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Abstract
The Fourier-cosine expansion (COS)method is used to price European options numer-
ically in a very efficient way. To apply the COS method, one has to specify two
parameters: a truncation range for the density of the log-returns and a number of
terms N to approximate the truncated density by a cosine series. How to choose the
truncation range is already known. Here, we are able to find an explicit and useful
bound for N as well for pricing and for the sensitivities, i.e., the Greeks Delta and
Gamma, provided the density of the log-returns is smooth. We further show that the
COS method has an exponential order of convergence when the density is smooth and
decays exponentially. However, when the density is smooth and has heavy tails, as
in the Finite Moment Log Stable model, the COS method does not have exponential
order of convergence. Numerical experiments confirm the theoretical results.

Mathematics Subject Classification 65D30 · 91B24 · 65T40

1 Introduction

To calibrate stock price models, it is crucial to price European options quickly because
stock price models are typically calibrated to given prices of liquid call and put options
by minimizing the mean-square-error between model prices and given market prices.
During the optimization routine, the model prices of call and put options need to be
evaluated often for different model parameters.

To compute the price of a European option, one must solve an integral involving the
product of the density of the log-returns at maturity and the payoff function. However,
for many financial models, the density f of the log-returns is unknown. Fortunately,
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the characteristic function of the log-returns is often given in closed form and can be
used to obtain the density.

In their seminal paper, Fang and Oosterlee [14] proposed the COS method, which
is a very efficient way to approximate the density and to compute option prices. The
COS method requires two parameters: a truncation range for the density of the log-
returns and a number of terms N to approximate the truncated density by a cosine
series. While it is known how to choose the truncation range, see [21], the choice of
N is largely based on trial and error.

The COS method has been extensively extended and applied, see [4, 15, 16, 18,
25–27, 34, 39, 45]. Other Fourier pricing techniques are discussed e.g., by [8, 28, 35,
36].

With respect to these papers we make the following three main contributions: we
develop an explicit, useful and rigorous bound for N ; we analyze the order of conver-
gence of the COS method in detail; and we rigorously analyze how the Greeks of an
option can be approximated by the COS method.

Fang and Oosterlee [14] propose to approximate the (unknown) density in three
steps: (i) Truncate the density f , i.e., approximate f by a function fL withfinite support
on some (sufficiently large) interval [−L, L]. (ii) Approximate fL by a Fourier-cosine
expansion

∑
akeLk , where ak are Fourier coefficients of fL and eLk are cosine basis

functions. (iii) Approximate ak by some coefficients ck which can be obtained directly
from the characteristic function of f . Thus, to apply the COS method, two decisions
must be made: find a suitable truncation range [−L, L] and identify the number N of
cosine functions.

One may apply a simple triangle inequality to bound the error of the three approx-
imations and obtain:

∥
∥
∥
∥ f −

N∑′

k=0

cke
L
k

∥
∥
∥
∥
2

≤ ∥∥ f − fL
∥
∥
2 +

∥
∥
∥ fL −

N∑′

k=0

ake
L
k

∥
∥
∥
2
+
∥
∥
∥

∞∑′

k=0

(ak − ck)e
L
k

∥
∥
∥
2
.

(1.1)

The first, second and third terms at the right-hand side of Inequality (1.1) correspond
to approximations due to (i), (ii) and (iii), respectively.

It is well known that the series truncation error, i.e., the second term on the right-
hand side of Inequality (1.1), can be bounded using integration by parts, see [7]. One
contribution of this article is to use this idea in order to find an explicit and useful
bound for N , provided the density of the log-returns is smooth. Our bound for N is
provably large enough to ensure that the COS method converges within a predefined
error tolerance. There are many financial models with smooth densities having semi-
heavy tails. Examples include the Black-Scholes (BS) model, see [6], the Heston
model, see [20], the Normal Inverse Gaussian (NIG) model, see [5] and the CGMY
model with parameter Y ∈ (0, 1), see [2, 3, 10, 23]. The density of the log-returns in
the Variance Gamma (VG) model, see [32], is not smooth for some parameters, and
our methodology cannot be applied to the VG model. We also compare the solution
for finding N with another solution proposed by Aimi et al. [1].
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Fang andOosterlee [14] also analyzed the order of convergence of the COSmethod,
focusing on the second term on the right-hand side of Inequality (1.1). They concluded
that with a properly chosen truncation range, the overall error converges exponentially
for smooth density functions and compares favorably to the Carr–Madan formula, see
[8].

Another contribution of this article is to also consider the errors introduced by the
truncation range, i.e., the errors due to (i), (ii) and (iii), and to establish upper bounds
for the order of convergence of the COS method. We confirm, both theoretically and
empirically, that the COS method indeed converges exponentially for smooth density
functions if, in addition, the tails of the density decay at least exponentially.

However, for fat-tailed and smooth densities, such as the density of the log-returns
in the Finite Moment Log Stable (FMLS) model (see [9]), the truncation error due to
(i) and (iii) becomes much more relevant compared to densities with semi-heavy tails.
We show theoretically that the COS method converges at least as fast as O(N−α) for
N → ∞, where α > 0 is the Pareto tail index, e.g., for the FMLS model α ∈ (1, 2).
Empirical experiments indicate that the COS method converges for such densities as
fast as O(N−α), i.e., the theoretical bound is sharp and the COS method does not
converge exponentially but the order of convergence is α.

Greeks, also known as option sensitivities, play an important role in risk manage-
ment. The Greek letters Delta or Gamma respectively represent the first and second
derivatives of the price of the option with respect to the current price of the underlying
asset. There are formulas in the literature on how to approximate the Delta andGamma
of the option using the COS method, see [14, 25, 38]. Another contribution of this
article is to provide explicit formulas for the truncation range and the number of terms
for the Greeks Delta and Gamma.

This article is structured as follows: Sect. 2 gives an overview of the technical details
of the COS method. Section3 gives explicit formulas for the truncation range and the
number of terms. Section4 analyzes the order of convergence of the COS method. In
Sects. 3 and 4, we distinguish between models with semi-heavy tails and models with
heavy tails. Section5 discusses the numerical computation of the Greeks using the
COS method. Section6 contains numerical experiments that confirm the theoretical
results. Section7 concludes.

2 Overview: the COSmethod for option pricing

Wemodel the stockprice over timeby a semimartingale (St )t≥0 on afiltered probability
space (�,F , P, (Ft )t≥0). The filtration (Ft )t≥0 satisfies the usual conditions and
F0 = {�,∅}. We assume that there is a bank account paying continuous compound
interest r ∈ R and there is a risk-neutral measure Q. All expectations are taken under
Q. All densities are risk-neutral.

There is a European option with maturity T > 0 and payoff w(ST ) at T , where
w : [0,∞) → R. For example, a European put option with strike K > 0 can be
described by the payoff w(x) = max(K − x, 0), x ≥ 0.

In several places, we assume that the payoff function is bounded. The prices of
European call options are not bounded. If we want to approximate the price of a call
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option with a certain error tolerance, we need only approximate the price of a put
option within that error tolerance and apply the put-call parity.

Fix some t0 ∈ [0, T ). The price of the European option with payoff w at time t0 is
then given by

e−r(T−t0)E[w(ST )|Ft0 ]. (2.1)

Since we only consider European options, we will focus on the time-0 price of the
option and set t0 = 0 for the remainder of the article.

If we know the characteristic function ϕlog(ST ) of log(ST ) in closed form or we are
able to obtain it numerically efficiently, the COS method is able to price the European
option numerically very quickly, as follows: we denote by

XT := log(ST ) − E[log(ST )], t ≥ 0

the centralized log-returns. The characteristic function ϕ of XT is then equal to

ϕ(u) = ϕlog(ST )(u) exp(−iuE[log(ST )]), u ∈ R,

where E[log(ST )] = −iϕ′
log(ST )(0).We assume that XT has a density f , but the exact

structure of f need not be known. Since E[XT ] = 0, the density of XT is centered
around zero and it is justified to truncate the density f on a symmetric truncation range
[−L, L]. Define

v(x) := e−rTw(exp(x + E[log(ST )]), x ∈ R.

