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Abstract
Rationale This review attempts to summarize the current sta-
tus in relation to the use of positron emission tomography
(PET) imaging in the assessment of synaptic concentrations
of endogenous mediators in the living brain.
Objectives Although PET radioligands are now available for
more than 40 CNS targets, at the initiation of the Innovative
Medicines Initiative (IMI) BNovel Methods leading to New
Medica t ions in Depress ion and Schizophrenia^
(NEWMEDS) in 2009, PET radioligands sensitive to an en-
dogenous neurotransmitter were only validated for dopamine.
NEWMEDS work-package 5, BCross-species and

neurochemical imaging (PET) methods for drug discovery ,̂
commenced with a focus on developing methods enabling
assessment of changes in extracellular concentrations of sero-
tonin and noradrenaline in the brain.
Results Sharing the workload across institutions, we utilized
in vitro techniques with cells and tissues, in vivo receptor
binding and microdialysis techniques in rodents, and in vivo
PET imaging in non-human primates and humans. Here,
we discuss these efforts and review other recently pub-
lished reports on the use of radioligands to assess changes
in endogenous levels of dopamine, serotonin, noradrena-
line, γ-aminobutyric acid, glutamate, acetylcholine, and
opioid peptides. The emphasis is on assessment of the
availability of appropriate translational tools (PET radioligands,
pharmacological challenge agents) and on studies in non-
human primates and human subjects, as well as current chal-
lenges and future directions.
Conclusions PET imaging directed at investigating changes
in endogenous neurochemicals, including the work done in
NEWMEDS, have highlighted an opportunity to further ex-
tend the capability and application of this technology in drug
development.
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Introduction

Brain imaging with positron emission tomography (PET) is
now widely used in both academic and industry-driven re-
search for a range of applications in neuroscience research
and drug discovery. PET radioligands are available for many
G-protein-coupled receptors (GPCRs) and neurotransmitter
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transporters, as well as some enzymes and ion channels, and
have been used to provide information about the concentra-
tion, distribution, and occupancy of specific drug targets in the
central nervous system (CNS) (for reviews see Grimwood and
Hartig 2009; Halldin et al. 2001; Jones et al. 2012; Lee and
Farde 2006; Zimmer and Luxen 2012). Molecular imaging
with PET provides high sensitivity when compared to other
methods such as single photon emission computed tomog-
raphy (SPECT), and with the recent development of a new
generation of PET systems, also fairly high spatial resolu-
tion. The current model of the high-resolution research
tomograph (ECAT HRRT; Siemens CTI, Knoxville, TN,
USA) allows for spatial image resolution of 1.5 mm when
employing point spread function reconstruction and allows
for reliable imaging of small brain structures (Varrone et al.
2009). Moreover, the development of PET systems dedicat-
ed to the imaging of rodents has provided opportunities for
both forward- and back-translation across species and in-
creased confidence in the validity of animal models (Nagy
et al. 2013).

PET imaging can be employed in the drug development
process in several different ways. First, radiolabeling and ad-
ministration of a microgram dose of the radiolabeled drug can
confirm brain exposure using PET (Bergstrom et al. 2003).
Second, target engagement can be confirmed in a receptor
occupancy study in which radioligand and drug interact at
the same target. Target engagement has now been demonstrat-
ed for many different drug mechanisms and has provided sig-
nificant progress towards establishing a better understanding
of relationships between drug exposure levels and drug target
occupancy, informing dose selection for studies aiming to
demonstrate therapeutic efficacy in patients (for review see
Grimwood and Hartig 2009). One potential confounding fac-
tor of target occupancy determinations is that endogenous
ligands may compete directly with radioligand binding.
However, this potential interaction raises the opportunity for
a third PET application, to investigate drug-induced changes
in neurotransmitter release, providing insight on receptor
function beyond occupancy as well as modes of drug action.

Although PET radioligands are now available for more
than 40 CNS targets, at the initiation of the Innovative
Medicines Initiative (IMI) BNovel Methods leading to New
Medica t ions in Depress ion and Schizophrenia^
(NEWMEDS) in 2009, PET radioligands sensitive to an en-
dogenous neurotransmitter were limited to dopamine. Spurred
by the success of developing novel radioligands optimized
towards assessment of neurotransmitter release, such as the
dopamine D2 receptor agonists [11C]NPA (Narendran et al.
2004) and [11C]MNPA (Seneca et al. 2006), NEWMEDS
work-package 5, BCross-species and neurochemical imaging
(PET) methods for drug discovery ,̂ commenced with a focus
on developing methods enabling assessment of changes in
extracellular concentrations of serotonin and noradrenaline

in the brain. Here, we discuss these efforts and also review
other recently published reports on the use of radioligands to
assess changes in endogenous levels of dopamine, serotonin,
noradrenaline, γ-aminobutyric acid (GABA), glutamate,
acetylcholine (ACh), and opioid peptides, also including
detailed summary tables of the PET studies referred to
(Tables 1, 2, 3, and 4). Focus has been placed on
assessing the availability of appropriate tools (PET
radioligand, pharmacological challenge agent) and studies
in non-human primates and human subjects, as well as
current challenges and future directions.

Current state of the art: imaging neurotransmitter
changes using PET

Dopamine

The dopamine system has historically been one of the most
extensively studied neurotransmitter systems of the brain. The
results of these investigations have been fruitful in terms of
basic science and therapeutic applications. Studies on the do-
pamine system have over time seen considerable advance-
ments of new technologies andmethodological developments.
Dopaminewas also the first neurotransmitter for which chang-
es in extracellular concentrations could be evaluated in the
living human brain using PET and SPECT (Farde et al.
1992; Laruelle et al. 1995; Volkow et al. 1994).

The effects of dopamine are mediated through five receptor
subtypes, divided into two families, the D1-like receptors
(D1 and D5) and the D2-like receptors (D2, D3, and D4)
(for review see Vallone et al. 2000). Several dopamine D2-
like receptor radioligands have now been tested for sensi-
tivity to endogenous dopamine in experiments conducted
using 3H-labeled radioligands for in vitro or in vivo binding
measurements in rodents, and 11C- or 18F-labeled radioligands
for in vivo PET measurements in animals or humans. In these
studies, extracellular dopamine concentrations in the brain
have typically been elevated using amphetamine or methyl-
phenidate, or reduced using reserpine and/or alpha-methyl-
para-tyrosine (AMPT), respectively.

Initially, the butyrophenone derivatives [3H]spiperone
(Leysen et al. 1978) and [3H]- and [11C]N-methyl-spiperone
([3H]/[11C]NMSP) (Lyon et al. 1986; Wagner et al. 1983)
were found not to display changes in binding consistent with
competition by endogenous dopamine, possibly because these
radioligands also bind to intracellular or internalized receptors
(Chugani et al. 1988; for review see Laruelle 2000). The
substituted benzamide derivatives [11C]raclopride (Ehrin
et al. 1985) and [123I]IBZM (Kung et al. 1988) have, however,
in a large number of animal and human studies, consistently
been shown to display changes in binding which are consistent
with dopamine competition (for review see Laruelle 2000). In
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general, clinically applicable doses of amphetamine have re-
duced [11C]raclopride binding in the human striatum by up to
20 %, which is a sufficient effect size to be robustly measured
using PET and SPECT (Breier et al. 1997; Dewey et al. 1993;
for review see Laruelle 2000).

Two early observations greatly stimulated the use of the
developed methodology for further research applications.
First, an enhanced amphetamine effect on [11C]raclopride
binding was observed in patients with schizophrenia (Breier
et al. 1997; Laruelle et al. 1996). Second, videogame playing,
employed as a rewarding stimulus, was shown to cause de-
creases in [11C]raclopride binding (Egerton et al. 2009; Koepp
et al. 1998). Several studies have now shown that dopamine
release induced by pharmacological and cognitive/behavioral
interventions can be investigated using dopamine D2-like re-
ceptor radioligands (for reviews see Egerton et al. 2009;
Laruelle 2000), and the methodology has provided increased
understanding of the role of synaptic dopamine in drug actions
(Brody et al. 2004), normal neuropsychology (for review see
Egerton et al. 2009), and the pathophysiology of addiction
(Volkow et al. 1997), Parkinson’s disease (Piccini et al.
2003), and schizophrenia (Laruelle et al. 1996).

More recently, antagonist radioligands with much higher
dopamine D2 receptor affinity compared to raclopride, such
as [11C]FLB 457 and [11C]/[18F]fallypride, have been used to
investigate extrastriatal brain regions, where the density of
dopamine D2 receptors is much lower than in the striatum
(Halldin et al. 1995; Mukherjee et al. 2004; Mukherjee et al.
1995). PET studies evaluating the dopamine sensitivity of
these radioligands are summarized in Table 1. Explorative
studies in monkeys initially indicated that relatively high in-
travenous doses of amphetamine reduced cortical radioligand
binding to a lesser extent than striatal [11C]raclopride binding
(Chou et al. 2000; Okauchi et al. 2001) (Table 1). However,
follow-up investigations employing amphetamine challenge
have confirmed that the high-affinity (<1 nM) antagonist
radioligands may allow for monitoring of changes in cortical
synaptic dopamine concentrations in monkeys and human
subjects (Aalto et al. 2009; Cropley et al. 2008; Mukherjee
et al. 2005; Narendran et al. 2009; Narendran et al. 2013;
Narendran et al. 2014; Riccardi et al. 2006; Sandiego et al.
2015; Slifstein et al. 2010; Slifstein et al. 2004). Moreover,
modulators of endogenous dopamine, including methylpheni-
date, ketamine, and MK801, have been shown to reduce
radioligand binding (Aalto et al. 2005; Montgomery et al.
2007; Tsukada et al. 2005b). However, AMPT (Cropley
et al. 2008; Frankle et al. 2010; Riccardi et al. 2008) and
ketamine (Vernaleken et al. 2013) administration in humans
and nicotine administration in monkeys (Tsukada et al. 2005a)
have not been found to affect extra-striatal radioligand binding
(Table 1). This development of methodology has provided new
opportunities for assessment of extra-striatal dopamine path-
ways and may facilitate the understanding of the treatmentT
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and pathophysiology of psychiatric diseases, including schizo-
phrenia (Slifstein et al. 2015; Woodward et al. 2011) and
smoking (Wing et al. 2014).

