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Abstract
Introduction Alcohol has renowned behavioral disinhibi-
tory properties which are suggested to involve reductions in
frontal lobe functioning as a result of diminished inter-
hemispheric connectivity.
Methods To examine sex differences in frontal interhemi-
spheric connectivity in response to alcohol, 12 female and
ten male healthy volunteers received a single administration
of 0.5‰ alcohol in a placebo-controlled counterbalanced
crossover design. Paired-pulse transcranial magnetic stim-
ulation was applied to measure transcallosal inhibition
(TCI) between the left and right primary motor cortex (M1).
Results Results showed significant reductions in TCI after
alcohol administration in female participants exclusively.
Discussion These findings provide the first evidence that
moderate doses of alcohol differentially affect frontal
interhemispheric connectivity in males and females. The
present data may shed new light on the physiological
mechanisms underlying sex differences in the susceptibility
to alcohol.
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Introduction

In the last decades, alcohol consumption steadily increased
culminating in 3.2 million yearly deaths either as a direct or
indirect result of alcohol worldwide (World Health Organi-
sation 2004). Moderate doses of alcohol (≤0.5‰) can
produce feelings of relaxation and release of response
inhibition, whereas higher doses of alcohol (1–1.5‰) cause
impairments in motor coordination and vision. Extremely
high alcohol levels (≥2.5‰) ultimately lead to coma and
death (Hieda et al. 2005). Interestingly, the effects of
alcohol seem to be more pronounced in females than in
males (Mills and Bisgrove 1983; Niaura et al. 1987;
Mumenthaler et al. 1999; Hommer 2003). Sex differences
in response to alcohol intake can in part be explained by
differences in the percentage of body fat (Addolorato et al.
1999) and the availability of the enzyme alcohol dehydro-
genase which breaks down alcohol (Baraona et al. 2001).
However, other research suggests that females differ from
males on the innate physiological susceptibility to the
central effects of alcohol (Hommer et al. 1996, 2001;
Agartz et al. 2003; Sasaki et al. 2009). For instance, chronic
misuse of alcohol leaves female alcoholics with more brain
damage than their male counterparts (Hommer et al. 2001;
Hommer 2003). Notably, however, moderate drinking
habits also affect the female brain more strongly than the
male brain (Sasaki et al. 2009).

In addition to the general effects on the central and
peripheral nervous system, alcohol typically affects frontal
cortical functions such as response inhibition and cognitive
regulation (Jentsch and Taylor 1999; Lyvers 2000). In fact,
even though alcohol diffuses through all biological mem-
branes and is distributed throughout the body, the anterior
cortical regions of the brain have been shown to be
especially vulnerable to the acute (Weitlauf and Woodward
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2008) and chronic (Wobrock et al. 2009) effects of alcohol.
Low doses of alcohol already reduce excitability of the
frontal cortex as evidenced by transcranial magnetic
stimulation (TMS) and electroencephalography (EEG)
(Ziemann et al. 1995; Kähkönen et al. 2001, 2003). This
reduction in frontal cortical excitability has been argued to
relate to binding of alcohol to gamma-amino butyric acid
(GABA)-a receptors in addition to alcohol-related inhibi-
tion of N-methyl D-aspartate (NMDA) currents (Kähkönen
et al. 2003). However, the precise mechanisms that underlie
the behavioral effects of alcohol and possible sex differ-
ences remain unclear. One possible mechanism may
involve (transient) frontal lobe impairments arguably due
to reductions in effective frontal interhemispheric connec-
tivity (Kähkönen et al. 2001). Frontal interhemispheric
connectivity refers to callosal signal transfer between the
left and right frontal cortex (Aboitiz and Montiel 2003).
This signal transfer can be measured with paired-pulse
TMS wherein the connectivity between the left and right
primary motor cortex (M1) is operationalized by applying a
conditioning pulse to ipsilateral M1 followed by a test pulse
to contralateral M1 10 ms later (Ferbert et al. 1992).
Compared to the motor evoked potential (MEP) elicited by
the test pulse alone, the conditioning pulse inhibits the MEP
of the test pulse by about 50% (Daskalakis et al. 2002).
This so-called transcallosal inhibition (TCI) reflects an
important physiological mechanism by which the frontal
lobes interact and contribute to behavior by providing a
noninvasive way to study frontal interhemispheric connec-
tivity (Hofman and Schutter 2009).

