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Abstract

Rationale Polymorphisms of the serotonin transporter gene
(5-HTTLPR) may be associated with increased vulnerabili-
ty to acute tryptophan depletion (ATD) and depression
vulnerability especially following stressful life events.
Objective The aim of the present study was to investigate
the effects of ATD in subjects with different S-HTTLPR
profiles before and after stress exposure on affective and
cognitive—attentional changes.

Materials and methods Eighteen subjects with homozy-
gotic short alleles (S'/S’) and 17 subjects with homozygotic
long alleles (L'/L') of the 5-HTTLPR participated in a
double-blind, placebo-controlled, crossover design to mea-
sure the effects of ATD on mood, memory, and attention
before and after acute stress exposure.

Results ATD lowered mood in all subjects independent of
genotype. In S'/S’" genotypes, mild acute stress increased
depressive mood and in L'/L' genotypes increased feelings
of vigor. Furthermore, S'/S" genotypes differed from L'/L’
genotypes on measures of attention independent of treat-
ment and memory following ATD.

Conclusions Polymorphisms of the 5-HTTLPR differential-
ly affect responses to mild stress and ATD, suggesting
greater vulnerability of S'/S’ carriers to serotonergic manipu-
lations and supporting increased depression vulnerability.
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Introduction

Dysregulation of the serotonergic system has been impli-
cated in the pathophysiology of depression (Maes and
Meltzer 1995). This is based on studies reporting lower
plasma availability of the serotonin (5-HT) precursor
tryptophan for uptake into the brain, reduced cerebrospinal
fluid concentration of the 5-HT metabolite 5-hydroxyindo-
leacetic (5-HIAA) and decreased platelet 5-HT uptake in
depressed patients, suggesting diminished brain 5-HT uptake
and metabolism (Maes and Meltzer 1995; Neumeister et al.
2004). The level of 5-HT in the synaptic cleft is mainly
regulated by the 5-HT transporter (5-HTT), which is
targeted by most antidepressants (Meyer et al. 2004; Suhara
et al. 2003; Voineskos et al. 2007). Interestingly, the human
5-HTT gene, located on chromosome 17q11.1-q12 (Lesch
et al. 1994), contains a 5-HTT-linked polymorphic region
(5-HTTLPR) with two functional variants: the short (s)
form and the long (1) form (Greenberg et al. 1999; Heils et
al. 1996). The s form of this variant is less active, resulting
in reduced transcriptional efficiency of the 5-HTT gene,
decreased 5-HTT expression, and reduced 5-HT uptake
relative to the 1 form (Greenberg et al. 1999; Heils et al.
1996). The s allele has been associated with increased risk
of depression (Collier et al. 1996; Gonda et al. 2005, 2006;
Joiner et al. 2003), poorer responses to the antidepressant
effects of SSRIs (Serretti et al. 2007; Smeraldi et al. 1998),
increased vulnerability to tryptophan depletion (Neumeister
et al. 2002; Roiser et al. 2006), and abnormal emotional
processing (Hariri et al. 2002; Marsh et al. 2006).

@ Springer



806

Psychopharmacology (2009) 203:805-818

A direct association between 5-HTTLPR genotypes and
depression-related phenotypes appears to be relatively weak
(Lotrich and Pollock 2004). Roiser et al. (2005) only found
abnormal emotional processing in 3,4 methylenedioxyme-
thamphetamine (MDMA, or Ecstasy) users carrying the s
allele. MDMA prevents uptake of 5-HT and stimulates the
release of 5-HT, causing long-term changes to the 5-HT
system. This suggests that s allele carriers may only have a
predisposition to serotonergic vulnerability that may be
unmasked through challenges to the serotonergic system.
This is also in line with contemporary theoretical models of
gene involvement in depression that postulate that genetic
vulnerability does not affect depression directly; rather, 5-
HTTLPR may enhance susceptibility for depression partic-
ularly in the face of severe life events or stressful
experiences, which may also challenge the brain serotoner-
gic system (Firk and Markus 2007). Hence, depression is
often preceded by stress (Van Praag 2004), and epidemio-
logical studies have already demonstrated a positive
association between the s allele of the S-HTTLPR and a
depressive reaction to stressful life events (e.g., Caspi et al.
2003; for a recent review see Uher and McGuffin 2008).
This is in line with the hypothesis that stress may cause
depression due to complex interactions between the
neuroendocrine stress system and the serotonergic system,
particularly in individuals with a biological (genetic)
vulnerability related to their serotonergic system (Firk and
Markus 2007; Van Praag 2004). Although explorations of
the involvement of interactions between serotonergic
vulnerability in s allele 5S-HTTLPR and stress in the onset
of affective symptoms are a major challenge in biological
psychiatry today, this interaction has not yet been experi-
mentally investigated.

On the other hand, the relatively small direct association
between 5-HTTLPR genotypes and depression-related
phenotypes may also be explained by recently identified
functional variants within the 1 allele (L, and Lg) that may
underestimate the effect of S-HTTLPR. This is because the
Lg allele has a low rate of 5-HTT expression comparable to
the s allele and is relatively common in Caucasian and
African American populations (Hu et al. 2006; Zalsman et
al. 2006).