The time-0 price of the European option with payoff w is then given by

e−rT E[w(ST )] = e−rT
∫

R

w(exp(x + E[log(ST )])) f (x)dx =
∫

R

v(x) f (x)dx .

(2.2)

We need some abbreviations to discuss the COS method: suppose f is J + 1 times
continuously differentiable for J ≥ 0. We will approximate f by cosine functions to
solve the integral at the right-hand side of Eq. (2.2) numerically. We also approximate
the derivatives of f by cosine functions in order to approximate the Greeks, i.e., the
sensitivities of the option, numerically.

By f ( j) we denote the j th-derivative of f . We use the convention f (0) ≡ f . For
L > 0, let f ( j)

L := 1[−L,L] f ( j), j = 0, . . . , J +1. Suppose that f ( j) is integrable and
vanishes at ±∞. By integration by parts, the Fourier transform of f ( j) is given by

u 
→ (−iu) jϕ(u), u ∈ R, j = 0, . . . , J + 1. (2.3)

Define the basis functions

eLk (x) = 1[−L,L](x) cos
(

kπ
x + L

2L

)

, x ∈ R, k = 0, 1, . . .
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The Fourier coefficients of f ( j)
L are defined by a j

k and approximated by c jk , where

a j
k := 1

L

∫ L

−L
f ( j)(x)eLk (x)dx,

c jk := 1

L

∫

R

f ( j)(x) cos
(
kπ

x + L

2L

)
dx, k = 0, 1, . . . , j = 0, . . . , J + 1.

We also write ak and ck instead of a0k and c0k , respectively. Intuitively, we then have

f ( j) ≈ f ( j)
L =

∞∑

k=0

′a j
k e

L
k ≈

N∑

k=0

′a j
k e

L
k ≈

N∑

k=0

′c jk e
L
k ,

where
∑ ′ indicates that the first summand (with k = 0) is weighted by one-half. A

little analysis shows that

c jk = 1

L
�
{(

− i
kπ

2L

) j

ϕ

(
kπ

2L

)

ei
kπ
2

}

, k = 0, 1, . . . , j = 0, . . . , J + 1,

i.e., the coefficients c jk can be obtained explicitly ifϕ is given in closed form.Here,�(z)
denotes the real part of a complex number z and i the imaginary unit. For 0 < M ≤ L
define

vk :=
∫ M

−M
v(x)eLk (x)dx, k = 0, 1, . . . (2.4)

To keep the notation simple, we suppress the dependence of a j
k and c jk on L and the

dependence of vk on M . The COS method states that the time-0 price of the European
option can be approximated by

∫

R

v(x) f (x)dx ≈
∫ M

−M
v(x)

N∑′

k=0

cke
L
k (x)dx =

N∑

k=0

′ckvk . (2.5)

The coefficients ck are given in closed form when ϕ is given analytically and the
coefficients vk can also be computed explicitly in important cases, e.g., for plain
vanilla European put or call options and digital options, see [14]. This makes the COS
method numerically very efficient and robust.

In Lemma 2.1 we give the approximation in line (2.5) a precise meaning. To do so,
we need a bound for the term

B f (L) :=
∞∑

k=0

1

L

∣
∣
∣
∣

∫

R\[−L,L]
f (x) cos

(

kπ
x + L

2L

)

dx

∣
∣
∣
∣

2

, L > 0. (2.6)
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Integrable functions f with B f (L) → 0, L → ∞ are called COS-admissible. The
class of COS-admissible densities is very large; in particular, it includes bounded
densities with existing first and second moments and stable densities, see [21].

Lemma 2.1 Assume f : R → R is integrable and square-integrable and COS-
admissible. Let v : R → R be bounded, with |v(x)| ≤ K for all x ∈ R and some
K > 0. Let ε > 0. Let M > 0 so that

∫

R\[−M,M]
v(x) f (x)dx ≤ ε

2
. (2.7)

Define ξ = √
2MK. Let L ≥ M so that

‖ f − fL‖2 ≤ ε

6ξ
and

√
B f (L) ≤ ε

6ξ
. (2.8)

Choose N large enough so that

∥
∥
∥
∥
∥
fL −

N∑

k=0

′akeLk

∥
∥
∥
∥
∥
2

≤ ε

6ξ
. (2.9)

Then it follows that

∣
∣
∣
∣
∣

∫

R

v(x) f (x)dx −
N∑

k=0

′ckvk

∣
∣
∣
∣
∣
≤ ε.

Proof [21, Cor. 8]. ��
Remark 2.2 Often, it is fine to choose M = L , e.g., when applying the COSmethod to
densities with semi-heavy tails. However, if the density f has heavy tails, it is usually
numerically more efficient to choose L and M differently.

3 On the choice of N for smooth densities

We summarize the assumptions about the density f of the log-returns in order to
find explicit expressions for M , L and N . We denote by C J+1

b (R) the set of bounded
functions from R to R which are (J + 1)-times, continuously differentiable with
bounded derivatives. By ‖.‖∞ and ‖.‖2 we denote the supremum norm and the L2

norm, i.e.,

‖ f ‖∞ = sup
x∈R

| f (x)|, ‖ f ‖2 =
√∫

R

( f (x))2dx .

Let N0 = {0} ∪ N and J ∈ N0. Let C1 > 0, C2 > 0 and C3 > 0 be suitable
constants. Let L0 > 0. Assume f ∈ C J+1

b (R). We say that f and its derivatives have
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semi-heavy tails if

| f ( j)(x)| ≤ C1C
j
2 e

−C2|x |, j = 0, . . . , J + 1, |x | ≥ L0. (3.1)

We say that f and its derivatives have heavy tails with index α > 0 if

| f ( j)(x)| ≤ C3

j∏

m=1

(α + m) |x |−1−α− j , j = 0, . . . , J + 1, |x | ≥ L0. (3.2)

We suppose that f satisfies one of the following assumptions:

Assumption A1 f ∈ C J+1
b (R) and f and its derivatives have semi-heavy tails.

Assumption A2 f ∈ C J+1
b (R) and f and its derivatives have heavy tails with index

α > 0.

Remark 3.1 Assume the functions u 
→ |u jϕ(u)|, j = 0, . . . , J + 1, are integrable.
By Fourier inversion we have that f (x) = 1

2π

∫
R
eiuxϕ(u)du. By [17, Lemma 2.8] it

follows that f ∈ C J+1
b (R).

Remark 3.2 In exceptional cases, the constants C1 and C2 are explicitly known; see
Example 3.4. However, it should be pointed out that in Theorem 3.8 we obtain bounds
for M , L and N for models with semi-heavy tails (e.g., BS, VG, Heston, NIG and
CGMY) without knowing C1 or C2.

Remark 3.3 In Theorem 3.8 we treat models with Pareto-tails; i.e., the density for the
log-returns behaves like

f (x) ∼ |x |−1−α, x → ±∞. (3.3)

The right-hand side of Inequality (3.2) is obtained by differentiating the right-hand side
of (3.3). We assume in Theorem 3.8 that C3 and α are known. The exact tail-behavior
of the density of the log-returns is indeed known for the stable law, in particular for
the FMLS model.

Example 3.4 Let σ > 0. In the Laplace model, see [30], the centralized log-returns at
maturity T > 0 are Laplace distributed with variance σ 2T . To ensure stock prices are
finite, we need σ

√
T <

√
2, see [19, Example 3]. It holds that

| f ( j)
Lap(x)| = 1√

2σ
√
T

( √
2

σ
√
T

) j

e
−

√
2

σ
√
T

|x |
, x ∈ R\{0}, j = 0, 1, 2, . . .

