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Abstract
In this paper, we combine the operator splitting methodology for abstract evolution
equations with that of stochastic methods for large-scale optimization problems. The
combination results in a randomized splitting scheme, which in a given time step does
not necessarily use all the parts of the split operator. This is in contrast to deterministic
splitting schemeswhich always use every part at least once, and often several times. As
a result, the computational cost can be significantly decreased in comparison to such
methods. We rigorously define a randomized operator splitting scheme in an abstract
setting and provide an error analysis where we prove that the temporal convergence
order of the scheme is at least 1/2. We illustrate the theory by numerical experiments
on both linear and quasilinear diffusion problems, using a randomized domain decom-
position approach. We conclude that choosing the randomization in certain ways may
improve the order to 1. This is as accurate as applying e.g. backward (implicit) Euler
to the full problem, without splitting.

Mathematics Subject Classification 65C99 · 65M12 · 90C15 · 65M55

1 Introduction

The main objective of this paper is to combine two successful strategies from the
literature: the first being operator splitting schemes for evolution equations on gen-
eral, infinite dimensional frameworks and the second being stochastic optimization
methods. Operator splitting schemes are an established tool in the field of numeri-
cal analysis of evolution equations and have a wide range of applications. Stochastic
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optimization methods have proven to be efficient at solving large-scale optimization
problems,where it is infeasible to evaluate full gradients. They can drastically decrease
the computational cost in e.g. machine learning settings. The link between these two
seemingly disparate areas is that an iterative method applied to an optimization prob-
lem can also be seen as a time-stepping method applied to a gradient flow connected
to the optimization problem. In particular, stochastic optimization methods can then
be interpreted as randomized operator splitting schemes for such gradient flows. In
this context, we introduce a general randomized splitting method that can be applied
directly to evolution equations, and provide a rigorous convergence analysis.

Abstract evolution equations of the type

{
u′(t) + A(t)u(t) = f (t), t ∈ (0, T ],
u(0) = u0

are an important building block for modeling processes in physics, biology and social
sciences. Standard examples which appear in a variety of applications are fluid flow
problems, where we model how a flow evolves on a given domain over time, compare
[1, 26] and [37, Section 1.3]. The operator A(t) can denote, for example, a non-linear
diffusion operator such as the p-Laplacian or a porous medium operator.

Deterministic operator splitting schemes as discussed in more detail in [16] are a
powerful tool for this type of equation.An example is given by a domain decomposition
scheme, where we split the domain into sub-domains. Instead of solving one expensive
problem on the entire domain, we deal with cheaper problems on the sub-domains.
This is particularly useful in modern computer architectures, as the sub-problems may
often be solved in parallel.

Moreover, evolution equations are tightly connected to unconstrained optimization
problems, because the solution of minu F(u) is a stationary point of the gradient flow
u′(t) = −∇F(u(t)). The latter is an evolution equation on an infinite time horizonwith
A = −∇F and f = 0. In the large-scale case, such optimization problemsbenefit from
stochastic optimization schemes. The most basic such method, the stochastic gradient
descent, was first introduced already in [32], but since then it has been extended and
generalized in many directions. See, e.g., the review article [3] and the references
therein.

Via the gradient flow interpretation, we can see these optimizationmethods as time-
stepping schemes where a randomly chosen sub-problem is considered in each time
step. In essence, it is therefore a randomized operator splitting scheme. The differ-
ence between the works mentioned above and ours is that we apply these stochastic
optimization techniques to solve the evolution equation itself rather than just finding
its stationary state.

We consider nonlinear evolution equations in an abstract framework similar to
[7, 10, 11] where operators of a monotone type have been studied. Deterministic
splitting schemes for such equations has been considered in e.g. [14, 15, 17, 29]. A
particular kind of splitting schemes which is most closely related to our work, domain
decomposition methods, have been studied in [6, 7, 13, 30, 31]. In this paper, we
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extend this framework of deterministic splitting schemes to a setting of randomized
methods.

Outside of the context of optimization, other kinds of randomized methods have
already proved themselves to be useful for solving evolution equations. Starting in
[34, 35] explicit schemes for ordinary differential equations have been randomized.
This approach has been further extended in [2, 4, 18, 22, 24]. In [8], it has been
extended both to implicit methods and to partial differential equations and in [23] to
finite element approximations. While these works considered certain randomizations
in their schemes, they are conceptually different from our approach. Their main idea
is to approximate any appearing integrals through

∫ tn

tn−1

f (t) dt ≈ f (ξn) and
∫ tn

tn−1

A(t)v dt ≈ A(ξn)v,

where ξn is a random variable that takes on values in [tn−1, tn]. This ansatz coincides
with a Monte Carlo integration idea. In this paper, we use a different approach where
we decompose the operator in a randomized fashion. More precisely, we approximate
data

f = 1

s

s∑
�=1

f� and A = 1

s

s∑
�=1

A�

by

fB = 1

|B|
∑
�∈B

f� and AB = 1

|B|
∑
�∈B

A�

where the batch B ⊂ {1, . . . , s} is chosen randomly. The stochastic approximations
fB and AB of the original data f and A are cheaper to evaluate in applications. This
is less related to Monte Carlo integration and more similar to stochastic optimization
methods, compare [3, 9]. Similar ideas have been considered in [19, 20, 28], where
a random batch method for interacting particle systems has been studied. Moreover,
very recently and during the preparation of this work, a similar approach has also been
applied to the optimal control of linear time invariant (LTI) dynamical systems in [38].
While the convergence rate provided there is essentially the same as what we establish
in our main result Theorem 5.2, our setting is more general and allows for nonlinear
operators on infinite dimensional spaces rather than finite dimensional matrices. We
also consider the error of the time stepping method that is used to approximate the
solution to u′(t)+ AB(t)u(t) = fB(t), while the error bounds in [38] assume that this
evolution equation is solved exactly.

This paper is organized as follows. In Sect. 2, we begin by explaining our abstract
framework. This includes both the precise assumptions that we make and the defini-
tion of our time-stepping scheme. We give a more concrete application of the abstract
framework in Sect. 3. With the setting fixed, we first prove in Sect. 4 that the scheme
and its solution are indeed well-defined. We prove the convergence of the scheme in
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expectation in Sect. 5. These theoretical convergence results are illustrated by numer-
ical experiments with two-dimensional linear and quasilinear nonlinear and linear
diffusion problem in Sect. 6. Finally, we collect some more technical auxiliary results
in Appendix A.

2 Setting

In the following, we introduce a theoretical framework for the randomized operator
splitting. This setting is similar to the one in [7].

Assumption 2.1 Let (H , (·, ·)H , ‖ · ‖H ) be a real, separable Hilbert space and let
(V , ‖ · ‖V ) be a real, separable, reflexive Banach space, which is continuously and
densely embedded into H. Moreover, there exists a semi-norm |·|V on V and a CV ∈
(0,∞) such that |·|V ≤ CV ‖ · ‖V .

Denoting the dual space of V by V ∗ and identifying the Hilbert space H with
its dual space, the spaces from Assumption 2.1 form a Gelfand triple and fulfill, in
particular,

V
d

↪→ H ∼= H∗ d
↪→ V ∗.

Assumption 2.2 Let the spaces H and V be given as stated in Assumption 2.1. Fur-
thermore, for T ∈ (0,∞) as well as p ∈ [2,∞), let {A(t)}t∈[0,T ] be a family of
operators A(t) : V → V ∗ that satisfy the following conditions:

(i) The mapping Av : [0, T ] → V ∗ given by t → A(t)v is continuous almost
everywhere in (0, T ) for all v ∈ V .