One accepted method to study behavioral and cognitive
effects of transiently reduced 5-HT availability in humans is
the acute tryptophan depletion (ATD) strategy (for a review
see Fusar-Poli et al. 2006; Young et al. 1985). In this
procedure, brain 5-HT is reduced through depletion of
plasma tryptophan (TRP, a precursor of 5-HT) availability
for uptake into the brain by intake of a TRP-free amino acid
mixture that contains all of the essential amino acids except
for TRP. This raises incorporation of TRP into protein
synthesis and reduces TRP relative to the sum of the other
large neutral amino acids (LNAAs) with which TRP
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competes for uptake into the brain (i.e., Fernstrom and
Waurtman 1971; Gessa et al. 1974; Maes and Meltzer 1995,
Moja et al. 1991). Evidence for reduced 5-HT neurotrans-
mission after ATD comes from studies measuring 5-HT
metabolites (5-HIAA) in cerebrospinal fluid (Carpenter et
al. 1998; Williams et al. 1999). In addition, there is also
plenty of evidence showing that the ATD procedure is the
most suitable method to study brain 5-HT vulnerability. For
instance, mood-lowering effects of tryptophan depletion are
clearly found in depressive patients in remission (Delgado
et al. 1990, 1999; Moreno et al. 2000; Ruhe et al. 2007),
whereas in healthy individuals such mood-lowering effects
seem to depend on the S-HTTLPR genotype (Neumeister et
al. 2002, 2006; Roiser et al. 2007; Walderhaug et al. 2007)
and family history of depression (Benkelfat et al. 1994;
Klaassen et al. 1999; Neumeister et al. 2002). Individuals
with a positive family history of depression are more
vulnerable to the mood-lowering effects of ATD than
individuals without a family history of depression, suggest-
ing an (innate) vulnerability of the serotonergic system in
relatives of depressive patients (Benkelfat et al. 1994;
Klaassen et al. 1999; Neumeister et al. 2002). However, the
effects of ATD on mood in individuals with different 5-
HTTLPR profiles are contradictory. Neumeister et al.
(2002) reported mood lowering in healthy s allele carriers,
in particular in those with a positive family history of
depression. Walderhaug et al. (2007) found mood lowering
following ATD only in women homozygous for the 1 and s
allele, whereas other studies did not find mood-lowering
effects at all (Marsh et al. 2006; Roiser et al. 2007).
Therefore, we suggest that the possession of the s allele,
which is very common in the population, may not alone
increase risk, but may induce enhanced susceptibility to
ATD only in the context of stress.

The aim of the present study was to investigate the
effects of ATD in subjects with different 5S-HTTLPR
profiles before and after stress exposure on affective and
cognitive—attentional changes that are thought to be critical
in the etiology and maintenance of depression. A selective
attention and memory bias for negative information is the
most commonly recognized characteristic of depression and
depression vulnerability (e.g., Bradley et al. 1995; Mogg
and Bradley 2005; Rinck and Becker 2005). For instance,
depressive patients show memory biases for negative
information in explicit memory free recall tasks (e.g.,
Bradley et al. 1995; Lim and Kim 2005) and slowed
responses to happy words compared to sad words during
affective go/no-go (AGNG) tasks (Murphy et al. 1999;
Erickson et al. 2005). In addition, comparable attentional
biases are also found in healthy individuals following ATD,
further suggesting that serotonergic factors are particularly
involved (Murphy et al. 2002). Based on the literature and
the data reviewed above, we hypothesized that the 5-
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HTTLPR genotype mediates ATD- and stress-induced
changes in mood and cognitive-behavioral indications of
affective biases. To our knowledge, this is the first time the
depressogenic effects of reducing brain 5-HT by ATD are
investigated in 5-HT-vulnerable s allele 5-HTTLPR carriers
before and after stress exposure.

Materials and methods
Participants

Undergraduate students at Maastricht University (N=200)
completed a screening questionnaire concerning general
information (health, smoking and drinking habits, caffeine
consumption, use of psychoactive drugs, past and present
treatment with medication, weight and height, eating habits,
and more). Furthermore, the Beck Depression Inventory
(BDI; Beck et al. 1961) was completed to verify the
absence of depressive symptomatology.

Participants were excluded if they reported chronic and
current illness; history of psychiatric or medical illness;
family history of depression; medication use; metabolic,
hormonal, or intestinal diseases; irregular diets or deviant
eating habits; drug use; or excessive (more than 10 units per
week) alcohol use. Participants’ health was checked with
standardized medical questionnaires that were evaluated by
a trained doctoral-level psychologist under the supervision
of a medical doctor. We acknowledge that, although
participants reported not having any medical illness, a
medical examination might have been a likely additional
method to further ensure participants’ physical health.
Participants included in the study revealed normal body
mass indexes (BMI in kg/m* between 19 and 26), were
non-smokers and were requested not to use alcohol before
or during the study.

From the subjects showing interest in taking part in the
experiment and fulfilling to the in- and exclusion criteria,
86 participants were invited to attend an initial buccal
sample extraction session. During this session, buccal
cell samples were taken via swabs to genotype all
individuals for 5-HTTLPR. Participants were compen-
sated (€5) for participation in this buccal sample
extraction phase of the study. All subjects had to give
informed consent to participate during this buccal DNA
extraction session.

Participants with the S/S, S/Lg, or Lg/Lg genotype
classified as S'/S" and participants with the L5/Ls genotype
classified as L'/L" were selected for the experiment and
received oral and written information about the study.
Eighteen subjects with the S'/S" genotype and 17 subjects
with the L'/L’ genotype completed the experiment. The S'/S’
group and the L'/L’" group did not differ with respect to sex,

age, BMI, or BDI scores (all p>0.05). Demographic
characteristics are presented in Table 1.

The study was approved by the Medical Ethics Com-
mittee of the Academic Hospital Maastricht (CTCM azM;
Maastricht; The Netherlands), and the procedures followed
were in accordance with the Helsinki Declaration of 1975
as revised in 1983. All subjects gave their informed consent
to participate in the experiment and were paid 150€ for
participation.

Design

A placebo-controlled, double-blind, crossover design was
used. During two experimental sessions, subjects were
monitored for affective processing before and after acute
stress exposure either following intake of a TRP-free
(TRP-) or a TRP-containing balanced (TRP+) amino acid
mixture. The order of presentation of the TRP— and TRP+
condition was counterbalanced within groups and both
experimental sessions were separated by at least 1 week.
Before and 4.5 h after intake of the amino acid mixtures,
blood samples were taken to measure the effect of ATD on
plasma amino acid concentrations and the TRP/LNAA
ratio. Female subjects were tested in the follicular phase of
their menstrual cycle (days 4-10) or when actually taking
oral contraceptives.