Let L0 > 0. Choose C1 = 1√
2σ

√
T
and C2 =

√
2

σ
√
T
. Then f ( j)

Lap satisfies Inequality
(3.1).
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The following lemma makes it possible to bound the series-truncation error, which
depends only on the choice of N . It is known in a similar form in the literature,
see e.g., Theorem 1.39 in Plonka et al. [37], Theorem 4.2 in Wright et al. [43] and
Theorem 6 in Boyd [7]. It can be proven by integration by parts. It is usually stated for
functions with domain [−1, 1] or [0, 2π ]. Here, we explicitly need the dependence of
the series-truncation error on the truncation range [−L, L], so we give the full proof.
Lemma 3.5 Let J ∈ N0. Suppose f ∈ C J+1

b (R). It holds for J ≥ 1 that

∥
∥
∥
∥
∥
fL −

N∑

k=0

′akeLk

∥
∥
∥
∥
∥
2

≤
J∑

j=1

2 j+1

jπ j+1

L j+ 1
2

N j

(
| f ( j)(−L)| + | f ( j)(L)|

)

+ 2J+2‖ f (J+1)‖∞
Jπ J+1

L J+ 3
2

N J
(3.4)

and for J = 0 that

∥
∥
∥
∥
∥
fL −

N∑

k=0

′akeLk

∥
∥
∥
∥
∥
2

≤ 4‖ f (1)‖∞
π

L
3
2√
N

.

Proof It holds for any ν > 0 by integration by parts, see [29, Eq. (1.3)], that

∫ L

−L
f (x)eiνxdx =

J∑

j=0

i j+1

ν j+1

(
e−iνL f ( j)(−L) − eiνL f ( j)(L)

)

+ i J+1

ν J+1

∫ L

−L
f (J+1)(x)eiνxdx . (3.5)

For k ∈ N, we apply Equation (3.5) for ν := kπ
2L . Then it follows that

|ak | = 1

L

∣
∣
∣
∣

∫ L

−L
f (x) cos

(

kπ
x + L

2L

)

dx

∣
∣
∣
∣

= 1

L

∣
∣
∣
∣�
{

ei
kπ
2

∫ L

−L
f (x)ei

kπ
2L xdx

}∣
∣
∣
∣

= 1

L

∣
∣
∣
∣�
{ J∑

j=0

i j+1 (2L) j+1

(kπ) j+1

(
f ( j)(−L) − (−1)k f ( j)(L)

)

+ ei
kπ
2 i J+1 (2L)J+1

(kπ)J+1

∫ L

−L
f (J+1)(x)ei

kπ
2L xdx

}∣
∣
∣
∣

≤
J∑

j=1

2 j+1

π j+1

L j

k j+1

(
| f ( j)(−L)| + | f ( j)(L)|

)
+ 2J+2

∥
∥ f (J+1)

∥
∥∞

π J+1

L J+1

k J+1 .
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Note that 〈eLk , eLl 〉 = Lδk,l for (k, l) �= (0, 0) and hence

∥
∥
∥
∥
∥
fL −

N∑

k=0

′akeLk

∥
∥
∥
∥
∥
2

=
√
√
√
√L

∞∑

k=N+1

|ak |2 ≤ √
L

∞∑

k=N+1

|ak |. (3.6)

By the integral test for convergence,

∞∑

k=N+1

1

k j+1 ≤
∫ ∞

N
x− j−1dx = 1

j
N− j , j ≥ 1, (3.7)

which implies Eq. (3.4) for J ≥ 1. If J = 0, apply the first Equality from (3.6) and
the Inequality (3.7). ��

Given L > 0, we need to find an upper bound for
∥
∥ f ( j)

∥
∥∞ to estimate the series

truncation error by Inequality (3.4). It follows by the inverse Fourier transform and
Eq. (2.3) that

‖ f ( j)‖∞ ≤ 1

2π

∫

R

|u| j |ϕ(u)|du, j = 0, 1, . . . , J + 1. (3.8)

Inequality (3.8) provides an explicit expression to find a bound for the term ‖ f ( j)‖∞,
j = 0, . . . , J + 1 for several models.

Example 3.6 In the symmetric NIG model with parameters α > 0, β = 0 and δ > 0,
the centralized log-returns at time T > 0 have density fNIG ∈ C∞

b (R), which can be
expressed in terms of the modified Bessel-function of the third kind. The characteristic
function is given by

u 
→ exp
(
−δT

√
α2 + u2 + δTα

)
, u ∈ R,

see [5] and [41, Sec. 5.3.8]. We obtain, by Inequality (3.8) and using α2 + u2 ≥ u2,
that

‖ f ( j)
NIG‖∞ ≤ exp(T δα) j !

(T δ) j+1π
, j = 0, 1, 2, . . .

We need Lemma 3.7 to obtain a bound for B f (L). We use the following abbrevia-
tion: the maximum of two real numbers x, y, is denoted by x ∨ y.

Lemma 3.7 Assume f ∈ C1
b(R) is integrable such that x f 2(x) → 0, x → ±∞. Let

L > 0. If

f ′(x) ≥ 0, x ≤ −L and f ′(x) ≤ 0, x ≥ L (3.9)

then
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B f (L) ≤ 1

L

(∫

R\[−L,L]
f (x)dx

)2

+ 8

3
L
(
f 2(L) ∨ f 2(−L)

)
.

Proof It holds that f (x) → 0, x → ±∞ and

∫ ∞

L

∣
∣ f ′(x)

∣
∣ dx = −

∫ ∞

L
f ′(x)dx = f (L).

Note that for all k ∈ N,

∫ ∞

L
f (x) cos

(

kπ
x + L

2L

)

dx =
[

f (x) sin

(

kπ
x + L

2L

)
2L

kπ

]∞

L︸ ︷︷ ︸
=0

− 2L

kπ

∫ ∞

L
f ′(x) sin

(

kπ
x + L

2L

)

dx,

implying

1

L

∣
∣
∣
∣

∫ ∞

L
f (x) cos

(

kπ
x + L

2L

)

dx

∣
∣
∣
∣

2

= 4

π2k2
L

∣
∣
∣
∣

∫ ∞

L
f ′(x) sin

(

kπ
x + L

2L

)

dx

∣
∣
∣
∣

2

≤ 4

π2k2
L f 2(L).

Similarly,

1

L

∣
∣
∣
∣

∫ −L

−∞
f (x) cos

(

kπ
x + L

2L

)

dx

∣
∣
∣
∣

2

≤ 4

π2k2
L f 2(−L).

Using

∞∑

k=1

1

k2
= π2

6
and |a + b|2 ≤ 4(a2 ∨ b2),

we arrive at

∞∑

k=0

1

L

∣
∣
∣
∣

∫

R\[−L,L]
f (x) cos

(

kπ
x + L

2L

)

dx

∣
∣
∣
∣

2

≤ 1

L

∣
∣
∣
∣

∫

R\[−L,L]
f (x)dx

∣
∣
∣
∣

2

+ 4

(
4π2

6π2 L f
2(L) ∨ 4π2

6π2 L f
2(−L)

)

= 1

L

∣
∣
∣
∣

∫

R\[−L,L]
f (x)dx

∣
∣
∣
∣

2

+ 8

3
L
(
f 2(L) ∨ f 2(−L)

)
.

��
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In Theorem3.8we provide explicit formulas forM , N and L when f satisfiesAssump-
tion A1 or A2 to ensure that the COS method approximates the true price within a
predefined error tolerance ε > 0. We also include the derivatives of f in Theorem 3.8
in order to be able to approximate the sensitivities (Greeks) of the price of the option,
see Sect. 5. To approximate the time-0 price of the option by Theorem 3.8, set � = 0.