(ii) The operator A(t) : V → V ∗, t ∈ [0, T ], is radially continuous, i.e., the mapping
s → 〈A(t)(v + sw),w〉V ∗×V is continuous on [0, 1] for all v,w ∈ V .

(iii) There exists κA ∈ [0,∞) and ηA ∈ [0,∞), which do not depend on t, such that
the operator A(t) + κA I : V → V ∗, t ∈ [0, T ], fulfills the monotonicity-type
condition

〈A(t)v − A(t)w, v − w〉V ∗×V + κA‖v − w‖2H ≥ ηA|v − w|pV
for all v,w ∈ V .

(iv) The operator A(t) : V → V ∗, t ∈ [0, T ], is uniformly bounded such that there
exists βA ∈ [0,∞), which does not depend on t, with

‖A(t)v‖V ∗ ≤ βA
(
1 + ‖v‖p−1

V

)
for all v ∈ V .

Assumption 2.3 The function f is an element of the Bochner space L2(0, T ; H), and
the initial value u0 ∈ H, where H is the Hilbert space from Assumption 2.1.
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Remark 1 We note that Assumption 2.2 (iii) implies that the operator A(t) +
κA I : V → V ∗, t ∈ [0, T ], fulfills a uniform semi-coercivity condition. That is,
there exist constants μA, λA ∈ [0,∞), which do not depend on t , such that

〈A(t)v, v〉V ∗×V + κA‖v‖2H + λA ≥ μA|v|pV
for all v ∈ V . This follows by taking w = 0 in (iii), since then

〈A(t)v, v〉V ∗×V + κA‖v‖2H ≥ 〈A(t)0, v〉V ∗×V + ηA|v|pV ,

and by the Cauchy-Schwarz inequality and the weighted Young’s inequality
(Lemma A.2),

〈A(t)0, v〉V ∗×V ≥ −‖A(t)0‖V ∗‖v‖V ≥ −
(‖A(t)0‖qV ∗

ε
q
p q

+ ε‖v‖p
V

)

with 1
p + 1

q = 1 and ε > 0. Since |v|V ≤ CV ‖v‖V , we can absorb the second term

and take λA = ε
− q

p q−1‖A(t)0‖qV ∗ and μA = ηA − ε after choosing an ε such that
μA ≥ 0. This also shows that the constants λA and μA are not unique. We can, e.g.,
increase the coercivity constant at the cost of a larger constant term λA. Both these
terms enter into our error bounds, which can thus be tuned slightly.

In the case that A(t)0 = 0, the constant term disappears and we have μA = ηA. If
A(t)0 �= 0, one could recover this situation by the transformation (A, f ) → ( Ã, f̃ )
with Ã(t)u = A(t)u − A(t)0, f̃ (t) = f (t) − A(t)0. But in the case that A(t)0 ∈
V ∗\H this can cause issues since we require that f (t) ∈ H . Moreover, it might
lead to difficulties in solving the nonlinear equations of the form (I − hn Ã(tn))un =
un−1 + hn f̃ (tn). We therefore do not apply such a transformation in this paper.

Assumptions 2.1–2.3, are requirements on the problem that we want to solve. The
following Assumptions 2.4–2.5 are needed to state the approximation scheme for the
given problem.

Assumption 2.4 Let (
,F ,P) be a complete probability space and let {ξn}n∈N be a
family of mutually independent random variables. Further, let the filtration {Fn}n∈N
be given by

F0 := σ
(N ∈ F : P(N ) = 0

)
Fn := σ

(
σ
(
ξi : i ∈ {1, . . . , n}) ∪ F0

)
, n ∈ N,

where σ denotes the generated σ -algebra.

In the following, we denote the expectation with respect to the probability distribu-
tion of ξ for a random variable X in the Bochner space L1(
; H) byEξ [X ]. Moreover,
we abbreviate the total expectation by

En[X ] = Eξ1 [Eξ2 [. . .Eξn [X ] . . . ]].
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We denote the space of Hölder continuous functions on [0, T ] with Hölder coeffi-
cient γ ∈ (0, 1) and values in H by Cγ ([0, T ]; H). For notational convenience we
include the case γ = 1 and denote the space of Lipschitz continuous functions by
C1([0, T ]; H).

Assumption 2.5 Let Assumptions 2.1–2.4 be fulfilled. Assume that for almost every

ω ∈ 
 there exists a real Banach space Vξ(ω) such that V
d

↪→ Vξ(ω)
d

↪→ H,⋂
ω∈
 Vξ(ω) = V and there exists a semi-norm |·|Vξ(ω)

on Vξ(ω) and a CVξ(ω)
∈ (0,∞)

such that |·| ≤ CVξ(ω)
‖ · ‖Vξ(ω)

. Moreover, the mapping from ω → Vξ(ω) is measurable
in the sense that for every v ∈ H the set {ω ∈ 
 : v ∈ Vξ(ω)} is an element of the
complete generated σ -algebra

Fξ := σ
(
σ(ξ) ∪ σ

(N ∈ F : P(N ) = 0
))

.

Further, let the family of operators {Aξ(ω)(t)}ω∈
,t∈[0,T ] be such that for almost every
ω ∈ 
, {Aξ(ω)(t)}t∈[0,T ] fulfills Assumption 2.2 with the spaces Vξ(ω), H and V ∗

ξ(ω)

and corresponding constants κξ(ω), ηξ(ω), βξ(ω). These give rise to the semi-coercivity
constants μξ(ω) and λξ(ω) as in Remark 1. Moreover, the mapping Aξ (t)v : 
 → V ∗
is Fξ -measurable and the equality Eξ [Aξ (t)v] = A(t)v is fulfilled in V ∗ for v ∈ V .
The mappings κξ , ηξ , μξ , βξ , λξ : 
 → [0,∞) are measurable and there exist κ, λ ∈
[0,∞) which fulfill κξ ≤ κ almost surely and Eξ

[
λξ

] ≤ λ.
Further, let the family { fξ(ω)}ω∈
 be given such that fξ(ω) ∈ L2(0, T ; H). More-

over, the mapping fξ (t) : 
 → H is Fξ -measurable and Eξ [ fξ (t)] = f (t) is fulfilled
in H for almost all t ∈ (0, T ).

Under the setting explained in the above assumptions, we consider the initial value
problem

{
u′(t) + A(t)u(t) = f (t) in V ∗, t ∈ (0, T ],
u(0) = u0 in H .

(1)

For a non-uniform temporal grid 0 = t0 < t1 < · · · < tN = T , a step size hn =
tn − tn−1, h = maxn∈{1,...,N } hn , and a family of random variables { f n}n∈{1,...,N } such
that f n : 
 → H is Fξn -measurable, we consider the scheme

{
Un −Un−1 + hn Aξn (tn)U

n = hn f n in V ∗
ξn

, n ∈ {1, . . . , N },
U 0 = u0 in H .

(2)

Note thatUn : 
 → H is a random variable and therefore some statements involving
it below only hold almost surely. Whenever there is no risk of misinterpretation, we
omit writing almost surely for the sake of brevity.

When proving that the scheme is well-defined and establishing an a priori bound, it
is sufficient to assume that { fξn }n∈{1,...,N } are integrable with respect to the temporal
parameter. In that case, we can choose for example
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f n = 1

hn

∫ tn

tn−1

fξn (t) dt in H almost surely. (3)

When considering our error bounds, we assume more regularity for the functions
{ fξn }n∈{1,...,N } and demand continuity with respect to the temporal parameter. In this
case, we may also use

f n = fξn (tn) in H almost surely. (4)

We will focus on this second choice for the error bounds in Sect. 5.