Procedure

All participants were instructed to fast overnight; only
water or tea without sugar was permitted. On each
experimental morning, participants arrived for testing at
08:30 aM., 09:00 aAM., 09:30 AM., and 10:00 AM.,
respectively, and a first blood sample was taken to obtain
baseline plasma TRP and LNAA levels. A second blood
sample was drawn 4.5 h after intake of the amino acid
mixture (TRP— or TRP+) to assess changes in total TRP
concentrations and TRP/LNAA ratios. At baseline and
4.5 h following intake of the amino acid mixture, subjects
completed a survey measuring vegetative side effects. Five
hours after administration of the amino acid mixture,

Table 1 Demographic characteristics

Genotype

S'/S’ L'/l
Women 17 18
Men 2 2
Age 19.6 (1.7) 19.5 (1.8)
BMI 22.0 (1.8) 21.4 (2.2)
BDI 2.7 (24) 2.8 (2.6)

Values represent mean (SD)
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participants’ mood was assessed with the Profile of Mood
States (POMS; Wald and Mellenbergh 1990) and the
Positive and Negative Affect Scale (PANAS; Watson et
al. 1988). Mood assessment was followed by the affective
go/no-go task (to measure attentional biases) and the
emotional related free recall task (to measure memory
biases). Then, participants were exposed to an uncontrolla-
ble stress task (Markus—Peters Arithmetic (MPA) task),
again followed by mood assessment and the affective go/
no-go task and the emotional related free recall task.
Further, two pre-stress salivary cortisol samples were taken
(at 4.5 h (z-30) and immediately before the MPA task (#))
and two post-stress cortisol samples were taken (immedi-
ately after the MPA task (#.,9) and 10 min after finishing
the MPA task (#30)) to measure stress-related activation of
the hypothalamic—pituitary—adrenal (HPA) axis. Between
intake of the amino acid mixture and exposure to laboratory
tasks, the subjects were able to study or to read magazines
in a separate private room. They had free access to water
and decaffeinated tea. Two hours after administration of the
amino acid mixture, they received a standardized protein-
poor lunch as previously used in ATD studies (Riedel et al.
1999; Sobczak et al. 2002a, b). At the end of each test day,
subjects received a high protein snack and bananas, which
are natural sources of L-tryptophan to facilitate a quick
recovery from possible negative effects of ATD.

Acute tryptophan depletion

A reduction in brain 5-HT was accomplished by ATD
through the use of a tryptophan-free collagen—protein (CP)
amino acid drink (Blokland et al. 2004; Evers et al. 2005;
Sambeth et al. 2008). To obtain a drinkable mixture, 100 g
of the protein powder was mixed with 200 ml of tap water.
During the PLC condition the intake of the mixture was
directly followed by ingestion of four capsules containing
1.2 g L-TRP (Sigma, Zwijndrecht; The Netherlands),
whereas during the ATD condition, intake was directly
followed by ingestion of four capsules containing lactose
(all capsules were taken with a little water). See Table 2 for
the amino acid composition of the different conditions
(Evers et al. 2005).

This ATD method differs from the classic methodology
by including a gelatin-based hydrolyzed CP that contains
the entire range of amino acids (except for L-TRP) in the
form of peptides. After administration, these peptides are
decomposed into amino acids and the mechanism of
depletion is identical to the classical ATD method.

Stress exposure

A mental arithmetic task, performed under noise stimula-
tion, was used as an uncontrollable stress situation
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Table 2 Composition (grams) of the gelatin-based protein (all values
are grams per 100 g of each mixture)

TRP—- TRP+
Phenylalanine 1.9 1.9
Tyrosine 0.4 0.4
Valine 2.1 2.1
Leucine 3 3
Isoleucine 1.4 1.4
Tryptophan 0.1 1.3
Serine 3.1 3.1
Glycine 22.5 22.5
Histidine 0.5 0.5
Arginine 8.8 8.8
Threonine 1.1 1.1
Alanine 9.3 9.3
Proline 13.3 133
Methionine 0.6 0.6
Cystein 0.2 0.2
Lysine 3.6 3.6
Hydroxyproline 12.1 12.1
Hydroxylysine 1.4 14
Aspartic acid + asparagines 9.3 9.3
Glutamic acid + glutamine 52 52

(Markus—Peters Arithmetic task). Subjects were given 18
successive 1-min trials during which they had to solve a
specific number of multiple choice mental arithmetic
problems (the criterion) under time constraints, while at
the same time continuous 75, 80, or 85 dB industrial noise
was presented to them through headphones. They were led
to believe that the intensity of the noise depended on their
performance; if they failed the criterion, the noise intensity
was chosen by the computer during the next trial; if they
met the criterion, they could choose the intensity of the
noise. In fact, the criterion was manipulated so that all
subjects continued to fail on each trial. This task has been
demonstrated to induce psychological and physiological
stress and to be perceived as highly uncontrollable (Markus
et al. 1998, 2000a, b; Peters et al. 1998). In the present
study, an adapted version of the MPA was used during
which subjects had to perform under audience observation.
Furthermore, subjects were told that a video analysis of
their performance was conducted to analyze their non-
verbal behavior.

Subjective mood ratings

Profile of mood states Changes in mood were measured
using the Dutch shortened version of the POMS question-
naire (Wald and Mellenbergh 1990), offered at the
computer-screen as a VAS scale ranging from “strongly
disagree” to “strongly agree”. The POMS comprises five
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different subscales for mood, ranging from anger, depres-
sion, fatigue, and tension that refer to a negative mood
state, to vigor concerning a positive mood.

