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Abstract
Rationale We have previously shown that tryptophan
depletion enhances punishment but not reward prediction
(Cools et al. in Neuropsychopharmacology 33:2291–2299,
2008b). This provided evidence for a valence-specific role
of serotonin (which declines under depleted tryptophan) in
aversive processing. Recent theoretical (Dayan and Huys in
PLoS Comput Biol 4:e4, 2008) and experimental (Crockett
et al. in J Neurosci 29:11993–11999, 2009) approaches
have, however, further specified this role by showing that
serotonin is critical for punishment-induced inhibition.
Objectives We sought to examine the role of serotonin in
punishment-induced inhibition. We also examined the
impact of induced mood on this effect to assess whether
effects of tryptophan depletion on affective inhibition are
moderated by mood.
Methods Healthy females consumed a balanced amino acid
mixture with (N=20) or without (N=21) the serotonin
precursor tryptophan. Each subject completed either negative

or neutral mood induction. All subjects completed the
reward and punishment reversal learning task adopted in
the previous study.
Results We demonstrate a punishment prediction impair-
ment in individuals who consumed tryptophan which was
absent in individuals who were depleted of tryptophan. This
effect was impervious to mood state.
Conclusions Our results suggest that serotonin promotes
the inhibition of responses to punishing outcomes. This
may lead to reduced punishment prediction accuracy in the
presence of tryptophan and may contribute to resilience to
affective disorders. Reduction of serotonin via tryptophan
depletion then removes this inhibition. As such, we
highlight a mechanism by which reduced serotonin can
contribute to disorders of impulsivity and compulsivity as
well as disorders of emotion.
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Introduction

Serotonin has long been implicated in aversive processing.
Individuals with enhanced aversive processing, such as
those with depression or anxiety, exhibit altered serotonin
function (Deakin and Graeff 1991), and serotonin has been
argued to provide an aversive opponent to dopamine-related
appetitive responses (Boureau and Dayan 2011; Cools et al.
2011; Daw et al. 2002). In 2008, we published a paper
(Cools et al. 2008b) demonstrating that acute tryptophan
depletion (ATD), associated with global reduction in central
serotonin levels (Crockett et al. in submission; Gessa et al.
1974; Young and Gauthier 1981), enhanced punishment,
but not reward prediction in healthy individuals. These
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findings provided clear experimental evidence for a
valence-specific role of serotonin in aversive processing.

However, serotonin also plays a key role in reducing
motor output and behavioural inhibition (Soubrié 1986),
and it has been argued that aversive processing and
inhibition cannot easily be separated (Cools et al. 2011;
Dayan and Huys 2008). The prepotent response to aversive
stimuli across the animal kingdom, for instance is behav-
ioural inhibition and withdrawal (Dayan and Huys 2009). A
recent computational model therefore sought to formally
define this relationship (Dayan and Huys 2008). In this
model, serotonin acts to inhibit punishment-associated
internally directed thoughts, thus pruning away aversive
branches of a Markov decision tree. Recent experimental
findings have provided support for this model (Crockett et
al. 2009). Using a novel task designed to disentangle
inhibition and aversive responses, Crockett et al. showed
that tryptophan depletion had no effect on (1) general motor
inhibition or (2) sensitivity to aversive outcomes, but did
(3) selectively reduce punishment-induced inhibition. As
such, serotonin was critical for neither punishment process-
ing, nor behavioural inhibition alone, but was specifically
critical for punishment-induced inhibition.