3 Application: Domain decomposition

Onemain application that is allowed by our abstract framework is a domain decompo-
sition scheme for a nonlinear fluid flow problem. Domain decomposition schemes are
well-known for deterministic operator splittings. However, to the best of our knowl-
edge, it has not been studied in the context of a randomized operator splitting scheme.

3.1 Deterministic domain decomposition

To exemplify our abstract Eq. (1), we consider a (nonlinear) parabolic differential
equation. In the following, let D ⊂ R

d , d ∈ N, be a bounded domain with a Lip-
schitz boundary ∂D. For p ∈ [2,∞), we consider the parabolic p-Laplacian with
homogeneous Dirichlet boundary conditions

⎧⎪⎨
⎪⎩

∂t u(t, x) − ∇ · (α(t)|∇u(t, x)|p−2∇u(t, x)) = f̃ (t, x), (t, x) ∈ (0, T ) × D,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂D,

u(0, x) = u0(x), x ∈ D,

(5)

for α : [0, T ] → R and u0 : D → R. The notation f̃ is used to differentiate between
the function f̃ : (0, T ) × D → R and the abstract function f on (0, T ) that it gives
rise to through [ f (t)](x) = f̃ (t, x). We consider a domain decomposition scheme
similar to [13] for p = 2 and to [6, 7] for p ∈ [2,∞). For the sake of completeness,
we recapitulate the setting here also with a different boundary condition.

For s ∈ N, let {D�}s�=1 be a family of overlapping subsets of D. Let each subset
have a Lipschitz boundary and let the union of them fulfill

⋃s
�=1D� = D. On the

sub-domains {D�}s�=1, let the partition of unity {χ�}s�=1 ⊂ W 1,∞(D) be given such
that the following criteria are fulfilled

χ�(x) > 0 for all x ∈ D�, χ�(x) = 0 for all x ∈ D\D�,

s∑
�=1

χ� = 1

123



442 M. Eisenmann, T. Stillfjord

for � ∈ {1, . . . , s}. With the help of the functions {χ�}�∈{1,...,s}, it is now possible to
introduce suitable functional spaces {V�}�∈{1,...,s}.Weuse theweightedLebesgue space
L p(D�, χ�)

d that consists of all measurable functions v = (v1, . . . , vd) : D� → R
d

such that

‖(v1, . . . , vd)‖L p(D�,χ�)
d =

( ∫
D�

χ�|(v1, . . . , vd)|p dx
) 1

p

is finite. In the following, let the pivot space (H , (·, ·)H , ‖ · ‖H ) be the space L2(D) of
square integrable functions on D with the usual norm and inner product. The spaces
V and V�, � ∈ {1, . . . , s}, are given by

V = clos‖·‖V
(
C∞
0 (D)

) = W 1,p
0 (D) and V� = clos‖·‖V�

(
C∞
0 (D)

)
,

with respect to the norms

‖ · ‖V = ‖ · ‖H + ‖∇ · ‖L p(D)d and ‖ · ‖V�
= ‖ · ‖H + ‖∇ · ‖L p(D�,χ�)

d (6)

and semi-norms

|·|V = ‖∇ · ‖L p(D)d and |·|V�
= ‖∇ · ‖L p(D�,χ�)

d .

Note that a bootstrap argument involving the Sobolev embedding theorem shows that
the norm given in (6) is equivalent to the standard norm in the space. We can now
introduce the operators A(t) : V → V ∗, A�(t) : V� → V ∗

� , � ∈ {1, . . . , s}, t ∈ [0, T ],
given by

〈A(t)u, v〉V ∗×V =
∫
D

α(t)|∇u|p−2∇u · ∇v dx, u, v ∈ V ,

〈A�(t)u, v〉V ∗
� ×V�

=
∫
D�

χ�α(t)|∇u|p−2∇u · ∇v dx, u, v ∈ V�.

Similarly, we define the right-hand sides f� : [0, T ] → H , � ∈ {1, . . . , s}, where
f�(t) = χ� f (t) in H for almost every t ∈ (0, T ).

Lemma 3.1 Let the parameters of Eq. (5) be given such that α ∈ C([0, T ];R),
u0 ∈ L2(D) and f̃ ∈ L2((0, T ) × D). Then the setting described above fulfills
Assumptions 2.1–2.3.

Let the partition of unity {χ�}s�=1 ⊂ W 1,∞(D) fulfill that for every function χ�

there exists ε0 ∈ (0,∞) such that Dε
� = {x ∈ D� : χ�(x) ≥ ε} is a Lipschitz domain

for all ε ∈ (0, ε0). Then V and V�, � ∈ {1, . . . , s}, are reflexive Banach spaces and
V = ⋂s

�=1 V�. Further, the family of operators {A�(t)}t∈[0,T ], � ∈ {1, . . . , s} fulfills
Assumption 2.2 with the spaces V�, H and V ∗

� . Moreover,
∑s

�=1 A�(t)v = A(t)v is
fulfilled in V ∗ for v ∈ V for almost every t ∈ (0, T ) and corresponding constants
κA = κ� = λA = λ� = 0, μA = μ� = ηA = η� = 1.

Finally, the family { f�}�∈{1,...,s} fulfills f� ∈ L2(0, T ; H) and
∑s

�=1 f�(t) = f (t)
in H for almost all t ∈ (0, T ).
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Proof The space H = L2(D) is a real, separable Hilbert space, while V = W 1,p
0 (D)

is a real, separable Banach space that is densely embedded into H . Thus, they fulfill
Assumption 2.1. Analogously to [6, Lemma 3], the spaces V and V�, � ∈ {1, . . . , s},
are reflexive Banach spaces and since C∞

0 (D) is dense in H and C∞
0 (D) ⊆ V ⊂ V�

it follows that V and V� are dense in H . It remains to prove that
⋂s

�=1 V� = V is
fulfilled. First, we notice that ‖w‖L p(D�,χ�)

d ≤ ‖w‖L p(D)d for every w ∈ L p(D)d .
Thus, it follows that V ⊆ V� for every � ∈ {1, . . . , s} and in particular V ⊆ ⋂s

�=1 V�.
The other inclusion

⋂s
�=1 V� ⊆ V requires more attention. For ε ∈ (0,∞), we

introduce the set Dε
� = {x ∈ D : χ�(x) ≥ ε}. By assumption the sets Dε

� have
Lipschitz boundary for ε small enough. We consider the spaces of restricted functions

C∞
0 (D)|Dε

�
= {u ∈ C∞(Dε

�) : u|∂Dε
�∩∂D = 0} and V ε

� = {u|Dε
�

: u ∈ V�}.

If aweight functionχ� fulfills 0 < ε < χ� ≤ 1 < ∞ on thewhole domainD, it follows
that theweightedLebesgue space L p(Dε

�, χ�)
d coincideswith the space L p(Dε

�)
d (see,

e.g., [25, Chapter 3]). Thus, we obtain V ε
� = W 1,p(Dε

�). The continuity of the trace
operator (see, e.g., [27, Theorem 15.23]), implies that

C∞
0 (D)|Dε

�

‖·‖V� = {u ∈ W 1,p(Dε
�) : u|∂Dε

�∩∂D = 0}.

This shows that u ∈ V� is zero on ∂Dε
� ∩ ∂D for every ε ∈ (0,∞) small enough.

As ε can be chosen arbitrarily small, it follows that u ∈ V� fulfills v|∂D∩∂D�
= 0. In

combination with [6, Lemma 1], we obtain that
⋂s

�=1 V� = W 1,p
0 (D) = V .

