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Abstract
We analyze the local accuracy of the virtual element method.More precisely, we prove
an error bound similar to the one holding for the finite element method, namely, that
the local H1 error in a interior subdomain is bounded by a term behaving like the
best approximation allowed by the local smoothness of the solution in a larger interior
subdomain plus the global error measured in a negative norm.

Mathematics Subject Classification 65N12 · 65N22 · 65N30

1 Introduction

Besides its ability to handle complex geometries, one of the features that contributed
to the success of the finite element method as a tool for solving second order elliptic
equations is their local behavior. Considering, to fix the ideas, the Poisson equation

−�u = f , in � u = 0, on ∂�,

the standard,well known, error estimate provides, for the order k finite elementmethod,
an error bound of the form

u ∈ Hs+1(�), 0 < s ≤ k �⇒ ‖u − uh‖1,� ≤ Chs |u|s+1,�
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(u and uh denoting, respectively, the exact and approximate solutions, and h the mesh
size). When measured in a global norm, the error can be negatively affected by the
presence of even a few isolated singularities. However, since the early days in the
history of such a method it is well known that, if a solution with low overall regularity
is locally smoother, say in a subdomain �1 ⊂⊂ �, an asymptotically higher order of
convergence can be expected in any domain �0 ⊂⊂ �1. More precisely, there exists
an h0 (depending on �0 and �1) such that, for h < h0, the H1(�0) norm of the error
can be bounded ( [37], see also [39, 40]) as

‖u − uh‖1,�0 � hk‖u‖k+1,�1 + ‖u − uh‖1−k,�, (1.1)

which, combined with an Aubin–Nitsche argument to bound the negative norm on the
right hand side, yields, if � is sufficiently smooth, an O(hk) bound for the error in
the H1(�0) norm, provided u ∈ Hk+1(�1), even when u /∈ Hk+1(�). This feature
is particularly appealing, as it allows to take advantage of the local regularity of the
solution, thus enabling the method to perform effectively. One can, for instance, avoid
the need of refining the mesh, whenever possible singularities are localized far from
a region of interest.

It is therefore clearly desirable that new methods, aimed at generalizing finite
elements, retain this property. We focus here on the virtual element method, a
discretization approach that generalizes finite elements to general polygonal space tes-
sellations. Analogously to the finite element method, the virtual element discretization
space is continuously assembled from local spaces, constructed element by element
in such a way that polynomials up to order k are included in the local space. Con-
trary to the finite element case, however, the functions in the space are not known
in closed form but are themselves solution to a partial differential equation, which is,
however, never solved in the implementation. In order to handle the discrete functions,
these are instead split as the sum of an exactly computable polynomial part, and of
a non polynomial part. Exact handling of the polynomial part alone turns out to be
sufficient to guarantee good approximation properties: to this end, the bricks needed
for the solution of the problem at hand by a Galerkin approach (e.g. local contribu-
tion to the bilinear form and right hand side) are computed as a function of a set of
unisolvent degrees of freedom, in a way that is locally exact for polynomials. The
non polynomial part is instead handled by means of a stabilization term, which only
needs to be spectrally equivalent to the bilinear form considered, resulting in a non
conforming approximation. Since its introduction in the early 2010s (see [7, 26]), the
virtual element method has gained the interest of the scientific community and has
seen a rapid development, with numerous contributions aimed at the theoretical anal-
ysis of the method (see e.g. [14, 24–26] ), its efficient implementation (see, e.g., [21,
23, 27, 31, 32]), its extensions in different directions (see, e.g., [10–13, 17, 22, 29]),
and applications in different fields, such as fluid dynamics [2, 15, 16, 19], continuum
mechanics [6, 8, 9, 30, 34, 42, 43], electromagnetism [18] and others ( [3, 4, 38]).

In this paper, we aim at proving that the approximation by the virtual element
method has good localization properties, similar to the ones displayed by the finite
element method. More precisely, under suitable assumptions on the tessellation, we
will prove that an estimate of the form (1.1) also holds for the virtual element solution
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(see Theorem 6.1). Under suitable assumptions on the domain � (the same needed
for the analogous result in the finite element method), this will imply that, provided
u ∈ Hk+1(�1), we have that ‖u − uh‖1,�0 = O(hk), independently of the overall
smoothness of the solution.

The paper is organized as follows. After presenting some notation and recalling
how some inequalities do (or do not) depend on the shape and size of the elements
(see Sect. 2), in Sect. 3 we present the virtual element formulation we will be focusing
on, and we will study the equation satisfied by the error. In Sect. 4 we will study how
different linear and bilinear operators commute with the multiplication by a smooth
weighting function. In Sects. 5.1, 5.2 and 5.3 we will provide bounds for the error
in, global and local negative norms. In Sect. 6 we will prove the main result, namely
Theorem 6.1, and leverage it to obtain local error bounds (see Corollaries 6.4 and
6.5). In Sect. 6.1 we briefly sketch an extension of the local error bounds to the so
called enhanced version of virtual element method [1], which is often the one that can
be found in actual implementations. Finally, in Sect. 7, we present some numerical
results.

Throughout the paper, we will write A � B to indicate that A ≤ cB, with c
independent of the mesh size parameters, and depending on the shape of the elements
only through the constants γ0 and γ1 in the shape regularity Assumption 2.1. The
notation A � B will stand for A � B � A.

2 Notation and preliminary bounds

In the following we will use the standard notation for Sobolev spaces of both positive
and negative index, and for the respective norms (see [36]). Letting � ⊂ R

2 denote
a bounded polygonal domain, we will consider a family F = {Th} of polygonal
tessellations of �, depending on a mesh size parameter h. We make the following
assumption on the tessellations.

Assumption 2.1 There exist constants γ0, γ1 > 0 such that, letting hK denote the
diameter of the polygon K , for all tessellation Th ∈ F :

(a) All polygons K ∈ Th are star shaped with respect to all points of a ball with center
xK and radius ρK with ρK ≥ γ0hK ;

(b) for all K ∈ Th the distance between any two vertices of K is greater than γ1hK .

Moreover, for the sake of notational simplicity, we assume that all tessellations are
quasi-uniform, that is for all K ∈ Th , we have that hK � h.

The following trace and Poincaré inequalities hold, with constants only depending
on the two constants γ0 and γ1 (see, e.g., [14, 24]).

Trace inequalities

Under Assumption 2.1(a) for all v ∈ H1(K ), we have

‖v‖20,∂K � ‖v‖0,K (h−1
K ‖v‖0,K + ‖∇v‖0,K ), (2.1)
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|v|1/2,∂K � |v|1,K , (2.2)

inf
w∈H1

0 (K )

|v + w|1,K � |v|1/2,∂K . (2.3)

Poincaré inequality

Under Assumption
2.1(a), for all u ∈ H1(K ), we have

inf
q∈R ‖u − q‖0,K � hK ‖∇u‖0,K . (2.4)

We have the following proposition, where the norm ‖ · ‖−1,K is defined as

‖F‖−1,K = sup
v∈H1

0 (K )

v �=0

〈F, v〉
|v|1,K , 〈·, ·〉 denoting the duality product ofH−1(K )andH1

0 (K ).

Proposition 2.2 Under Assumption 2.1(a), for all u ∈ H1(K ), we have

|v|1,K � |v|1/2,∂K + ‖�v‖−1,K .

Proof We split v as vH + v0 with �vH = 0 and v0 ∈ H1
0 (K ). The splitting is stable

with respect to the H1 semi norm, that is we have

∫
K

|∇v|2 =
∫
K

|∇vH + ∇v0|2 =
∫
K

|∇vH |2 +
∫
K

|∇v0|2. (2.5)

Now, for w ∈ H1
0 (K ) arbitrary, since vH = v on ∂K , integrating by parts twice we

can write

|vH |21,K =
∫

∂K
vH∇vH · nK =

∫
∂K

(v + w)∇vH · nK

=
∫
K

∇(v + w) · ∇vH ≤ |v + w|1,K |vH |1,K ,

where nK denotes the outer unit normal to ∂K . Thanks to the arbitrariness of w,
dividing both sides by |vH |1,K and using (2.3) we obtain

|vH |1,K ≤ inf
w∈H1

0 (K )

|v + w|1,K � |v|1/2,∂K . (2.6)

On the other hand, as �v0 = �v, we can write

|v0|21,K =
∫
K

|∇v0|2 = −
∫
K

v0�v0 = −
∫
K

v0�v ≤ |v0|1,K ‖�v‖−1,K ,
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which, dividing both sides by |v0|1,K , yields

|v0|1,K ≤ ‖�v‖−1,K . (2.7)

By collecting (2.6) and (2.7) into (2.5) we obtain the desired bound. ��
For D being a polygonal element K or an edge e of Th , we let P�(D) denote the

restriction to D of the space of bivariate polynomials of order up to �.
Under Assumption 2.1, we have the following polynomial approximation bounds