In light of these recent studies, we sought to extend our
previous findings by increasing the sample size and by
examining the impact of mood state on the role of serotonin
in punishment-induced inhibition. Specifically, recent
reviews have sought to cast doubt over the effects of ATD
on central serotonin transmission (Feenstra and van der
Plasse 2010; van Donkelaar et al. 2011) (but see also
(Crockett et al. in submission; Gessa et al. 1974; Williams
et al. 1999)). Replicating our previous valence-specific
effect, which mimics the effects of other more direct
serotonin manipulations (Cools et al. 2008a; Crockett et
al. in submission), in a separate and larger sample should
go some way towards allaying these concerns. Moreover,
these reviews suggested that altered mood states may
explain some of the effects of tryptophan depletion
(Feenstra and van der Plasse 2010; van Donkelaar et al.
2011). As such, we sought to assess the impact of subject
mood state on this effect. We have previously shown that
mood state can modulate the role of ATD on some,
(Robinson et al. 2009) but not all (Robinson and Sahakian
2009b) cognitive tasks. In particular, mood state does not
appear to modulate the role of ATD on the inhibition of
aversive go/no-go responses (Robinson and Sahakian
2009b). As such, we predicted that mood would not
modulate the effect of ATD on affective inhibition, thereby
arguing against a universal role of mood in the effects of
tryptophan depletion on cognitive processing.

Healthy female subjects (N=41) undergoing either ATD
or a balanced (BAL) procedure in a between-subjects
design completed the reward and punishment reversal

learning task adopted in our first study. Half of each group
also received negative, and half neutral, mood induction
procedures (MIP). We predicted that ATD would enhance
aversive processing by abolishing a positive bias (i.e.
increased punishment errors) present under balanced con-
ditions (Cools et al. 2008b), and that this would be
insensitive to mood state (Robinson and Sahakian 2009b).

Methods

Procedures were approved by the Cambridge Research
Ethics Committee (06/Q0108/160) and were in accord with
the Helsinki Declaration of 1975. All subjects were screened
for psychiatric and neurological disorders, gave written
informed consent and were compensated for participation.
Exclusion criteria were cardiac, hepatic, renal, pulmonary,
neurological, psychiatric or gastrointestinal disorders, drug
use and personal or family history of any depressive disorder.
Subjects were instructed to abstain from alcohol, caffeine and
food from midnight prior to each session. Forty-two female
subjects (to avoid gender confounds often seen in ATD) were
recruited. One subject did not complete testing. The remaining
41 subjects were then divided into four groups: (1) ATD
subjects who underwent negative MIP (N=11), (2) ATD
subjects who underwent neutral MIP (N=10), (3) BAL
subjects who underwent negative MIP (N=10), (4) BAL
subjects who underwent neutral MIP (N=10). Subjects
completed a number of state and trait measures; the Beck
Depression Inventory (BDI; (Beck et al. 1961)), the
Impulsiveness, Venturesomeness and Empathy questionnaire
(IVE; (Eysenck and Eysenck 1978)) and the Behavioural
Inhibition/Behavioural Activation Scale (BIS/BAS (Carver
andWhite 1994)). The groups were demographically matched
(see Table 1) and within the same phase of menses (t37=−0.3,
p=0.8). All subjects also completed a second test session (not
presented here, see (Robinson and Sahakian 2009a)).

Table 1 Demographic characteristics

Mean S.D. P

Age 27.6 6.4 0.3

BDI 4.5 4.1 0.4

Impulsiveness 6.5 4.1 0.2

Venturesomeness 8.5 3.7 0.2

Empathy 13.5 3.7 0.8

BIS 21.1 3.4 0.4

BAS-drive 11.7 2.1 0.2

BAS-fun 12.3 2.1 0.8

BAS-reward 16.9 2.0 0.9

Non-significant P values indicate a lack of group effect on any of
these variables
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Procedure

Subjects arrived at the research centre between 0830 and
1030 hours and consumed the amino acid mixture. A blood
sample was taken, and a nutritionally balanced (BAL) or a
tryptophan free (ATD) amino acid drink was ingested.
Following this, they were allowed to consume water and
were given a low-protein snack (an apple) for lunch. After a
resting period of approximately 5 h to ensure stable and low
tryptophan levels (Carpenter et al. 1998), a second blood
sample was taken, and the MIP was completed. The MIP
was followed by neuropsychological task completion.