The aim of the present placebo-controlled counterbal-
anced cross-over design was to examine sex differences in
frontal interhemispheric connectivity in response to alcohol
intake as indexed by TCI. We hypothesized that alcohol
will reduce TCI in both males and females. In addition, it is
expected that reductions in TCI will be more pronounced in
females than in males.

Materials and methods

Participants

Twenty-two healthy volunteers (ten males, mean ± SD,
22.5±0.85 years of age) participated in this study. All
participants were right-handed, nonsmoking, and free of
any psychiatric or neurological disorders and had more than
12 years of education. All female participants used oral
contraceptives. Subjects had no history of alcohol abuse or
dependence as measured with the Alcohol Use Disorder
Identification Test (AUDIT; Berks and McCormick 2008).
Written informed consent was obtained, and volunteers
were paid for participation. The study was approved by the

medical ethical committee of the University Medical Centre
Utrecht and in accordance with the Declaration of Helsinki.
All participants were naïve to the aim of the study.

Alcohol administration and monitoring

The amount of alcohol which would induce a blood alcohol
concentration (BAC) of 0.5‰ was estimated with Widmark’s
formula:

grams of pure alcohol  

BAC ( ) =  ---------------------------   - 0.085 

m ×r×(1/1.055)  

where m is body weight and r refers to the distribution ratio
which for men is on average 0.68 and for women 0.55 (Friel
et al. 1995). The alcoholic solution (300 ml) consisted of
alcohol mixed with orange juice and a few drops of
peppermint oil to mask the alcohol. Placebo (300 ml)
consisted of orange juice and peppermint oil. Participants’
BAC was measured every 5 min using an AlcoMate CORE
AL-600 Pro Alcohol Breath Analyzer (AK Solutions USA
LLC, Palisades Park, NJ, USA). Measurements were started
when BAC approximated 0.5‰. Importantly, TCI was
measured at the start of the downward limb of the BAC
curve because at this point, BAC values are suggested to be
relatively stable (Verster et al. 2002).

Transcranial magnetic stimulation

TMS was performed using two biphasic magnetic brain
stimulators (maximum output 4,160 A peak/1,750 VAC
peak) and an iron core coil (Neotonus, Atlanta, GA, USA)
over the left and right primary motor cortex (M1). Bilateral
paired-pulse TMS was applied to measure TCI. In this
paradigm, the MEP following the single test pulse
(unconditioned MEP, uMEP) to M1 is compared to the
MEP evoked by the test pulse that is preceded by a
conditioning pulse to the contralateral M1 10 ms earlier
(conditioned MEP, cMEP; Ferbert et al. 1992). The mean
percentage reduction between the unconditioned and
conditioned MEP was calculated. Stimulation intensity
was set at 120% of the individual motor threshold (MT).
To minimize anticipation effects, TMS was applied at a
frequency of 0.18–0.2 Hz. The following conditions were
applied in random counterbalanced order: (1) a single test
pulse to the leftM1 (uMEPleft), (2) a conditioning pulse to the
right M1 followed by a test pulse to the left M1 (cMEPleft),
(3) a single test pulse to the right M1 (uMEPright), and (4) a
conditioning pulse to the left M1 followed by a test pulse to
the right M1 (cMEPright; Ferbert et al. 1992).
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Electromyographic recordings

The electromyogram (EMG) was recorded using sintered
11×17-mm active Ag–AgCl electrodes with the ActiveTwo
system (BioSemi, Amsterdam, The Netherlands) relative to
the common mode sense in a belly–tendon arrangement.
The MEP was recorded from the left and right abductor
pollicis brevis (APB). The active electrode was placed over
the muscle belly of the APB. The reference electrode was
placed over the proximal phalanx of the thumb. The ground
electrode was attached to the wrist. EMG signal was
digitized at 16 kHz, low-pass filtered (−3dB cutoff
frequency 3,334 Hz; roll-off 30 dB/octave), and offline
high-pass filtered (−3dB cutoff frequency 20 Hz; roll-off
48 dB/octave).