The published reports on dopamine also include important
validation aspects with regard to PET measurement of neuro-
transmitter release in general. First, release-dependent chang-
es in dopamine D2-like receptor radioligand binding were on-
ly observed when endogenous dopamine was available for
release. Amphetamine-induced changes in radioligand bind-
ing were attenuated by pre-administration of inhibitors of do-
pamine transport (GBR12909), synthesis (AMPT), or storage
(reserpine) (Innis et al. 1992; Laruelle et al. 1997; Villemagne
et al. 1999). Second, the reductions in radioligand binding
were shown to be proportional to drug-induced increases in
dopamine concentrations measured in the extracellular fluid
with microdialysis (Breier et al. 1997; Endres et al. 1997;
Laruelle et al. 1997; Narendran et al. 2014; Tsukada et al.
1999a). Third, changes in radioligand binding were found to
mainly reflect modulation of dopamine in the synaptic cleft,
instead of inherently reflecting changes in the extracellular
fluid dopamine concentration across drugs with different
modes of action. Relative reductions in [11C]raclopride bind-
ing in the striatum of monkeys have been shown to be similar
after administration of direct dopamine enhancers (GBR12909
and methamphetamine) or indirect dopamine modulators
(benztropine and ketanserin), while microdialysis-measured in-
creases in dopamine concentrations were much higher for the
direct dopamine enhancers (500–1200 %) in comparison to the
indirect dopamine modulators (140–160 %) (Tsukada et al.
1999a). Schiffer and colleagues demonstrated similar results
when comparing methylphenidate and amphetamine in a com-
bined microdialysis and PET study in rodents (Schiffer et al.
2006). Differences in endogenous ligand assessment
might be expected between microdialysis and PET,
since microdialysis provides a direct method of mea-
surement, giving absolute values, and PET is an indirect
method for displaying changes. In addition, changes in
neurotransmitter levels measured with microdialysis
might appear to be relatively larger than when measured
using PET since some protocols include uptake blockers
in the microdialysis probes. Nevertheless, together these
studies provide support for the notion that this approach
might be applied to other neurotransmitters.

In an attempt to increase the sensitivity of radioligand bind-
ing to endogenous dopamine, relative to that of antagonist
radioligands such as [11C]raclopride, agonist radioligands
were developed for dopamine D2-like receptors, such as
[11C]NPA (Hwang et al. 2000), [11C]MNPA (Finnema et al.
2005), [11C]PHNO (Wilson et al. 2005), and [18F]MCL-524
(Finnema et al. 2014e; for review see Finnema et al. 2010a).
Agonist radioligands preferentially bind to the high-affinity,
G-protein-coupled state of receptors (Sibley et al. 1982).
Agonist radioligand binding is thereby proposed to be more

susceptible to the endogenous agonist than the binding of
antagonist radioligands, which do not discriminate between
the low- and high-affinity states of the receptor. Indeed, these
agonist radioligands were shown to be more sensitive to drug-
induced changes in extracellular dopamine concentrations
than [11C]raclopride, both in anesthetized animals (Gallezot
et al. 2014b; Ginovart et al. 2006; Narendran et al. 2004;
Seneca et al. 2006; Skinbjerg et al. 2010) and in awake human
subjects (Caravaggio et al. 2014; Narendran et al. 2010;
Shotbolt et al. 2012). However, there is a growing body of
evidence which challenges the existence of two distinct affin-
ity states in vivo (for reviews see Finnema et al. 2010a;
Skinbjerg et al. 2012), and the exact mechanism of the in-
creased sensitivity of agonist radioligands to dopamine there-
fore warrants further evaluation.

In contrast to the dopamine D2-like receptor radioligands,
dopamine D1-like receptor antagonist radioligands such as
[11C]SCH-23390 (DeJesus et al. 1987; Halldin et al. 1986)
and [11C]NNC-112 (Halldin et al. 1998) have not appeared
to be sensitive to acute changes in extracellular dopamine
concentrations (Abi-Dargham et al. 1999; Chou et al. 1999;
Tsukada et al. 2001). A number of hypotheses have been
proposed to explain this difference, including that (1) dopa-
mine D1-like receptors are predominantly located extra-
synaptically (Hersch et al. 1995; Levey et al. 1993), (2) dopa-
mine has significantly lower affinity to D1 receptors than D2

receptors (Marcellino et al. 2012), and (3) dopamine D1 re-
ceptors exist predominantly in the low-affinity state (Richfield
et al. 1989). Recently developed partial dopamine D1 receptor
agonist radioligands, such as (R)-(+)-[11C]SKF 82957 and
(S)-[11C]N-methyl-NNC 01-0259, were also found not to be
sensitive to amphetamine-induced changes in dopamine re-
lease (Finnema et al. 2013a; Palner et al. 2010).

The described studies on PET-measured dopamine release
illustrate the potential of the methodology but also provide
caution for the interpretation of changes in radioligand bind-
ing. The PET outcome measuring binding potential (BP) rep-
resents the ratio of Bmax/KD, in which Bmax is the receptor
density and KD the equilibrium dissociation rate constant.
Changes in BP are typically interpreted according to a com-
petition model, e.g., reflecting a change in KD, but several
observations suggest a contribution of dopamine receptor in-
ternalization as well (see for reviews Ginovart 2005; Laruelle
2000). First, a temporal discrepancy has been observed
between the amphetamine-induced dopamine pulse (∼2 h)
and the prolonged effect on radioligand binding (∼24 h)
(Cardenas et al. 2004; Ginovart et al. 2006; Houston et al.
2004; Laruelle et al. 1997; Narendran et al. 2007). Second, a
change in cellular environment consequent to receptor inter-
nalization affects radioligand binding properties differently for
radioligands originating from diverse chemical classes (e.g.,
butyrophenones vs. benzamides) (Guo et al. 2010; Sun et al.
2003). Third, amphetamine has been shown to decrease
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[11C]raclopride Bmax values in vivo in cat and ex vivo in rat
(Ginovart et al. 2004; Sun et al. 2003). These observations
together suggest a contribution of receptor internalization to
the observed changes in radioligand binding, possibly affect-
ing both Bmax and KD. Skinbjerg et al. (2010) indeed con-
firmed that the long-lasting effect of amphetamine on
radioligand binding was caused by internalization of the D2

receptors. Acute amphetamine administration decreased
radioligand binding to the same extent in wild-type and
arrestin 3 knockout mice. However, 4 h post-amphetamine
administration, radioligand binding was still reduced in
wild-type mice but recovered to baseline in arrestin 3 knock-
out mice, which lack the capacity to internalize D2 receptors
(Skinbjerg et al. 2010). This study supports that amphetamine-
induced changes in radioligand binding mainly reflect chang-
es in extracellular dopamine concentration initially, but after a
prolonged time-interval also reflect internalization.

Serotonin

Fourteen mammalian serotonin (5-HT) receptor subtypes
(assigned to seven families, 5-HT1–7) have been characterized,
and 13 of these have been identified in the human brain.
Assessment of extracellular serotonin with PET imaging has
the potential to provide important insights into the pathophys-
iology and treatment of common CNS diseases such as anxi-
ety and mood disorders, as well as sleep and eating behaviors
(for review see Millan et al. 2008). Several radioligands have
been developed for PET imaging of the serotonin system,
specifically for the 5-HT1A, 5-HT1B, 5-HT2A, 5-HT4, and 5-
HT6 receptor subtypes and the neuronal serotonin transporter
(SERT) (for review see Paterson et al. 2013). Most of these
radioligands have been investigated for their sensitivity to
extracellular serotonin levels. Typically, extracellular concen-
trations of serotonin have been elevated using serotonin
releasers, e.g., fenfluramine, or SERT inhibitors (SSRIs), such
as fluoxetine and the racemate citalopram, or reduced using
tryptophan depletion. Paterson et al. previously reviewed the-
se studies in great detail (Paterson et al. 2010), so only more
recent work has been summarized in Table 2.