[33]: for all v ∈ Ht (K ), 0 ≤ s ≤ t ≤ � + 1

inf
q∈P�(K )

‖v − q‖s,K � ht−s
K |v|t,K , (2.8)

and, letting he denote the length of the edge e, for all v ∈ Ht (e), 0 ≤ s ≤ t ≤ � + 1

inf
q∈P�(e)

‖v − q‖s,e � ht−s
e |v|t,e. (2.9)

Moreover, the following inverse inequalities for polynomial functions hold: for all
q ∈ P�(K ) and q ∈ P�(e), and all 0 ≤ s ≤ t

‖q‖t,K � h−(t−s)
K ‖q‖s,K , ‖q‖t,e � h−(t−s)

e ‖q‖s,e. (2.10)

3 The virtual element method

In order to introduce the notation, let us review the definition of the simple form of
the virtual element method that we are going to consider. Letting � ⊂ R

2, we focus
on the following model problem:

− �u = f , in �, u = 0 on ∂�, (3.1)

which, in weak form, rewrites as: find u ∈ H1
0 (�) such that

a(u, v) =
∫

�

f v, ∀v ∈ H1
0 (�), with a(u, v) =

∫
�

∇u · ∇v. (3.2)

Let Th ∈ F denote a tessellation of � in the familyF . For reasons that will be clear in
the following, we consider a form of theVirtual Element discretizationwherewe allow
different approximation orders on the boundary and in the interior of the elements [5].
As usual, for all K ∈ Th we let

Bk(∂K ) = {v ∈ C0(∂K ) : v|e ∈ Pk(e) for all edges e of K }.

The local element space V k
m(K ) is defined (see [5]) as

V k
m(K ) = {v ∈ H1(K ) : v|∂K ∈ Bk(∂K ), and �v ∈ Pm(K )}.
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We assume that max{0, k − 2} ≤ m ≤ k. The case m = k − 2 corresponds to the
simplest form of the virtual element method, as introduced in [26].

The following inverse inequality holds for all vh ∈ V k
m(K ) (see [28])

‖�vh‖0,K � h−1
K ‖∇vh‖0,K . (3.3)

Remark 3.1 For the sake of simplicity, we do not explicitly include in our analysis the
simplest lowest order VEM space

V 1−1(K ) = {vh ∈ H1(K ) : vh |∂K ∈ B1(∂K ) and �vh = 0},

which can be tackled by the same kind of argument but which would require a separate
treatment, in particular when dealing with the terms involving the approximation of
the right hand side.

The global discretization space Vh is defined as

Vh = {v ∈ H1
0 (�) : v|K ∈ V k

m(K ) for all K ∈ Th}. (3.4)

Letting

H1(Th) = {u ∈ L2(�) : u|K ∈ H1(K ) for all K ∈ Th}

denote the space of discontinuous piecewise H1 functions on the tessellationTh , which
we endow with the seminorm and norm

|v|21,Th =
∑
K∈Th

|v|21,K , ‖v‖1,Th = ‖v‖0,� + |v|1,Th ,

we also introduce the discontinuous global discretization space

Ṽh = {v ∈ L2(Th) : v|K ∈ V k
m(K ) for all K ∈ Th}.

As usual, we introduce the local projector �∇
K : H1(K ) → Pk(K ) defined as

∫
K

∇(�∇
K v − v) · ∇q = 0, ∀q ∈ Pk(K ),

∫
K
(�∇

K v − v) = 0.

As �∇
K preserves polynomials of order up to k, the following proposition is not

difficult to prove, the bound on | · |1,K being a direct consequence of (2.8) and the
bound on ‖ · ‖0,K being proved by an Aubin-Nitsche duality argument.

Proposition 3.2 Let v ∈ H1+s(K ), 0 ≤ s ≤ k. Then we have

‖v − �∇
K v‖0,K + hK |v − �∇

K v|1,K � h1+s
K |v|1+s,K .
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Letting

P̃k(Th) = {q ∈ L2(�) : q|K ∈ Pk(K ), for all K ∈ Th}

denote the space of discontinuous piecewise polynomials of order up to k defined on
the tessellation Th , we let �∇ : H1(Th) → P̃k(Th) be defined as

�∇v|K := �∇
K (v|K ).

The discrete bilinear form ah : Vh × Vh → R is defined as

ah(wh, vh) =
∫
Th

∇�∇wh · ∇�∇vh + sh((I − �∇)wh, (I − �∇)vh),

where I is the identity of H1(Th) and where, for shortness, here and in the following
we use the conventional notation

∫
Th

X :=
∑
K∈Th

∫
K
X .

The stabilization bilinear form sh : Ṽh× Ṽh is defined as the sum of local contributions

sh(wh, vh) =
∑
K

sK (wh |K , vh |K ),

where we assume, as usual, that, for all K ∈ Th , the local stabilization bilinear form
sK : V k

m(K ) × V k
m(K ) → R satisfies

sK (wh, vh) � |wh |1,K |vh |1,K ∀vh, wh ∈ V k
m(K ), (3.5)

sK (wh, wh) � |wh |21,K ∀wh ∈ V k
m(K ) ∩ ker�∇

K . (3.6)

In particular, for all vh ∈ V k
m(K ), (3.5) and (3.6) yield

|vh − �∇
K vh |21,K � sK (vh − �∇

K vh, vh − �∇
K vh). (3.7)

We let

aKh (wh, vh) =
∫
K

∇�∇
Kwh · ∇�∇

K vh + sK ((I − �∇
K )wh, (I − �∇

K )vh)

denote the local counterpart of the bilinear form ah . We recall that, thanks to (3.5) and
(3.6), for all v ∈ Vh we have that

aK (vh, vh) =
∫
K

∇vh · ∇vh � aKh (vh, vh). (3.8)
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We next let �0
m : L2(�) → P̃m(Th) denote the L2(�) orthogonal projection onto

the space P̃m(Th) of discontinuous piecewise polynomials of order at most m, and we
let

fh = �0
m f

so that for all vh ∈ Vh

∫
�

fhvh =
∫

�

�0
m f vh =

∫
�

f �0
mvh . (3.9)

The virtual element solution to Problem (3.1) is obtained by solving the following
discrete problem: find uh ∈ Vh such that for all vh ∈ Vh

ah(uh, vh) =
∫

�

fhvh . (3.10)

3.1 Extension of the discrete operators to H1(Th)

To carry out the forthcoming analysis, it will be convenient to extend some of the above
operators, which are defined on the discrete space Vh , to the whole H1(Th). To this
aim, we introduce projectors �̃∇

K : H1(K ) → V k
m(K ) and Q∇

K : H1(K ) → V k
m(K )

defined as

∫
K

∇(�̃∇
K v − v) · ∇wh = 0, ∀wh ∈ V k

m(K ),

∫
K
(�̃∇

K v − v) = 0,(3.11)

Q∇
K v = �̃∇

K v − �∇
K v. (3.12)

Observe that we have �̃∇
K ◦�∇

K = �∇
K ◦�̃∇

K = �∇
K and �̃∇

K ◦Q∇
K = Q∇

K ◦�̃∇
K = Q∇

K .
Also the projectors �̃∇

K and Q∇
K can be assembled, element by element, to global

projectors into the space Ṽh of discontinuous virtual element functions.More precisely
we define �̃∇ : H1(Th) → Ṽh and Q∇ : H1(Th) → Ṽh as

�̃∇v|K = �̃∇
K (v|K ), Q∇v|K = Q∇

K (v|K ).

With this notation, we can extend the bilinear form ah : Vh × Vh → R to a bilinear
form ah : H1(Th) × H1(Th) → R, defined as

ah(u, v) =
∫
Th

∇(�∇u) · ∇(�∇v) + sh(Q
∇u, Q∇v).

We remark that, thanks to (3.8), we have

a(u, u) �
∫
Th

|∇(I − �̃∇)u|2 + ah(�̃
∇u, �̃∇u), ∀u ∈ H1(�). (3.13)
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As Q∇
Kq = 0 for all q ∈ Pk(K ), we easily have the following proposition, where

the H1(K ) seminorm bound stems from the best polynomial approximation and the
L2(K ) bound is obtained by a Poincaré inequality, as, by definition, Q∇

K f is average
free.

Proposition 3.3 Let f ∈ H1+s(K ), 0 ≤ s ≤ k. Then

‖Q∇
K f ‖0,K + hK |Q∇

K f |1,K � h1+s
K | f |1+s,K .