Similar to the argumentation of [6, Lemma 4], it follows that the families of
operators {A(t)}t∈[0,T ] and {A�(t)}t∈[0,T ], � ∈ {1, . . . , s}, fulfills Assumption 2.2
with respect to the corresponding spaces with κA = κ� = λA = λ� = 0,
μA = μ� = ηA = η� = 1.

Assumption 2.3 is fulfilled as f̃ ∈ L2((0, T )×D) means that the abstract function
f belongs to L2(0, T ; L2(D)). Thus, as χ� ∈ W 1,∞(D), it follows that f� = χ� f ∈
L2(0, T ; H) and

∑s
�=1 f�(t) = f (t) in H for almost every t ∈ (0, T ). ��

3.2 Randomized scheme

For a randomized splitting in combination with a domain decomposition, different
approaches can be applied. One possibility is to choose a random support of the
weight functions {χ�}�∈{1,...,s}. This could possibly be done efficiently using priority
queue techniques similar to those in [36]. In this paper, we instead fix the weight
functions, but choose a random part of the operator in every time step. For the operator
A(t) = ∑s

�=1 A�(t) and a right hand side f (t) = ∑s
�=1 f�(t), we introduce a random

variable ξ : 
 → 2{1,...,s} such that [Aξ (t)](ω) = ∑
�∈ξ(ω) A�(t)/τ� and [ fξ (t)](ω) =∑

�∈ξ(ω) f�(t)/τ� with

τ� =
∑

B∈2{1,...,s}: �∈B
P(
ξ=B) with 
ξ=B = {ω ∈ 
 : ξ(ω) = B}.
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The value τ� is the proper scaling factor which ensures that Eξ [Aξ (t)] = A(t) and
Eξ [ fξ (t)] = f (t). We tacitly assume that τ� > 0, because otherwise we would be in
a situation where at least one A�(t) is never chosen. Such a strategy would obviously
not work. We set Vξ(ω) = ⋂

�∈ξ(ω) V�.

Lemma 3.2 Let {ξn}n∈{1,...,N } fulfill Assumption 2.4 such that ξn : 
 → 2{1,...,s} and
ξ−1
n (B) ∈ Fξn for all B ⊂ 2{1,...,s} and n ∈ {1, . . . , N }. Under the setting above,
Assumption 2.5 is fulfilled.

Proof In the following proof, we drop the index n to keep the notation simpler. The
embedding and norm properties are fulfilled as verified in the previous lemma. It
remains to verify the measurability condition. We need to verify that for every v ∈ H ,
the set {ω ∈ 
 : v ∈ Vξ(ω)} ∈ Fξ = σ

(
σ(ξ) ∪ σ(N ∈ F : P(N ) = 0)

)
. For fixed

v ∈ H , we set Bv = {� ∈ {1, . . . , s} : v ∈ V�} ∈ 2{1,...,s}. Then it follows that

{ω ∈ 
 : v ∈ Vξ(ω)} = {
ω ∈ 
 : ξ(ω) ∈ 2Bv

} = ξ−1(2Bv
) ∈ Fξ .

Moreover, we need to verify that the mapping ω → Aξ(ω)(t)v is measurable for
every v ∈ H . This can be seen from the decomposition Aξ (t)v = SA(t)v ◦ ξ where
SA(t)v : 2{1,...,s} → V ∗ is given through SA(t)v(B) = ∑

�∈B A�(t)v. As ξ−1(B) ∈ Fξ

for all B ⊂ 2{1,...,s} and S−1
A(t)v(X) ⊂ 2{1,...,s} for any open set X ⊂ V ∗, the mapping

ω → Aξ(ω)(t)v is measurable. Analogously, it can be proved that the mapping ω →
fξ(ω)(t) ismeasurable. InLemma3.1,we already verified that an operator Aξ(w) fulfills
the conditions from Assumption 2.2. Thus, it only remains to prove the expectation
property from Assumption 2.5. This is fulfilled as

Eξ [Aξ (t)v] =
∑

B∈2{1,...,s}
P(
ξ=B)

∑
�∈B

1

τ�

A�(t)v

=
s∑

�=1

1

τ�

A�(t)v
∑

B∈2{1,...,s}: �∈B
P(
ξ=B) =

s∑
�=1

A�(t)v = A(t)v in V ∗

holds true for v ∈ V and for almost every t ∈ [0, T ]. The same algebraic manipulation
in H instead of V ∗ shows that Eξ [ fξ (t)] = f (t). ��

4 Solution is well-defined

In the coming section, we show that our scheme (2) is well-defined. This includes that
first of all the scheme possesses a unique solution. We consider a purely deterministic
Eq. (1). However, as the numerical scheme is randomized, the solution Un of (2) is
a mapping of the type Un : 
 → H . Thus, we also need to make sure that it is a
measurable function. These facts are verified in Lemma 4.1. Moreover, we provide an
integrability result in the form of an a priori bound in Lemma 4.2.

Lemma 4.1 Let Assumptions 2.1–2.5 be fulfilled. Further, let the random variables
f n : 
 → H be given such that they are Fξn -measurable for every n ∈ {1, . . . , N }.
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Then for κhn ≤ κh < 1 there exists a unique Fn-measurable function Un : 
 → H
such that Un(ω) ∈ Vξn(ω) and (2) is fulfilled for every n ∈ {1, . . . , N }.
Proof For ω ∈ 
, we find that the operator I + hn Aξn(ω)(tn) : Vξn(ω) → V ∗

ξn(ω)

is monotone, radially continuous and coercive. Thus, it is surjective, compare [33,
Theorem 2.18]. Moreover, for U1,U2 ∈ Vξn(ω) with

(
I + hn Aξn(ω)(tn)

)
U1 = (

I +
hn Aξn(ω)(tn)

)
U2, it follows that

0 = 〈(
I + hn Aξn(ω)(tn)

)
U1 − (

I + hn Aξn(ω)(tn)
)
U2,U1 −U2

〉
V ∗

ξn (ω)
×Vξn (ω)

≥ (
1 − hnκ

)‖U1 −U2‖2H .

Thus, it follows that ‖U1 −U2‖H = 0 and I + hn Aξn(ω)(tn) is injective for κhn < 1
and, in particular, bijective.

It remains to verify that Un : 
 → H is well-defined. We define the auxiliary
function g : 
 × H → V ∗ such that

(ω,U ) →
{
hn f n(ω) +Un−1 − (

I + hn Aξn(ω)(tn)
)
U , U ∈ Vξn(ω)

e, U ∈ H\Vξn(ω),

where e ∈ V ∗ with ‖e‖V ∗ = 1. In the following, we want to apply Lemma A.3
to the function g to prove that Un is measurable. Applying [33, Lemma 2.16], it
follows that for fixed ω ∈ 
, the function v → 〈g(ω, v),w〉V ∗×V is continuous for
all v,w ∈ Vξn(ω). It remains to verify that for fixed v ∈ H and w ∈ V , the function
ω → 〈g(ω, v),w〉V ∗×V is measurable. Let B be an open set in V ∗. It then follows
that

(
g(·, v)

)−1
(B)

= {ω ∈ 
 : g(ω, v) ∈ B}
= {ω ∈ 
 : v ∈ Vξn(ω), hn f

n(ω) +Un−1 − (
I + hn Aξn(ω)(tn)

)
v ∈ B}

∪ {ω ∈ 
 : v ∈ H\Vξn(ω), e ∈ B}
= ({ω ∈ 
 : v ∈ Vξn(ω)} ∩ {ω ∈ 
 : hn f n(ω) +Un−1 − (

I + hn Aξn(ω)(tn)
)
v ∈ B})

∪ ({ω ∈ 
 : v ∈ H\Vξn(ω)} ∩ {ω ∈ 
 : e ∈ B})
=: (T1 ∩ T2) ∪ T3.