Procedure

In the present crossover design, participants received either
a single dose of alcohol or placebo on one of the two
occasions in a randomized counterbalanced order. Prior to
the testing sessions and on a separate day, participants were
invited upon the laboratory. A safety-screening list was
administered to check for contraindications to TMS (Keel et
al. 2001), and health was checked with a standard
interview. In addition, safety issues and experimental
procedures were explained to the subject, and written
informed consent was obtained. Alcohol abuse and alcohol
dependence were indexed with the AUDIT (Berner et al.
2007), and participants with AUDIT scores of 0 or >8 were
excluded. Right handedness was assessed with the Edin-
burgh handedness inventory (Oldfield 1971). Resting MT
was determined using the standardized motor threshold
estimation procedure (Schutter and van Honk 2006; see
Table 1 for details).

Participants were instructed to refrain from consuming
alcoholic beverages 24 h prior to the testing session, not to
consume coffee, tea, or chocolate 5 h before testing and to use
their last meal at least 2 h prior to the testing session. To
control for circadian rhythms, both testing sessions were
conducted at the same time of the day. Each testing session

was separated by at least 24 h. Moreover, to minimize the
effects of additional hormonal influences, female participants
were not tested during the stopping week.

Each experimental session started with a BAC measure-
ment to ascertain sobriety after which participants con-
sumed the alcoholic solution or placebo. Participants had
2 min to drink the solution while keeping their nose closed
with their hand. The time between administration and
paired-pulse TMS was approximately 30 min. During this
period, EMG electrodes were attached to the left and right
APB, and the optimal target sites for TMS were deter-
mined. TCI was measured when the BAC curve approximat-
ed 0.5‰ on the descending limb of the BAC curve (Verster et
al. 2002). At the end of the final session, participants were
debriefed and paid for participation. Both testing sessions
took approximately 1 h to complete.

Data reduction and analysis

MEP amplitude was quantified as the peak-to-peak amplitude
of the maximal EMG response. Left-to-right (l-rTCI) and
right-to-left transcallosal inhibition (r-lTCI) were expressed
according to the formulas [(1−(cMEPright/uMEPright))×100]
and [(1−(cMEPleft/uMEPleft))×100], respectively.

A general linear model (GLM) for repeated measure-
ments with drug (alcohol versus placebo) and TCI (left to
right versus right to left) as within-subjects factor and sex
(female and male) as a between-subjects factor was run to
examine the alcohol-related effects and possible sex differ-
ences on TCI. To rule out possible alcohol-related effects of
single-pulse TMS on TCI, an additional GLM for repeated
measurements with drug (alcohol versus placebo) and side
(left versus right hemisphere) as within-subjects factors and
sex (female versus male) as a between-subjects factor was
performed. Finally, to exclude effects of baseline EMG
activity on TCI, a 2×2 GLM for repeated measurements
with drug (alcohol versus placebo) and EMG (left versus
right hand) as within-subjects factor and sex (female versus
male) as within-subjects factor was conducted. The alpha
level of significance was set at 0.05 (two-tailed).

Results

BAC values did not differ between males (mean ± SD, 0.69±
0.04) and females (mean ± SD, 0.603±0.05; p=0.17). Our
hypothesis that alcohol would reduce TCI in both males and
females was not confirmed (F(1, 21)=2,752, p=0.113). In
contrast, a significant drug × sex interaction (F(1, 21)=
4.95; p=0.038) was observed. Post hoc analyses demon-
strated that alcohol significantly reduced TCI in females
(F(1, 11)=12.52; p=0.005; ηp

2=0.53) but not in males
(F(1, 9)=0.10; p=0.76; Fig. 1).