3.2 Error equations

Letting u ∈ H1
0 (�) and uh ∈ Vh respectively denote the solutions of Problem (3.1)

and (3.10), we can now write two error equations, satisfied by u − uh . Indeed, for
v ∈ H1(�) arbitrary we have

ah(u, v) =
∫
Th

∇�∇u · ∇�∇v + sh(Q
∇u, Q∇v)

=
∫

�

∇u · ∇v −
∫
Th

∇Q∇u · ∇Q∇v −
∫
Th

∇(I − �̃∇)u · ∇(I − �̃∇)v

+sh(Q
∇u, Q∇v),

whence

a(u, v) − ah(u, v) = �h(u, v) +
∫
Th

∇(I − �̃∇)u · ∇(I − �̃∇)v, (3.14)

where �h : H1(Th) × H1(Th) → R is defined as

�h(w, v) =
∑
K

�K (u, v) (3.15)

with

�K (w, v) =
∫
K

∇Q∇
Kw · ∇Q∇

K v − sh(Q
∇
Kw, Q∇

K v).

Then, letting δ f = f − fh , the error u − uh satifies, for all vh ∈ Vh ,

ah(u − uh, vh) = a(u, vh) + ah(u, vh) − a(u, vh) − ah(uh, vh)

=
∫

�

f vh + ah(u, vh) − a(u, vh) −
∫

�

fhvh,

finally yielding the following error equation

ah(u − uh, vh) =
∫

�

δ f vh − �h(u, vh), ∀vh ∈ Vh . (3.16)
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Combining (3.16) and (3.14) we also have

a(u − uh, vh) = �h(u − uh, vh) +
∫

�

δ f vh − �h(u, vh), ∀vh ∈ Vh . (3.17)

Using Proposition 3.3, we easily see that the following proposition holds.

Proposition 3.4 Let w ∈ Hs+1(K ), v ∈ Ht+1(K ) with t ≥ 0, s ≤ k. Then we have

|�K (w, v)| � hs+t
K |w|s+1,K |v|t+1,K . (3.18)

Moreover, the following proposition provides an a priori bound for the operator δ f

appearing at the right hand side of the error equation.

Proposition 3.5 Let f ∈ Hr (K ), v ∈ Ht+1(K ) with 0 ≤ r ≤ m + 1, 0 ≤ t ≤ m.
Then we have

∫
K

δ f v � hr+t+1
K | f |r ,K |v|t+1,K . (3.19)

Proof We have
∫
K
( f − fh)v =

∫
K
( f − �0

m f )(v − �0
mv) � ‖(I − �0

m) f ‖0,K ‖(I − �0
m)v‖0,K

� hrK | f |r ,K ht+1
K |v|t+1,K , (3.20)

which is the desired result. ��
Remark that using the above bounds, in combination with the error equation and

an approximation estimate (see e.g. (4.1)), allows to retrieve the following (essentially
well known, see [5, 26]) bound on the error u − uh : if the solution u and the source
term f of Problem (3.2) satisfy, respectively, u ∈ Hr+1(�), r ≥ 0 and f ∈ Hρ(�),
ρ ≥ 0 then it holds that

‖u − uh‖1,� � hmin{r ,k}|u|1+r ,� + hmin{ρ,m+1}+1| f |ρ,�. (3.21)

Remark that, as f = −�u, we have thatρ ≥ r−1.Moreover, by constructionm ≥ k−
2. Then the second term on the right hand side, deriving from the approximation of the
source term, is asymptotically dominated by the first term, namely hmin{r ,k}‖u‖1+r ,�.

4 Commutator properties for the VEM space

The local bounds we aim at proving will involve multiplying different quantities by
smooth weights. A key role will be played by the error resulting from commutating
the action of such weights with different operators appearing in the definition and
analysis of the VEM method. To analyze such errors, we start by introducing a local
quasi-interpolation operator similar to the one proposed in [17] and defined as follows.
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Given v ∈ H1(K )with v|∂K ∈ C0(∂K ) and�v ∈ L2(K ), we letIK v = vh ∈ V k
m(K )

be defined by

vh |∂K = IK v, �vh = �0
m�v,

where IK : C0(∂K ) → Bk(∂K ) denotes the edge by edge interpolation operator
with, as interpolation nodes, the nodes of the k + 1 points Gauss-Lobatto quadrature
formula, and where, by abuse of notation, we let �0

m : L2(K ) → Pm(K ) denotes the
L2 orthogonal projection. As IK : H2(K ) → V k

m(K ) ⊂ H1(K ) is bounded and it
preserves the polynomials of degree k, we can see that, for v ∈ H1+s(K ), 1 ≤ s ≤ k
we have

‖v − IK v‖0,K + hK |v − IK v|1,K � hs+1
K |v|s+1,K . (4.1)

Let now ω ∈ C∞(�̄) be a smooth weight function. Observe that, for K ∈ Th , we
can split ω|K as

ω|K = ω̄K + ρK , with ω̄K ∈ R, ‖ρK ‖0,∞,K � hK ‖ω‖1,∞,�,

‖ρK ‖2,∞,K � ‖ω‖2,∞,�, (4.2)

(we can for instance take ω̄K = ω(xK ), xK being the barycenter of K ).
We have the following lemma, which we prove by an approach similar to the one

in [20].

Lemma 4.1 For all K ∈ Th, for all v ∈ Hs+1(K ), 1 ≤ s ≤ k, for all vh ∈ V k
m(K ), it

holds

|ω(v + vh) − IK (ω(v + vh))|1,K � hsK |v|s+1,K + hK ‖v + vh‖1,K , (4.3)

the implicit constant in the inequality depending on ‖ω‖2,∞,�.

Proof Let vh ∈ V k
m(K ). As IK vh = vh and as IK is a linear operator, we have

ωvh − IK (ωvh) = ρK vh − IK (ρK vh),

with ρK given by (4.2). Then, using Proposition 2.2 we can write

|ωvh − IK (ωvh)|1,K � |ωvh − IK (ωvh)|1/2,∂K + ‖�(ωvh − IK (ωvh))‖−1,K

= |ρK vh − IK (ρK vh)|1/2,∂K +‖�(ρK vh − IK (ρK vh))‖−1,K .

(4.4)

We separately bound the two terms on the right hand side of (4.4), starting from
the first one. We remark that, on e edge of K we have that ρK vh − IK (ρK vh) ∈
H1
0 (e) ⊆ H1/2

00 (e), where, we recall, H1/2
00 (e) can be defined as the space of those

functions v ∈ L2(e) such that setting ṽ = v in e and ṽ = 0 in ∂K \ e it holds that
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ṽ ∈ H1/2(∂K ). We endow H1/2
00 (e) with the norm ‖v‖

H1/2
00 (e)

= |̃v|1/2,∂K . We recall

that H1/2
00 (e) is the interpolation space of exponent 1/2with respect to the interpolation

couple (L2(e), H1
0 (e)). Then, using a standard interpolation bound (see [41]) and (4.1),

we can write

|ρK vh − IK (ρK vh)|1/2,∂K �
∑

edges e⊂∂K

‖ρK vh − IK (ρK vh)‖H1/2
00 (e)

�
∑

edges e⊂∂K

‖ρK vh − IK (ρK vh)‖1/20,e |ρK vh − IK (ρK vh)|1/21,e

�
∑

edges e⊂∂K

h1/2e |ρK vh − IK (ρK vh)|1,e. (4.5)

Now, using (2.9) and (2.10), we can write

|ρK vh − IK (ρK vh)|1,e � he|ρK vh |2,e � he(‖ρK ‖0,∞,e|vh |2,e + ‖ρK ‖2,∞,e‖vh‖1,e)
� he(he|vh |2,e + ‖vh‖1,e) � he‖vh‖1,e � h1/2e ‖vh‖1/2,e,

which yields (we recall that, by Assumption 2.1(b), he � hK )

|ρK vh − IK (ρK vh)|1/2,∂K �
∑

edges e⊂∂K

he‖vh‖1/2,e � hK ‖vh‖1/2,∂K

� hK ‖vh‖1,K . (4.6)

As far as the second term at the right hand side in (4.4) is concerned, we have

�(ρK vh) = vh�ρK + 2∇ρK · ∇vh + ρK�vh,

as well as

�(IK (ρK vh)) = �0
m(�(ρK vh)) = �0

m(vh�ρK ) + 2�0
m(∇ρK · ∇vh) + �0

m(ρK�vh),

and then, by triangle inequality,

‖�(ρK vh − IK (ρK vh))‖−1,K � ‖vh�ρK − �0
m(vh�ρK )‖−1,K

+‖∇ρK · ∇vh − �0
m(∇ρK · ∇vh)‖−1,K + ‖ρK�vh − �0

m(ρK�vh)‖−1,K .