Positive and Negative Affect Scale The PANAS (Watson et
al. 1988) consists of two 10-item mood scales, a positive
mood scale and a negative mood scale. The 20 items are
randomly presented on a computer screen and participants
have to respond on a scale ranging from 1 (totally disagree)
to 5 (totally agree).

Emotional related free recall

To test emotionally related immediate and delayed free
recall, an adapted version of the 30 Word Learning Test (30
WLT) was used (e.g., Smeets et al. 2006; Sobczak et al.
2002b). The 30 WLT is an adapted version of the Rey
Auditory Verbal Learning Task (Lezak 2004) In this test,
participants are presented with a list of 30 words (ten
negative, ten positive, and ten neutral words matched for
frequency, word length, and emotional valence, chosen
from Hermans and De Houwer’s (1994) list of Dutch words
that have been rated for familiarity and affectivity) in
random order. Each word was presented on the computer
monitor for 3 s with an inter-stimulus interval of 1 s. The
participants had to rate how relevant each word was to their
personal concerns on a scale ranging from 1 (not at all
relevant) to 5 (extremely relevant). Following the encod-
ing task, the participants were given 2 min to complete
an immediate written recall task. A delayed recall took
place after 30 min. Four comparable lists (matched for
frequency, word length, and emotional valence) were
used and presentation order was counterbalanced across
participants.

Affective go/no-go

A modified version of the affective go/no-go task described
by Murphy et al. (1999) was used in the present study. In this
task, happy and sad words are presented on the screen one-
by-one for 300 ms followed by an inter-stimulus interval of
900 ms during which participants must make or withhold a
button press response on the basis of the emotion of the
word. The task comprises two practice blocks and 12
experimental blocks. Each block contains 18 words (nine
happy words and nine sad words), and subjects are instructed
that they must respond either to the happy words or to the
sad words before each block. Every two blocks, the targets
and the distractors change, words that were previously
targets become distractors, and words that were previously
distractors become targets (SSHHSSHHSSH HSS or
HHSSHHSSHHSSHH). Due to this arrangement, shift
blocks and non-shift blocks can be studied.

Vegetative side effects

In order to measure possible side effects of the amino acid
mixtures, a list (five-point scales) of vegetative side effects
was completed before and 4.5 h after intake. The list
contained the following items: feeling cold, feeling hot,
dizziness, perspiration, blurred vision, nausea, palpitations,
dry mouth, and abdominal complaints.

Biochemical measurements

Plasma samples Blood samples were collected in 5 ml
Vacutainer tubes containing sodium heparin for amino acid
measurements. The sodium heparin tube was centrifuged at
5,000 rpm for 10 min at 4°C. Subsequently, the super-
natants were directly stored at —80°C until analysis. Plasma
amino acid analyses were conducted with HPLC, making
use of a 2-3-um Bischof Spherisorb ODS II column. The
plasma tryptophan ratio was calculated by dividing the
plasma tryptophan concentration by the sum of the other
large neutral amino acids, i.e., valine, isoleucine, leucine,
tyrosine, and phenylalanine.

Salivary cortisol Cortisol samples were obtained by using
the Salivette sampling device (Sarstedt®, Etten-Leur, The
Netherlands). With this procedure, saliva was collected in
small cotton swabs and stored (—25°C) immediately upon
collection until centrifugation. Saliva samples were centri-
fuged at 2,650%g,.x for 3 min at 20°C. Salivary free
cortisol levels were determined in duplicate by direct radio-
immunoassay (University of Liege, Belgium), including a
competition reaction between '*’iodohistamine-cortisol and
anti-cortisol serum made against the 3-CMO-BSA conju-
gate. After incubation of 100 pl of saliva at 4°C overnight,
separation of free and antibody-bound '**iodohistamine-
cortisol was performed via a conventional “second anti-
body” method. In order to reduce sources of variability, all
samples were analyzed in the same assay.

Buccal cells for polymorphism assessment Buccal cell
samples for measuring triallelic variants of the 5-HTT-
linked polymorphic region (5-HTTLPR) were obtained
using sterile swabs (Omni Swabs, Whatman’s Hertogen-
bosch, The Netherlands). Genomic DNA was isolated from
buccal swabs using QIAamp DNA Mini Kits from Qiagen
(Westburg, Leusden, The Netherlands) for determination of
the 5-HTTLPR genotype. Briefly, genotyping was per-
formed using the polymerase chain reaction protocol
according to Wendland et al. (2006) with the oligonucleo-
tide primers 5-TCCTCCGCTTTGGCGCCTCTTCC-3' and
5'-TGGGGGTTGCAGGGGAGATCCTG-3'. Triallelic var-
iants were reclassified into a biallelic model as follows: S/S,
S/Lg, and Lg/Lg were classified as S'/S" and Lo/L s as L'/L’
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(Neumeister et al. 2006; Walderhaug et al. 2007; Zalsman
et al. 2000).

Statistical analysis

The main research questions were analyzed by means of
repeated measures multivariate and univariate analyses of
variance (MANOVA and ANOVA) by using the General
Linear Model (SPSS 12.0 for Windows) with one
between-subjects factor genotype (S'/S' vs. L'/L’) and two
within-subjects factors treatment (TRP+ vs. TRP—) and stress
(pre-stress vs. post-stress) or time (ty VS. t45 Or ts; cortisol
analysis: time (-3 VS. fy VS. tip VS. ty30)) on the several
dependent measures. Order was included as centered co-
variate. For the subjective mood ratings, we conducted two
repeated measures ANOVAs with genotype (S'/S' vs. L'/L")
as the between-subjects factor and treatment (TRP+ vs.
TRP-) as the within-subjects factors for the subjective mood
ratings. To investigate the effects of treatment and the effects
of stress separately, we included time (fy vs. ts) in the first
analysis and stress (pre-stress vs. post-stress) in the second
analysis as within-subjects factor. For the affective go/no-go
task, valence (positive vs. negative) and shift (shift blocks vs.
non-shift blocks) were included as within-subjects factors.
For the emotional related free recall, valence (negative vs.
neutral vs. positive) was included as a within-subjects
variable. Greenhouse—Geisser corrected p values are reported
when the sphericity assumption is not met. All statistics are
evaluated at a two-tailed significance level of 5%. Post hoc
analyses for significant interactions were assessed by paired
and unpaired ¢ tests to aid interpretation; corrections for
multiple comparisons were not carried out.