As the functionω → hn f n(ω)+Un−1−(
I+hn Aξn(ω)(tn)

)
v is measurable, it follows

that T2 ⊂ 
 is measurable. The sets T1 and T3 are measurable by assumption. Thus,
it follows that ω → g(ω, v) and therefore ω → 〈g(ω, v),w〉V ∗×V is measurable.

As argued above for every ω ∈ 
, there exists a unique element Un(ω) such that
g(ω,Un(ω)) = 0. Thus, we can now apply Lemma A.3 to prove thatUn : 
 → H is
Fn-measurable. ��
Lemma 4.2 Let Assumptions 2.1–2.5 be fulfilled. Further, let the random variables
f n : 
 → H be given such that they are Fξn -measurable and Eξn

[‖ f n‖2H
]

< ∞ for
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every n ∈ {1, . . . , N }. Then for 2κhn ≤ 2κh < 1 the solution {Un}n∈{1,...,N } of (2)
fulfills the a priori bound

En
[‖Un‖2H

] +
n∑

i=1

Ei
[‖Ui −Ui−1‖2H

] + 2
n∑

i=1

hiEi
[
μξi |Ui |2Vξi

]

≤ C
(
2‖u0‖2 + 4Tλ + 5CT

N∑
i=1

hiEξi

[‖ f i‖2H
])

,

where C = 1
1−2 hκ

exp
( 2κT
1−2 hκ

)
for all n ∈ {1, . . . , N }.

The proof of this lemma is very similar to the proof of our main result Theorem 5.1
and therefore omitted. The main necessary modification is to directly test (2) withUn

and use the semi-coercivity from Remark 1.

5 Stability and convergence in expectation

With the previous sections in mind, we can now turn our attention to the main results
of this paper. We provide error bounds for the scheme (2) measured in expectation.
First, we give a stability result in Theorem 5.1. The aim of this bound is to show how
two solutions of the same scheme with respect to different right-hand sides and initial
values differ. This stability result can then be used to prove the desired error bounds
in Theorem 5.2 by using well-chosen data that agrees with the exact solution at the
grid points. Note that in contrast to other works (e.g. [10, 11]), we measure f (t) −
A(t)u(t) in the H -norm. This can be interpreted as a stricter regularity assumption.
The advantage is that certain error terms disappear in expectation, compare the second
bound in Lemma A.4.

Theorem 5.1 Let Assumptions 2.1–2.5 be fulfilled. Further, let the random variable
f n : 
 → H be given such that it isFξn -measurable andEξn

[‖ f n‖2H
]

< ∞ for every
n ∈ {1, . . . , N }. Let {Un}n∈{1,...,N } be the solution of (2) and let {V n}n∈{1,...,N } be the
solution of

{
V n − V n−1 + hn Aξn (tn)V

n = hngn in V ∗
ξn

, n ∈ {1, . . . , N },
V 0 = v0 in H ,

(7)

for v0 ∈ H and gn : 
 → H such that it is Fξn -measurable and Eξn

[‖gn‖2H ]
< ∞

for every n ∈ {1, . . . , N }. Then for 2κhn ≤ 2κh < 1, it follows that
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En
[‖Un − V n‖2H

] + 1

2

n∑
i=1

Ei
[‖Ui − V i − (Ui−1 − V i−1)‖2H

]

+ 2
n∑

i=1

hiEi
[
ηξi |Ui − V i |pVξi

]

≤ 2C‖u0 − v0‖2 + 4C
N∑
i=1

h2i Ei
[‖ f i − gi‖2H

] + 5C2T
N∑
i=1

hi
∥∥Eξi

[
f i − gi

]∥∥2
H

for C = 1
1−2 hκ

exp
( 2κT
1−2κT

)
and n ∈ {1, . . . , N }.

Proof We start by subtracting (7) from (2) and testing with Ui − V i to get

(
(Ui − V i ) − (Ui−1 − V i−1),Ui − V i )
+ hn〈Aξi (ti )U

i − Aξi (ti )V
i ,Ui − V i 〉V ∗

ξi
×Vξi

= hn( f
i − gi ,Ui − V i ). (8)

For the first term of this equality, we use the identity (a − b, a) = 1
2 (‖a‖2 − ‖b‖2 +

‖a − b‖2) for a, b ∈ H to find that

(
(Ui − V i ) − (Ui−1 − V i−1),Ui − V i )
= 1

2

(‖Ui − V i‖2H − ‖Ui−1 − V i−1‖2H + ‖Ui − V i − (Ui−1 − V i−1)‖2H
)
.

Due to the monotonicity condition from Assumption 2.2 (iii), we obtain

〈Aξi (ti )U
i − Aξi (ti )V

i ,Ui − V i 〉V ∗
ξi

×Vξi
+ κξi ‖Ui − V i‖2H ≥ ηξi |Ui − V i |pVξi

.

It remains to find a bound for the right-hand side of (8). Applying Cauchy-Schwarz’s
inequality and the weighted Young’s inequality for products (LemmaA.2 with ε = 1),
it follows that

hi
(
f i − gi ,Ui − V i )

= hi
(
f i − gi ,Ui−1 − V i−1) + hi

(
f i − gi ,Ui − V i − (Ui−1 − V i−1)

)
≤ hi

(
f i − gi ,Ui−1 − V i−1) + hi‖ f i − gi‖H‖Ui − V i − (Ui−1 − V i−1)‖H

≤ hi
(
f i − gi ,Ui−1 − V i−1) + h2i ‖ f i − gi‖2H + 1

4
‖Ui − V i − (Ui−1 − V i−1)‖2H .

Combining the previous statements, we find

0 = (Ui − V i − (Ui−1 − V i−1),Ui − V i )

+ hi 〈Aξi (ti )U
i − Aξi (ti )V

i ,Ui − V i 〉V ∗
ξi

×Vξi
− hi

(
f i − gi ,Ui − V i )
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≥ 1

2

(‖Ui − V i‖2H − ‖Ui−1 − V i−1‖2H + ‖Ui − V i − (Ui−1 − V i−1)‖2H
)

− hiκξi ‖Ui − V i‖2H + hiηξi |Ui − V i |pVξi

− hi
(
f i − gi ,Ui−1 − V i−1) − h2i ‖ f i − gi‖2H − 1

4
‖Ui − V i − (Ui−1 − V i−1)‖2H .

After rearranging the terms andmultiplying both sides of the inequality with the factor
2, we obtain the following bound

‖Ui − V i‖2H − ‖Ui−1 − V i−1‖2H + 1

2
‖Ui − V i − (Ui−1 − V i−1)‖2H

+ 2hiηξi |Ui − V i |pVξi

≤ 2hiκξi ‖Ui − V i‖2H + 2hi
(
f i − gi ,Ui−1 − V i−1) + 2h2i ‖ f i − gi‖2H .

By first taking the Eξi -expectation of this inequality and then applying also the Ei−1-
expectation, we find that

Ei
[‖Ui − V i‖2H

] − Ei−1
[‖Ui−1 − V i−1‖2H

] + 1

2
Ei

[‖Ui − V i − (Ui−1 − V i−1)‖2H
]

+ 2hiEi
[
ηξi |Ui − V i |pVξi

]
≤ 2hiEi

[
κξi ‖Ui − V i‖2H

] + 2hiEi−1
[(
Eξi

[
f i − gi

]
,Ui−1 − V i−1)]

+ 2h2i Eξi

[‖ f i − gi‖2H
]
.