Amino acid mixtures

Amino acid mixtures (prepared by SHS international;
Liverpool, UK) were identical to previous research (Cools
et al. 2008b; Crockett et al. 2009; Robinson and Sahakian
2009a; Roiser et al. 2006): L-alanine, 2.9 g; L-arginine,
2.6 g; L-cystine, 1.4 g; glycine, 1.7 g; L-histidine, 1.7 g; L-
isoleucine, 4.2 g; L-leucine, 7.1 g; L-lysine, 4.7 g; L-
methionine, 1.6 g; L-proline, 6.4 g; L-phenylalanine, 3.0 g;
L-serine, 3.6 g; L-threonine, 3.4 g; L-tyrosine, 3.6 g; L-
valine, 4.7 g; L-tryptophan, 2.1 g—total BAL, 54.7/TRP,
52.6 g. The drinks were prepared by stirring the mixture
into approximately 200 ml tap water with either lemon-lime
or grapefruit flavouring. Subjects reported no side effects
apart from transient nausea following ingestion of the drink.
Blood samples were analysed for the crucial TRP/sum of
the long neutral amino acids (ΣLNAA) ratio.

Mood induction procedure

The MIP (Robinson and Sahakian 2009a, b; Robinson et al.
2009) required subjects to relate negative or neutral Velten
sentences to situations in their own lives whilst listening to
mood-congruent music. It was programmed in Microsoft
Visual Basic 6 and presented on a PaceBlade tablet
computer (11-in. monitor). A set of visual analogue scales
was administered (T1) at admission, (T2) 5 h later pre-MIP
and (T3) post-MIP to determine self-reported mood.

Neuropsychological testing

The ability to learn and update reward and punishment
predictions was measured using a deterministic reversal
learning paradigm employed previously (Cools et al. 2006,
2008b; Robinson et al. 2010). Subjects were presented with
two stimuli—one scene and one face. At any given point in
time, one stimulus was associated with reward, whilst the
other was associated with punishment. On each trial, one
stimulus was highlighted by a thick black border and
subjects had to predict whether the highlighted stimulus

would lead to reward or punishment. They made their
prediction by pressing one of two keys (one for punish-
ment, one for reward; order counterbalanced) on a keyboard
prior to receiving feedback. Subjects were then shown
the actual outcome. Reward consisted of a green smiley
face, a ‘+$100’ sign and a high-frequency jingle tone.
Punishment consisted of a red sad face, a ‘−$100’ sign and a
single low-frequency tone. The outcomes did not serve as
direct performance feedback or as reinforcement. Instead
subjects inferred whether their response was correct or not
by remembering the key that the pressed (reward or
punishment) and comparing it to the actual outcome. The
stimulus-outcome contingencies reversed multiple times
following attainment of a variable learning criterion (range
from five to nine trials). Note that during training, subjects
practiced the task until they learned that the outcomes were
not performance feedback. However, if they erroneously
began to consider the outcomes as performance feedback,
they would not reach the learning criterion, and the task
would never reverse.

There were two types of experimental condition. In the
reward condition, reversals were signalled by providing
subjects with unexpected reward following a stimulus
previously associated with punishment (i.e. subjects pre-
dicted punishment based upon the previous trials, but the
stimulus was unexpectedly followed by reward). Converse-
ly, in the punishment condition, reversals were signalled by
unexpected punishment. The maximum number of reversal
stages per experimental block was 16, although the block
terminated automatically after completion of 120 trials
(6.6 min). Subjects completed two blocks of reward
reversals and two blocks of punishment reversals. Thus,
each subject performed 480 trials (four blocks) per
experimental session. The order of valance conditions was
counterbalanced between subjects.

As previously, performance was assessed by examining
proportional errors on four trial types (Cools et al. 2008b):
(1) non-reversal reward trials (defined as all trials that
required reward prediction, but no updating of stimulus-
outcome associations; only trials that followed correct
expected outcome predictions were included); (2) non-
reversal punishment trials (defined as above, but requiring
punishment prediction); (3) reward reversal trials (defined
as the trial that followed unexpected reward); (4) punish-
ment reversal trials (defined the trial that followed
unexpected punishment). Unexpected reward trials were
collapsed across the two unexpected reward blocks (and
vice versa for punishment). Reversal and non-reversal trials
were assessed using separate repeated measures ANOVAs.
Error rates were transformed into proportional scores and
arcsine transformed (2*arcsine (√x)). These transformed
proportional scores were submitted to a repeated measures
ANOVA with valence condition (two levels: unexpected
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reward and unexpected punishment) and trial-type (three
levels: reversal, non-reversal reward and non-reversal
punishment) as within-subjects factors and drink (two
levels) and mood (two levels) as between-subjects factors.
Simple effects analyses were Bonferroni corrected.