The 5-HT1A receptor distribution has been extensively
characterized and high levels are found in the cortex, hippo-
campus, and raphe nuclei (Pazos et al. 1987a). The 5-HT1A

receptors function as somatodendritic autoreceptors in the ra-
phe nuclei and as postsynaptic receptors in other brain regions
(for review see Millan et al. 2008). PET studies performed
with the high-affinity (∼2 nM) 5-HT1A receptor antagonist
[11C]WAY-100635 (Pike et al. 1995; Pike et al. 1996) have
demonstrated that fenfluramine-induced increases in synaptic
serotonin concentration decreased radioligand binding in the
hippocampus of rats (Hume et al. 2001), although this was not
reported by others (Maeda et al. 2001). Tryptophan depletion
and infusion did not affect [11C]WAY-100635 binding in

human subjects (Rabiner et al. 2002). The 5-HT1A receptor
antagonist [18F]MPPF (Shiue et al. 1997), which has lower
affinity when compared with [11C]WAY-100635, has been
evaluated in a series of studies. Fluoxetine-induced elevation
of serotonin concentrations has been demonstrated to decrease
[18F]MPPF binding in the raphe nuclei of cats (Aznavour et al.
2006) and humans (Sibon et al. 2008), while citalopram and
fenfluramine did not affect [18F]MPPF binding in rats
(Moulin-Sallanon et al. 2009) and monkeys (Udo de Haes
et al. 2006), respectively. These results suggest limited sensi-
tivity of [18F]MPPF to serotonin, which is consistent with
tryptophan depletion and infusion studies also showing no
effect on [18F]MPPF binding in humans (Praschak-Rieder
et al. 2004; Udo de Haes et al. 2002). Interestingly, it has been
demonstrated that sleep may cause an elevation in [18F]MPPF
binding when compared to wakefulness, but this study was
performed in narcolepsy cataplexy patients and confirmation
is required in healthy subjects (Derry et al. 2006). Similar
to [18F]MPPF, [18F]FPWAY is a structural analogue of
[11C]WAY100635 with moderate affinity (<10 nM) to the
5-HT1A receptor (Lang et al. 1999). Administration of
paroxetine in monkeys induced 8–27 % decreases in
[18F]FPWAY binding in the raphe nuclei and 10–20 %
increases in cortical [18F]FPWAY binding (Giovacchini
et al. 2005). Although these results were encouraging, so
far no follow-up human study has been reported.

In summary, serotonin-dependent decreases in 5-HT1A re-
ceptor antagonist radioligand binding have primarily been ob-
served in the raphe nuclei and have been small or absent in
serotonin projection regions. These regional differences may
be partly caused by SSRI-induced increases in extracellular
serotonin being larger in the raphe nuclei than in serotonin
projection regions, as shown with microdialysis (Fuller
1994). In addition, it has been proposed that there may be
differences in the regional responses to increased synaptic
serotonin. 5-HT1A autoreceptors in the raphe nuclei have been
suggested to undergo internalization, while postsynaptic re-
ceptors in the serotonin projection regions may not internalize
(Aznavour et al. 2006; Riad et al. 2004). The raphe nuclei are,
however, small structures of the brain stem, and reliable de-
termination of 5-HT1A receptor binding has proven challeng-
ing because of limitations in spatial resolution. This consider-
ation may have limited the application of the use of 5-HT1A

receptor radioligands for measurement of acute changes in
extracellular serotonin in patient populations.

The 5-HT2A receptor is the main excitatory GPCR for se-
rotonin and is widely distributed in the brain, with highest
density in the cerebral cortex (Pazos et al. 1987b). Several 5-
HT2A receptor antagonist radioligands have been developed
for PET, e.g., [18F]altanserin (Lemaire et al. 1991) and
[11C]MDL 100907 (Lundkvist et al. 1996). The 5-HT2A re-
ceptor antagonist radioligands have in general shown no se-
rotonin sensitivity in PET studies on rats (Hirani et al. 2003),
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baboons (Staley et al. 2001), or humans (Matusch et al. 2007;
Meyer et al. 1999; Pinborg et al. 2004), but Yatham et al.
found a paradoxical decrease in cortical [18F]setoperone
binding following tryptophan depletion (Yatham et al.
2001). As exceptions, clomipramine and dexfenfluramine
have been found to decrease cortical [18F]altanserin bind-
ing in human subjects (Larisch et al. 2003; Quednow
et al. 2012). These two studies, however, may be incon-
clusive as clomipramine and the main metabolite of dex-
fenfluramine, nordexfenfluramine, might also have binding
affinity for the 5-HT2A receptor, which may have contrib-
uted to the observed reductions in binding (Paterson et al.
2010; Rothman et al. 2000).

Another approach has made use of radioligands targeting
the SERT, e.g., [11C]DASB (Houle et al. 2000) and
[11C]MADAM (Halldin et al. 2005), which were originally
used for the determination of SERT occupancy by inhibitors
of serotonin reuptake (tricyclic antidepressants and SSRI
drugs). This approach to demonstrate changes in endogenous
serotonin has been more challenging as most serotonin chal-
lenge studies utilize drugs that directly act on the SERT.
However, several attempts have been reported using non-
selective MAO inhibitors, 5-hydroxytryptophan (5-HTP), or
tryptophan depletion. After elevation of extracellular seroto-
nin levels, decreases in [11C]DASB binding have been consis-
tently shown in the brain of rats (Lundquist et al. 2007), cats
(Ginovart et al. 2003), and non-human primates (NHPs)
(Lundquist et al. 2007; Yamamoto et al. 2007). Milak and
colleagues, however, reported that tryptophan depletion para-
doxically decreased binding potential values, possibly related
to protein kinase-C-dependent SERT sequestration being less
inhibited by serotonin and resulting in increased SERT inter-
nalization (Milak et al. 2005). In two reported human studies,
tryptophan depletion did, however, not affect [11C]DASB
binding (Praschak-Rieder et al. 2005; Talbot et al. 2005).

In conclusion, at the start of NEWMEDS, no established
methodology existed for assessment of changes in extra-
cellular serotonin concentrations in the human brain. We
therefore initiated the validation of the use of the novel 5-
HT1B receptor radioligand [11C]AZ10419369 for evalua-
tion of changes in extracellular serotonin. The characteri-
zation of [11C]AZ10419369 binding in NHPs and humans
was initiated at the start of NEWMEDS (Pierson et al. 2008;
Varnäs et al. 2011), allowing for a quick cross-species evalu-
ation of serotonin sensitivity. The 5-HT1B receptor was con-
sidered a promising target as serotonin binds with quite high
affinity to this receptor (∼1 nM) (Millan et al. 2002; for review
see Paterson et al. 2010), and a relatively large proportion of
the receptors may be in the high affinity state in vitro (Granas
et al. 2001). In addition, 5-HT1B receptors are expressed at
relatively high density in the raphe nuclei and in serotonergic
projection areas (Bonaventure et al. 1997), allowing for de-
tailed examination of regional effects.

The serotonin sensitivity of [11C]AZ10419369 binding was
initially explored in three monkeys using the potent serotonin
releaser (±)-fenfluramine. Fenfluramine reduced the specific
binding of [11C]AZ10419369 in a dose-dependent manner
with a regional average of 27 % after 1.0 mg/kg and 50 %
after 5.0 mg/kg (Finnema et al. 2010b). This study showed for
the first time a major decrease in radioligand receptor binding
measured with PET in the NHP brain after administration of a
serotonin releasing agent. Importantly, these observations
have now been confirmed in four other studies using the 5-
HT1B receptor radioligands [11C]P943 or [11C]AZ10419369
(Cosgrove et al. 2011; Finnema et al. 2012c; Ridler et al. 2011;
Yamanaka et al. 2014) (Table 2). These studies indicate that 5-
HT1B receptor radioligands are promising tools for the mea-
surement of serotonin release and provide a good rationale for
further development of the methodology.

It is not easily feasible to continue the fenfluramine studies
in human subjects since fenfluramine products were with-
drawn from the market in 1997 following reports of valvular
heart disease and pulmonary hypertension in chronic users
(Connolly et al. 1997). The serotonin sensitivity of
[11C]AZ10419369 in humans was therefore assessed using
the SSRI escitalopram which has been shown devoid of sig-
nificant affinity for the 5-HT1B receptor (Maier et al. 2009;
Sanchez et al. 2003). In pilot PET studies in monkeys, we
confirmed that a high dose of escitalopram (2.0 mg/kg, i.v.)
decreased [11C]AZ10419369 binding by 11 % in serotonin
projection areas and by 25 % in the raphe nuclei (Nord et al.
2013). In healthy human subjects, administration of a single
dose of escitalopram (20 mg, p.o.), a daily dose commonly
used in the treatment of depression, tended to decrease
[11C]AZ10419369 binding in the raphe nuclei but increased
radioligand binding by 5 % in serotonergic projection
areas (p<0.05) (Table 2). In a consecutive test-retest study
in human subjects, [11C]AZ10419369 binding was found
to be very reproducible with an absolute mean difference
in BPND of less than 3 % in serotonergic projection areas
between morning and afternoon measurements (Nord et al.
2014). These studies suggested that a single clinically rel-
evant dose of escitalopram may decrease extracellular se-
rotonin concentrations in serotonergic projection areas in
the human brain. Since, hypothetically, desensitization of
inhibitory serotonin autoreceptors will cause the serotonin
concentration in projection areas to increase over time
with chronic administration, these findings might aid in
understanding the mechanism of the delayed onset of the
clinical effects of SSRIs.