Theorem 3.8 (Find M , L and N ) Let v : R → R be bounded, with |v(x)| ≤ K for all
x ∈ R and some K > 0. Let ε > 0 be small enough. Suppose J ∈ N0.
(i) Assume density f satisfies Assumption A1. For some even n ∈ N let

L = M = n

√
2Kμn

ε
, (3.10)

where μn is the nth−moment of f , i.e., μn = 1
in

∂n

∂un ϕ(u)

∣
∣
∣
u=0

. Let ξ = √
2MK. If

J ≥ 1, let � ∈ {0, . . . , J − 1}, k ∈ {1, . . . , J − �} and

N ≥
(
2k+2

∥
∥ f (k+1+�)

∥
∥∞ Lk+ 3

2

kπk+1

12ξ

ε

) 1
k

. (3.11)

If J = 0, let � = 0 and

N ≥
(
4
∥
∥ f (1)

∥
∥∞ L

3
2

π

6ξ

ε

)2

. (3.12)

(ii) Assume density f satisfies Assumption A2, J ≥ 1 and f is unimodal. Let M =
(
4C3K

εα

) 1
α
, ξ = √

2MK and

L = M ∨
(

12C3

√
1

α2 + 2

3

ξ

ε

) 2
1+2α

. (3.13)

Let � = 0 and k ∈ {1, . . . , J } and define N as in Equation (3.11). In both cases, i)
and ii), it holds that

∣
∣
∣
∣
∣

∫

R

v(x) f (�)(x)dx −
N∑

k=0

′c�
kvk

∣
∣
∣
∣
∣
≤ ε. (3.14)

Proof We start with case (i). For ε small enough,M is large enough so that Assumption
A1 holds, i.e., L0 ≤ M = L . It follows that

∫

R\[−M,M]
∣
∣v(x) f (�)(x)

∣
∣dx ≤ K

∫

R\[−M,M]
C1C

�
2e

−C2|x |(x)dx ≤ ε

2
; (3.15)
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the last inequality holds true if

M ≥ − 1

C2
log

(
1

KC1C
�−1
2

ε

4

)

. (3.16)

Further,

∥
∥
∥ f (�) − f (�)

L

∥
∥
∥
2

≤
√

2C2
1C

2�
2

∫ ∞

L
e−2C2xdx

= C1C�
2√

C2
e−C2L (3.17)

≤ ε

6ξ
; (3.18)

the last inequality holds true if

L ≥ − 1

C2
log

( √
C2

C1C�
2

ε

6ξ

)

. (3.19)

Proposition 2 in Junike and Pankrashkin [21] shows that

B f (�) (L) ≤ 2

3

π2

L2

∫

R\[−L,L]
|x f (�)(x)|2dx .

We then have

√
B f (�) (L) ≤

√
4

3

π2C2
1C

2�
2

L2

∫ ∞

L
x2e−2C2xdx

= 2πC1C�
2√

6C2
e−C2L

√

1 + 1

LC2
+ 1

2L2C2
2

(3.20)

≤ ε

6ξ
; (3.21)

the last inequality holds true if

L ≥ − 1

C2
log

⎛

⎝

(
2πC1C�

2√
6C2

√

1 + 1

LC2
+ 1

2L2C2
2

)−1
ε

6ξ

⎞

⎠ . (3.22)

Assume J ≥ 1. For ε small enough, we have

N ≥ 3LC2

π
, (3.23)
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because the right-hand side of Inequality (3.23) is of order ε− 1
n while the right-hand

side of Inequality (3.11) is of order ε−( 1n + 2
kn + 1

k ). By Inequality (3.23) it follows that

k∑

j=1

2 j+1

jπ j+1

L j+ 1
2

N j

(
| f ( j+�)(−L)| + | f ( j+�)(L)|

)

≤
k∑

j=1

2 j+1

jπ j+1

L j+ 1
2

N j

(
2C1C

j+�
2 e−C2L

)

≤ 8

π2C1C
1+�
2 e−C2L L

3
2

N

∞∑

j=0

(
2LC2

πN

) j

≤ 8

π2C1C
1+�
2 e−C2L π

√
L

3C2

1

1 − 2LC2
πN

≤ 8C1C�
2

π
e−C2L

√
L ≤ ε

12ξ
;

the last inequality holds true if

L ≥ − 1

C2
log

(
π

8C1C�
2

ε

12ξ
√
L

)

. (3.24)

By Equation (3.10),M and L are of order ε− 1
n .Hence, for ε small enough, Inequalities

(3.16), (3.19), (3.22) and (3.24) are indeed satisfied because the right-hand sides of
these Inequalities are of order log(ε). By the definition of N in Inequality (3.11), we
also have

2k+2
∥
∥ f (k+1+�)

∥
∥∞

kπk+1

Lk+ 3
2

Nk
≤ ε

12ξ
.

By Lemma 3.5 it follows that

∥
∥
∥
∥
∥
f (�)
L −

N∑

k=0

′a�
ke

L
k

∥
∥
∥
∥
∥
2

≤ ε

6ξ
. (3.25)

As B f (�) (L) → 0, L → ∞, f (�) is COS-admissible. Inequalities (3.15), (3.18), (3.21),
(3.25) and Lemma 2.1 imply Inequality (3.14). Now assume J = 0. By the definition
of N in Inequality (3.12), Lemma 3.5 again implies Inequality (3.25). Apply Lemma
2.1 to conclude.
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Next, we treat the case (ii). For ε small enough, M is large enough so that Assump-
tion A2 holds, i.e., L0 ≤ M ≤ L . The inequality

∫

R\[−M,M]
∣
∣v(x) f (x)

∣
∣dx ≤ K

∫

R\[−M,M]
f (x)dx ≤ 2KC3

α
M−α ≤ ε

2

is satisfied by the definition of M . A little calculation shows that the definition of L
implies

L ≥
( √

26C3ξ√
1 + 2αε

) 2
1+2α

,

therefore

∥
∥ f − fL

∥
∥
2 ≤

√

2
∫ ∞

L
C2
3 x

−2−2αdx

=
√
2C3√

1 + 2α
L− 1+2α

2

≤ ε

6ξ
. (3.26)

Since f is a unimodal density satisfying Assumption A2, f also satisfies the assump-
tion of Lemma 3.7. To see this, note that the unimodality implies the assertion in line
(3.9). Further,

|x f 2(x)| ≤ C2
3 |x |−1−2α → 0, x → ±∞.

Using the bound for B f (L) from Lemma 3.7, we obtain

√
B f (L) ≤

√
1

L

(

2
∫ ∞

L
C3x−1−αdx

)2

+ 8

3
LC2

3 L
−2α−2

=
√

4C2
3

α2 L−2α−1 + 8

3
C2
3 L

−2α−1

= 2C3

√
1

α2 + 2

3
L− 1+2α

2

≤ ε

6ξ
, (3.27)

the last Inequality holds by the definition of L . For ε small enough, N is large enough
and we have

α + k

N − 2(α+k)
π

≤
√

1

α2 + 2

3
. (3.28)
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Use Inequality (3.28), the definition of L and 96
π2 ≤ 12, to see that

L ≥
(
96C3ξ

π2ε

α + k

N − 2(α+k)
π

) 2
1+2α

. (3.29)

Using
∏ j

m=1(α + m) ≤ (α + k) j for j ≤ k, it follows that

k∑

j=1

2 j+1

jπ j+1

L j+ 1
2

N j

(
| f ( j)(−L)| + | f ( j)(L)|

)

≤
k∑

j=1

2 j+1

jπ j+1

L j+ 1
2

N j

(
2C3(α + k) j L−1−α− j

)

≤ 8

π2C3L
− 1

2−α α + k

N

∞∑

j=0

(
2(α + k)

Nπ

) j

≤ 8

π2C3L
− 1

2−α α + k

N − 2(α+k)
π

≤ ε

12ξ
,

the last inequality holds by Inequality (3.29). By the definition of N , we also have

2k+2
∥
∥ f (k+1)

∥
∥∞

kπk+1

Lk+ 3
2

Nk
≤ ε

12ξ
.

By Lemma 3.5 it follows that

∥
∥
∥
∥
∥
fL −

N∑

k=0

′akeLk

∥
∥
∥
∥
∥
2

≤ ε

6ξ
.

As B f (L) → 0, L → ∞, f is COS-admissible. Apply Lemma 2.1 to conclude. ��
Remark 3.9 If v is a European put option with maturity T , K can be set to the strike of
the option times e−rT . The error tolerance is described by ε. Numerical experiments
in Junike and Pankrashkin [21] suggest choosing n ∈ {4, 6, 8} for μn . According to
Theorem 3.8, any k ∈ {1, . . . , J − �} is allowed to define N by Inequality (3.11).
In the applications, one could minimize N over all admissible k. But this could be
time-consuming, and in the applications, we set k to a fixed value, e.g., for the BS
model, k = 40 is a reasonable choice, see Sect. 6.1. For other models, another choice
for k might be more suitable. Bounds for ‖ f (k+1)‖∞ are explicitly known for some
models, e.g., the BS, NIG and FMLS models. These bounds can also be estimated
numerically, e.g., for the Heston model. Section6 contains examples indicating that
the bound for N is often sharp and very useful in applications.
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Remark 3.10 If a density satisfies Assumption A1, it also satisfies Assumption A2,
i.e., theoretically, case (i) in Theorem 3.8 is included in case (ii). However, in (i)
we do not need to know the exact tail behavior of the density, i.e., the constants C1
and C2 from Assumption A1, in order to estimate the truncation range because we
apply Markov’s inequality to find a bound for M . This approach is not applicable to
densities with heavy tails because higher moments usually do not exist. In (ii), we
assume the tail behavior of the density is known precisely, i.e., we have to know C3
and α in Assumption A2 to estimate M , L or N . The constants C3 and α are known,
for example, for the FMLS model.