After combining the previous two inequalities and summing up from i = 1 to n ∈
{1, . . . , N }, we obtain

En
[‖Un − V n‖2H

] + 1

2

n∑
i=1

Ei
[‖Ui − V i − (Ui−1 − V i−1)‖2H

]

+ 2
n∑

i=1

hiEi
[
ηξi |Ui − V i |pVξi

]

≤ ‖u0 − v0‖2H + 2κ
n∑

i=1

hiEi
[‖Ui − V i‖2H

]

+2
n∑

i=1

hiEi−1
[(
Eξi

[
f i −gi

]
,Ui−1−V i−1)]+2

N∑
i=1

h2i Eξi

[‖ f i −gi‖2H
]
,

(9)

where we only made the right-hand side bigger by summing to the final value N . In
the following, denote imax ∈ {1, . . . , N } such that maxi∈{1,...,N } Ei

[‖Ui − V i‖2H
] =

Eimax

[‖Uimax − V imax‖2H
]
. By Lemma A.3, it follows that Ui−1 − V i−1 is Fi−1-

measurable and thus independent of the Fξi -measurable random variable f i − gi .
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Therefore, we find that

2
n∑

i=1

hiEi−1
[(
Eξi

[
f i − gi

]
,Ui−1 − V i−1)]

≤ 2
n∑

i=1

hi
∥∥Eξi

[
f i − gi

]∥∥
HEi−1

[‖Ui−1 − V i−1‖H
]

≤ 2
(
Eimax

[‖Uimax − V imax‖2H
]) 1

2

N∑
i=1

hi
∥∥Eξi

[
f i − gi

]∥∥
H .

To keep the presentation compact, we abbreviate

B1 =
N∑
i=1

h2i Ei
[‖ f i − gi‖2H

]
and B2 =

N∑
i=1

hi
∥∥Eξi

[
f i − gi

]∥∥
H .

Setting

xn = En
[‖Un − V n‖2H

] + 1

2

n∑
i=1

Ei
[‖Ui − V i − (Ui−1 − V i−1)‖2H

]

+ 2
n∑

i=1

hiEi
[
ηξi |Ui − V i |pVξi

]
,

wehave 2κ
∑n

i=1 hiEi
[‖Ui − V i‖2H

] ≤ 2κ
∑n

i=1 hi xi .We can nowapplyGrönwall’s
inequality (Lemma A.1) to (9). It follows that

xn ≤ C
(
‖u0 − v0‖2 + 2B1 + 2

(
Eimax

[‖Uimax − V imax‖2H
]) 1

2 B2

)
, (10)

for C = 1
1−2 hκ

exp
( 2κT
1−2 hκ

)
. As this inequality holds for every n ∈ {1, . . . , N }, it is

also fulfilled for imax. Thus, it follows that

Eimax

[‖Uimax − V imax‖2H
]

≤ C
(‖u0 − v0‖2 + 2B1 + 2

(
Eimax

[‖Uimax − V imax‖2H
]) 1

2 B2
)
.

We can now use that x2 ≤ 2ax + b2 implies that x ≤ 2a + b for a, b, x ∈ [0,∞) and
find

(
Eimax

[‖Uimax − V imax‖2H
]) 1

2 ≤ C
1
2
(‖u0 − v0‖2 + 2B1

) 1
2 + 2CB2.

123



450 M. Eisenmann, T. Stillfjord

Inserting this bound in (10) and applying Young’s inequality (Lemma A.2 for ε = 1),
we then obtain

En
[‖Un − V n‖2H

] + 1

2

n∑
i=1

Ei
[‖Ui − V i − (Ui−1 − V i−1)‖2H

]

+ 2
n∑

i=1

hiEi
[
ηξi |Ui − V i |2Vξi

]

≤ C
(
‖u0 − v0‖2 + 2B1 + 2C

1
2
(‖u0 − v0‖2 + 2B1

) 1
2 B2 + 4CB2

2

)
≤ C

(
‖u0 − v0‖2 + 2B1 + (‖u0 − v0‖2 + 2B1

) + CB2
2 + 4CB2

2

)
= 2C

(‖u0 − v0‖2 + 2B1
) + 5C2B2

2 .

It only remains to insert

B2
2 =

( N∑
i=1

hi
∥∥Eξi

[
f i − gi

]∥∥
H

)2 ≤ T
N∑
i=1

hi
∥∥Eξi

[
f i − gi

]∥∥2
H ,

to finish the proof. ��
Theorem 5.2 Let Assumptions 2.1–2.5 be fulfilled. Further, let fξn ∈ C([0, T ]; H)

almost surely and f n = fξn (tn) ∈ L2(
; H) for all n ∈ {1, . . . , N }. Let {Un}n∈{1,...,N }
be the solution of (2) and u be the solution of (1) that fulfills u′ ∈ Cγ ([0, T ]; H),
γ ∈ (0, 1]. Moreover, let Aξn (tn)u(tn) ∈ L2(
; H) be fulfilled.

Then for 2κhn ≤ 2κh < 1 and en = Un − u(tn), it follows that

En
[‖en‖2H ] + 1

2

n∑
i=1

Ei
[‖ei − ei−1‖2H

] + 2
n∑

i=1

hiEi
[
ηξi |ei |pVξi

]

≤ 8hC
N∑
i=1

hiEξi

[∥∥ fξi (ti ) − Aξi (ti )u(ti ) − ( f (ti ) − A(ti )u(ti ))
∥∥2
H

]
+ 4h1+2γC |u′|2Cγ ([0,T ];H)T + 5h2γC2|u′|2Cγ ([0,T ];H)T

2,

where C = 1
1−2 hκ

exp
( 2κT
1−2 hκ

)
for all n ∈ {1, . . . , N }.

Proof We use {V n}n∈{1,...,N } given by

{
V n − V n−1 + hn Aξn (tn)V

n = hngn in V ∗
ξn

, n ∈ {1, . . . , N },
V 0 = u0 in H ,

where

gn = 1

hn

(
u(tn) − u(tn−1)

) + Aξn (tn)u(tn) ∈ L2(
; H).
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With this particular choice of gn , we can now show that V n = u(tn) for every n ∈
{1. . . . , N }. Given the initial value u0, the solution V 1 is then given by

V 1 = u0 + h1g
1 − h1Aξ1(t1)V

1

= u0 + (
u(t1) − u(t0)

) + h1Aξ1(t1)u(t1) − h1Aξ1(t1)V
1

= u(t1) + h1Aξ1(t1)u(t1) − h1Aξ1(t1)V
1.

Therefore, it follows that

(I + h1Aξ1(t1))V
1 = (I + h1Aξ1(t1))u(t1) in V ∗

ξ1
.

Since I +h1Aξ1(t1) is injective, we find V
1 = u(t1) in Vξ1 . Recursively, it follows that

V n = u(tn) in Vξn for all other n ∈ {1, . . . , N }. Together with the stability estimate
from Theorem 5.1 we find for en = Un − V n = Un − u(tn) that

En
[‖en‖2H ] + 1

2

n∑
i=1

Ei
[‖ei − ei−1‖2H

] + 2
n∑

i=1

hiEi
[
ηξi |ei |2Vξi

] ≤ 4CB1 + 5C2B2
2 ,

where

B1 =
N∑
i=1

h2i Ei
[‖ f i − gi‖2H

]
, B2 =

N∑
i=1

hi
∥∥Eξi

[
f i − gi

]∥∥
H ,

C = 1

1 − 2hκ
exp

( 2κT

1 − 2κT

)
.