We can bound the three terms by using a standard duality argument, which allows to
bound the H−1(K ) norm of any average free function with hK times its L2 norm, and
we obtain

‖vh�ρK − �0
m(vh�ρK )‖−1,K � hK ‖vh�ρK − �0

m(vh�ρK )‖0,K
� hK ‖vh�ρK ‖0,K � hK ‖ρK ‖2,∞,K ‖vh‖0,K ,
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as well as

‖∇ρK · ∇vh − �0
m(∇ρK · ∇vh)‖−1,K � hK ‖∇ρK · ∇vh − �0

m(∇ρK · ∇vh)‖0,K
� hK ‖∇ρK · ∇vh‖0,K � hK ‖ρK ‖1,∞,K ‖∇vh‖0,K ,

and, using (4.2) as well as the inverse inequality (3.3),

‖ρK�vh − �0
m(ρK�vh)‖−1,K � hK ‖ρK�vh − �0

m(ρK�vh)‖0,K � hK ‖ρK�vh‖0,K
� hK ‖ρK ‖0,∞,K ‖�vh‖0,K � h2K ‖�vh‖0,K � hK ‖∇vh‖0,K ,

finally yielding

‖�(ρK vh − IK (ρK vh))‖−1,K � hK ‖vh‖1,K . (4.7)

Using (4.6) and (4.7) in (4.4) yields

|ωvh − IK (ωvh)|1,K � hK ‖vh‖1,K . (4.8)

Let now v ∈ Hs+1(K ). Adding and subtracting �∇
K v, using (4.1) and (4.8), then

adding and subtracting v and using the polynomial approximation bound (2.8), we
have

|ω(v + vh) − IK (ω(v + vh))|1,K
≤ |ω(v − �∇

K v) − IK (ω(v − �∇
K v))|1,K + |ω(�∇

K v + vh) − IK (ω(�∇
K v + vh))|1,K

� hK |ω(v − �∇
K v)|2,K + hK ‖�∇

K v + vh‖1,K � hK ‖v − �∇
K v‖2,K + hK ‖�∇

K v + vh‖1,K
� hK ‖v − �∇

K v‖2,K + hK ‖�∇
K v − v‖1,K + hK ‖v + vh‖1,K

� hsK |v|s+1,K + hK ‖v + vh‖1,K , (4.9)

which concludes the proof. ��
As for all w ∈ H1(K ) it holds that

|w − �̃∇
Kw|1,K = inf

wh∈V k
m (K )

|w − wh |1,K ,

we immediately have the following corollary.

Corollary 4.2 For all K ∈ Th, for all v ∈ Hs+1(K ), 1 ≤ s ≤ k, for all vh ∈ V k
m(K ),

it holds

|ω(v + vh) − �̃∇
K (ω(v + vh))|1,K � hsK |v|s+1,K + hK ‖v + vh‖1,K , (4.10)

the implicit constant in the inequality depending on ‖ω‖2,∞,�.
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Remark 4.3 The bound (4.8), valid for all vh ∈ V k
m(K ), is the so called discrete

commutator property of the Virtual Element space. It implies that IK : ωV k
m(K ) →

V k
m(K ) is bounded in H1(K ). In particular, we have

|IK (ωvh)|1,K � |vh |1,K , ∀vh ∈ V k
m(K ). (4.11)

Another commutativity bound that will play a role later on, is the following lemma.

Lemma 4.4 For all K ∈ Th it holds, for all v ∈ H1(K ),

|Q∇
K (ωv) − ωQ∇

K v|1,K � hK ‖v‖1,K
the implicit constant in the inequality depending on ‖ω‖2,∞,�.

Proof Once again we use the splitting (4.2), and, by the linearity of Q∇
K , we have

Q∇
K (ωv) − ωQ∇

K v = Q∇
K (ρK v) − ρK Q∇

K v.

For q, q ′ ∈ Pk(K ) arbitrary, as Q∇
Kq

′ = 0, we can write

|Q∇
K (ρK v)|1,K = |Q∇

K (ρK (v − q) + ρKq − q ′)|1,K
� |ρK (v − q)|1,K + |ρKq − q ′|1,K .

We now choose q = �∇
K v and q ′ = �∇

K (ρq). With this choice, using Proposition 3.2,
we can write

|ρK (v − q)|1,K � ‖ρK ‖0,∞,K |v − �∇
K v|1,K + ‖ρK ‖1,∞,K ‖v − �∇

K v‖0,K
� hK |v − �∇

K v|1,K + ‖v − �∇
K v‖0,K � hK |v|1,K ,

as well as

|ρKq − q ′|1,K = |ρKq − �∇
K (ρKq)|1,K � hK |ρKq|2,K

� hK ‖ρK ‖0,∞,K |q|2,K + hK ‖ρK ‖2,∞,K ‖q‖1,K
� h2K |q|2,K + hK ‖q‖1,K � hK ‖q‖1,K � hK ‖v‖1,K ,

where we also used (2.10). ��
The third commutativity property that we will need in the forthcoming analysis is

stated in the lemma below.

Lemma 4.5 Let ω ∈ C∞(�̄) be a fixed weight function. Then, for all K ∈ Th, for all
w, v ∈ H1(K ) it holds that

|�K (w, ωv) − �K (ωw, v)| � hK ‖v‖1,K ‖w‖1,K , (4.12)

the implicit constant in the inequality depending on ‖ω‖2,∞,�.
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Proof Using once more the splitting (4.2), we have

|�K (w, ωv) − �K (ωw, v)| = |�K (w, ρK v) − �K (ρKw, v)|
� |Q∇

Kw|1,K |Q∇
K (ρK v)|1,K +|Q∇

K (ρKw)|1,K |Q∇
K v|1,K .

Now, using Proposition 3.3 and Lemma 4.4, we have

|Q∇
K (ρKw)|1,K ≤ |ρK Q∇

Kw|1,K + |Q∇
K (ρKw) − ρK Q∇

Kw|1,K
� ‖ρK ‖0,∞|Q∇

Kw|1,K + ‖ρK ‖1,∞,K ‖Q∇
Kw‖0,K + hK ‖w‖1,K

� hK ‖w‖1,K .

The above bound also applies to v, finally yielding (4.12). ��

5 Negative norm error estimates

The interior error estimate we aim at proving relies on the validity of different bounds
on the error measured in negative norms, both at the global and at the local level. We
devote this section to study such bounds.

5.1 Error bounds in the H−p(Ä) norm

We start by considering the error e = u − uh measured in the H−p(�) norm. We
assume that u ∈ Hr+1(�), 0 ≤ r ≤ k and let ρ, with 0 ≤ ρ ≤ m + 1, be such that
f = −�u ∈ Hρ(�).
As usual, resorting to a duality argument, in order to bound ‖e‖−p,�, p ≥ 0, we

write

‖e‖−p,� = sup
φ∈H p

0 (�)

∫
�
eφ

‖φ‖p,�
= sup

φ∈H p
0 (�)

∫
�

∇e · ∇vφ

‖φ‖p,�
, (5.1)

where vφ ∈ H1
0 (�) is the solution of

− �vφ = φ, in �, vφ = 0, on ∂�. (5.2)

Adding and subtracting vh ∈ Vh arbitrary, using (3.14) and (3.16), and adding and
subtracting vφ we have that

∫
�

∇e · ∇vφ =
∫

�

∇e · ∇(vφ − vh) +
∫

�

∇e · ∇vh

=
∫

�

∇e · ∇(vφ − vh) +
∫

�

δ f vh − �h(u, vh) + �h(e, vh)

=
∫

�

∇e · ∇(vφ − vh) +
∫

�

δ f (vh − vφ) +
∫

�

δ f v
φ
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−�h(u, vh − vφ) + �h(e, vh − vφ) − �h(u, vφ) + �h(e, v
φ).

(5.3)

Estimates of the right hand side of (5.3) will, as usual, rely on the smoothness lifting
properties of the Dirichlet problem (5.2). In the optimal case (e.g. when � is a square
or a smooth domain) we will have vφ ∈ H p+2(�) (for the lifting property on squared
domains see [37, eqn. 7.16]). However, this will not always be the case here, as, on
polygonal domains, depending on the interior angles, the smoothness of φ implies the
smoothness of vφ only up to a certain limit. In general (see [35]), we will have that

φ ∈ H p
0 (�) implies ‖vφ‖1+s,� � ‖φ‖p,�, for some s = s(p,�) > 1/2.

(5.4)

We then take vh = Ihv
φ (as s > 1/2, H1+s(�) ⊆ C0(�̄) so that Ihvφ is well

defined). Using (4.1), (3.18) and (3.19) to bound the right hand side of (5.3) we obtain

∫
�

∇e · ∇vφ � (|e|1,� + hr |u|r+1,�)hmin{s,k}|vφ |s+1,� + hρ+min{s,m}+1‖ f ‖ρ,�|vφ |s+1,�.

(5.5)

Using (5.5) and (5.4) in (5.1), and bounding |e|1,� thanks to (3.21), we then obtain
the following bound

‖e‖−p,� � hmin{s,k}(hr |u|r+1,� + |e|1,�
) + hmin{s,m}+ρ+1‖ f ‖ρ,�

� hmin{s,k}+r |u|r+1,� + hmin{s,m}+ρ+1‖ f ‖ρ,�, (5.6)

where we used the fact that m ≤ k.
It then remains to seewhich is the value of s(p,�), that is, what is the regularity that,

depending on the characteristics of the domain�, we can expect for vφ if φ ∈ H p
0 (�).