4 Order of convergence

Theorem 4.1 describes the order of convergence of the COS method if we allow
N → ∞ and choose M and L depending on N . We describe only the asymptotic
behavior of the COS method and we assume M = L in this section to keep the
notation simple. We establish a bound of the order of convergence of the error of the
COS method with parameters L and N , i.e.,

err(L, N ) =
∣
∣
∣
∣
∣

∫

R

v(x) f (x)dx −
N∑

k=0

′ckvk

∣
∣
∣
∣
∣
.

Let M = L = L(N ). We say the error of the COS method converges with order
ρ > 0, if there is a constant κ > 0 such that for all N ∈ N it holds that

err(L(N ), N ) ≤ κ

Nρ
. (4.1)

The error is of infinite order or converges exponentially, if Inequality (4.1) holds for
any ρ, see [7, Sec. 2.3]. We use big O notation: for functions g, h : N → R, we write
h(N ) = O(g(N )) as N → ∞, if the absolute value of h(N ) is at most a positive
constant multiple of g(N ) for all sufficiently large values of N .

Theorem 4.1 (Bounds for the order of convergence) Let v : R → R be bounded, with
|v(x)| ≤ K for all x ∈ R and some K > 0. Assume J ∈ N.

(i) Assume density f satisfies Assumption A1. Let β ∈
(
0, J

J+3

)
and γ > 0. If

M = L = γ Nβ it holds that

err(L(N ), N ) ≤ O
(
N−J (1−β)+2β

)
, as N → ∞.

(ii) Assume density f is unimodal and satisfies Assumption A2. Let β ∈
(
0, J

J+2+2α

)

and γ > 0. If M = L = γ Nβ it holds that

err(L(N ), N ) ≤ O
(
N−αβ

)
, as N → ∞.
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In both cases we have err(L(N ), N ) → 0, N → ∞.

Proof Let vL := 1[−L,L]v. As in the proof of Corollary 8 in Junike and Pankrashkin
[21], one can show that

∣
∣
∣

∫

R

v(x) f (x)dx −
N∑′

k=0

ckvk
∣
∣
∣ ≤A0(L) + ‖vL‖2

(
A1(L) + A2(L, N ) +

√
B f (L)

)
,

(4.2)

where B f (L) as in Eq. (2.6) and

A0(L) =
∫

R\[−L,L]
∣
∣v(x) f (x)

∣
∣dx,

A1(L) = ‖ f − fL‖2 ,

A2(L, N ) = ∥∥ fL −
N∑′

k=0

ake
L
k

∥
∥
2.

We will state upper bounds for A0, A1 and B f depending on the tail behaviour of f ,
i.e., for the different cases (i) and (ii) in Theorem 4.1. An upper bound for A2 can be
obtained from Lemma 3.5. Note that

‖vL‖2 ≤ √
2LK = √2γ K N

β
2 .

We now prove (i). For L large enough, we have

A0(L) ≤ 2KC1

∫ ∞

L
e−C2xdx = 2KC1

C2
e−C2L .

Further, by Inequality (3.17), it holds that

A1(L) ≤ C1√
C2

e−C2L .

Assuming L ≥ 1 and applying Inequality (3.20), it follows that

√
B f (L) ≤ 2πC1√

6C2

√

1 + 1

C2
+ 1

2C2
2

e−C2L .

Inequality (3.4) implies

A2(L, N ) ≤
J∑

j=1

2 j+1

jπ j+1

L j+ 1
2

N j

(
2C1C

j
2 e

−C2L
)

+ 2J+2
∥
∥ f (J+1)

∥
∥∞

Jπ J+1

L J+ 3
2

N J
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≤ e−C2L
√
L

J∑

j=1

2 j+2C1C
j
2γ j

jπ j+1 + 2J+2
∥
∥ f (J+1)

∥
∥∞

Jπ J+1

L J+ 3
2

N J
,

where we used L
N ≤ γ .

Let b1, . . . , b4 > 0 be suitable constants. By Inequality (4.2), it follows for N large
enough that

∣
∣
∣

∫

R

v(x) f (x)dx −
N∑′

k=0

cLk vM
k

∣
∣
∣ ≤ b1e

−C2γ Nβ + b2N
β
2
(
b3N

β
2 e−C2γ Nβ + b4N

β(J+ 3
2 )−J )

≤ O
(
N−J (1−β)+2β

)
, N → ∞. (4.3)

β < J
J+3 implies −J (1 − β) + 2β < 0 and the right-hand side of (4.3) converges to

zero for N → ∞. We show (ii). It holds for L large enough using Inequalities (3.26)
and (3.27) that

A0(L) ≤ 2KC3

∫ ∞

L
x−1−αdx ≤ 2KC3

α
L−α,

A1(L) ≤
√
2C3√

1 + 2α
L− 1

2−α,

√
B f (L) ≤ 2C3

√
1

α2 + 2

3
L− 1

2−α.

Inequality (3.4) and Assumption A2 imply for N large enough and for some suitable
constants a1, . . . , aJ > 0 that

A2(L, N ) ≤
J∑

j=1

a j N
β(− 1

2−α)− j + 2J+2
∥
∥ f (J+1)

∥
∥∞

Jπ J+1

L J+ 3
2

N J
.

By Inequality (4.2), it holds for some suitable constants b1, . . . , b4 > 0 that

∣
∣
∣

∫

R

v(x) f (x)dx −
N∑′

k=0

ckvk
∣
∣
∣

≤ b1N
−αβ + b2N

β
2

(

b3N
−β(α+ 1

2 ) +
J∑

j=1

a j N
β(− 1

2−α)− j + b4N
β(J+ 3

2 )−J
)

≤ b1N
−αβ + b2

(

b3N
−βα +

J∑

j=1

a j N
−βα− j + b4N

β(J+2)−J
)

≤ O
(
N−αβ

)
, N → ∞.
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The last inequality can be seen as follows: as β ≤ J
J+2+α

, it follows that

−αβ ≥ β(J + 2) − J .

��
Remark 4.2 The COS method converges exponentially, i.e., faster than O(N−ρ) as
N → ∞ for any ρ > 0 if f is smooth and has semi-heavy tails. To see this, let
0 < β < 1: then,

−J (1 − β) + 2β → −∞, J → ∞.

Remark 4.3 By Theorem 4.1, the COS method converges at least like O(N−α) as
N → ∞ if f is smooth and has heavy tails with Pareto index α > 0. Numerical
experiments indicate that the COS method does not converge faster than O(N−α) for
the FMLS model, see Sect. 6.5.2, i.e., the bound in Theorem 4.1(ii) is sharp.

Remark 4.4 Theorem4.1 cannot be applied to densities that are non-differentiable, e.g.,
the density of the VG model is non-differentiable for some parameters. To improve
the order of convergence of the COS method if the density of the log-returns is non-
differentiable, Ruijter et al. [38] apply spectral filters and consider the filter-COS
method,

∑N
k=0

′ŝ( k
N )ckvk , where ŝ is a spectral filter, i.e., a smooth function with

support [−1, 1] and ŝ(0) = 1. For an analysis of the order of convergence and some
error bounds for the filter-COS method, see [38] and references therein.

5 On the Greeks

The Greeks or sensitivities of a European option play an important role in hedging
and risk management. The most important Greeks are Delta and Gamma, which are
the first and second derivative of the price of a European option with respect to the
current underlying price S0 > 0.

Fang and Oosterlee [14, Remark 3.2] state formulas for the approximation of Delta
and Gamma by the COS method. We proof these formulas and discuss how to choose
M , L and N for the Greeks.