Results
Plasma amino acids (total TRP and TRP/LNAA ratio)

For TRP concentrations a significant treatment x time
interaction was found [F(1, 32)=224.87, p<0.001], reflect-
ing a decrease from f, to t45 by 79% after TRP— and an
increase from ¢, to #4 5 by 68% after TRP+ administration.
Analysis of the plasma TRP/LNAA ratio revealed a
significant treatment X time interaction [F(1, 32)=269.59,
p<0.001] with a 77% decline in plasma TRP/LNAA after
TRP— and an increase from f, to t45 by 62% after TRP+
(see Fig. 1). No other main or interaction effects were found
including genotype.

Cortisol

Repeated measures analysis of variance only revealed a
main effect of time [F(3, 30)=4.02, p=0.016] showing a
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Fig. 1 Plasma total TRP concentrations and TRP/LNAA ratio for the
TRP—- and TRP+ conditions. For TRP concentrations, we found a
significant decrease from ¢, to #, 5 after TRP— [#(34)=24.56, p<0.001]
and a significant increase from £, to 4 5 by 68% after TRP+ [#(34)=7.58,
p<0.001]. For the TRP/LNAA ratio, we found a significant decrease
from fy to t45 after TRP— [#(34)=23.07, p<0.001] and a significant
increase from £y to 4 5 by 68% after TRP+ [#(34)=7.63, p<0.001]

slight but significant decline in cortisol concentrations f,,¢
to t139 (from 2.4+0.2 to 2.2+0.2 nmol/L).

Vegetative side effects
No significant main or interaction effects were found.
Subjective mood ratings

Data for the subjective mood rating scales are presented in
Table 3.

POMS TIn the first analysis, multivariate analysis revealed a
main effect of time [F(5, 28)=12.52, p<0.001] with higher
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anger and fatigue scores and lower tension scores at fs.
Further, univariate analysis of the POMS revealed a treat-
ment X time interaction of the vigor subscale [F(1, 32)=
7.28, p=0.011] and fatigue subscale [F(1, 32)=5.35, p=
0.027] reflecting a stronger decrease in vigor ratings
following TRP— than TRP+ [#(34)=2.74, p=0.01] and a
stronger increase in fatigue ratings following TRP— than
TRP+ [#(34)=2.32, p=0.026] (see Fig. 2).

In the second analysis, multivariate analysis showed a
main effect of stress [F(5, 28)=3.81, p=0.009] and a
significant stress x genotype interaction [F(5, 28)=3.96, p=
0.008] (see Fig. 3). Further, univariate analysis showed that
the main effect of stress originated from the subscale anger
[F(1, 32)=12.39, p=0.001] and fatigue [F(1, 32)=4.51, p=
0.041], reflecting an increase in anger post-stress compared
to pre-stress and a decrease in fatigue post-stress compared
to pre-stress. The stress X genotype interaction originated
from the depression subscale [F(1, 32)=8.24, p=0.007] and
the vigor subscale [F(1, 32)=13.12, p=0.001]. This inter-
action was explored with a one-way multivariate analysis
including the vigor and depression subscale for each
genotype, indicating an increase in depressive mood after
stress in the S'/S" group [F(1, 16)=5.38, p=0.034] only and
an increase in vigor after stress in the L'/L’ group [F(1, 15)=
12.61, p=0.003] only (Fig. 3).

PANAS In the first analysis, we found a treatment x time
interaction [F(1, 32)=6.94, p=0.013] on the positive scale,
indicating a decrease in positive mood regardless of
genotype following TRP— [#34)=2.57, p=0.015] but not
following TRP+ [#(34)<1, ns] (see Fig. 2). No effects were
found for the negative scale of the PANAS.

In the second analysis, only a significant effect of stress
[F(1, 32)=4.28, p=0.047] was found on the negative scale,
reflecting higher negative mood scores post-stress com-
pared to pre-stress regardless of treatment and genotype.

Affective go/no-go

Mean values and standard deviations are presented in
Table 4.

Reaction time Analysis of reaction time (RT) data revealed
a main effect of stress [F(1, 32)=5.73, p=0.023], indicating
longer RTs post-stress compared to pre-stress, and a main
effect of Shift [F(1, 32)=11.98, p=0.002] with faster RTs
for shift blocks than non-shift blocks. This shift effect was
qualified by a treatment X shift interaction [F(1, 32)=5.5, p=
0.025], indicating faster RTs for shift trials than non-shift
trials in the TRP+ condition only [#34)=4.31, p<0.001] and
a valence x shift interaction [F(1, 32)=4.71, p=0.038],
indicating longer RTs for sad non-shift trials compared to sad
shift trials [#34)=3.88, p<0.001]. Analysis also revealed a

Table 3 Subjective mood ratings

S'/S" genotype

L'/’ genotype

Measure

Test

TRP-

TRP+

TRP-

TRP+

Pre-stress Post-stress Baseline Pre-stress Post-stress Baseline Pre-stress Post-stress Baseline Pre-stress Post-stress

Baseline

29(0.8) 3207 3108 3308 3008 3009 3107 3006 2807  32(0.6) 2808  2.7(0.8)

Positive

PANAS

— o —

— = —

— o —

— o —

Negative

Depression

Tension
Vigor

2907 2908 3306 2707 3007 3306 2707 3107 3606 2907  2.8(0.8)

3.1 (0.7)

Values represent mean (SD)
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Fig. 2 Mean (SE) vigor (POMS) and positive affect (PANAS)
ratings showing a significant stronger decrease in vigor ratings
following TRP— than TRP+ [#(34)=2.74, p=0.01] and a significant
decrease in positive affect ratings following TRP— but not TRP+ [#
(34)=2.57, p=0.015]

valence X genotype interaction [F(1, 32)=8.62, p=0.006],
reflecting significant longer RTs for sad words compared to
happy words for the S'/S’ genotype group only [#(17)=3.11,
p=0.000] (Fig. 4).

