMDA receptor antagonists in rodents, relevance to negative symptoms of schizophrenia: a translational link to humans. Eur Neuropsychopharmacol 24(5):822–835

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13(10):1161–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Grant SG (2013) Cognitive components in mice and humans: combining genetics and touchscreens for medical translation. Neurobiol Learn Mem 105:13–19

    Article  PubMed  Google Scholar 

  • Owen AM, Sahakian BJ, Semple J, Polkey CE, Robbins TW (1995) Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Oyamada Y, Horiguchi M, Rajagopal L, Miyauchi M, Meltzer HY (2015) Combined serotonin (5-HT)1A agonism, 5-HT2A and dopamine D2 receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats. Behav Brain Res 285:165–175

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Pedersen CS, Goetghebeur P, Dias R (2009) Chronic infusion of PCP via osmotic mini-pumps: a new rodent model of cognitive deficit in schizophrenia characterized by impaired attentional set-shifting (ID/ED) performance. J Neurosci Methods 185(1):66–69

    Article  CAS  PubMed  Google Scholar 

  • Poels EM, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC, Lieberman JA et al (2014) Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 19(1):20–29

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121:355–375

    Article  PubMed  Google Scholar 

  • Ragozzino ME, Jih J, Tzavos A (2002) Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Res 953(1-2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Rodefer JS, Murphy ER, Baxter MG (2005) PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 21(4):1070–1076

    Article  PubMed  Google Scholar 

  • Rodefer JS, Nguyen TN, Karlsson JJ, Arnt J (2008) Reversal of subchronic PCP-induced deficits in attentional set shifting in rats by sertindole and a 5-HT6 receptor antagonist: comparison among antipsychotics. Neuropsychopharmacology 33(11):2657–2666

    Article  CAS  PubMed  Google Scholar 

  • Sahakian BJ, Morris RG, Evenden JL, Heald A, Levy R, Philpot M et al (1988) A comparative-study of visuospatial memory and learning in Alzheimer-type dementia and Parkinsons-disease. Brain 111:695–718

    Article  PubMed  Google Scholar 

  • Schaefer J, Giangrande E, Weinberger DR, Dickinson D (2013) The global cognitive impairment in schizophrenia: consistent over decades and around the world. Schizophr Res 150(1):42–50

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlagenhauf F, Huys QJ, Deserno L, Rapp MA, Beck A, Heinze HJ et al (2014) Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage 89:171–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh SP, Singh V (2011) Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 25(10):859–885

    Article  CAS  PubMed  Google Scholar 

  • Snigdha S, Horiguchi M, Huang M, Li Z, Shahid M, Neill JC et al (2010) Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 332(2):622–631

    Article  CAS  PubMed  Google Scholar 

  • Snigdha S, Idris N, Grayson B, Shahid M, Neill JC (2011) Asenapine improves phencyclidine-induced object recognition deficits in the rat: evidence for engagement of a dopamine D1 receptor mechanism. Psychopharmacology 214(4):843–853

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH (1980) Phencyclidine. Nature 285(5764):355–356

    Article  CAS  PubMed  Google Scholar 

  • Talpos JC, Dias R, Bussey TJ, Saksida LM (2008) Hippocampal lesions in rats impair learning and memory for locations on a touch-sensitive computer screen: the “ASAT” task. Behav Brain Res 192(2):216–225

    Article  CAS  PubMed  Google Scholar 

  • Talpos JC, Winters BD, Dias R, Saksida LM, Bussey TJ (2009) A novel touchscreen-automated paired-associate learning (PAL) task sensitive to pharmacological manipulation of the hippocampus: a translational rodent model of cognitive impairments in neurodegenerative disease. Psychopharmacology 205(1):157–168

    Article  CAS  PubMed  Google Scholar 

  • Tamminga CA (1998) Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 12(1-2):21–36

    Article  CAS  PubMed  Google Scholar 

  • van Erp TG, Lesh TA, Knowlton BJ, Bearden CE, Hardt M, Karlsgodt KH et al (2008) Remember and know judgments during recognition in chronic schizophrenia. Schizophr Res 100(1-3):181–190

    Article  PubMed Central  PubMed  Google Scholar 

  • Vingerhoets WA, Bloemen OJ, Bakker G, van Amelsvoort TA (2013) Pharmacological interventions for the MATRICS cognitive domains in schizophrenia: what’s the evidence? Front Psychiatry 4:157

    Article  PubMed Central  PubMed  Google Scholar 

  • Waltz JA, Gold JM (2007) Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res 93(1-3):296–303

    Article  PubMed Central  PubMed  Google Scholar 

  • Winters BD, Bartko SJ, Saksida LM, Bussey TJ (2010) Muscimol, AP5, or scopolamine infused into perirhinal cortex impairs two-choice visual discrimination learning in rats. Neurobiol Learn Mem 93(2):221–228

    Article  CAS  PubMed  Google Scholar 

  • Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci 24(26):5901–5908

  • Wood SJ, Proffitt T, Mahony K, Smith DJ, Buchanan JA, Brewer W et al (2002) Visuospatial memory and learning in first-episode schizophreniform psychosis and established schizophrenia: a functional correlate of hippocampal pathology? Psychol Med 32(3):429–438

    Article  CAS  PubMed  Google Scholar 

  • Young AM, Stubbendorff C, Valencia M, Gerdjikov TV (2015) Disruption of medial prefrontal synchrony in the subchronic phencyclidine model of schizophrenia in rats. Neuroscience 287:157–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhuo JM, Prescott SL, Murray ME, Zhang HY, Baxter MG, Nicolle MM (2007) Early discrimination reversal learning impairment and preserved spatial learning in a longitudinal study of Tg2576 APPsw mice. Neurobiol Aging 28(8):1248–1257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KAL McAllister received funding from the Cambridge Commonwealth Trusts and University of Cambridge Overseas Studentship Programme. The work leading to these results has received funding from the Innovative Medicines Initiative Joint Undertaking (IMI) under grant agreement n° 115008. IMI is a public-private partnership between the European Union and the European Federation of Pharmaceutical Industries and Associations.

Conflict of interest

LMS and TJB are consultants for Campden Instruments Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. L. McAllister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAllister, K.A.L., Mar, A.C., Theobald, D.E. et al. Comparing the effects of subchronic phencyclidine and medial prefrontal cortex dysfunction on cognitive tests relevant to schizophrenia. Psychopharmacology 232, 3883–3897 (2015). https://doi.org/10.1007/s00213-015-4018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4018-7

Keywords

Navigation