In this section we assume St = S0 S̄t for some stochastic process (S̄t )t≥0, which
does not depend on S0 anymore. This assumption is a very typical one, see [31, Sec.
3.1.2]. As in Sect. 2, we consider a European option with maturity T > 0 and payoff
w(ST ) for some w : [0,∞) → R. Let η := E[log(ST )] − log(S0). Then η does not
depend on S0. Define

v(x, s) := e−rTw(exp(x + log(s) + η)), x ∈ R, s > 0. (5.1)

The time-0 price of the European option is then given by

e−rT E[w(ST )] =
∫

R

v(x, S0) f (x)dx,
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where, as before, f is the density of the centralized log-returns. Delta and Gamma are
defined by

∂�

∂S�
0

∫

R

v(x, S0) f (x)dx, � = 1, 2 (5.2)

if the partial derivatives exist. The next lemma provides some conditions to interchange
integration and differentiation in Eq. (5.2).

Lemma 5.1 Let w be bounded. Let v be defined as in Eq. (5.1). Assume J ∈ N0 and
density f satisfies Assumption A1. It follows that

∂

∂S0

∫

R

v(x, S0) f (x)dx = − 1

S0

∫

R

v(x, S0) f
(1)(x)dx

and if J ≥ 1

∂2

∂S20

∫

R

v(x, S0) f (x)dx = 1

S20

∫

R

v(x, S0)
(
f (1)(x) + f (2)(x)

)
dx .

Proof Let K > 0 such that v is bounded by K . Let s, s ∈ R such that 0 < s < S0 < s.
Let

h(x, s) := v(x, 1) f (x − log(s)), (x, s) ∈ R × (s, s).

Then x 
→ h(x, s) is integrable for all s ∈ (s, s) and the partial derivative

∂

∂s
h(x, s) = −v(x, 1)

s
f (1)(x − log(s))

exists for all (x, s) ∈ R × (s, s). Define x0 := L0 + | log(s)| + | log(s)|. Then,

|x − log(s)| ≥ L0, (x, s) ∈ R\[−x0, x0] × (s, s).

Let

m(x) :=

⎧
⎪⎨

⎪⎩

Ks−1
∥
∥ f (1)

∥
∥∞ , x ∈ [−x0, x0]

Ks−C2−1C1C2eC2x , x < −x0
Ks−1sC2C1C2e−C2x , x > x0.

Then | ∂
∂s h(x, s)| ≤ m(x) for all (x, s) ∈ R × (s, s) and x 
→ m(x) is integrable.

Interchanging differentiation and integration is allowed by the dominated convergence
theorem, see e.g., [17, Lemma 2.8], and it follows that

∂

∂S0

∫

R

v(x, S0) f (x)dx = ∂

∂S0

∫

R

v(x, 1) f (x − log(S0))dx

123



On the number of terms in the COS method for European…

= − 1

S0

∫

R

v(x, 1) f (1)(x − log(S0))dx

= − 1

S0

∫

R

v(x, S0) f
(1)(x)dx .

If J ≥ 1, f is twice differentiable. Apply the arguments above to f (1) to conclude. ��
In Theorem 5.2 we provide explicit formulas for M , N and L when f satisfies

Assumption A1 to ensure that the COS method approximates the time-0 price and
the Greeks Delta and Gamma within a predefined error tolerance ε > 0. One can use
the same parameters M , N and L to obtain both the price and the Greeks. We define
vk := ∫ M

−M v(x, S0)eLk (x)dx as in Equation (2.4).

Theorem 5.2 (M , L and N for the time-0 price, Delta and Gamma) Let w be
bounded. Let v be defined as in Equation (5.1). Let ε > 0 be small enough. Let

γ = min
{
ε, εS0,

εS20
2

}
. Suppose J ≥ 3. Assume density f satisfies Assumption A1.

For some even n ∈ N define

L = M = n

√
2Kμn

γ
, (5.3)

where μn is the nth−moment of f , i.e., μn = 1
in

∂n

∂un ϕ(u)

∣
∣
∣
u=0

. Let ξ = √
2MK,

k ∈ {1, . . . , J − 2} and

N ≥
(
2k+2

(
max�∈{0,1,2}

∥
∥ f (k+1+�)

∥
∥∞
)
Lk+ 3

2

kπk+1

12ξ

γ

) 1
k

. (5.4)

It follows that the time-0 price and the Greeks Delta and Gamma can be approximated
by the COS method, i.e.,

∣
∣
∣
∣

∫

R

v(x, S0) f (x)dx −
N∑

k=0

′ckvk
∣
∣
∣
∣ ≤ ε,

∣
∣
∣
∣

∂

∂S0

∫

R

v(x, S0) f (x)dx −
(

− 1

S0

N∑

k=0

′c1kvk
)∣
∣
∣
∣ ≤ ε,

∣
∣
∣
∣

∂2

∂S20

∫

R

v(x, S0) f (x)dx − 1

S20

N∑

k=0

′(c1k + c2k )vk

∣
∣
∣
∣ ≤ ε.

Proof Theorem 3.8 ensures that the time-0 price can be approximated by the COS
method. By Lemma 5.1 and Theorem 3.8, it holds that

∣
∣
∣
∣

∂

∂S0

∫

R

v(x, S0) f (x)dx −
(

− 1

S0

N∑

k=0

′c1kvk
)∣
∣
∣
∣
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= 1

S0

∣
∣
∣
∣
∣

∫

R

v(x, S0) f
(1)(x)dx −

N∑

k=0

′c1kvk

∣
∣
∣
∣
∣

≤ γ

S0
≤ ε.

Using the triangle inequality, we can see that

∣
∣
∣
∣

∂2

∂S20

∫

R

v(x, S0) f (x)dx − 1

S20

N∑

k=0

′(c1k + c2k )vk

∣
∣
∣
∣

= 1

S20

∣
∣
∣
∣

∫

R

v(x, S0)
(
f (1)(x) + f (2)(x)

)
dx −

N∑

k=0

′(c1k + c2k )vk

∣
∣
∣
∣

≤ 1

S20

(∣
∣
∣
∣

∫

R

v(x, S0) f
(1)(x)dx −

N∑

k=0

′c1kvk
∣
∣
∣
∣

+
∣
∣
∣
∣

∫

R

v(x, S0) f
(2)(x)dx −

N∑

k=0

′c2kvk
∣
∣
∣
∣

)

≤ 2γ

S20
≤ ε.

��

6 Numerical experiments

Some numerical experiments are compared with the Carr–Madan formula, see [8],
which is applicable when the characteristic function of the log-returns is given in
closed form and when E[S1+γ

T ] is finite for some γ > 0, which is the damping
factor. Unless otherwise stated, we use the Carr–Madan formula with N = 217 terms,
we set the damping factor equal to γ = 0.1 and we use a Fourier truncation range
of 1200 to compute the reference prices. We implemented the Carr–Madan formula
using Simpson’s rule without applying the fast Fourier transform.

All numerical experiments were performed on a modern laptop (Intel i7-10750H)
using the software R and vectorized code without parallelization.

6.1 BSmodel

We consider the BS model with volatility σ > 0 and maturity T > 0. The density
fBS of the log-returns is normally distributed and belongs to the family of stable laws.
An upper bound for ‖ f (k+1)

BS ‖∞ can be obtained directly from Inequality (6.3) setting

α = 2 and c = σ
√
T√
2
. Let n ∈ N be even. In the BS model, the nth moment of the
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Table 1 Approximation of the time-0 price of a put option by the COS method: N depending on k by
Inequality (3.11)

k 10 20 30 40 50 60 70

N 988 285 206 183 175 173 174

CPU time: COS method 0.19 0.09 0.09 0.07 0.08 0.07 0.08

CPU time: numeric integration for ‖ f (k+1)‖∞ 0.15 0.09 0.09 0.10 0.09 0.10 0.09

CPU time is measured in milliseconds. The COS method with Nmin = 120 takes about 0.068 ms

centralized log-returns is given by

μn = (σ
√
T )n ((n − 1)(n − 3)(n − 5) · · · 3 · 1) .