@ Springer

Errors Analysis of error data revealed a main effect of
treatment [F(1, 32)=4.68, p=0.038], indicating significant-
ly more errors following TRP— than TRP+; a main effect of
stress [F(1, 32)=4.55, p=0.041] with fewer errors post-
stress than pre-stress and a main effect of shift [F(1, 32)=
21.99, p<0.001] with more errors for shift than non-shift
blocks. Furthermore, we found a treatment x genotype X
valence x shift interaction [F(1, 32)=5.27, p=0.028], which
was explored by a three-way (treatment, valence, shift)
ANOVA for each genotype revealing a treatment x valence x
shift interaction for the S'/S’ genotype only [F(1, 16)=12.24,
p=0.003]. To break down this interaction, a two-way
(treatment, valence) ANOVA for the S'/S’ genotype was

3.4
3.2 T
o
o 31
s
2.8
—— L
S/s” —
2.6 T 1
pre-stress post-stress
Stress
1.5+
1.4+ T
: \
0 T
a
o 1.3+ T
[«
(]
o 1
1.2+
——LL
S’/s’
1 1 T 1
pre-stress post-stress

Stress

Fig. 3 Mean (SE) depression and vigor ratings pre-stress and post-
stress for both genotypes collapsed over treatment showing a
significant increase in vigor post-stress for the L'/L" genotype [F(1,
15)=12.61, p=0.003] and a significant increase in depressive mood
for the S'/S’ genotype [F(1, 16)=5.38, p=0.034]
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Table 4 AGNG and memory data

Test Measure L'/L" genotype S'/S" genotype
TRP+ TRP—- TRP+ TRP—-
Pre-stress ~ Post-stress ~ Pre-stress ~ Post-stress ~ Pre-stress ~ Post-stress ~ Pre-stress ~ Post-stress

AGNG

Happy shift RTs 504 (47) 521 (38)  510(51)  519(47)  S518(55)  529(55) 527 (66) 540 (67)
Errors 4129 3027 4534 4232 2325  20(19 3125 3327
Omissions 1.9 (2.0) 2.1 (2.5 16(14) 1324 2930 2832 2229 1622

Happy non-shift ~ RTs 512(47) 516 (47)  516(53)  S517(51)  533(60)  532(47)  519(57) 534 (74)
Errors 1.922) 261 35020 2220 2122 2422 23(.7) 20@23)
Omissions 1.3 (12) 1922 22(L.7) 1220 1818 1814 2124 23(L9)

Sad shift RTs 499 (46) 508 (52) 507 (44) 508 (45) 530 (62)  536(59)  538(63) 542 (74)
Errors 3237 2627 39(33) 2735 3231 3428 27(3.0) 2325
Omissions 1.7 (2.1)  17(1.9) 2525 1427 1328  28(62) 1929 2.6 (3.0)

Sad non-shift RTs 515(42) 527 (47) 509 (44)  516(61) 544 (55) 545 (61) 544 (64) 550 (668)
Errors 2928) 211 3225  22(1.6) 2025 1414 247  22(L5)
Omissions 1.2 (1.4)  09(1.0) 16(1.8) 1926 1518 3263 1221 219

Memory Immediate recall
Positive 56(13) 56(1.5) 55200  60(.7)  62(L7)  55(1.5) 52(14) 48(14)
Negative 5.0 (0.8) 54 (1.5) 5422 54(1.9) 46(1.5 4422  41(13) 4614
Neutral 6.1(17)  48(L7) 4418 4921  46(19) 43(22)  44(15  43(18)
Delayed recall
Positive 54(17)  50(15)  54@2.1)  49(19)  56(19)  47(1.6)  49(1.6) 3.9 (L6
Negative 4.2 (1.1)  39(L1)  44(1.8) 40(1.8) 43(12) 3421  37(.6  3.1(.1)
Neutral 51200 327  42(1.8) 42(.7) 44200 3421 38(.7)  3.1(L9)

Values represent mean (SD)

run for each shift condition showing a treatment x valence

interaction for the shift condition only [F(1, 16)=9.19, p=

0.008], revealing more errors following TRP— than TRP+

during happy shift blocks [#(17)=2.15, p=0.047].

Further, a treatment x stress X valence X shift interaction 560+ Oha .
L1301, pe - ooy I

[F(1, 32)=13.01, p=0.001] was found reflecting a treat- W sad

ment X stress X valence interaction for the non-shift 5504

condition only [F(1, 33)=8.45, p=0.006]. This interaction

was further explored by a two-way (treatment, stress)

ANOVA for happy words and sad words yielding a 540+

treatment X stress interaction for happy words only [F(1, ®

33)=12.62, p=0.001], showing a decrease in errors pre- % 530

stress to post-stress following TRP— [#34)=2.52, p=0.017] e

but no effect following TRP+ [#34)=1.67, p=0.10]. 520

Omissions Analysis of omission data revealed a significant

treatment x valence x shift interaction [F(1, 32)=4.66, p= 510

0.038]. A two-way (treatment, valence) ANOVA was run

for shift and non-shift blocks revealing a marginally

significant treatment x valence interaction for the shift 500 L ' s/s '

blocks only [F(1, 33)=3.98, p=0.054], indicating more Genotype

omissions for happy shift trials following TRP+ compared
to TRP—. However, this difference did not approach
significance [#(34)=1.78, p=0.085]. There were no effects
of genotype or stress.