Concomitantly, other investigators also examined the ef-
fects of SSRI-induced changes in extracellular serotonin using
radioligand binding. The binding of [11C]P943 was reduced
by 9–30 % in serotonergic projection areas in monkeys after a
large acute dose of citalopram (4 mg/kg, i.v.) (Ridler et al.
2011), but to date there have been no follow-up studies
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reported in human subjects. Kumar and colleagues reported
the development of [11C]CUMI-101 which was demonstrated
to be an agonist to human 5-HT1A receptors expressed on
Chinese hamster ovary cells (Kumar et al. 2007). However,
more recently, [11C]CUMI-101 was shown to be an 5-HT1A

receptor antagonist in binding assays using native rat, NHP, or
human brain tissue (Hendry et al. 2011; Shrestha et al. 2014).
Nevertheless, [11C]CUMI-101 was found to be sensitive to
serotonin, and citalopram (4 mg/kg, i.v.) reduced its binding
by 30 % in serotonergic projection areas in monkeys (Milak
et al. 2011). Selvaraj and colleagues demonstrated that
citalopram (10 mg, i.v.) increased the cortical binding of this
radioligand by 7 % in human subjects (Selvaraj et al. 2012),
but this finding was not replicated in another study (Pinborg
et al. 2012). Other recent initiatives include work with the 5-
HT4 receptor antagonist [

11C]SB207145 and the 5-HT2A re-
ceptor agonist [11C]Cimbi-36. Binding of [11C]SB207145
was not found to be sensitive to acute changes in extracellular
serotonin following pindolol and acute citalopram administra-
tion (Marner et al. 2010), but treatment with fluoxetine
(40 mg/day) decreased [11C]SB207145 binding by 5 % in a
3-week placebo-controlled study in healthy human subjects
(Haahr et al. 2014). [11C]Cimbi-36 is a recently developed
agonist radioligand for the 5-HT2A receptor (Ettrup et al.
2014; Ettrup et al. 2011; Finnema et al. 2014d), and prelimi-
nary evaluation of the serotonin sensitivity of [11C]Cimbi-36
in monkeys demonstrated that fenfluramine (5 mg/kg) re-
duced cortical BPND values by ∼60 % (Finnema et al.
2012b) (Table 2). These results warrant further evaluation of
[11C]Cimbi-36 in humans to confirm the potential of agonist
radioligands for PET measurement of changes in extracellular
neurotransmitter concentrations.

In conclusion, the recently developed radioligands
[11C]AZ10419369, [11C]P943, and [11C]CUMI-101 were
shown to be highly sensitive to SSRI-induced changes in se-
rotonin concentrations in NHPs (Milak et al. 2011; Nord et al.
2013; Ridler et al. 2011). Studies using [11C]AZ10419369 and
[11C]CUMI-101 in human subjects (Nord et al. 2013; Pinborg
et al. 2012; Selvaraj et al. 2012) suggest that single doses of
SSRIs do not increase extracellular serotonin concentrations
in serotonergic projection regions, as assessed with PET. Of
interest is that the cross-species differential effect of SSRIs on
cortical extracellular serotonin concentrations may be related
to the SSRI dose. In a recent preliminary study, we determined
SERT occupancy after single doses of citalopram and
escitalopram and concluded that the previously applied doses
of citalopram and escitalopram nearly saturated SERT in the
monkey brain (Finnema et al. 2014a). Similarly, brain micro-
dialysis experiments in rodents have demonstrated that a high
dose of citalopram (10 mg/kg, i.p.) significantly increased
serotonin concentrations in the cortex but that a lower dose
(1 mg/kg, i.p.) did not have the same effect (Invernizzi et al.
1992). Consideration of SERT occupancy is therefore of

importance when comparing changes in extracellular seroto-
nin across species.

A second observation was that a single dose of an SSRI
was associated with possible reductions in extracellular sero-
tonin in the projection regions of the human brain (Nord et al.
2013; Selvaraj et al. 2012). These results are very similar to a
previous monkey study in which paroxetine induced a de-
crease in [18F]FPWAY binding in the raphe nuclei while bind-
ing in the cortex was increased (Giovacchini et al. 2005).
These results appear in contrast to the majority of brain mi-
crodialysis experiments in rodents. However, a number of
microdialysis studies have shown that SSRI-induced increases
in extracellular serotonin in the raphe nuclei may lead to acti-
vation of 5-HT1A autoreceptors and decreased neuronal firing
and serotonin release in the projection areas (Bel and Artigas
1992; Hervas and Artigas 1998; Invernizzi et al. 1992). The
effect of an SSRI on extracellular serotonin in the projection
regions depends on the balance between local SERToccupan-
cy, promoting increased extracellular serotonin concentra-
tions, and the consequent decrease in neuronal firing and se-
rotonin release leading to decreased extracellular serotonin
concentrations. It may thus be hypothesized that overall, a
single clinically relevant dose of an SSRI results in a
decrease in the extracellular concentration of serotonin in
the projection regions. These studies may thus provide
further understanding of the mode of action of SSRIs,
and the developed radioligands appear useful for applica-
tions in the clinical development of drug treatments
intended to modulate endogenous serotonin. However, to
date, no methodology has been sufficiently validated for
assessment of acute changes in extracellular serotonin in
the human brain. Other serotonin challenge paradigms than
SSRI administration should be considered for combination
with these new 5-HT1A and 5-HT1B receptor radioligands.

Noradrenaline

Receptors for noradrenaline (and adrenaline) are divided into
three main classes, i.e., α1-, α2-, and β-adrenoceptors (ARs),
each of which is comprised of three subtypes. There are three
α2-AR subtypes in humans and other mammalians: the α2A-,
α2B-, and α2C-ARs. Of these, the α2A-AR subtype has the
most widespread distribution both in the CNS and in pe-
ripheral tissues, and has wide-ranging physiological func-
tions that include a role as a presynaptic and auto-
inhibitory regulator of neurotransmitter release and many
postsynaptic effects. The α2B-subtype does not have a
significant presence in the CNS. The α2C-subtype is consid-
ered to have a predominantly modulatory function, at least to
some extent with a presynaptic auto- and heteroreceptor local-
ization (Ihalainen and Tanila 2002; Sallinen et al. 1997). The
lack of major physiological functions in peripheral tissues,
together with a neuromodulatory heteroreceptor role, makes
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the α2C-AR subtype an appealing potential CNS drug target
(Scheinin et al. 2001).

There is no subtype-selective radioligand for PET imaging
of CNS ARs available for clinical use. Most experience has
been gained from attempts to develop PET radioligands
for α2-ARs, whereas α1-ARs and β-ARs have received
less attention. Two 11C-labeled sertindole analogues exhib-
ited high in vitro selectivity for α1-ARs, but PET imaging
in cynomolgus monkeys revealed poor brain uptake and a
high degree of non-displaceable binding (Airaksinen et al.
2013). [18F](Fluoromethoxy)ethoxy)methyl)-1H-1,2,3-triazol-
1-yl)propan-2-ol ([18F]FPTC) showed specific binding to β-
ARs in vitro, but binding was non-displaceable in vivo in rats
(Mirfeizi et al. 2014).

The recently developed PET radioligand candidates
[11C]MBF and [11C]JP-1302 are indeed selective for the
α2C-AR subtype, but have poor access to their targets in
the CNS due to the effect of efflux transporters, which
became evident in a study performed with p-glycoprotein
and breast cancer resistance protein (P-gp/Bcrp) knockout
mice compared to wild-type mice (Kawamura et al. 2010).
The α2-AR radioligands [11C]MK-912 (Shiue et al. 1998),
[O-methyl-11C]RS-15385-197(Hume et al. 2000),
[11C]R107474 (Van der Mey et al. 2006), [11C]yohimbine
(Jakobsen et al. 2006), and [11C]mirtazapine (Marthi et al.
2002) do not differentiate between the α2-AR subtypes. Brain
uptake of [O-methyl-11C]RS-15385-197 was minimal in
humans during a 90-min PETmeasurement (Hume et al. 2000).

In a PET study on pigs, based on a decreased volume of
distribution of [11C]yohimbine, a high dose (10 mg/kg, i.v.) of
amphetamine led to approximately 5–30% binding reductions
in different brain regions known to express α2-ARs (Table 3).
These data suggested that [11C]yohimbine binding could be
used as a surrogate marker of noradrenaline release in vivo
(Landau et al. 2012). This finding has so far not been extended
to alternative challenge protocols or to human subjects. The
test-retest reliability of [11C]yohimbine has also yet to be con-
firmed. After i.v. administration of [11C]yohimbine, there
were no radioactive metabolites observed in plasma (at least
in pigs), which should facilitate quantification of
[11C]yohimbine binding. However, because of the wide dis-
tribution of the α2A-AR subtype in the CNS, no suitable ref-
erence region could be identified in pigs (Jakobsen et al.
2006). Very recently, first in human studies with
[11C]yohimbine were reported. For quantitative analysis in
humans, a metabolite-corrected arterial input function may
be required, although the corpus callosum was explored as a
potential reference region (Nahimi et al. 2015). Phan et al.
(2015) recently demonstrated that amphetamine also reduced
[11C]yohimbine binding in rats (Phan et al. 2015).

Of the evaluated radioligand candidates for α2-AR,
[11C]mirtazapine has also been tested in humans (Munk and
Smith 2011). However, its non-selectivity and binding to 5-

HT2, 5-HT3, and histamine H1 receptors (de Boer 1996) pre-
cludes an assessment of its suitability as a radioligand for α2-
ARs and for monitoring noradrenaline release. While
[11C]mirtazapine binding has been reported to be significantly
reduced in non-responders to antidepressant treatments (Smith
et al. 2009), the receptor and neurotransmitter implications of
this finding are at most speculative because of this lack of
selectivity. It can be concluded that there was no methodology
for measurement of endogenous synaptic noradrenaline in vivo
in the human brain before the initiation of NEWMEDS.