As already recalled, if � is smooth or a square, we will have that vφ ∈ H p+2(�), that
is s(p,�) = p + 1. If, instead, � is a polygon ( [35]), we know that if φ ∈ Hσ−1(�)

then vφ ∈ Hσ+1(�) and

‖vφ‖σ+1,� � ‖φ‖σ−1,�,

provided 0 < σ < σ0 = π
θ0
, where θ0 = maxi θi , θi , i = 1, · · · , L denoting the

interior angles at the L vertices of �. Observe that we have that π/3 ≤ θ0 < 2π ,
whence 1/2 < σ0 ≤ 3. For ε > 0 arbitrarily small but fixed, we can then take
s = s(p,�) = min{p + 1, σ0 − ε} in (5.5). Setting

γ = min{p + 1, k} and τ = min{p + 1,m}
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we then have

‖e‖−p,� � hmin{γ,σ0−ε}+r |u|r+1,� + hρ+1+min{τ,σ0−ε}‖ f ‖ρ,�. (5.7)

5.2 Negative norm error estimates on smooth domains

Before going on, let us consider what happens instead in the case inwhich� is smooth.
In such a case, for the solution of (5.2), we have that for all p ≥ 0, φ ∈ H p(�)

implies vφ ∈ H p+2(�). We can take advantage of such a fact, provided that, for
the discretization, we use a tessellation allowing curvilinear edges at the boundary
of �, and resort, for boundary adjacent elements, to the VEM with curved edges as
introduced in [17], following which, we modify the definition of the space Bk(∂K ),
which, for K with |∂K ∩ ∂�| > 0 becomes

Bk(∂K ) = {v ∈ C0(∂K ) : v|e ∈ Pk(e) for all edgeeofKinteriorto�, v|∂K∩∂� = 0}.

We also modify the interpolator Ih by requiring, for boundary adjacent elements,
that Ihu = 0 on ∂K ∩ ∂�. Using arguments similar to the ones used in Sect. 4 we can
see that, also for boundary adjacent elements, for all u ∈ H1

0 (�)with u|K ∈ H1+t (K ),
t ≥ 1 it holds that

|u − Ihu|1,K � ht |u|1+t,K .

Then, letting, also for elements with a curved boundary edge, �̃∇
K and Q∇

K be defined
by (3.11) and (3.12), we have, for u ∈ H1

0 (�) with u|K ∈ H1+t (K ),

|u − �̃∇
K u|1,K ≤ |u − Ihu|1,K � ht |u|1+t,K .

Moreover (see [17]), under the same assumptions on u, we have that

|u − �∇
K u|1,K � ht |u|1+t,K . (5.8)

Both Proposition 3.3 and Proposition 3.4 also hold. Indeed, if u ∈ H1+s(K ), 1 ≤ s ≤
k, with u = 0 on ∂K ∩ ∂� we have

‖u − �̃∇
K u‖1,K ≤ |u − �̃∇

K u|1,K � |u|1,K ,

‖u − �̃∇
K u‖1,K ≤ |u − �̃∇

K u|1,K � hs |u|1+s,K ,

where we used a Poincaré inequality. By interpolation we have that

‖u − �̃∇
K u‖1,K � hs |u|1+s,K , ∀s with 0 ≤ s ≤ k.

Proposition 3.3 follows by a triangle inequality. As its proof essentially relies on
Proposition 3.3, Proposition 3.4 also follows.
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Then, we can bound the right hand side of (5.3) as follows. As for � smooth
f ∈ L2(�) implies u ∈ H2(�), we can always assume that r ≥ 1 and that ρ = r −1.
Moreover we can take s = p + 1, so that we have

‖e‖−p,� �
(
hmin{p+1,k}+r + hmin{p+1,m}+r )|u|r+1,� � hmin{p+1,m}+r |u|r+1,�.

(5.9)

Remark 5.1 We recall that if � is a square, the same smoothness result holds for the
solution vφ of problem (5.2), as in the case of smooth domains, namely, if φ ∈ H p

0 (�)

it holds that vφ ∈ H p+2(�) and ‖vφ‖p+2,� � ‖φ‖p,�. Then, also in such a case we
have that (5.9) holds.

5.3 Local negative norm error estimates

For � being either a polygonal domain, or a smooth domain discretized by elements
where, exclusively for elements adjacent to the boundary, curved edges are allowed,
we now prove some bounds on the local error, measured in negative norms. We start
by proving the following lemma.

Lemma 5.2 Let �0 ⊂⊂ �1 ⊂⊂ � be fixed smooth interior subdomains of �, and let
the solution u to Problem (3.1) satisfy u ∈ Ht+1(�1), with 1 ≤ t ≤ k. Let uh ∈ Vh
denote the solution to Problem (3.10). Then, there exists an h0 such that, if h < h0 we
have, for p ≥ 0 integer,

‖u − uh‖−p,�0 � hγ |u − uh |1,�1 + ‖u − uh‖−p−1,�1 + hτ+t |u|t+1,�1,

with γ = min{p + 1, k}, and τ = min{p + 1,m}.
Proof Let �′ with �0 ⊂⊂ �′ ⊂⊂ �1, be a fixed intermediate subdomain between
�0 and �1, and let ω ∈ C∞

0 (�′) with ω = 1 in �0. We let h0 be such that for all
h < h0, all elements K ∈ Th with K ∩ �′ �= ∅ satisfy K ⊂ �1, and we let h < h0.
Letting e = u − uh , we have

‖e‖−p,�0 ≤ ‖ωe‖−p,�1 = sup
φ∈H p

0 (�1)

∫
�1

ωeφ

‖φ‖p,�1

= sup
φ∈H p

0 (�1)

∫
�1

∇ωe · ∇vφ

‖φ‖p,�1

,

where vφ is the solution to

−�vφ = φ, in �1, vφ = 0, on ∂�1.

Observe that, aswe assumed that�1 is smooth,φ ∈ H p(�1) implies vφ ∈ H p+2(�1),
with

‖vφ‖p+2,�1 � ‖φ‖p,�1 . (5.10)
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Using the error equation (3.17) for vh ∈ Vh with supp vh ⊆ �1 arbitrary, we can write

∫
�1

∇(ωe) · ∇vφ =
∫

�1

∇e · ∇(ωvφ) +
∫

�1

e[∇ω · ∇vφ + ∇ · (vφ∇ω)]

=
∫

�1

∇e · ∇(ωvφ − vh) +
∫

�1

∇e · ∇vh +
∫

�1

e[∇ω · ∇vφ + ∇ · (vφ∇ω)]

=
∫

�1

∇e · ∇(ωvφ − vh) + �h(e, vh) +
∫

�1

δ f vh − �h(u, vh) +
∫

�1

e[∇ω · ∇vφ

+∇ · (vφ∇ω)]
= I + I I + I I I + I V + V . (5.11)

We now let vh = Ih(ωvφ) and we remark that, as supp(ωvφ) ⊂ �′ ⊂⊂ �1, if
h < h0, then supp(vh) ⊂ �1. We bound the five terms on the right hand side of (5.11)
separately. Using (4.1) we can write, with γ = min{p + 1, k}

I =
∫

�1

∇e · ∇(ωvφ − Ih(ωvφ)) ≤ |e|1,�1 |ωvφ − Ih(ωvφ)|1,�1

� |e|1,�1 h
γ |ωvφ |p+2,�1 � |e|1,�1 h

γ ‖vφ‖p+2,�1 � hγ |e|1,�1‖φ‖p,�1 . (5.12)

Adding and subtracting ωvφ and using (4.1) and (3.18) we have

I I = �h(e,Ih(ωvφ)) = �h(e,Ih(ωvφ) − ωvφ) + �h(e, ωvφ)

� |e|1,�1 |Ih(ωvφ) − ωvφ |1,�1 + hγ

K |e|1,�1 |ωvφ |p+2,�1

� hγ |e|1,�1 |ωvφ |p+2,�1 � hγ |e|1,�1‖vφ‖p+2,�1 � hγ |e|1,�1‖φ‖p,�1 .

Moreover, using the fact that f − �0
m f is orthogonal to P̃m(Th) � �0

m(Ih(ωvφ)),
we can write, with �h ⊆ �1 denoting the union of elements K ∈ Th such with
Ih(ωvφ) �= 0 in K ,

I I I =
∫

�1

δ f Ih(ωvφ) =
∫

�h

( f − �0
m f )(Ih(ωvφ) − �0

mIh(ωvφ))

� ‖ f − �0
m f ‖0,�h

(
‖(I − �0

m)(Ih(ωvφ) − ωvφ)‖0,�1

+‖ωvφ − �0
m(ωvφ)‖0,�1

)

� ‖ f − �0
m f ‖0,�h

(
‖Ih(ωvφ) − ωvφ‖0,�1 + ‖ωvφ − �0

m(ωvφ)‖0,�1

)

(5.13)

where we added and subtracted ωvφ − �0
m(ωvφ). Using (2.8) and (4.1) gives

I I I � ht−1| f |t−1,�h

(
h‖Ih(ωvφ) − ωvφ‖1,�1 + hτ+1‖ωvφ‖p+2,�1

)
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� ht−1| f |t−1,�1

(
hγ+1‖ωvφ‖p+2,�1 + hτ+1‖ωvφ‖p+2,�1

)
� ht+τ | f |t−1,�1‖φ‖p,�1

(5.14)

(we recall that f = −�u so, under our assumptions, we have that f ∈ Ht−1(�1)).
By once again adding and subtracting ωvφ and using (4.5) and (3.18) we have

I V = −�h(u, vh) � ht+γ |u|t+1,�1‖ωvφ‖p+2,�1 � ht+γ |u|t+1,�1‖φ‖p,�1 .