Results

Amino acid mixtures

Amino acid data (Table 2) were incomplete for three (one
ATD and two BAL) participants due to blood extraction
problems. A repeated measures ANOVA revealed a signif-
icant two-way drink × time interaction for the critical TRP/
ΣLNAA ratio (treatment × time; F1,36=66; P<0.001).
Simple effects analyses revealed that the significant drink ×
time interaction was due to a 92% decrease in the TRP/
ΣLNAA ratio following ATD (significant effect of time,
F1,36=42; P<0.001) but a 92% increase in the TRP/ΣLNAA
ratio following BAL (F1,36=26; P<0.001).

Mood change

There was no change in sad mood state between the start of
the experiment (T1) and 5 h later (T2) in either the ATD
(F1,35=2) or BAL (F1,35=1) group (Table 2). However,
there was a significant increase in sad mood after the sad
MIP (T3) relative to (T2) (F1,36=11, P=0.003), but not
before and after the neutral MIP (F1,36=1) (Table 2). Thus,
the MIP, but not the drink, altered participant's mood state.

Neuropsychological testing

Pooling all trial types (reversal, non-reversal reward and
non-reversal punishment) together revealed a significant
drink (ATD, BAL) by valence condition (reward, punish-
ment) interaction (F1,35=4.7, P=0.04). There was also a
significant valence condition by trial type (reversal, non-
reversal reward block, non-reversal punishment block)
interaction (F2,34=3.5, P=0.04). As such, in line with our

previous study, we next examined the reversal and non-
reversal stages separately.

Non-reversal trials Non-reversal errors (Table 3) were
examined using an ANOVA with trial type (non-reversal
reward, non-reversal punishment) and valence condition
(reward reversal, punishment reversal) as within-subjects
factors, and drink (ATD, BAL) and MIP (neutral, negative)
as between-subjects factors. Consistent with our previous
study (Cools et al. 2008b), there was a significant interaction
between drink and trial type (F1,35=4.4, P=0.04), which was
driven by a significant effect of drink on punishment
non-reversal trials (F1,35=4.3, P=0.04), but not on reward
non-reversal trials (F1,35=1.0). Moreover, subjects made
significantly more errors on punishment than reward non-
reversal trials after the BAL drink (F1,35=15.4, P<0.001)
while there was no difference between punishment and
reward non-reversal trials after ATD (F1,35=1.3; Fig. 1).
This effect was, however, robust across mood state (no
MIP × trial type × outcome interaction, F1,35=0.009) and
valence condition (no valence condition × trial type ×
outcome interaction, F1,35=0.007).

Reversal trials Reversal errors (Table 3) were examined in
an ANOVAwith valence condition (reward reversal, punish-
ment reversal) as a within-subject factor and drink (ATD,
BAL) and MIP (neutral, negative) as between-subjects
factors. Consistent, again, with our prior study, there was
no drink by valence condition interaction (F1,35=3.1).
Moreover, this effect was robust across mood state (MIP ×
drink × valence condition interaction, F1,35=0.1).

Thus, as before, ATD abolished a disproportionate
difficulty with punishment prediction, but did not affect
reward prediction. This effect was restricted to the non-
reversal trials, and was robust across mood states.

Discussion

The present results demonstrate that acute tryptophan
depletion abolishes a disproportionate inability to predict
punishment which is present following consumption of a
balanced amino acid drink. This replicates our previous
finding (Cools et al. 2008b) in an independent and larger
sample of subjects and using a different between-subjects
experimental design. Moreover, the finding extends prior
work by suggesting that this effect on punishment predic-
tion, unlike more complex cognitive effects of tryptophan
depletion (Robinson et al. 2009), may be impervious to
subject mood state.