Labeling of the subtype-selective α2C-AR antagonist
ORM-13070 (1-[(S)-1-(2,3-dihydrobenzo[1,4]dioxin-2-yl)
methyl]-4-(3-methoxymethylpyridin-2-yl)-piperazine) with
11C at high radiochemical purity (>99 %) and specific radio-
activity (640±390 GBq/μmol) and the preliminary character-
ization of the radioligand candidate in rats and α2-AR subtype
knockout mice (Arponen et al. 2014) paved the way for a
metabolism and dosimetry study in healthy human males
(Luoto et al. 2014). This study revealed the presence of two
radioactive metabolites of the radioligand in human blood, in
agreement with a previous investigation in rats (Arponen et al.
2014), but indicated that reference tissue methods would still
be applicable for clinical imaging. The molecular identity of
these metabolites has not been determined, but it was conclud-
ed that they probably represent small volatile molecules not
detectable with the employed HPLC-mass spectroscopy ap-
proaches and unlikely to interfere with receptor binding
(Arponen et al. 2014; Luoto et al. 2014). Also, from a radia-
tion safety viewpoint, [11C]ORM-13070 appeared suitable for
repeated measurements in humans (Luoto et al. 2014).

The test-retest reliability of [11C]ORM-13070 PETwas in-
vestigated by imaging six healthy male subjects twice (Lehto
et al. 2015b). The bound/free ratio of radioligand uptake rel-
ative to non-specific uptake into the cerebellum during the
time interval of 5–30 min was largest in the dorsal striatum:
0.77 in the putamen and 0.58 in the caudate nucleus. Absolute
test-retest variability in the bound/free ratio of the radioligand
was 4.3 % in the putamen and also <10 % in the caudate
nucleus and thalamus. The pattern of [11C]ORM-13070 bind-
ing, as determined by PET, was in agreement with receptor
density results previously derived from postmortem autoradi-
ography (Fagerholm et al. 2008). PET data analysis results
obtained with a compartmental model fit, the simplified refer-
ence tissue model, and a graphical reference tissue analysis
method were convergent with the tissue ratio method (Lehto
et al. 2015b). The results of this study supported the use of
[11C]ORM-13070 PET in the quantitative assessment of α2C-
ARs in the human brain in vivo.

The suitability of [11C]ORM-13070 for measurement of
amphetamine-evoked changes in extracellular noradrenaline
levels was explored ex vivo in rat brain sections and in vivo
with PET imaging in monkeys; rat striatal microdialysis ex-
periments confirmed amphetamine-induced elevations in
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noradrenaline and dopamine concentrations (Finnema et al.
2014b). After injection of [11C]ORM-13070 in rats, mean
striatal specific binding ratios, determined using the cerebel-
lum as a reference region, were 1.4±0.3 after saline pre-
treatment and 1.2±0.2 after amphetamine administration
(0.3 mg/kg, s.c.). Injection of [11C]ORM-13070 in NHPs re-
sulted in mean striatal binding potential (BPND) estimates of
0.65±0.12 at baseline. Intravenous administration of amphet-
amine (0.5 and 1.0 mg/kg) reduced BPND values by 31–50 %
in monkeys (Table 3). Amphetamine (0.3 mg/kg, s.c.) in-
creased extracellular noradrenaline (by 400 %) and dopamine
(by 270%) in the rat striatum. Together, these results indicated
that [11C]ORM-13070 may be a useful tool for evaluation of
synaptic noradrenaline concentrations in vivo (Finnema et al.
2014b).

A limitation of the use of amphetamine in the animal val-
idation studies was the non-selective elevation of noradrena-
line and dopamine. Although the relative amphetamine-
evoked increase in noradrenaline concentrations was greater
than the dopamine increase, dopamine also binds to α2C-ARs,
albeit with 5-fold lower affinity than noradrenaline
(Ruuskanen et al. 2005). It could thus not be ruled out that
the amphetamine-induced decrease in [11C]ORM-13070 bind-
ing was partly related to increased dopamine. In an attempt to
selectively elevate synaptic noradrenaline concentrations, we
performed experiments with the potent noradrenaline trans-
porter (NET) inhibitor atomoxetine. In preliminary PET stud-
ies in two monkeys, atomoxetine did not influence the striatal
binding of [11C]ORM-13070 consistently (Finnema et al.
2014b). This was not surprising since atomoxetine increased
extracellular noradrenaline to a smaller extent than amphet-
amine, as shown by microdialysis.

A subsequent study explored the use of [11C]ORM-13070
to monitor α2C-AR occupancy and the tracer’s capacity to
reflect changes in extracellular concentrations of endogenous
noradrenaline in the human brain. The subtype non-selective
α2-AR antagonist atipamezole was administered at different
doses to eight healthy volunteer subjects. Using the bound/
free ratio during 5–30 min after [11C]ORM-13070 injection,
the maximal extent of inhibition of striatal [11C]ORM-13070
uptake achieved by atipamezole was 78% (95%CI 69–87%)
in the caudate nucleus and 65 % (53–77 %) in the putamen.
The EC50 estimates of atipamezole (1.6 and 2.5 ng/ml, respec-
tively) were in agreement with the drug’s α2C-AR affinity.
This provided strong support for the use of [11C]ORM-
13070 to monitor drug occupancy of α2C-ARs in the living
human brain. Three of the four noradrenaline challenges that
were explored, each challenge in four subjects, were associat-
ed with small, approximately 10–16 % average reductions in
[11C]ORM-13070 binding (atomoxetine, ketamine, and the
cold pressor test; p<0.05 for all), but the fourth investigated
challenge, insulin-induced hypoglycemia, did not have any
evident effect on radioligand uptake (Table 3). This suggested

that [11C]ORM-13070 has potential as a tool for in vivo
monitoring of synaptic concentrations of noradrenaline
in the human brain (Lehto et al. 2015a) and provided
a rationale for a larger study aimed to confirm these
findings. The results of the follow-up study are featured
in this issue (Lehto et al. 2015c). This study showed
significant effects on [11C]ORM-13070 binding in the
dorsal striatum in response to ketamine infusion (up to
24 % average reduction in B/F), and also in response to
a combination of oral atomoxetine and cold stimulation
(up to 23 % average reduction in B/F). These results
provide evidence in favor of [11C]ORM-13070 binding
in the dorsal striatum being sensitive to increased extra-
cellular concentrations of noradrenaline in healthy hu-
man subjects.

GABA

GABA is the principal inhibitory neurotransmitter in the
mammalian CNS. Heteropentameric GABAA receptors in
the CNS mainly contain two α, two β, and a single γ subunit
(McKernan and Whiting 1996). Compounds that bind to the
GABAA benzodiazepine (BZD) binding site are allosteric li-
gands; they exhibit no intrinsic activity of their own, but po-
tentiate or inhibit the effects of GABA at receptors that contain
α1, α2, α3, or α5 subunits (Dawson et al. 2005). Changes in
synaptic GABA levels have been assessed in healthy control
subjects with the GABAA receptor BZD site radioligands
[11C]flumazenil and [11C]Ro15-4513 (Frankle et al. 2012;
Frankle et al. 2009; Stokes et al. 2014). Synaptic GABA levels
were reported to be increased following oral administration of
tiagabine, which acts by blocking the GABA transporter 1
(GAT1). Maximal effects observed for [11C]flumazenil were
a ∼15 % increase in the BPND for the cortex and medial tem-
poral lobe after administration of 0.21 mg/kg tiagabine
(Frankle et al. 2009) (Table 3). Although the observed changes
in [11C]flumazenil binding were relatively small, they ap-
peared to be reproducible (Frankle et al. 2012). More recently,
Stokes et al. demonstrated that oral tiagabine administration
(0.18 mg/kg) resulted in significant reductions in α1-subunit
specific [11C]Ro15-4513 binding in the hippocampus,
parahippocampus, amygdala, and anterior cingulate (Stokes
et al. 2014). The maximal effects were greater than those seen
with [11C]flumazenil, with tiagabine causing a 61% reduction
in the α1-subunit specific [11C]Ro15-4513 binding (VS)
(Stokes et al. 2014) (Table 3). The proposed underlying mech-
anism is that increased extracellular GABA levels evoked by
tiagabine result in changes in the affinity of BZD receptor
ligands produced by GABAA receptor activation, known as
the BGABA shift^ (Kemp et al. 1987). The observed differ-
ences in sensitivity between the two radioligands can therefore
be explained by [11C]flumazenil acting as a weak partial ago-
nist in vivo (Higgitt et al. 1986; Miller et al. 1988) and
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[11C]Ro15-4513 being a partial inverse agonist at the BZD
site, respectively. Within NEWMEDS, we have attempted
to measure tiagabine-induced changes in 3H- and 11C-la-
beled flumazenil and Ro15-4513 binding to brains of ro-
dents and anesthetized NHPs, but did not observe signif-
icant changes in radioligand binding (Finnema et al.
2012a). Our ongoing efforts in this area are to investigate
whether a novel BZD site full agonist, [11C]RO6899880,
provides a more sensitive approach for measuring changes
in synaptic GABA concentrations (Finnema et al. 2013b,
2014c; Stepanov et al. 2013).