Applying Lemma A.4 for u′ ∈ Cγ ([0, T ]; H), it follows that

B1 ≤ h
N∑
i=1

hiEξi

[∥∥∥ fξi (ti ) − Aξi (ti )u(ti ) − 1

hi

∫ ti

ti−1

(
f (t) − A(t)u(t)

)
dt

∥∥∥2
H

]

≤ 2h
N∑
i=1

hiEξi

[∥∥ fξi (ti ) − Aξi (ti )u(ti ) − ( f (ti ) − A(ti )u(ti ))
∥∥2
H

]
+ 2h1+2γ |u′|2Cγ ([0,T ];H)T

and

B2
2 ≤ T

N∑
i=1

hi
∥∥∥Eξi

[
fξi (ti ) − Aξi (ti )u(ti ) − 1

hi

∫ ti

ti−1

(
f (t) − A(t)u(t)

)
dt

]∥∥∥2
H

≤ h2γ |u′|2Cγ ([0,T ];H)T
2.
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Altogether, we obtain

En
[‖en‖2H ] + 1

2

n∑
i=1

Ei
[‖ei − ei−1‖2H

] + 2
n∑

i=1

hiEi
[
ηξi |ei |2Vξi

]

≤ 8hC
N∑
i=1

hiEξi

[∥∥ fξi (ti ) − Aξi (ti )u(ti ) − ( f (ti ) − A(ti )u(ti ))
∥∥2
H

]
+ 4h1+2γC |u′|2Cγ ([0,T ];H)T + 5h2γC2|u′|2Cγ ([0,T ];H)T

2.

��
Remark 2 The main results can all be modified to a slightly different setting, where
the right-hand side f (t) takes values in V ∗ and where the family {ξn}n∈N of random
variables does not have to be mutually independent. In return, this setting requires
slightly stronger assumptions on the operator A(t). First, we assume additionally
that there exists a constant cV ∈ (0,∞) such that ‖ · ‖V ≤ cV

(‖ · ‖H + |·|V
)
is

fulfilled. To generalize the a priori bound from Lemma 4.2 and the stability results
from Theorem 5.1, we need to assume that μA from Assumption 2.2 (v) and ηA

from Assumption 2.2 (iii) are strictly positive, respectively. Moreover, if there exist
γ ∈ (0, 1] and C ∈ [0,∞) such that

N∑
i=1

hiEi
[∥∥ fξi (ti ) − Aξi (ti )u(ti ) − ( f (ti ) − A(ti )u(ti ))

∥∥2
V ∗

ξi

] ≤ Ch2γ

is fulfilled and u′ ∈ Cγ ([0, T ]; H), we obtain similar error bounds. We omit the
proofs, which are very similar to the ones presented above.

6 Numerical experiments

To illustrate the theoretical convergence results for the randomized scheme in practice,
we apply it to Eq. (5) as discussed in Sect. 3. This boundary, initial-value problem fits
our setting as already explained there.We also consider what happenswhenwe replace
the nonlinear diffusion term with linear diffusion, and a smoother exact solution.

In both cases, we consider the problem on the spatial domain D = [−1, 1] ×
[−1, 1] which we split into rectangular sub-domains D�, � ∈ {1, . . . , s}, with Mx

rectangles along the x-axis and My rectangles along the y-axis. We choose D� such
that they have an overlap of 0.2 on all internal sides. This means that, for example,
with Mx = My = 3, we have s = MxMy = 9 sub-domains with, e.g., D1 =
[−1,−0.267] × [−1,−0.267], D2 = [−0.467, 0.467] × [−1,−0.267] and D5 =
[−0.467, 0.467] × [−0.467, 0.467]. Note that they are not uniform in size, because
the sub-domains adjacent to the outer edge of D have no overlap on one or two sides.

We have to choose a strategy for which sub-problems to select in each time step, i.e.
specify the probabilitiesP(
ξ=B) for B ⊂ 2{1,...,s}. We consider two strategies. In the
first, we simply use P(
ξ={�}) = 1/s. Thus every sub-domain is equally probable to
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be chosen. As a minor variation, we instead select a set of k sub-domains by drawing
with replacement according to the uniform probabilities.

In the second strategy, we make use of a predictor. In addition to the stochastic
approximation, we compute a deterministic approximation Zn using the backward
Euler method, but on a coarser spatial mesh. The idea is that while this approximation
is less accurate, it should be significantly cheaper to compute and still resemble the true
solution. In the nth time step, we compute �n = |Zn−1| + |Zn| + | f̃ (tn, ·)| > 10−3.
This function is either 0 or 1 and indicates where in the domain something is actually
happening. For each sub-domain, we then check whether it is “sufficiently active” or
not by evaluating ‖�nχl‖ ≥ ρ‖�n‖ for a parameter ρ ∈ (0, 1). We select the set of
those sub-domains which pass the test with probability 1 − ρ and the set of all the
other sub-domains with probability ρ.

We note that the errors for the first strategy are noticeably larger than those of the
second strategy. In the following, we will use fewer sub-domains for the first strategy
for that reason.More precisely, we useMx = 3 andMy = 1 for first strategy andMx =
3 and My = 3 for the second strategy. Furthermore, we can observe that the second
strategy works better with more sub-domains, since it essentially adaptively groups
them into only two larger sub-domains; the active set and the inactive set. Increasing
the number of sub-domains increases the fidelity such that the choice of whether each
sub-domain is active or not becomes easier, albeit at a higher computational cost. If
the spatial discretization is using finite elements, the limit case would be when every
element is its own subdomain. This is what is considered in [36] for a deterministic
scheme, where it is, indeed, observed that the overhead costs can be prohibitive even
when using very efficient data structures.

We only report errors here, since this is the focus of the paper. A natural next step
would be to investigate also the computation times and the efficiency of the schemes
compared to deterministic schemes. Since the randomized methods need to solve
equation systems of smaller size, they are expected to outperform the deterministic
schemes. However, this depends onmany factors, such as the problem size, the number
of subdomains, the behaviour of the exact solution and the random strategy used.
Further, for such a comparison to be useful, it has to be performed with equally
optimized and parallelized code for both the randomized and deterministic cases.
Such advanced software engineering is out of the scope of this article. Nevertheless,
when applying our non-parallelized and not fully optimized code to the linear diffusion
problem using the first strategy, we observed a factor 2 speed-up that was independent
of the number of time steps.

6.1 A nonlinear example

In our first experiment, we use the problem parameters T = 1, p = 4 and α(t) ≡
1. Further, we choose the source term f̃ such that the exact solution is given by
u(t, x, y) = ũ(x − r cos(2π t), y − r sin(2π t)) with r = 1/2,
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ũ(x, y) =
[
0.03 − 103/8

4
(x2 + y2)

4
3

] 3
4

+

and [·]+ = max{·, 0}. This describes a localized pulse that starts centered at
(0.5, 0) and which then rotates around the origin at the constant distance r . The
shape of the pulse is inspired by the closed-form Barenblatt solution to ∂t u =
∇ · (|∇u(t, x)|p−2∇u), see e.g. [21]. At t = 0, this solution is a Dirac delta, which
then expands into a cone-shaped peak for t > 0. Our pulse is this solution frozen at
the time t = 0.001. We note that due to the sharp interface where the pulse meets the
x-y-plane and to the sharp peak, u is of low regularity.