Fig. 4 Mean RTs (SE) for happy and sad target words for both
genotypes collapsed over stress showing significant longer RTs for sad
words compared to happy words for the S'/S’ genotype group only [¢
(17)=3.11, p=0.006]
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Emotionally related free recall

Mean values and standard deviations are presented in
Table 4.

Immediate recall Analysis of immediate recall data
revealed a main effect of valence [F(2, 64)=11.38, p<
0.001] and a significant genotype x treatment x valence
interaction [F(2, 64)=4.17, p=0.02]. This interaction was
explored by a two-way ANOVA (treatment, genotype) for
positive, negative, and neutral words, revealing a margin-
ally significant treatment x genotype interaction for positive
words only [F(1, 32)=3.48, p=0.071]. This interaction,
which is visualized in Fig. 5, reflected that individuals with
the S'/S’ genotype recalled fewer positive words following
TRP- than TRP+ [/(17)=2.5, p=0.023].

Delayed recall An analysis of the delayed recall data
revealed a main effect of stress [F(1, 32)=14.57, p=
0.001] reflecting that fewer words were recalled post-stress
than pre-stress, and a main effect of valence [F(2, 64)=
54.17, p<0.001] showing that more positive words were
recalled than negative and neutral words. Further, we found
a significant treatment x stress X valence interaction [F(2,
64)=3.28, p=0.049]. This interaction was further explored
by a two-way (treatment, stress) ANOVA for positive,
negative, and neutral words, revealing a treatment X stress
interaction for neutral words only [F(1, 33)=7.45, p=0.01],
indicating that more neutral words were recalled pre-stress
compared post-stress following TRP+ [#(34)=4.37, p=
0.000] but not TRP— [#(34)<1, ns]. However, it should be
noted that there was already a difference between treat-

Positive words

7 —_
O TRP+
B TRP-
6 -
T
(4]
(]
o
Q
s °7
T
()
£
E
4
3 T
L/ S/’
Genotype

Fig. 5 Mean number (SE) of immediately recalled positive words for
both genotypes following TRP+ and TRP— collapsed over stress
showing that individuals with the S'/S’ genotype recalled fewer
positive words following TRP— than TRP+ [#17)=2.5, p=0.023]

@ Springer

ments pre-stress [£(34)=2.2, p=0.034] with fewer neutral
words being recalled following TRP— than TRP+.

Discussion

The goal of the present study was to assess mood, memory,
and attention in individuals with different 5-HTTLPR
genotypes following ATD before and after the exposure to
uncontrollable stress.

ATD lowered the plasma TRP/LNAA by 77%, which is
comparable with previous studies using the same CP ATD
method (Evers et al. 2005) or the classic ATD mixture (Van
der Does 2001). Previous studies using the classic ATD
mixture have reported an increase in plasma TRP of up to
200% in the balanced (TRP+) condition (for a review see
Fusar-Poli et al. 2006), whereas the CP ATD method has
been found to be more effective in maintaining a stable
TRP+ condition (Evers et al. 2005; Firk and Markus 2008).
In the present study, the TRP/LNAA ratio also increased by
62% in the TRP+ condition suggesting that the TRP+
condition may also be psychoactive due to an increase in 5-
HT synthesis. However, this increase in TRP/LNAA ratio is
probably insufficient to affect behavior (Markus 2008).

ATD resulted in a significant reduction of positive mood
in all subjects independent of S-HTTLPR genotype. This
finding was surprising since most studies only found mood-
lowering effects of ATD in individuals at risk for depres-
sion such as depressive patients in remission, individuals
with a positive family history of depression (for a recent
review see Ruhe et al. 2007), or in healthy s allele carries as
compared to 1 carriers (Neumeister et al. 2002, 2006).
However, few recent studies including the triallelic 5-
HTTLPR polymorphism also revealed negative mood
effects of ATD in I/l carriers if they were patients
(Neumeister et al. 2006) or women (Walderhaug et al.
2007). Although our participants reported no family history
of depression during screening, it may indeed be possible
that some of these answers were instead based on lack of
information, which may also explain this surprising effect.
However, even if one or two young adult participants were
actually FH+, it is unlikely that this has confounded our
findings given the sample size of the current study.

Even though the s allele is suggested as a vulnerability
factor for the negative effects of ATD on mood, it seems
that this is more complex and brain 5-HT manipulation may
particularly alter mood in s allele carriers when the
serotonergic system is actually needed in the face of acute
stress as 5-HT plays a role in regulating HPA axis activity,
which is important for stress coping (e.g., Porter et al.
2004). Therefore, we predicted that s allele carriers are
especially vulnerable to ATD under acute stress exposure.
For this purpose, the MPA task was used in the present
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study as an uncontrollable stress situation since it has
frequently been found to induce stress as indicated by mood
deterioration and increases in cortisol and electrophysio-
logical arousal (e.g., Markus et al. 2002; Peters et al. 1998).
Analysis indeed revealed a slight stress-induced increase in
depression scores exclusively in S'/S’ genotypes, whereas in
L'/L" genotypes stress even increased positive feelings of
vigor. These findings seem to support previous assumptions
of 5-HTTLPR s allele as a vulnerability factor in the de-
velopment of depression and suggest that L'/L' carriers are
less susceptible to the negative effects of stress than S'/S’
genotypes. As already described in the “Introduction”, 5-
HT plays an important role in stress coping which may
explain why 1 allele carriers are more resistant to the
negative effects of stress compared to s allele carriers. This
involvement of 5-HT in stress coping is supported by
complex interactions between 5-HT and the neuroendocrine
stress system (Porter et al. 2004). Acute stress increases 5-
HT neurotransmission (Davis et al. 1995; De Kloet et al.
1982, 1983), which promotes stress adaptation by mediat-
ing negative feedback control of cortisol on the HPA axis
(Nuller and Ostroumova 1980; Van Praag 2004). In accord
with the current findings, s allele carriers are thought to be
5-HT vulnerable and to be susceptible to depression
symptoms particularly in the face of stress (Caspi et al.
2003; Firk and Markus 2007; Van Praag 2004). Although
hypothetically, stress and enhanced HPA activation, partic-
ularly in s allele carriers, may further undermine 5-HT
function, which then may lead to reduced stress coping and
subsequently result in negative mood (e.g., Dayan and
Huys 2008; Firk and Markus 2007; Van Praag 2004). In
further support, Gotlib et al. (2008) found that only girls
homozygous for the s allele showed a cortisol response
following acute stress exposure, which also supports the
hypothesis that 5S-HTTLPR affects HPA activity and hence,
stress reactivity.