Glutamate

L-Glutamate is an important mediator of excitatory neuro-
transmission in the CNS. A large and diverse array of recep-
tors, comprising both ligand-gated ion channels (ionotropic)
and GPCRs (metabotropic), mediates the cellular effects of
glutamate (Kew and Kemp 2005). With growing knowledge
and understanding on the physiological roles of the glutamate
receptor subtypes, interest has developed in their potential as
promising CNS therapeutic targets in a large number of dis-
eases. This has provided a powerful stimulus for the develop-
ment of new tools, including PET radioligands, to assist trans-
lational drug discovery and also enabling further insight into
glutamatergic neurotransmission in the human brain.

Ionotropic glutamate receptors are comprised of N-methyl-
D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), and kainate receptors; these
gate monovalent and/or divalent cations and have widespread
distributions in the brain (Watkins and Jane 2006). Several
NMDA receptor radioligands have been evaluated for their
utility as PET imaging agents, but no suitable AMPA or
kainate receptor radioligands have so far been developed.
The suitability of [11C]ketamine, which binds to the intra-
channel phencyclidine (PCP) site of NMDA receptors, as a
PET ligand was first established in NHPs (Hartvig et al.
1994). A subsequent study in humans demonstrated that
(S)-[N-methyl-11C]ketamine produced a radioactivity distribu-
tion in the brain consistent with the known NMDA receptor
expression pattern, and that its binding could be displaced by
unlabeled enantiomers of ketamine (Hartvig et al. 1995). In
patients with medial temporal lobe epilepsy, (S)-[N-
methyl-11C]ketamine demonstrated decreased binding in the
temporal lobes of ictal onset, in comparison with the contra-
lateral lobes (Kumlien et al. 1999). Since endogenous gluta-
mate concentrations may change in relation to seizure activity
(Carlson et al. 1992), these binding differences may be ex-
plained by glutamate-dependent changes to the opening state
of the NMDA receptor ion channel, thereby regulating
radioligand binding to the PCP binding site, but they might
also be a consequence of neuronal loss or reduced regional
blood flow (Kumlien et al. 1999). There is also some

evidence, albeit mixed, from 1H-MRS imaging in rats (Kim
et al. 2011) and humans (Rowland et al. 2005; Stone et al.
2012), indicating that ketamine can elevate brain glutamate or
related metabolite levels, suggesting that ketamine may also
be a useful pharmacological challenge tool for examining glu-
tamate release.

Somewhat more promising progress has been made to-
wards PET imaging of metabotropic glutamate receptor sub-
types, particularly with some non-competitive antagonists of
the mGluR5 subtype (Sobrio 2013). Application of one of
these radioligands, the negative allosteric modulator
[11C]ABP688, has provided initial indirect evidence to sup-
port sensitivity to changes in glutamate release. [11C]ABP688
binding appears to be sensitive to increased glutamate release,
most likely via an allosteric interaction, following N-
acetylcysteine administration (Miyake et al. 2011; Sandiego
et al. 2013) and sub-anesthetic ketamine challenge
(DeLorenzo et al. 2014), although N-acetylcysteine and MK-
801 did not affect [11C]ABP688 binding in rats (Wyckhuys
et al. 2013; Table 4). [18F]FPEB (Wong et al. 2013; Zhang
et al. 2014) and [18F]SP203 (Kimura et al. 2012) have also
been demonstrated as mGluR5 PET radioligands, but there
have been no studies reported with them investigating endog-
enous glutamate changes.

Acetylcholine

Muscarinic receptor (mAChR: M1–M5) GPCRs and nicotinic
ligand-gated ion channel receptors (nAChRs) mediate diverse
effects of ACh in the CNS (for reviews see Gotti et al. 2009;
Langmead et al. 2008). There has been a strong drive to iden-
tify and develop molecules with high receptor subtype selec-
tivity, and as a result, many receptor-selective cholinergic li-
gands, including putative PET radioligands, have been devel-
oped (for review see Eckelman 2006), some of which have
been shown to be sensitive to endogenous ACh (Table 4).

The M2 mAChR subtype selective agonist [18F]FP-TZTP
has been shown sensitive to ACh in monkeys (Carson et al.
1998). Intravenous administration of physostigmine reduced
radioligand binding across brain regions with significant re-
ductions of 22–29 % in VT of cortical regions (Table 4). In a
more recent study, it has been confirmed that physostigmine
affects [18F]FP-TZTP binding in human subjects but the effect
is influenced by age and APOE-ε4 genotype of the subjects
(Cohen et al. 2006).

(+)N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB)
is a subtype non-selective mAChR orthosteric antagonist
which has been used to demonstrate mAChR occupancy by
scopolamine in conscious monkey brain (Yamamoto et al.
2011). [11C](+)3-MPB was not sensitive to increased endog-
enous ACh levels following administration of an acetylcho-
linesterase (AChE) inhibitor, but two related compounds,
[11C](+)3-EPB and [11C](+)3-PPB, with lower mAChR
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affinity, were sensitive to elevations of endogenous ACh
provoked by administration of donepezil (250 μg/kg),
leading to significantly reduced binding (e.g., for [11C](+)3-
PPB ∼19% in striatum and ∼52% in frontal cortex) in monkey
brain (Nishiyama et al. 2001; Tsukada et al. 2004) (Table 4).
Another subtype non-selective mAChR radioligand,
[11C]NMPYB, was found not to be sensitive to ACh in PET
studies on rats (Ma et al. 2004).

Considerable efforts have been devoted to the development
of subtype-selective mAChR PET radioligands, primarily to
assist drug development, but also to provide more detailed
insight into the specific roles of the different receptor subtypes
in interactions between cholinergic mechanisms and other en-
dogenous mediators in the CNS. Progress has been slow but
some leads have emerged and some potential radioligands are
in the early stages of evaluation and validation in animal stud-
ies, for example, the M1 selective mAChR agonist radioligand
[11C]AF150(S) (Buiter et al. 2013). In rat brain, regional
[11C]AF150(S) binding was consistent with the reported dis-
tribution ofM1 receptors, althoughBPND values were relative-
ly low (<0.3; Buiter et al. 2013). Administration of the dopa-
mine D2 receptor antagonist haloperidol (1 mg/kg, s.c.) re-
duced [11C]AF150(S) binding by 27 and 15 % in the striatum
and hippocampus, respectively. Since haloperidol is known to
elevate extracellular ACh levels at this dose, these findings
suggest that [11C]AF150(S) may be sensitive to changes in
extracellular concentrations of ACh, but further investigation
is required (Buiter et al. 2013).

Developments in nAChR research have also stimulated the
search for subtype-selective ligands, including the develop-
ment of PET radioligands, particularly for the most abundant
nAChR subtypes in mammalian brain, α4β2 and α7, due to
their prospective therapeutic potential (for reviews see
Jasinska et al. 2014; Mo et al. 2014). Many potential PET
radioligands have been identified and investigated for imaging
of brain nAChRs (Mo et al. 2014;Wu et al. 2010), but only the
non-selective agonist [11C]nicotine and the α4β2 agonists
2-18F-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA)
and 6-[18F]FA have been available for studies in humans (for
review see Horti et al. 2010). [11C]Nicotine has been used ex-
tensively to study brain nAChR changes in smokers and in
different patient groups, but its utility is limited because of is-
sues of cerebral blood flow dependence and relatively high non-
specific binding (Nyback et al. 1994). 2-[18F]FA has also been
used to show changes in α4β2 nicotinic receptor availability.
For example, it has been demonstrated that cigarette smoking
inhibits 2-[18F]FA binding in an exposure-related manner, such
that smoking of one cigarette produced almost 90 % receptor
occupancy (Brody et al. 2006). However, 2-[18F]FA has slow
brain kinetics which is a limitation of a PET ligand, so new
radioligands are being explored (Mo et al. 2014).

Investigations of the sensitivity of α4β2 nAChR PET
radioligands for measuring ACh changes have not beenT
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reported in humans, but there are some indications from
AChE inhibitor treatment studies in rats and NHPs which
suggest that this might become feasible with improved
radioligands (Table 4). Physostigmine infusion was shown
to result in significant reductions in distribution volumes of
2-[18F]FA (Valette et al. 2005), [18F]-(−)-flubatine (Gallezot
et al. 2014), and [18F]norchloro-fluoro-epibatidine
([18F]NFEP; Ding et al. 2000) in various brain regions of
NHPs, as well as reducing [18F]nifene binding in rat brain
(Hillmer et al. 2013). Similarly, donepezil and galantamine
were shown to decrease [18F]NFEP binding in various regions
of monkey brain (Gallezot et al. 2014) and [18F]nifene binding
(Hillmer et al. 2013) in regions of rat brain, respectively
(Table 4). Taken together, these studies demonstrate that
α4β2 nAChR radioligands may be suitable for measuring
ACh changes and future application of the methodology in
human subjects may be anticipated.