Finally, we bound V as in [37] as

V =
∫

�1

e[∇ω · ∇vφ + ∇ · (vφ∇ω)] � ‖e‖−p−1,�1‖∇ω · ∇vφ + ∇ · (vφ∇ω)‖p+1,�1

� ‖e‖−p−1,�1‖vφ‖p+2,�1 � ‖e‖−p−1,�1‖φ‖p,�1 .

The thesis follows from the observation that τ ≤ γ and ‖ f ‖t−1,�1 � ‖u‖t+1,�1 . ��
Remark 5.3 We observe that, as f ∈ L2(�), we have that u|�1 ∈ H2(�1) for all
�1 ⊂⊂ �. Then the assumptions of Lemma 5.2 are always satisfied for some t ≥ 1.

Remark 5.4 In the special case in which the right hand side of (3.2) is computable for
all vh ∈ Vh with supp v ⊆ �̄1 (this happens if f |�1 is a polynomial of degree at most
m) then the term I I I in the sum at the right hand side of (5.11) vanishes. In such a
case, we have a better estimate, namely

‖u − uh‖−p,�0 � hγ |u − uh |1,�1 + ‖u − uh‖−p−1,�1 + hγ+t |u|t+1,�1 .

A recursive application of Lemma 5.2 yields the following lemma.

Lemma 5.5 Under the assumption of Lemma 5.2, for p > 0 arbitrary integer, there
exists h0 > 0 such that, provided h < h0 we have

‖e‖0,�0 � h|e|1,�1 + ht |u|t+1,�1 + ‖e‖−p,�1 .

Proof Let �̂�, � = 0, · · · , p be an increasing sequence of intermediate subdomains
with �0 = �̂0 ⊂⊂ �̂1 ⊂⊂ · · · ⊂⊂ �̂p = �1. By Lemma 5.2, for � = 0, · · · , p− 1,
there exists h0,� such that, provided h < h0,�, it holds that

‖u − uh‖−�,�̂�
� hγ�‖u − uh‖1,�̂�+1

+ ‖u − uh‖−�−1,�̂�+1
+ hτ�+t |u|t+1,�̂�+1

where γ� = min{� + 1, k}, τ� = min{� + 1,m}. Then, if h < h0 = min� h0,� we can
write

‖u − uh‖0,�̂0
� ‖u − uh‖−1,�̂1

+ hγ0‖u − uh‖1,�̂1
+ hτ0+t |u|t+1,�̂1

� ‖u − uh‖−2,�̂2
+ (hγ1 + hγ0)‖u − uh‖1,�̂2

+ ht (hτ1 + hτ0)|u|t+1,�̂2

� · · · � ‖u − uh‖−p,�̂p
+ (

p−1∑
�=0

hγ�)‖u − uh‖1,�̂p
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+ht (
p−1∑
�=0

hτ�)|u|t+1,�̂p
. (5.15)

We conclude by remarking that, since γ� = min{� + 1, k} ≥ 1 and τ� = min{� +
1,m} ≥ 0, it holds that

p−1∑
�=0

hγ� � h,

p−1∑
�=0

hτ� � 1.

the implicit constant in the inequality depending on p. ��

6 Interior error estimate

We can now prove the main result of this paper, stating that the local error in H1(�0),
�0 ⊂⊂ � is bounded by a term of the maximum order allowed by the smoothness of
u in �1, with �0 ⊂⊂ �1 ⊂⊂ �, plus the global error measured in a weaker negative
norm.

Theorem 6.1 Let �0 ⊂⊂ �1 ⊂⊂ � and let u and uh denote the solution to (3.2)
and (3.10), respectively. Assume that u|�1 ∈ H1+t (�1), 1 ≤ t ≤ k. Then, for p ≥ 0
arbitrary, there exists h0 such that, provided h < h0, it holds that

‖e‖1,�0 � ht (|u|t+1,�1 + ‖u‖1,� + h‖ f ‖0,�) + ‖e‖−p,�. (6.1)

In order to prove Theorem 6.1, we start by proving the following lemma.

Lemma 6.2 Let �0 ⊂⊂ �1 ⊂⊂ � and let e = u − uh with u and uh solution to (3.2)
and (3.10), respectively. Assume that u|�1 ∈ H1+t (�1), 1 ≤ t ≤ k. Then, there exists
h0 such that, provided h < h0

‖e‖1,�0 � h‖e‖1,�1 + ht |u|1+t,�1 + ‖e‖0,�1 .

Proof Let �′, with �0 ⊂⊂ �′ ⊂⊂ �1, be an intermediate subdomain between �0
and �1. Again, we let h0 be such that for all h < h0, all elements K ∈ Th with
K ∩ �′ �= ∅ satisfy K ⊂ �1.

Let now

V̊h(�1) = {vh ∈ Vh : supp vh ⊆ �1},

and, letting ω ∈ C∞
0 (�′), with ω = 1 in �0, we let ẽ = ωe and êh ∈ V̊h(�1) denote

the solution to

ah (̂eh, vh) = ah (̃e, vh), ∀vh ∈ V̊h(�1).
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It holds that

‖e‖1,�0 ≤ ‖̃e‖1,�1 ≤ ‖̃e − êh‖1,�1 + ‖̂eh‖1,�1 .

Observing that, as h < h0, Ih (̃e) ∈ V̊h(�1), using (3.13) we can write

‖̃e − êh‖21,�1
�

∫
Th

|∇(I − �̃∇)(̃e − êh)|2 + ah (̃e − êh, ẽ − êh)

=
∫
Th

∇(I − �̃∇)(̃e − êh) · ∇(I − �̃∇ )̃e + ah (̃e − êh, ẽ − Ih (̃e))

� |(I − �̃∇)(̃e − êh)|1,Th |(I − �̃∇ )̃e|1,Th + |̃e − êh |1,�1 |̃e − Ih (̃e)|1,�1

�
(
|(I − �̃∇ )̃e |1,Th + |̃e − Ih (̃e)|1,�1

)
|̃e − êh |1,�1,

yielding

‖̃e − êh‖1,�1 � |(I − �̃∇ )̃e |1,Th + |̃e − Ih (̃e)|1,�1 � h‖e‖1,�1 + ht |u|1+t,�1,

where, for the last bound, we used Lemma 4.1 and Corollary 4.2 with v = u and
vh = −uh . Let us now bound êh . It holds that

‖̂eh‖21,�1
� ah (̂eh, êh) = ah (̃e, êh) = ah(e, ωêh) + Kω(e, êh) (6.2)

with

Kω(w, v) = ah(ωw, v) − ah(w, ωv).

Since we have that

(I − �̃∇ )̂eh = 0, (I − �̃∇)e = (I − �̃∇)u,

we can write

Kω(e, êh) =
∫
Th

∇�∇(ωe) · ∇�∇ êh + sh(Q
∇(ωe), Q∇ êh)

−
∫
Th

∇�∇e · ∇�∇(ωêh) − sh(Q
∇e, Q∇(ωêh))

=
∫

�

∇(ωe) · ∇ êh −
∫
Th

∇Q∇(ωe) · ∇Q∇ êh

−
∫

�

∇e · ∇(ωêh) +
∫
Th

∇Q∇e · ∇Q∇(ωêh)

+
∫
Th

∇((I − �̃∇)u) · ∇(I − �̃∇)(ωêh)

+sh(Q
∇(ωe), Q∇ êh) − sh(Q

∇e, Q∇(ωêh))
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=
∫

�

∇(ωe) · ∇ êh −
∫

�

∇e · ∇(ωêh) − �h(ωe, êh) + �h(e, ωêh)

+
∫
Th

∇((I − �̃∇)u) · ∇(I − �̃∇)(ωêh).

We recall (see [37]) that we have (the implicit constant depending on ω)

∫
�

∇(ωe) · ∇ êh −
∫

�

∇e · ∇(ωêh) =
∫

�

e[∇ω · ∇ êh + ∇ · êh∇ω]
� ‖e‖0,�1‖∇ω · ∇ êh + ∇ · êh∇ω‖0,�1 � ‖e‖0,�1 |̂eh |1,�1 .