Table 1 Main demographics and characteristics of the participants

Males
(mean ± SEM)

Females
(mean ± SEM)

p

Age (in years) 23.3±1.4 21.9±1.1 0.43

AUDIT 6.4±0.6 5.8±0.6 0.53

MT left hemisphere 47.5±2.8 49±2.0 0.66

MT right hemisphere 45.2±2.7 47.8±2.2 0.47

Handedness 45.5±0.7 46.3±0.7 0.44

MT motor threshold
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The observed sex difference in TCI after alcohol could
not be explained by reductions in single-pulse TMS as
demonstrated by a nonsignificant drug × sex interaction (F
(1, 21)=1.024; p=0.324). However, a main effect of
alcohol on single-pulse TMS (F(1, 21)=4,517; p=0.046;
ηp

2=0.184) was observed, replicating prior studies that
found alcohol-related reductions in cortical excitability
(Ziemann et al. 1995; Kähkönen et al. 2003). Finally, the
sex-related effect of alcohol on TCI could not be explained
by differences in baseline EMG activity as shown by the
nonsignificant drug × sex interaction (F(1, 21)=0.278; p=
0.604). No main effects of alcohol on baseline EMG was
observed (F(1, 21)=0.270; p=0.609). For an impression of
the raw data, please see Table 2.

Discussion

The aim of the present study was to examine alcohol-
related sex differences in frontal interhemispheric connec-
tivity and found reductions in frontal interhemispheric
connectivity to a moderate dose of alcohol in healthy
female but not male subjects. To the best of our knowledge,
this is the first study to demonstrate evidence for sex
differences in frontal interhemispheric connectivity in
response to alcohol that cannot be explained by effects of

alcohol on baseline EMG activity or single-pulse TMS. The
global reduction in cortical excitability as evidenced by a
decrease in MEP size in both sexes replicates earlier
findings by Ziemann et al. (1995) and Kähkönen et al.
(2003). This reduction in frontal cortical excitability has
been explained in terms of increased binding of alcohol to
GABA-a receptors and alcohol-related inhibition of NMDA
currents (Kähkönen et al. 2003). In measuring TCI with
paired-pulse TMS, the conditioning pulse administered
over the motor cortex is thought to activate glutamatergic
excitatory callosal fibers terminating on local GABAergic
interneurons of the contralateral motor cortex (Daskalakis et
al. 2002). Excitation of these GABAergic inhibitory
interneurons results in inhibition of the pyramidal motor
neurons which causes a reduction in the MEP size.
Consequently, a decrease in frontal interhemispheric con-
nectivity may relate to the influence of alcohol on either
NMDA glutamate receptor functioning or GABAergic
inhibitory interneurons. Previous TMS research has dem-
onstrated that alcohol mainly influences GABAergic func-
tioning leaving glutamatergic excitatory transmission
relatively unaffected (Ziemann et al. 1995; Conte et al.
2008). In contrast, alcohol has also been shown to attenuate
glutamate/NMDA receptor functioning (Lovinger et al.
1989; White et al. 1990; Masood et al. 1994; Weitlauf
and Woodward 2008) leaving open the possibility that
alcohol may have disrupted the excitatory callosal pathway
that terminates on inhibitory interneurons. This would result
in less excitation of inhibitory interneurons, subsequently
leading to a relatively increased MEP size. However, the
crucial point revolves around the question how to explain the
alcohol-related sex difference on frontal interhemispheric
connectivity, and at present, the precise physiological
mechanisms through which alcohol reduces frontal inter-
hemispheric connectivity in females remain to be elucidated.

A possible role for steroid hormones in explaining the
presently observed sex differences is evidenced by a study
in which testosterone was found to counteracts some of the
effects of alcohol (Khalil et al. 2005). In this study,
testosterone was shown to diminish alcohol-induced defi-
cits in spatial memory (Khalil et al. 2005). Interestingly,

Fig. 1 Mean and standard error of the mean of frontal interhemi-
spheric inhibition in the placebo and alcohol condition

Table 2 Sex-related effect of alcohol on TCI, single pulse, and EMG

TCI Single pulse EMG

Males Females Males Females Males Females

Placebo (mean ± SEM) 57.1±5.9 56.3±7.2 1,843.2±235.6 1,880.8±653.8 4,769±704.9 8,574.7±2,403.2