Opioid peptides

The endogenous opioid systems of the brain contain four fam-
ilies of opioid peptides (endorphins, enkephalins, dynorphins,
and endomorphins) which are thought to act through four
subtypes of G-protein-coupled opioid receptors (μ-, κ-, δ-,
and nociceptin-OR). Endorphins and enkephalins are thought
to preferentially act on μ- and δ-ORs, dynorphins on κ-ORs,
and endomorphins on μ-ORs (Gianoulakis 2009). Evidence
for PET radioligand binding being sensitive to changes in
endogenous opioid release originated from clinical PET
studies. Acute somatic pain (Bencherif et al. 2002; Scott
et al. 2007; Zubieta et al. 2001), inflammatory pain (Jones
et al. 1994), affective responses (Zubieta et al. 2003), and
placebo administration (Scott et al. 2008; Zubieta et al.
2005) were shown to modulate [11C]carfentanil or
[11C]diprenorphine binding in a manner consistent with
changes in endogenous opioid peptide concentrations.
More recently, Colasanti and colleagues reported that a
pharmacologically induced elevation in endogenous opioid
release reduced [11C]carfentanil binding in several regions
of the human brain, including the basal ganglia, frontal
cortex, and thalamus (Colasanti et al. 2012). Oral administra-
tion of D-amphetamine, 0.5 mg/kg, 3 h before [11C]carfentanil
injection, reduced BPND values by 2–10 %. The results were
confirmed in another group of subjects (Mick et al. 2014).
However, Guterstam and colleagues observed no change in
[11C]carfentanil binding when D-amphetamine, 0.3 mg/kg,
was administered intravenously directly before injection of
[11C]carfentanil (Guterstam et al. 2013). It has been hypothe-
sized that this discrepancy may be related to delayed increases
in extracellular opioid peptide concentrations following
amphetamine-evoked monoamine release (Colasanti et al.
2012; Mick et al. 2014).

Summary of results of NEWMEDS work-package 5

The development and validation of PET radioligands requires
significant resources and expertise and often coincides with
drug development. Radioligand development specifically tai-
lored toward measurement of neurotransmitter release has so
far been limited. For NEWMEDS work-package 5 we collab-
orated across institutions to utilize radioligands that were al-
ready available from drug development programs, such as
[11C]AZ10419369, [11C]ORM-13070, and [11C]Lu
AE92686 (Fig. 1), and tested them for sensitivity to chang-
es in extracellular concentrations of endogenous neuro-
transmitters. In addition, we initiated development of
new radioligands tailored towards the measurement of
neurotransmitter release, e.g., [11C]RO6899880 for
GABA (Fig. 1). Sharing the workload across institutions,
we utilized in vitro techniques in cell and tissue models,
in vivo receptor binding and microdialysis techniques in
rodents, and in vivo PET imaging in NHPs and humans
(Fig. 2). Methods were validated for the measurement of
changes in extracellular serotonin levels using the 5-HT1B

receptor radioligand [11C]AZ10419369 in NHPs
(Finnema et al. 2010b, 2012c; Nord et al. 2013) and
humans (Nord et al. 2013, 2014). In addition, this cross-
institution approach enabled us to validate measurement
of endogenous noradrenal ine using the α2C-AR
antagonist [11C]ORM-13070 preclinically, using cross-
species autoradiography (Arponen et al. 2014; Finnema
et al. 2014b), rat microdialysis and PET imaging in
NHPs (Finnema et al. 2014b), and clinically using PET
(Lehto et al. 2015a, c) (Fig. 2). Work is ongoing to ex-
p lore the u t i l i ty of the nove l GABAA agonis t
[11C]RO6899880 (Finnema et al . 2013b, 2014c;
Stepanov et al. 2013) and the phosphodiesterase 10A
(PDE10A) inhibitor [11C]LuAE92686 (Kehler et al.
2014) for the measurement of changes in concentrations
of GABA and cyclic nucleotides, respectively, using cells,
rodent in vivo receptor binding, and NHP PET imaging.
Perhaps the most valuable aspect of being able to access
multiple techniques was that different pharmacological
challenge regimens could be explored in rodents, signifi-
cantly improving the success of exploratory NHP studies,
before progressing to humans.

Considerations and current challenges

Development and characterization of radioligands

Since PET imaging provides an indirect approach to assess
changes in extracellular neurotransmitter levels, the need to
have high-quality PET radioligands and pharmacological
challenge tools is paramount. Several review papers have
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extensively discussed requirements for optimal radioligands
for the CNS (Halldin et al. 2001; Pike 2009), and based on
these criteria biomathematical modeling approaches have
been described to predict the in vivo performance of
radioligands based on in vitro and in silico assessments
(Friden et al. 2014; Guo et al. 2009; Zhang et al. 2013).
These approaches are promising and may possibly be further
refined for radioligands tailored to the use of measuring
changes in neurotransmitter concentrations. For instance, high
affinity for the target (KD in the nanomolar range) and high
selectivity towards the target versus other related proteins are
considered important criteria for optimal CNS radioligands
(Halldin et al. 2001; Pike 2009), but may need further consid-
eration for radioligands tailored toward measurement of neu-
rotransmitter release.

During PET measurements for the determination of drug
occupancy, the receptor binding of the radioligand is typically
assessed during approximate equilibrium and at tracer dose
conditions, making the receptor occupancy estimate indepen-
dent of the tracer’s KD. However, monitoring of changes in
extracellular neurotransmitter concentrations is typically per-
formed under rapidly changing conditions, and it has been
suggested that the tracer’s KD, or more specifically, its disso-
ciation rate,Koff (corresponding to the PET rate constant k4), is
an important parameter allowing for rapid adjustments to
changes in the concentration of the neurotransmitter (Endres
and Carson 1998). Also, the rate constant k2 has been pro-
posed to be an important radioligand characteristic when the
radioligand is intended to be used for measurement of neuro-
transmitter release during dynamic conditions (Endres and

Fig. 1 Translational techniques for measuring changes in endogenous
neurotransmitter concentrations with radioligands. A series of
experiments is illustrated for validation of measurement of changes in
extracellular noradrenaline concentrations using the α2C-AR antagonist
[11C]ORM-13070. From left to right: autoradiography of a coronal
section of a human brain analyzed by incubation with [3H]ORM-13070

(unpublished results, Karolinska Institutet) and of a rat brain obtained
after in vivo [11C]ORM-13070 binding (Arponen et al. 2014).
Microdialysis studies demonstrated amphetamine-induced noradrenaline
release in rat striatum (Finnema et al. 2014b). PET summation images
after injection of [11C]ORM-13070 in a cynomolgus monkey or a human
subject (Finnema et al. 2014b; Lehto et al. 2015a)

Fig. 2 PET radioligands used in
NEWMEDS work-package 5.
PET summation images of 5-
HT1B receptor radioligand
[11C]AZ10419369, α2C-AR
radioligand [11C]ORM-13070,
PDE10A radioligand [11C]Lu
AE92686, and GABAA receptor
radioligand [11C]RO6899880 in
monkey brain
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Carson 1998; Logan et al. 1991; Morris and Yoder 2007). The
Koff and k2 may therefore need to be considered for tailored
radioligand development. Experimental studies with high af-
finity dopamine D2 receptor radioligands suggest that a rela-
tive low Koff rate does not limit a radioligand to be suitable for
measurement of neurotransmitter release. A more systematic
study may need to be conducted to further understand the
relative importance of these parameters.

Target selectivity is another important parameter to be op-
timized for radioligands to be used for diagnostic purposes.
However, when the radioligand is developed for measurement
of neurotransmitter release, target selectivity might not be so
critical since selectivity may be achieved by use of a well-
characterized pharmacological challenge with high selectivity
to a particular neurotransmitter. Differential affinities should
also be considered. For example, WAY-100635, which was
originally considered to be highly selective for 5-HT1A recep-
tors, was subsequently shown to be a potent D4 receptor ago-
nist, albeit with 10-fold lower affinity than for 5-HT1A

(Chemel et al. 2006). Still, relative target distributions should
also be considered, as for example in the case ofWAY-100635
binding, the density of D4 receptors in vivo is considerably
lower than that of 5-HT1A receptors. The importance of target
selectivity is also exemplified by NMSP, which is selective for
D2 receptors in the striatum and for 5-HT2A receptors in the
cortex. However, although PET radioligand selectivity might
not be an absolute prerequisite from a biological perspective,
and such characterization may have been limited for older
PET radioligands, more recent and future radioligands will
likely be developed with the intention of high selectivity,
which will facilitate the interpretation of the binding results,
and this might be predicted for radioligands targeting alloste-
ric binding sites.

In the selection of the radioligand to study changes in neu-
rotransmitter release, it is also important to consider the nature
of the interaction between the radioligand and the endogenous
mediator. The current applications are primarily based on di-
rect competition, e.g., with dopamine, serotonin, and nor-
adrenaline. The effects of GABA and glutamate on tracer
binding involve allosteric interactions and have so far been
less well validated, and the reported changes in binding re-
quire further mechanistic understanding. In addition, it is
worthwhile to consider the affinity of the neurotransmitter to
the receptor targeted by the radioligand. Dopamine has higher
affinity for the dopamine D2 receptor than the D1 receptor
(Marcellino et al. 2012) and serotonin has relatively high af-
finity for the 5-HT1A, 5-HT1B, and 5-HT7 receptors (Paterson
et al. 2010). The success of a radioligand for investigating
changes in extracellular neurotransmitter levels may thus de-
pend on the affinity of the neurotransmitter to the correspond-
ing receptor.

Another criterion specifically related to the development of
radioligands tailored towards measurement of neurotransmitter

release is its intrinsic activity towards the target receptor.
Agonist radioligands have been found to be more sensitive to
changes in endogenous neurotransmitter release for dopamine,
e.g., using dopamine D2-like receptor agonists, and for seroto-
nin, using a 5-HT2A receptor agonist (see relevant sections
above). Agonist radioligands preferentially bind to the high-
affinity state of the receptors and may therefore be more sus-
ceptible to the endogenous agonist than antagonist
radioligands, which have similar affinity for the low- and
high-affinity states of the receptor. The existence of two distinct
affinity states has, however, not yet been demonstrated in vivo
(for reviews see Finnema et al. 2010a; Skinbjerg et al. 2012),
and the exact mechanism of the increased sensitivity of agonist
radioligands therefore warrants further evaluation.