As ω is supported in �′, using Lemma 4.5 we also have

�h(e, ωêh) − �h(ωe, êh) =
∑

K∈Th :K⊂�1

(
�K (e, ωêh) − �K (ωe, êh)

)

�
∑

K∈Th :K⊂�1

hK ‖e‖1,K ‖̂eh‖1,K ≤ h‖e‖1,�1 ‖̂eh‖1,�1 .

Moreover, also since ω is supported in �′, we can write

∫
Th

∇((I − �̃∇)u) · ∇(I − �̃∇)(ωêh) � |u − �̃∇u|1,�′ |ωêh |1,�1

� ht |u|t+1,�1 ‖̂eh‖1,�1 ,

finally yielding

Kω(e, êh) �
(‖e‖0,�1 + h‖e‖1,�1 + ht |u|t+1,�1

) ‖̂eh‖1,�1 . (6.3)

We observe that, under the conditions that we assume to hold for t , k and m, we
have that min{t−1,m+1} = t−1. Adding and subtracting Ih(ωêh) and using (3.16),
(4.3), (3.19) and (4.11), as u ∈ Ht+1(�1) implies that f = −�u ∈ Ht−1(�1), we
bound

ah(e, ωêh) = ah(e, ωêh − Ih(ωêh)) + �h(u,Ih(ωêh)) −
∫

�

δ f Ih(ωêh)

� ‖e‖1,�1‖ωêh − Ih(ωêh)‖1,�1 + �h(u,Ih(ωêh))−
∫

�

δ f Ih(ωêh)

� h‖e‖1,�1 ‖̂eh‖1,�1 + ht |u|t+1,�1 |̂eh |1,�1 . (6.4)

Plugging (6.3) and (6.4) in (6.2) we obtain

‖̂eh‖21,�1
�

(
h‖e‖1,�1 + ht |u|t+1,�1 + ‖e‖0,�1

) ‖̂eh‖1,�1 ,
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from which, dividing by ‖̂eh‖1,�1 we obtain

‖̂eh‖1,�1 � h‖e‖1,�1 + ht |u|t+1,�1 + ‖e‖0,�1 ,

whence, by triangle inequality

‖e‖1,�0 � h‖e‖1,�1 + ht |u|t+1,�1 + ‖e‖0,�1 .

��
We can now combine Lemma 6.2 with Lemma 5.5, and we obtain the following

corollary, where h0 = min{h′
0, h

′′
0}, h′

0 given by Lemma 6.2 on �′
0 ⊂⊂ �′

1 and h′′
0

given by Lemma 5.5 on �′′
0 ⊂⊂ �′′

1, where �0 = �′
0, �1 = �′′

1, and where �′
1 = �′′

0
denote an intermediate subdomain.

Corollary 6.3 Under the assumptions of Lemma 6.2, for p > 0 arbitrary, there exists
h0 such that, provided h < h0

‖e‖1,�0 � h‖e‖1,�1 + ht |u|1+t,�1 + ‖e‖−p,�1 .

We can now prove Theorem 6.1.

Proof of Theorem 6.1 Let q, p be arbitrary positive integers and let once again �̂�, � =
0, · · · , q be intermediate subdomains with �0 = �̂0 ⊂⊂ �̂1 ⊂⊂ · · · ⊂⊂ �̂q = �1.
By Corollary 6.3, for � = 0, · · · , q, there exists h0,� such that, provided h < h0,�, the
bound

‖e‖1,�̂�
� h‖e‖1,�̂�+1

+ ht |u|1+t,�̂�+1
+ ‖e‖−p,�̂�+1

holds. Then, if h < h0 = min�{h0,�} we can write

‖e‖1,�0 � h‖e‖1,�̂1
+ ht |u|1+t,�̂1

+ ‖e‖−p,�̂1

� h2‖e‖1,�̂2
+ (1 + h)ht |u|1+t,�̂2

+ (1 + h)‖e‖−p,�̂2
� · · ·

� hq‖e‖1,�̂q
+

⎛
⎝

q−1∑
�=0

h�

⎞
⎠ ht |u|1+t,�̂q

+
⎛
⎝

q−1∑
�=0

h�

⎞
⎠ ‖e‖−p,�̂q

. (6.5)

As
∑q−1

�=0 h
� � 1, this yields

‖e‖1,�0 � hq‖e‖1,�1 + ht |u|t+1,�1 + ‖e‖−p,�1 . (6.6)

Choosing q ≥ t , and using (3.21) for r = ρ = 0 yields

‖e‖1,�0 � ht (‖e‖1,� + |u|t+1,�1) + ‖e‖−p,� � ht (|u|1,� + h‖ f ‖0,� + |u|t+1,�1)

+‖e‖−p,�.

��
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In order to obtain an explicit a priori estimate on the local error we finally combine
(6.1)with the global negative norm error estimates of Sects. 5.1 and 5.2.We distinguish
two cases: � polygon and � smooth. If � is a polygon, we can use the bound (5.7),
and, in (6.1), choose p = k−1.We immediately obtain the following corollary, where
σ0 is the domain dependent parameter defined in Sect. 5.1, related to the interior angles
of �.

Corollary 6.4 Let �0 ⊂⊂ �1 ⊂⊂ �, with � polygonal domain, and let u and uh
denote, respectively, the solution to (3.2) and (3.10). Assume that f ∈ Hρ(�) and
u ∈ H1+r (�) for some ρ and r with 0 ≤ r ≤ k and max{0, r − 1} ≤ ρ ≤ m + 1.
Assume also that u|�1 ∈ H1+t (�1), with max{1, r} ≤ t ≤ k. Then

‖u − uh‖1,�0 � hκ , with κ = min{t,m + ρ + 1, σ0 − ε + r}.

For r = ρ = 0 we obtain the following bound, valid under the minimal global
regularity assumptions on u, namely u ∈ H1(�), f = −�u ∈ L2(�):

‖u − uh‖1,�0 � hmin{t,σ0−ε}(|u|1+t,�1 + ‖u‖1,�) + hmin{t,m,σ0−ε}+1‖ f ‖0,�.

If, on the other hand, � is smooth (or if � is a square) using once again (6.1) with
p = k − 1 yields the following bound:

‖e‖1,�0 � ht |u|1+t,�1 + (
ht + hk+r )‖u‖1+r ,� + (

ht+1 + hm+ρ+1)‖ f ‖ρ,�.

This time, we have the following corollary.

Corollary 6.5 Let �0 ⊂⊂ �1 ⊂⊂ �, with � smooth domain, and let u and uh
denote, respectively, the solution to (3.2), and the solution to (3.10) obtained with
the discretization considered in Sect.5.2. Assume that u ∈ H1+r (�) for some r with
1 ≤ r ≤ k and that u|�1 ∈ H1+t (�1), with r ≤ t ≤ k. Then we have

‖u − uh‖1,�0 � hκ , with κ = min{t,m + r}.

Under theminimal global regularity assumption on f , namely f = −�u ∈ L2(�),
this time we have that

‖u − uh‖1,�0 � ht (|u|1+t,�1 + ‖u‖1,�) + hmin{t,m}+1‖ f ‖0,�.

Observe that we do not have optimality unless m ≥ k − 1.

Remark 6.6 While, for the sake of simplicity,we focused our analysis on homogeneous
Dirichlet boundary conditions, the result presented in Sect. 6 extends also to other
boundary conditions, such as non homogeneous Dirichlet, or mixed. In such cases,
depending on the smoothness of the boundary data, the solution u might lack overall
regularity also for very smooth right hand side f .
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6.1 Extension to the enhanced virtual element method

Let us briefly sketch how the interior estimate (6.1) can be extended to a particu-
larly relevant version of the virtual element method, namely the enhanced VEM [1],
characterized by a local discretization space defined as

V k
en(K ) = {v ∈ H1(K ) : v|∂K ∈ Bk(∂K ), �v ∈ Pk(K ),

and (v − �∇
K v) ⊥ (Pk(K ) ∩ Pk−2(K )⊥)},

where the orthogonality is intended with respect to the L2(K ) scalar product, and
where Pk(K ) ∩ Pk−2(K )⊥ denotes the space of those polynomials of degree at most
k that are orthogonal, in L2(K ), to all polynomials of degree at most k − 2. Letting
V en
h ⊂ H1

0 (�) denote the corresponding global virtual element space, we consider
the problem: find uh ∈ V en

h such that for all vh ∈ V en
h

ah(uh, vh) =
∫

�

�0
k f vh, (6.7)

where ah is defined as before. The space V en
h does not fall into the framework which

we considered up to now, since for no value of m we have that V k
en(K ) = V k

m(K ).
As a consequence, the proof of Lemma 4.1 is not valid for such a space. However
we know (see [1]) that the functions in V k

en(K ) and in V k
k−2(K ) have the same set of

degrees of freedom, and that, letting vh, wh ∈ V k
en(K ) and v̂h, ŵh ∈ V k

k−2(K ) denote
two couples of functions satisfying

v̂h = vh, ŵh = wh on ∂K ,

∫
K

v̂hq =
∫
K

vhq,

∫
K

ŵhq =
∫
K

whq,

∀q ∈ Pk−2(K ), (6.8)

(which is equivalent to saying that the value of all the degrees of freedom of vh , wh

coincide, respectively, with those of v̂h and ŵh) we have

�∇
K vh = �∇

K v̂h, and ah(vh, wh) = ah (̂vh, ŵh). (6.9)

It is then not difficult to check that uh ∈ V en
h is the solution of (6.7) if and only if the

corresponding function ûh ∈ Vh (Vh being the “plain” VEM space defined in (3.4)
with m = k − 2) is solution of the modified problem: find ûh ∈ Vh such that for all
v̂h ∈ Vh

ah (̂uh, v̂h) =
∫

�

f �0
env̂h, (6.10)
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Fig. 1 Examples meshes of the unit square

where the enhanced projection �0
en : H1(Th) → Pk(Th) is defined, element by

element, as �0
env̂h |K ∈ Pk(K ) such that

∫
K
(�0

env̂h − v̂h)q = 0, ∀q ∈ Pk−2(K ) and
∫
K
(�0

env̂h − �∇
K v̂h)q = 0, ∀q ∈ Pk(K ) ∩ Pk−2(K )⊥.