Alcohol (mean ± SEM) 59.4±7.2 40.7±8.1 1,573.2±336 1,119.8±396.7 6,351.9±1,118.2 8,563.9±1,256.4

Single-pulse TMS is expressed in microvolt

TCI transcallosal inhibition (expressed in percentage inhibition of single-pulse TMS), EMG electromyogram (expressed in microvolt), SEM
standard error of the mean
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acute alcohol administration reduces testosterone produc-
tion in both males and females (Ylikahri et al. 1980;
Valimaki et al. 1984). Together with the notion that men
have multiple times more testosterone than females, testoster-
one may play a role in the currently observed reductions of
TCI in females exclusively. In agreement, we recently found
evidence that a single administration of testosterone signifi-
cantly increases frontal interhemispheric connectivity in
healthy female subjects (Hoppenbrouwers et al., submitted).
In sum, even though sex differences in steroid hormones may
provide for an explanation of our findings, it remains elusive
whether these sex differences already surface after an acute
administration of alcohol. It is suggested that the decrease in
frontal interhemispheric connectivity observed in females will
most likely involve complex interactions between steroid
hormones and the combined action of alcohol on GABAergic
interneurons and NMDA glutamate receptor functioning in
the corpus callosum.

Despite the observed female vulnerability to the effects
of alcohol on frontal interhemispheric connectivity, several
issues should be mentioned. First, the relationship between
alcohol-related effects on frontal interhemispheric connec-
tivity and behavior is of importance. Executive functions
including behavioral inhibition and cognitive regulation are
normally ascribed to the prefrontal cortex (PFC) rather than
M1. Even though both M1 and PFC are part of the frontal
cortex, our current findings on M1 interhemispheric
connectivity cannot simply be extrapolated to the PFC.
Defensibly, there is evidence from recent interleaved TMS–
EEG studies showing that M1 and the PFC share similar
physiological properties (Daskalakis et al. 2008). Second,
the fact that we observed reductions in frontal interhemi-
spheric to alcohol consumption in females only does not in
any way imply that men are immune to the effects of
alcohol. In other words, males will likely demonstrate
similar reductions in frontal interhemispheric connectivity
at higher BAC levels. Third, in our sample, all female
participants were taking oral contraceptives to abolish
fluctuations in steroid levels at the time of testing.
However, oral contraceptives have been shown to reduce
plasma levels of progesterone metabolites in female rats
and women (Follesa et al. 2001). Some of these metabolites
(e.g., allopregnanolone) are highly potent endogenous
positive modulators of the GABA-a receptor (Mitchell et
al. 2008). It has been suggested that the combined effects of
endogenous steroids and alcohol modulate GABA-a recep-
tor functioning (Follesa et al. 2004). In contrast, alcohol has
also been shown to increase allopregnanolone levels in the
cerebral cortex (VanDoren et al. 2000), an increase that has
proven effective to potentiate GABA-a receptor-mediated
inhibition in the brain (VanDoren et al. 2000) and explain
some of the physiological and behavioral effects of alcohol
(VanDoren et al. 2000; Izumi et al. 2007). Taken together,

these findings suggest that the contraceptive- and alcohol-
related increases in allopregnanolone levels may have
contributed to the presently observed reductions in TCI.
As it stands, the present findings can only be generalized to
males and females taking oral contraceptives. Finally, an
additional line of evidence consisting of conventional TMS
measures of GABA function such as short-interval intra-
cortical inhibition and long-interval intracortical cortical
inhibition could potentially has given more direct evidence
for the exact mechanisms underlying the observed effect.

In conclusion, the present study provides the first
evidence for reductions in frontal interhemispheric connec-
tivity in females but not in males following a moderate dose
of alcohol. Future research may focus on alcohol dose–
response patterns in males and the involvement of steroid
hormones to further explain the observed sex differences in
interhemispheric connectivity. In addition, to clarify the
potential role of contraceptives, future research may also
look into the effects of alcohol on interhemispheric
inhibition in females not using contraceptives.
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