The formula for N in Inequality (3.11) does not depend on the volatility σ
√
T if we

set � = 0 and if we bound ‖ f (k+1)
BS ‖∞ using Inequality (6.3). In Fig. 1, we show the

dependency of N on k. At the beginning, the number of terms N decreases sharply as
k increases and stabilizes approximately for k ≥ 40. We also see that N increases as
the error tolerance ε decreases or the bound K increases.

How sharp is the bound for N in Theorems 3.8 and 5.2? We make the following
experiment. Consider a put option with parameters

ε = 10−8, σ = 0.2, T = 1, S0 = K = 100, r = 0. (6.1)

We set n = 8 and k = 40 to obtain M = L = 6.94 and N = 218 by Theorem 5.2.
Other values for k and N are reported in Table 1. Theorem 5.2 indicates that M, L
and N serves to approximate both the time-0 price and the Greeks Delta and Gamma
using the COS method. This can be confirmed by an experiment: Nmin = 120 is the
minimal number of terms such that the absolute differences of the approximation by
the COSmethod and the closed form solution by the Black-Scholes formula for time-0
price, Delta and Gamma, are less than the error tolerance. N is about twice as larger
as Nmin.

How can the number of terms N be estimated if there are no closed form solu-
tions available for the bounds of the derivatives of the density of the log-returns? We
suggest solving the right-hand side of Inequality (3.8) numerically to find a bound
for ‖ f (k+1)‖∞. Here, we use R’s integrate function with default values. The CPU
time of the COS method and the numerical integration routine to obtain a bound for
‖ f (k+1)‖∞ are of similar magnitude; see Table 1.

The value of N does not change when using numerical integration to obtain a bound
for ‖ f (k+1)‖∞ compared to the closed form solution for the bound of ‖ f (k+1)‖∞.

6.1.1 Last coefficient rule-of-thumb

ByBoyd [7, Sec. 2.12], the following rule is called theLast Coefficient Rule-of-Thumb:
The series truncation error approximating fL by a finite cosine series is bounded by∑

k>N |ak |. If N is large enough, the order of magnitude of the series truncation error
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Fig. 1 N depending on k by
Inequality (3.11) for various ε

and K . We set n = 8 and � = 0.
In the BS model, N does not
depend on the standard deviation
of the log-returns, i.e., on the
value of σ

√
T

Table 2 Last coefficient
rule-of-thumb applied to a put
option with K = S0 = 100,
T = 1, r = 0 and different
volatilities

ε, εNF σ L, M NF by (6.2) N by (3.11) Nmin

10−8 0.2 6.94 127 183 120

0.1 1 10 0 34 10

We choose k = 40 to obtain N by Inequality (3.11)

is expected to scale like |aN |. [1, Sec. 3.2] propose to select the number of terms for
the BS model with volatility σ > 0 and maturity T by the smallest natural number
NF satisfying the following inequality

|aNF | ≈ |cNF | = 2

b − a
e− 1

2 ( σπ
b−a )2T N2

F ≤ εNF , (6.2)

where [a, b] = [−L, L] is the truncation range and εNF is some error tolerance. The
solution to find the number of terms by (6.2) works even better than Inequality (3.11)
if εNF is small enough, see Table 2. However, the rule by Inequality (6.2) does not
work if 2−1(b − a)εNF ≥ 1 because we would then choose NF = 0.

6.2 Hestonmodel

There is an integral expression for the density of the log-returns in the Heston model
and the density is smooth and has semi-heavy tails, see [12]. In this section, we
provide numerical experiments under two different parameter sets, M1 and M2. The
parameter set M1 is taken from [14] and the parameter set M2 is borrowed from [42].
We compute the time-0 prices of put options for different strikes K and different
maturities T . Reference prices are obtained by the Carr–Madan formula.

Table 3 compares N obtained by Inequality (3.11) and the minimal Nmin such that
the absolute difference of the approximation by the COS method and the reference
price is less than the error tolerance ε. On average, N is about six times larger than
Nmin. The CPU time using N instead of Nmin increases roughly by the factor three. To
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Table 3 Number of terms N and CPU time to approximate the time-0 price of a put option by the COS
method depending on the strike K , the maturity T and the parameters of the model

Model M1 M2

K 75 75 100 100 125 125 75 75 100 100 125 125

T 1 2 1 2 1 2 1 2 1 2 1 2

M , L 6.3 9.7 6.8 10.4 7.2 11 7.9 12.1 8.5 13.1 9 13.8

N 864 746 948 819 1019 880 500 560 549 615 590 661

Nmin 80 110 190 185 110 205 100 100 110 125 145 155

CPU COS N 0.6 0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.4 0.5 0.4 0.5

CPU COS Nmin 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

CPU num. int. 1.5 1.3 1.2 1.1 1.3 1.2 1.2 1.1 1.2 1.0 1.2 1.0

We set ε = 10−3, n = 4, k = 20, S0 = 100 and r = 0 to obtain N by Inequality (3.11). CPU time is
measured in milliseconds. The CPU time to estimate ‖ f (k+1)‖∞ by numeric integration is also provided
in the last row

obtain N , we estimate ‖ f (k+1)‖∞ by solving the right-hand side of Inequality (3.8) by
numeric integration using R’s function integrate with default values. The CPU times
of the COS method and the numerical integration routine are of similar magnitudes.

6.3 VGmodel

Using the VGmodel as an example, this section shows that Theorem 3.8 does not help
in finding the number of terms N for the COS method if the density of the log-returns
is not sufficiently smooth. The density of the VGmodel at time T > 0 has semi-heavy
tails, see [2, Example 7.5]. It can be expressed by means of the Whittaker function
and is (J + 1)-times continuously differentiable if J + 2 < 2T

ν
, see [22].

Let fVG denote the density of the log-returns in the VG model at maturity T > 0
with parameters σ > 0, θ ∈ R and ν > 0. If T < ν

2 , the density fVG is unbounded
and Theorem 3.8 cannot be used to find N . If T ∈ (ν, 3ν

2

)
, the derivative of fVG is

continuous, but the second derivative of fVG is unbounded, see [22, Theorem. 4.1 and
Theorem. 6.1].

We can apply Theorem 3.8 with J = 0 if T ∈ (
ν, 3ν

2

)
, but the value for N is

somewhat useless from a practical point of view, as the following experiment shows:
Consider a European call option with the following parameters:

ε = 0.01, σ = 0.1, ν = 0.2, θ = 0, T = 0.25, S0 = K = 100, r = 0.

By Eq. (3.10), we set M = L = 0.91 using n = 4 moments. By numerically optimiz-
ing the derivative of the density fVG, we obtain ‖ f (1)‖∞ = 218, and Theorem 3.8
suggests N ≈ 4 · 1014.

We calculated a reference price πCM = 1.809833 using the Carr–Madan formula.
Using the COS method, N = 50 is already sufficient to approximate the reference
price within the error tolerance.
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6.4 FMLSmodel

The stable law has been used to model stock prices since Mandelbrot [33] and Fama
[13]. A representation of stable densities by special functions can be found in Zolotarev
[47]. The density fStable ∈ C∞

b (R) of the family of stable distributions with stability
parameter α ∈ (0, 2], skewness β ∈ [−1, 1], scale c > 0 and location θ ∈ R has the
characteristic function

u 
→ exp
(
iuθ − |uc|α(1 − iβsgn(u)�α(u)

)
,

�α(u) =
{
tan πα

2 , α �= 1

− 2
π
log(|u|) , α = 1,

see [46]. It follows by Inequality (3.8) that

‖ f ( j)
Stable‖∞ ≤ 1

παc j+1

∫ ∞

0
t
j+1
α

−1e−t dt

≤
�
(

j+1
α

)

παc j+1 , j = 0, 1, 2, . . . , (6.3)

where � denotes the gamma function. The density of the stable law is unimodal, see
[44]. Let FStable be the cumulative distribution function for the stable density fStable.
By Samorodnitsky and Taqqu [40, Property 1.2.15] it holds that

lim
x→∞ xα(1 − FStable(x)) = Cα

1 + β

2
cα,

lim
x→∞ xα(FStable(−x)) = Cα

1 − β

2
cα,

where

Cα =
⎧
⎨

⎩

1−α

�(2−α) cos
(

πα
2

) , α �= 1

2
π

, α = 1.