Previously, we postulated that the ATD-induced improve-
ment in punishment prediction might represent enhanced

Table 2 Mood ratings

Manipulation Before After

ATD 5.8 (0.4) 5.2 (0.4)

BAL 5.6 (0.4) 5.5 (0.4)

Negative MIP 5.2 (0.4) 4.0 (0.4)

Neutral MIP 5.5 (0.4) 5.3 (0.4)

Distance (centimetre) marked along a 10-cm visual analogue scale
asking ‘how happy are you?’ Treatment effects are assessed prior to
the MIP, and MIP effects are collapsed across treatment sessions

602 Psychopharmacology (2012) 219:599–605



aversive temporal-difference prediction error signals,
brought about by lowering tonic 5-HT levels and increasing
the signal-to-noise ratio of phasic 5-HT bursts (Cools et al.
2008b). In light of recent theoretical (Dayan and Huys
2008, 2009) and experimental approaches (Crockett et al.
2009), however, an alternative explanation might be that
reducing serotonin attenuated punishment-induced inhibi-
tion. In the theoretical model proposed by Dayan and Huys
(2008), serotonin is said to ‘prune’ aversive branches of
‘the decision tree’, leading to a neglect of aversive
thoughts, and then subsequent actions, under optimal
serotonin levels. Specifically, the increased non-reversal
errors following the balanced drink may be a result of
subjects successfully inhibiting punishment-related thoughts
and actions, and hence making increased errors to expected
punishment cues under balanced serotonin conditions. Re-
ducing tryptophan (and hence putatively serotonin) may serve
to remove this punishment-linked inhibition, releasing pun-
ishment responses, and bringing punishment errors down to
the same level as reward errors. Errors following unexpected
outcomes may, moreover, be impervious to this effect because
(a) inhibitory processes may take more than one trial to be
implemented (and reversal analysis only examines errors on
the one trial following unexpected feedback) and/or (b)
reversal trials require response switching which may mask
any inhibitory effects.

Regardless of the interpretation, the present finding
may be critical for our understanding of resilience to
affective disorders. Specifically, increased inhibition of
aversive thoughts may be an adaptive means to reduce the
neuropsychological impact of aversive events which
promotes, to a certain extent, blissful ignorance (Alloy
and Abramson 1979; Robinson et al. 2011) and cushions
against stress. Such inhibition might be removed by
serotonin reduction (Cools et al. 2008a) and, in more
naturalistic environments, via the recruitment of stress-
specific neural networks (e.g. the amygdala (Cools et al.
2005)). Indeed both ATD and induced stress (via threat of
shock) restore aversive processing which is reduced under
non-anxious conditions (Robinson et al. 2011). As such,

on the flipside of the same coin, optimal levels of
serotonin might promote resilience to affective disorders
under non-anxious conditions by inhibiting responses to
aversive stimuli.

Our failure to see an interaction between mood and ATD
suggests that effects of ATD do not universally depend on
mood. The previous demonstration of an interaction
between mood and ATD (Robinson et al. 2009) was seen
in two complex tasks which required integration of
information from multiple domains (i.e. self-referent recall
and integrating pattern recognition with cued reinforce-
ment) (Robinson et al. 2009), but was not seen during
affective inhibition (Robinson and Sahakian 2009b). As
such, we previously argued (Robinson and Sahakian
2009b) that the mediating effect of mood may be restricted
to tasks which require complex and integrative cortical
processing rather than simple ‘bottom up’ activation of
subcortical structures like the amygdala and striatum
(which may be more basic, primal and fast responses that
are not modulated by mood), but this is of course
speculative and requires further study. It is notable that
both tasks that fail to show an interaction involve affective
inhibition, but of course the possibility that inadequate