Apart from the definition of the right hand side, equation (6.10) falls in the framework
studied in the previous sections. It is not difficult to check that for f ∈ Hr (K ),
v ∈ Ht+1(K ), 0 ≤ r ≤ k − 1, 0 ≤ t ≤ k we have

∫
K

δ f v =
∫
K

f (v − �0
env) =

∫
K
( f − �0

k−2 f )(v − �0
env) � hr+t+1| f |r ,K |v|t+1,K .

Thanks to this inequality, used for those bounds affected by the altered right hand side,
particularly Proposition 3.5 andLemma5.2, our analysis carries over, withminormod-
ifications, to Problem (6.10). Moreover, thanks to the higher approximation order of
�0

en with respect to �0
k−2 (�

0
en satisfies an error bound similar to the one in Proposi-

tion 3.2, [1]) Lemma 5.2 now holds with τ = min{p + 1, k}. Then Theorem 6.1, as
well as its corollaries, hold, and provide optimal local error bounds for u − ûh . More
precisely, letting �′ ⊂⊂ �1 ⊂⊂ �, for h small enough, under the minimal global
regularity assumptions on u and f , we have that u ∈ Ht+1(�1), with t ≤ k, implies

‖u − ûh‖1,�′ � hκ(|u|1+t,�1 + ‖ f ‖0,�), k =
{
min{t, σ0 − ε} if � polygon,

t if � is smooth.

(6.11)

Let now �0 ⊂⊂ �′ and assume that h is sufficiently small so that �+
0 ⊂ �′, where

�+
0 = ∪K∈T +

h
K with T +

h = {K ∈ Th : K ∩�0 �= ∅} being the set of all elements that
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Fig. 2 Examples meshes of the L-shaped domain

Fig. 3 Squared domain, hexagonal meshes. On the x axis the meshsize h, on the y axis the global (blue
squares) and local (yellow/orange diamond) H1 errors e1�, e1

�−
0
and e1

�+
0
. The slopes of the two reference

lines are 1/2 and k

have non empty intersection with �0. To bound u − uh in �0 we start by observing
that, by triangle inequality and (5.8) we have

‖u − uh‖1,�0 ≤ ‖u − �∇u‖1,�0 + ‖�∇u − uh‖1,�0 � ht |u|t+1,�+
0
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Fig. 4 L–shaped domain, hexagonal meshes. On the x axis the meshsize h, on the y axis the global (blue
squares) and local (yellow/orange diamond) H1 errors e1�, e1

�−
0
and e1

�+
0
. The slopes of the two reference

lines are 1/2 and min{4/3, k}

+‖�∇u − uh‖1,�+
0
.

To bound the second term on the right hand side, we add and subtract, element by ele-
ment, the boundary average, apply a triangle inequality and use a Poincaré inequality
to bound the L2 norm of the boundary-average free terms with their H1 seminorm,
which, in turn, is bound using (3.8), thus obtaining

‖�∇u − uh‖21,�h
�

∑
K∈T +

h

(∣∣∣
∫

∂K
(�∇u − uh)

∣∣∣2 + aKh (�∇u − uh,�
∇u − uh)

)

=
∑

K∈T +
h

(∣∣∣
∫

∂K
(�∇u − ûh)

∣∣∣2 + aKh (�∇u − ûh,�
∇u − ûh)

)

� ‖�∇u − ûh‖21,�′ � ‖u − �∇u‖21,�′ + ‖u − ûh‖21,�′ , (6.12)

where we could replace uh with ûh thanks to (6.8) and (6.9) and where we used (3.8)
once again.
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Fig. 5 Squared domain, Voronoi meshes. On the x axis the meshsize h, on the y axis the global (blue
squares) and local (yellow/orange diamond) H1 errors e1�, e1

�−
0
and e1

�+
0
. The slopes of the two reference

lines are 1/2 and k

Combining (6.12) with (5.8) and (6.11) finally yields the optimal error bound

‖u − uh‖1,�0 � hκ(|u|1+t,�1 + ‖ f ‖0,�), k =
{
min{t, σ0 − ε} if � polygon,

t if � is smooth.

(6.13)

7 Numerical tests

In order to confirm the validity of the theoretical estimates we consider equation (3.1)
with the right hand side and Dirichlet data chosen in such a way that

u(x, y) = (x2 + y2)1/3 sin(2θ/3), ϑ = tan−1(y/x),

is the solution. We consider two different domains, namely

(Test 1) � = (0, 1)2, (Test 2) � = (−1, 1)2 \ (0, 1)2
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Fig. 6 L–shaped domain, Voronoi meshes.On the x axis the meshsize h, on the y axis the global (blue
squares) and local (yellow/orange diamond) H1 errors e1�, e1

�−
0
and e1

�+
0
. The slopes of the two reference

lines are 1/2 and min{4/3, k}

The domain �0 ⊂⊂ � on which we evaluate the error is chosen as

�0 = {(x, y) ∈ R
2 : (x − 0.5)2 + (y − 0.5)2 ≤ 0.252} for Test 1

and

�0 = {(x, y) ∈ R
2 : (x + 0.5)2 + (y + 0.5)2 ≤ 0.252} for Test 2.

The solution u has a singularity in (0, 0), and, for both test cases, it verifies u ∈ Hs(�),
for all s < 3/2, but u /∈ H3/2(�). Consequently, we expect the global H1(�) error not
to converge faster than h1/2.On the other hand the solution is smooth in a neighborhood
of �0. According to Corollaries 6.5 and 6.4 we can then expect, for Test 1 and Test 2
respectively, a convergence rate of order k and min{k, 4/3 − ε} (ε arbitrarily small).

We solve the problem by the enhanced virtual element method (see Sect. 6.1) with
k = 1, . . . , 4. For both test cases we consider both a sequence of progressively fines
structured hexagonal meshes and a sequence of progressively finer regular Voronoi
meshes. Examples of the meshes used for the numerical tests are displayed in Figs. 1
and 2. For all discretizations the stabilization is chosen to be the simple so called
dofi–dofi stabilization, that, under our mesh regularity assumptions, is optimal.
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In Figs. 3, 4, 5 and 6 we plot, in logarithmic scale, the convergence history for the
two test cases and the two sequences of meshes. For k = 1 through 4 we plot the
global error (square markers) as well as the local error (diamond markers). In order to
avoid the need of evaluating integrals over a curved domain, rather than displaying the
actual value of the local error, we display upper and lower approximations obtained
by evaluating the errors in subdomains �−

0 ⊂ �0 ⊂ �+
0 defined as

�−
0 = ∪K∈T −

h
K̄ , �+

0 = ∪K∈T +
h
K̄

with

T −
h = {K ∈ Th : K ⊆ �0} and T +

h = {K ∈ Th : K ∩ �0 �= ∅}.

We then set

e1� = (||u − �0
kuh ||20,� + ||∇u − �0

k−1∇uh ||2�)1/2, (7.1)

e1
�−
0

= (||u − �0
kuh ||20,�−

0
+ ||∇u − �0

k−1∇uh ||2�−
0
)1/2, (7.2)

e1
�+
0

= (||u − �0
kuh ||20,�+

0
+ ||∇u − �0

k−1∇uh ||2�+
0
)1/2. (7.3)

In all figures, we display, for reference purpose, dotted straight lines with a slope
corresponding to the expected convergence rate for global and local error, namely
1/2 for the global error and, respectively, k and min{4/3, k} for the local error in the
squared and in the L–shaped domain.

Figures 3, 4, 5 and 6 clearly confirm the validity of the a priori estimate. In particular
the local error behaves as expected both in the squared domain case and in theL–shaped
domain case.
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