For stable densities we therefore suggest to set C3 in Theorem 3.8 at least as large as
αCα

1+|β|
2 cα to obtain M and L .

The FMLS model with parameters σ > 0 and α ∈ (1, 2) describes the log-returns
by a stable process with maximum negative skewness. The centralized log-returns
in the FMLS model at time T > 0 are stably distributed with stability parameter α,

skewness β = −1, scale c = σT
1
α and location θ = 0.

The density of the log-returns in the FMLS model has a heavy left tail with Pareto
index α, i.e., the left tail decays like |x |−1−α , x → −∞, but the right tail decays
exponentially, see [9]. This makes the FMLS very attractive from a theoretical point
of view: put and call optionprices and allmoments of the underlying stock ST exist. The
expectation of the log-returns also exists, but the log-returns do not have finite variance.
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Fig. 2 Density of the log-returns
in the FMLS model and
asymptotic tail behavior

Fitting the FMLS model to real market data shows very satisfactory results. Carr and
Wu [9] calibrated the FMLS model to real market data and estimated α = 1.5597 and
σ = 0.1486. We test the formulas for M , L and N with these values for α and σ for
a European call option with the following parameters:

ε = 10−2, T = 1, S0 = K = 100, r = 0.

The reference price is 9.7433708 by the Carr–Madan formula, and we confirm the
reference price by the COS method with M = L = 105 and N = 107.

Figure2 shows the density of the log-returns in the FMLS model and asymptotic
tail behavior, i.e., the function x 
→ C3|x |−1−α . The left tail does indeed decay like
Pareto tails and the asymptotic tail behavior is very close to the density. The right tail
decays faster; in fact it decays exponentially, see [9].

To apply the COS method we define by Theorem 3.8, M = 69, L = 176 and
N = 5815 setting k = 40. According to Theorem 3.8, any other choice for k is
possible, but another value for k does not significantly improve N .

With these parameters, the COS method prices the call option within the error
tolerance in about 1.5 ms. The minimal N to stay below the error tolerance is Nmin =
1200 and the CPU time using Nmin is about 0.4 ms.

We also apply the Carr–Madan formula with the “default parameters”, see [8],
which are also recommended byMadan and Schoutens [31, Sec. 3.1], i.e., 4096 terms,
a damping factor equal to 1.5 and a Fourier truncation range of 1024. With these
parameters, the Carr–Madan formula prices the option within the error tolerance in
about 1.1 ms. We also implemented the Carr–Madan formula using the fast Fourier
transform but we found no speed advantage, compare also with Crisóstomo [11].

The CPU time is about four times higher when using Theorem 3.8 to get N com-
pared to the optimized value for N , which is acceptable from our point of view. The
computational time of the COSmethod using Theorem 3.8 and that of the Carr–Madan
formula with standard parameters are of similar magnitude.
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Fig. 3 Order of convergence of
the COS method for a call
option in the BS model with
different choices for the
truncation range [−L, L]

6.5 Order of convergence

In this section, we empirically analyze the order of convergence of the COS method
for the BS model and the FMLS model and compare the results with Theorem 4.1.

The order of convergence in (4.1) can be estimated straightforwardly by a simula-
tion, see [24]. As

log
( κ

Nρ

)
= log(κ) − ρ log(N ),

the negative slope of a straight line obtained from a log-log plot of the error
err(L(N ), N ) against N can be used as an indicator for ρ. As in Sect. 4, we assume
M = L in this section.

6.5.1 BS model

In the BS model with parameter σ > 0, the density of the log-returns is arbitrarily
smooth, and the tails decay even faster than exponentially. In Fig. 3 we analyze how
the error of the COS method behaves in the BS model for large N and for different
choices of L .

We consider a call option with parameters σ = 0.2, S0 = K = 100, r = 0 and
T = 1. We see in Fig. 3 that the COS method seems to converge exponentially at
the beginning for moderate N if we choose L constant, i.e., independent of N . But
for constant L , e.g., L = 4σ or L = 6σ , the COS method does not converge for
N → ∞ but the error remains constant for a certain level of N . This can be explained
by Inequality (1.1): while the second term on the right-hand side of Inequality (1.1)
converges to zero for N → ∞ and L fixed, the first and third terms on the right-hand
side of Inequality (1.1) do not improve as N is increased but L is kept constant.
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Fig. 4 Order of convergence of
the COS method with different
choices for the truncation range
[−L, L] for the FMLS model

For large L , such as L = 20σ , this effect disappears somewhat because the tails of
the Gaussian distribution decay so rapidly that, up to fixed-precision arithmetic,1 the
Gaussian density can be thought of as a density with finite support. Using arbitrary-
precision arithmetic instead should show that even for L = 20σ , the error of the COS
method does not converge to zero for N → ∞.

If we choose L = L(N ) = σ
√
N , Theorem 4.1(i) indicates that the error of the

COS method converges exponentially to zero. This is confirmed empirically in Fig. 3.
Other choices for L also work well, e.g., L = σ

5 N .

6.5.2 FMLSmodel

We test Theorem 4.1(ii) for the density of the log-returns in the FMLS model, which
belongs to the family of stable densities and has heavy tails. For the FMLS model we
use the parameters α = 1.5597 and σ = 0.1486: these values are taken from Carr
and Wu [9], who calibrated the FMLS model to real market data. We use the same
reference price for the time-0 price of a European call option with maturity T = 1,
S0 = K = 100 and r = 0 as in Sect. 6.4.

We compute Loptimal for a fixed N ∈ N minimizing err(L, N ), i.e., for each N
we choose the truncation range such that the error of the COS method is minimal. In
particular, for each N ∈ {2m, m = 4, 5, . . . , 20} we define

Loptimal(N ) := argminL∈Lerr(L, N ),

where

L = {exp(0.07m), m = 0, 1, . . . , 200},
1 The software package R operates with a precision of 53 bits conforming to the IEC 60559 standard, see
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. https://www.R-project.org/.
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is a sufficiently fine grid of the interval [1, 106].
In Fig. 4, we compute the order of convergence of the COS method for different

strategies to define L . If L is constant, the COS method does not converge at all.
If we choose L = 1

100N , the empirical order of convergence is 1.57, i.e., the error
behaves like O(N−1.57) for large N , which is very close to its theoretical bound of
O(N−1.5597). The empirical order of convergence does not differ much if we choose
Loptimal instead of L = 1

100N .
In particular, the numerical experiments indicate that the order of convergence is

not exponential for heavy tail models even though the corresponding densities are
arbitrarily smooth.

In Fig. 4we also plot the empirical order of convergence of the Carr–Madan formula
for the FMLSmodelwith damping factor of 0.7 and a Fourier truncation range of 1200.
The Figure indicates an exponential order of convergence for theCarr–Madan formula.

7 Conclusions

In this research we analyzed the COS method, which is used for efficient option
pricing. The sensitivities, i.e., the Greeks, can also be efficiently approximated. The
COS method requires two parameters: the truncation range [−L, L] to truncate the
density of the log-returns and the number of terms N to approximate the truncated
density by cosine functions.We considered stock pricemodels where the density of the
log-returns is smooth and has either semi-heavy tails, i.e., the tails decay exponentially
or faster, or heavy tails, i.e., Pareto tails.

In both cases, we found explicit and useful bounds for L and N and showed in
numerical experiments the usefulness of these formulas in applications to obtain the
time-0 price of an option and the Greeks Delta and Gamma. The densities of the
log-returns are smooth for many models in finance, such as the BS, NIG, Heston and
FMLS models.

If the density is not differentiable, Theorem 3.8 cannot be used to find a bound for
N . If the density is only differentiable a few times, which is the case for the VGmodel
for some parameters and short maturities, our bound for N is too large to be useful in
most practical applications.

We further analyzed the order of convergence of the COSmethod and observed both
theoretically and empirically that the models enjoy exponential convergence when the
densities of the log-returns are smooth and have semi-heavy tails. However, when the
density of the log-returns is smooth and has heavy tails, the error of the COS method
can be bounded by O(N−α), where α > 0 is the Pareto tail index. This is the case,
for example, for the FMLS model where α ∈ (1, 2). Numerical experiments indicate
that the bound O(N−α) is sharp.
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