Table 3 Error rates

Non-reversal

Reward Punishment

Group ATD− ATD= BAL− BAL= ATD− ATD= BAL− BAL=

Mean 0.036 0.037 0.058 0.037 0.037 0.046 0.116 0.074

SEM 0.011 0.010 0.011 0.011 0.028 0.027 0.030 0.030

Reversal

Mean 0.096 0.089 0.070 0.119 0.033 0.043 0.076 0.135

SEM 0.038 0.037 0.041 0.041 0.045 0.043 0.048 0.048

ATD acute tryptophan depletion, BAL balanced drink, − negative mood induction, = neutral mood induction. (ATD−: n=10, ATD=: n=11, BAL−:
n=9; BAL=: n=9), SEM standard error of the mean

Fig. 1 Tryptophan depletion removes a significant impairment in
non-reversal punishment prediction which was present under the
balanced condition. Scores represent untransformed error proportions,
error bars are standard error of the mean;*P<0.05. ATD acute
tryptophan depletion, BAL balanced drink, REW reward, PUN
punishment
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sample sizes account for the lack of effect should not be ruled
out. It should be noted, furthermore, that the present mood
induction technique was also adopted in both the study
demonstrating an interaction (Robinson et al. 2009), and the
study failing to show an interaction (Robinson and Sahakian
2009b). As such, it is difficult to attribute this null effect to a
failure of the manipulation. This finding thus argues against a
universal role of mood state (Crockett et al. in submission)
(e.g. negative mood associated with the procedure) in the
effects of tryptophan depletion on cognitive processing
(Feenstra and van der Plasse 2010; van Donkelaar et al. 2011).

It should also be noted that whilst the previous effect
was seen within subjects, this study demonstrated the same
effect between subjects. The present design has the
advantage of ruling out order and sequence effects
associated with repeating the same task in the same
subjects, but it requires a larger sample size to achieve an
equivalent level of sensitivity. Demonstrating remarkably
similar effects with such different designs serves to enhance
our confidence in the validity of our initial findings (Cools
et al. 2008b).

The BAL group demonstrated a significant increase in
tryptophan levels over the course of the day. This effect is
seen in some (Crockett et al. 2009; Robinson and Sahakian
2009b; Robinson et al. 2009; Roiser et al. 2006) but not all
previous studies (Cools et al. 2008b; Robinson et al. 2009).
One implication of this observation is that we cannot
precisely specify the direction of the effect. It is possible
that tryptophan depletion enhanced punishment processing,
as has been argued previously (Cools et al. 2008a; Crockett
et al. 2009), but it is also possible that tryptophan
supplementation led to impaired punishment (relative to
reward) processing, as has also been shown (Murphy et al.
2006, 2008). If the latter, it could argue for the use of
tryptophan supplementation as a means to promote resil-
ience in healthy individuals (Elliott et al. 2010; Murphy et
al. 2008), or to increase inhibition in disorders of
impulsivity and compulsivity, such as attention deficit
hyperactivity disorder (ADHD) and obsessive–compulsive
disorder (OCD). Nevertheless, in our previous study with
the same task, the same effect was seen under BAL despite
no change of tryptophan ratios in this group (Cools et al.
2008b), so caution should be taken with this interpretation.
Moreover, it is important to recognise that this ambiguity
does not invalidate the central hypothesis that serotonin is
involved in aversive inhibition. The hypothesis predicts
increased inhibition following serotonin increases, as well
as decreased inhibition following serotonin decreases.
Nevertheless, this inability to specify the direction of the
effect is a major weakness of the study. Future research
might consider adding an additional baseline session
without pharmacological manipulation to address this issue
more directly.

Conclusion

These findings demonstrate the facilitatory effects of ATD on
punishment (and not reward) prediction, but extend them by
showing them to be impervious to mood state. We argue that
the effect may be due to tryptophan depletion removing
serotonin-mediated inhibition of aversive thoughts, and hence
actions, and that this may, moreover, reduce the psychological
impact of negative life events and promote resilience to
affective disorders. Disorders in which aversive processing is
enhanced, such as anxiety and depression, as well as those in
which inhibition is reduced, such as OCD and ADHD, are
economically and emotionally costly to the individual and
society. Increasing our understanding of how it might be
possible to cushion against such disorders, potentially by
enhancing behavioural inhibition to aversive stimuli, would
go a long way towards improving the ‘mental wealth of
nations’ (Beddington et al. 2008).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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