Although the affective effects of acute stress exposure
appear to be influenced by 5-HTTLPR, there was no
additional effect of ATD. Assuming that S'/S’ genotypes
have a greater serotonergic vulnerability than L'/L’ geno-
types, and that sufficient 5-HT function is a biological basis
for stress coping, we expected that ATD would further
increase the negative effect of stress exposure in S'/S’
genotypes. This absence of interaction between ATD,
stress, and 5S-HTTLPR on depression scores might well be
explained by the apparent modest effect of the current acute
stress task. Although the MPA stress task also affected
mood in the current study, cortisol responses were not
increased following stress exposure, suggesting that the
MPA task, in the present study, was only a brief and mild
stressor. On the contrary, Gotlib et al. (2008) found a 5-
HTTLPR-mediated change in cortisol responses by includ-
ing a more severe and sustained stress procedure. Therefore,

ATD may only mediate stress-induced affective changes
in s allele carriers under highly emotionally (depression)
relevant stressful conditions that require enhanced acti-
vation of 5-HT-involved adaptation mechanisms. Al-
though in the current study design, stress may be
confounded with fatigue effects over time, subjective
mood ratings showed that fatigue decreases post-stress
compared to pre-stress, suggesting that stress was not
meaningfully confounded by fatigue over time in the
current study.

Based on previous studies reporting memory (e.g., Rinck
and Becker 2005) and attention bias (e.g., Murphy et al.
1999) toward negatively toned material in depressive
patients, we expected a negative attention and memory
bias for S'/S’ genotypes especially following ATD and
stress exposure. On the AGNG task, we expected faster RTs
when responding to sad words; however, slower RTs were
found for sad words compared to happy words for S'/S’
genotypes. One possible explanation for this is that S'/S’
genotypes might have a pre-clinical baseline disposition to
avoid negative information to counteract heightened amyg-
dala responsivity to negative information (Hariri et al.
2005; Heinz et al. 2005; Pezawas et al. 2005). In support of
this theory, avoidance behavior is generally recognized as a
mediating factor in anxiety disorders and in the onset of
depression (Tull and Gratz 2008). Another possible
explanation might be that S'/S’ genotypes spend more time
on the elaboration of negative material which might
increase their vulnerability to depression. In support of
this, healthy individuals without any vulnerability to
depression actively avoid elaboration of negative stimuli
while depressed patients fail to do so (Deveney and Deldin
2004). This is also consistent with a recently described
neuro-computational model by Dayan and Huys (2008). In
their model, 5-HT modulates behavioral inhibition as a
Pavlovian control process suppressing negative representa-
tions that may lead to aversive states and consequences. By
reducing brain 5-HT through ATD, this control process will
fail and subsequently will give free rein to negative
thoughts and actions. Further, in terms of this model,
ATD might decrease suppression of negative thoughts
particularly in S'/S" genotypes due to serotonergic vulner-
ability that is caused by higher 5-HT levels throughout the
lifespan development as a function of less sufficient 5-HT
reuptake (Dayan and Huys 2008). However, in the present
study, ATD did not affect RTs, and increased the number of
errors during happy shift blocks only in S'/S" genotypes,
suggesting a slightly increased ATD vulnerability for S'/S’
genotypes in line with our expectations. Previous findings
from ATD studies in healthy subjects were inconsistent:
some showed a negative attention bias following ATD
(Murphy et al. 2002), others reported a bias toward positive
material following ATD (Hayward et al. 2005) and others
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did not find a differential effect of ATD on emotional
processing (Roiser et al. 2007; Rubinsztein et al. 2001).

On the memory task, ATD impaired immediate recall of
positive words in S'/S’ genotypes. This indeed resembles
the mood-congruent memory bias that has been reported for
depressed patients reflecting impaired memory for positive
information (Matt et al. 1992). Memory performance
following ATD has been investigated in previous studies
reporting impaired recall of positive words following ATD
in healthy subjects (Klaassen et al. 2002) and impaired
recall in healthy S'/S' genotypes independent of word
valence (Roiser et al. 2007). Thus, ATD impairs memory
performance and in the present study even induces a
depressive-like memory pattern in S'/S' carriers following
ATD, supporting greater vulnerability of S'/S’ carriers to
depression.

To conclude, polymorphisms of the 5S-HTTLPR differ-
entially affects responses to mild stress and ATD, suggest-
ing greater vulnerability of S'/S’ carriers to serotonergic
manipulations and supporting increased depression vulner-
ability. The absence of interaction between ATD, stress, and
5-HTTLPR, possibly due to the modest effect of the current
acute stress task, merits further research using a stronger
and a more sustained stress procedure.
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