Receptor internalization has been demonstrated to contrib-
ute to amphetamine-induced changes in dopamineD2 receptor
radioligands. Since, for example, most GPCRs undergo inter-
nalization, it may be speculated that the internalization model
also applies to other neurotransmitter systems discussed in this
review. It is therefore important to understand effects of the
physiological environment on the binding of a radioligand to a
receptor. In vitro studies using native brain tissue or cell lines
have provided understanding of the effect of cellular location
on radioligand affinity to dopamine D2 receptors (Guo et al.
2010; Quelch et al. 2014b; Skinbjerg et al. 2009; Sun et al.
2003), SERT (Quelch et al. 2012), opioid receptors (Quelch
et al. 2014a), and GABAA receptors (Quelch et al. 2015).
Alterations in the ability to bind internalized receptors may
thus be a characteristic of a radioligand which could be eval-
uated to understand if the radioligand will be sensitive to neu-
rotransmitter release.

Quantification of PET signals

Quantification of drug-induced changes in extracellular neu-
rotransmitter concentrations in the human brain is challenging
since the magnitude of the observed change in radioligand
binding has usually been quite small (typically <25 %) in
comparison to the effects seen in drug occupancy studies (typ-
ically >50 %). The high cost of PET further limits the number
of study subjects, thereby putting high demands on the repro-
ducibility of the procedure. The use of reference region ap-
proaches is therefore highly desirable since the corresponding
outcome parameters (BPP and BPND) are more reproducible
when compared to distribution volumes (VT) calculated using
metabolite-corrected blood data. In particular, quantification
of receptors with a broad regional brain distribution poses a
methodological challenge as they lack a suitable reference
region for the determination of non-specific binding. In addi-
tion, PET imaging studies are traditionally analyzed using the
receptor occupancy model, but this assumes that the
radioligand’s volume of distribution and fractional receptor
occupancy are uniform across the brain. This characteristic
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makes it possible to use occupancy plots, a linear model for
reliable quantification of receptor occupancy utilizing VT

values (Cunningham et al. 2010). Importantly, this approach
may be confounded when endogenous neurotransmitters are
not released in equal fractions across different brain regions.
Further development of quantitative methods dedicated to-
wards measurement of neurotransmitter release is required.
Recent progress include the development of methods aimed
to detect relatively small changes in radioligand binding con-
sequential of neurotransmitter release (Alpert et al. 2003;
Friston et al. 1997; Watabe et al. 2000) and methods to uncov-
er the temporal pattern of neurotransmitter release during a
single PET measurement (Morris et al. 2005; Normandin
et al. 2012).

Selection of pharmacological challenge

An additional important consideration for studying fluctua-
tions in a certain neurotransmitter is to identify a pharmaco-
logical challenge which does not directly interfere with
radioligand binding. Within NEWMEDS work-package 5, to
allow for direct translation between methodologies and
species, we aimed to evaluate the same pharmacological
challenges across species. However, this was sometimes
not feasible as not all compounds which were suitable
for use in experimental animals were appropriate or avail-
able for human studies. Tables 1, 2, 3, and 4 include
detailed information on pharmacological regimens that
have been used in studies to investigate changes in extra-
cellular neurotransmitter concentrations.

Other factors to consider

Other factors challenging or possibly confounding our studies
included whether the interaction between the radioligand and
the neurotransmitter was directly competitive, allosteric, or
indirect. Endogenous mediators may not be released in equal
amounts across different brain regions, the cell membrane
transporters of the neurotransmitters may have different brain
distributions than the target protein of the radioligand, and
agonist-dependent receptor internalization may complicate
the interpretation of the findings. In addition, the challenge
itself might affect important physiological parameters such
as blood pressure, cerebral blood flow, and peripheral clear-
ance of the tracer, which in turn may affect radioligand uptake
(Laruelle 2000). The use of anesthesia can also affect the
release, re-uptake, and clearance of endogenous mediators in
the brain and consequently the interpretation of the results of
the pharmacological challenge. Dr. Tsukada and his col-
leagues (in Hamamatsu, Japan) have extensively investigated
the neurotransmitter effects of anesthesia in NHPs by
performing PETstudies in awake and anesthetized experimen-
tal animals. They have shown that isoflurane anesthesia

induced a decrease in the binding of [11C]raclopride binding
to D2 receptors through increased extracellular levels of dopa-
mine (Tsukada et al. 1999b) and that nicotine, in high tobacco-
smoking related doses, did not release sufficient dopamine to
displace [11C]raclopride in the striatum of awake NHPs, but
did so when the animals were anesthetized with isoflurane
(Tsukada et al. 2002). Similarly, in NEWMEDS, we deter-
mined using rat microdialysis that striatal extracellular dopa-
mine and noradrenaline concentrations were significantly
higher under isoflurane anesthesia compared to awake rats
(Finnema et al. 2014b). Nevertheless, most of the findings of
NEWMEDS work-package 5 are clearly independent of
anesthesia-induced bias or changes in cerebral blood flow.
As an example, the noradrenaline challenges monitored
with [11C]ORM-13070 produced consistent effects across
anesthetized rodents and monkeys and awake humans.

Future work

Assessment of molecular target engagement, accompanied by
compound exposure levels at the site of action, is increasingly
being recognized as critical information for effective decision
making in drug discovery and development (Morgan et al.
2012; Van der Graaf and Danhof 1997). High-resolution im-
aging technology such as PET, which is amenable to
preclinical-to-clinical translation, is playing a key role in ad-
dressing the need to investigate target occupancy as well as
providing insight into pharmacodynamic actions related to the
drug target. Pharmacological challenge approaches have
proved useful in providing insight into direct or indirect drug
effects on synaptic neurotransmission. This review attempts to
summarize the current situation in relation to the use of PET
imaging towards investigation of the interactions of endog-
enous mediators with their target receptors. The focus has
been placed on assessing the availability of appropriate
tools (PET radioligands, pharmacological challenge agents)
and studies in NHPs and human subjects. Here, we have
discussed in detail the progress made for PET measure-
ment of dopamine, serotonin, noradrenaline, GABA, glu-
tamate, ACh, and opioid peptides. In addition to the afore-
mentioned investigation utilizing PDE10A radioligands to
measure changes in cyclic nucleotides, ongoing activity
towards the development of PET radioligands for GPCR
histamine receptor subtypes H1 to H4 (for review see
Funke et al. 2013) may soon provide radioligand tools
which are sensitive to measuring endogenous histamine
levels. The H1 receptor antagonist [11C]doxepin and the H3

receptor antagonists [11C]GSK189254 (Ashworth et al. 2010)
and [11C]MK8278 (Van Laere et al. 2014) have been success-
fully characterized in human PETstudies, but so far no reports
exist in which these radioligands have been utilized for
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assessment of drug-induced changes in extracellular histamine
levels.

Neuropsychiatric disorders such as schizophrenia and de-
pression present significant challenges to researchers striving
to deliver improved therapeutics (Rizzo et al. 2013). The de-
velopment of PET radioligands to enable dynamic monitoring
of neurotransmission could be employed to determine chang-
es in target expression and distribution within subjects, to
measure phenotypic differences in target expression and dis-
tribution, to explore intervention-evoked changes in endoge-
nous ligand levels within subjects, and to investigate pheno-
typic differences in brain neurotransmission over time. In ad-
dition to informing on the diagnosis and monitoring of disease
states and their progression, PET radioligands that are sensi-
tive to changes in endogenous mediators can be used to ob-
serve functional effects of drugs, thereby serving as bio-
markers for target engagement in drug development. In order
to achieve this, there is a need to develop more tailored PET
radioligands and pharmacological challenge tools. Since a
significant challenge of neuropsychiatric drug discovery
is the availability of animal models with translational va-
lidity (O’Donnell 2013), the approaches reviewed here
could also be used to test whether animal models show
the same pathophysiology as seen in human patients, e.g.,
whether Bschizophrenia models^ show increased uptake of
[18F]DOPA or increased amphetamine-induced reduced
binding of [11C]raclopride, as is now well established for
patients (Howes et al. 2012).

Finally, with recent technological advances in
multimodality imaging, enabling simultaneous PETand func-
tional magnetic resonance imaging (fMRI) determinations
(for review see Duncan et al. 2014), there is potential to gain
new insights into estimating basal receptor occupancy coupled
to neurotransmitter levels. This has been successfully demon-
strated by measuring neurovascular responses and dopamine
receptor occupancy in the basal ganglia across a wide dynamic
range using different specific activities of [11C]raclopride.
Distinct relative cerebrovascular response magnitudes were
observed between the putamen and the caudate nucleus,
consistent with higher basal extracellular dopamine levels
in the putamen (Sander et al. 2013). These applications
are likely to further our understanding of psychiatric dis-
orders and pave the way to novel effective therapeutics.
Substantial progress has been made in the development of
novel radiotracer tools and methodology, particularly over
the past two decades. This has firmly established an im-
portant role for PET imaging in CNS research and drug
discovery for target engagement analysis and confirmation
of modes of action. PET imaging directed at investigating
changes in endogenous neurochemicals, including the
work done in NEWMEDS work-package 5, has highlighted
an opportunity to further extend the capability and application
of this technology in new directions.
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