We discretize the problem in space using central finite differences, such that the
approximation of the p-Laplacian is 2nd-order accurate. We use 100 computational
nodes in each spatial dimension, for a total of 10 000 degrees of freedom. Thus,
the temporal error dominates the spatial error when considering the full error in the
following. For the temporal discretization, we use the scheme (2), along with one of
the two strategies outlined above. For the first strategy, we try k = 1 and k = 2. For the
second, we evaluate the different parameters ρ = 0.01, 0.05, 0.1, 0.2. We compute
approximations for the different (constant) time steps hn = 2−5, 2−6, . . . , 2−13 and
estimate their corresponding errors at the final time by running the method with 50
random iterations and averaging. That is, we approximate

EN
[‖eN‖2H

] ≈ 1

50

50∑
j=1

‖UN
j −Uref‖2H ,

whereUN
j is the numerical approximation on the j-th path andUref is the exact solution

u(tN , ·, ·) evaluated at the spatial grid.
Figure 1 shows the resulting relative errors vs. the time steps, with the first strategy

in the upper plot and the second strategy in the lower. We observe that both strategies
result in errors that decrease as O(h1/2), in line with Theorem 5.2.

6.2 A linear example

As a second experiment, we consider a linear version of the previous problem. We
use the same parameters as in the previous section, except that we set p = 2 and
α(t) = 0.1, and that the rotating pulse is now Gaussian rather than a sharp peak. More
precisely, the exact solution is given by

u(t, x, y) = e−100(x−r cos(2π t))2−100(y−r sin(2π t))2 .

The resulting errors are shown in Fig. 2. Again, we note that the first, uniform,
strategy converges as O(h1/2), in line with Theorem 5.2. The second strategy with
ρ = 0.01 performs significantly better and the error behaves likeO(h) in the first part
of the plot. This is essentially the same behaviour as if wewould apply backward Euler
to the full problem, but themethod only updates the approximation on themost relevant
sub-domains and is therefore cheaper to evaluate. This improved convergence order is
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Fig. 1 The relative errors
(
EN

[‖UN −Uref‖2
])1/2

/ ‖Uref‖ for the nonlinear setting described in Sect. 6.1.
The upper plot uses the first randomized strategy and the lower plot uses the second strategy. We observe
that the errors decay as O(h1/2), in line with Theorem 5.2, irrespective of the choice of ρ or k. A smaller
ρ or larger k decreases the error, but of course also incurs a higher computational cost

possible due to the extra smoothness present in this linear problem. In the error bound
of Theorem 5.2, the first term becomes small due to the used strategy, and because the
solution is smooth the remaining terms are of size h3 and h2, respectively.

Increasing the parameter ρ means that we disregard more of the information from
the predictor, and as seen in Fig. 2 this causes the convergence order to decrease
towards 1/2. On the other hand, setting ρ = 0 means that we always choose all the
sub-domains and thereby domore computations than if we would simply solve the full
problem directly. The parameter ρ is therefore a design parameter, and further research
is required on how to choose it optimally for specific problem classes. Regardless of
the choice, however, we still have O(h1/2)-convergence.
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Fig. 2 The relative errors
(
EN

[‖UN −Uref‖2
])1/2

/ ‖Uref‖ for the linear setting described in Sect. 6.2. The
upper plot uses the first randomized strategy and the lower plot uses the second strategy. We observe that
the errors for the first strategy decay as O(h1/2), similarly to the nonlinear case. For the second strategy,
large ρ also leads to convergence of order 1/2, while sufficiently small ρ leads to faster convergence of
order 1
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Appendix A Auxiliary results

In this appendix, we collect a few useful inequalities and technical results that are
needed in the paper.

Lemma A.1 (Discrete Grönwall inequality) Let (un)n∈N and (bn)n∈N be two nonneg-
ative sequences that satisfy, for given a ∈ [0,∞) and n ∈ N, that un ≤ a+∑n

i=1 biui .
For bn ∈ [0, 1), it then follows that

un ≤ a

1 − bn
exp

( n−1∑
i=1

bi
1 − bn

)
.

Lemma A.2 (WeightedYoung’s inequality)For a, b ∈ [0,∞), ε ∈ (0,∞), and p, q ∈
(1,∞) such that 1

p + 1
q = 1, it follows that ab ≤ εa p + (εp)−

q
p q−1bq .

A proof can be found in [12, Appendix B.2 d].

Lemma A.3 Let Assumptions 2.1–2.5 be fulfilled. Let Q ⊆ V be a countable, dense
subset of V , Vξ and H. Let the function g : 
 × H → V ∗ be given. Further, for
v ∈ H the mapping ω → 〈g(ω, v),w〉V ∗×V is measurable for v ∈ H andw ∈ Q and
for almost every ω ∈ 
 the mapping v → 〈g(ω, v),w〉V ∗×V continuous for every
v,w ∈ Vξ(ω). For everyω ∈ 
, the function g has a unique root which lies in Vξ(ω). We
denote this root by r(ω) ∈ Vξ(ω), i.e. g(ω, r(ω)) = 0. Then the function r : 
 → H
is measurable.

A similar proof can be found in [5, Lemma 2.1.4] and [8, Lemma 4.3]. The main
difference in this version is that the function g maps from 
 × H instead of 
 × V
and therefore some small technical alterations have to be considered.

Proof of LemmaA.3 To prove that r is measurable, we show that r−1(B) ∈ F for every
open set B in H . First, we notice that

r−1(B) = {ω ∈ 
 : r(ω) ∈ B}
= {ω ∈ 
 : there exists u ∈ B such that g(ω, u) = 0}
= {ω ∈ 
 : there exists u ∈ B such that 〈g(ω, u), v〉V ∗×V = 0

for all v ∈ Q, ‖v‖V = 1}
=

⋂
v∈Q,‖v‖V =1

{ω ∈ 
 : there exists u ∈ B such that 〈g(ω, u), v〉V ∗×V = 0}

=
⋂

v∈Q,‖v‖V =1

⋃
u∈B

{ω ∈ 
 : 〈g(ω, u), v〉V ∗×V = 0}.

Since ω → 〈g(ω, v),w〉V ∗×V is measurable for v ∈ H and w ∈ Q, the set

{ω ∈ 
 : 〈g(ω, u), v〉V ∗×V = 0} = (〈g(·, u), v〉V ∗×V
)−1

(0)
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is an element of Fξ for v ∈ Q and u ∈ H . If the set B only contains a countable
amount of elements, it follows directly that r−1(B) ∈ Fξ .

In the following, it remains to address the cases where B is not countable. For
ε ∈ (0,∞) small enough and a fixed v ∈ Q, we introduce the multi-valued mapping

rv
ε : 
 → 2H , rv

ε (ω) = {u ∈ H : |〈g(ω, u), v〉V ∗×V | < ε}.

For B ⊆ H open, it follows that

(
rv
ε

)−1
(B) = {ω ∈ 
 : rv

ε (ω) ∈ B}
= {ω ∈ 
 : there exists u ∈ B such that |〈g(ω, u), v〉V ∗×V | < ε}
=

⋃
u∈B

{ω ∈ 
 : |〈g(ω, u), v〉V ∗×V | < ε}.

In the following, we will show that(
rv
ε

)−1
(B) = (

rv
ε

)−1
(B ∩ Q).

Since B ∩ Q ⊆ B, it directly follows that
(
rv
ε

)−1
(B ∩ Q) ⊆ (

rv
ε

)−1
(B). It remains to

verify that
(
rv
ε

)−1
(B) ⊆ (

rv
ε

)−1
(B ∩ Q). Let ω ∈ (

rv
ε

)−1
(B), i.e. there exists u ∈ B

such that

u ∈ rv
ε (ω) = {w ∈ H : |〈g(ω,w), v〉V ∗×V | < ε}.

Since v → 〈g(ω, v),w〉V ∗×V is continuous for every v,w ∈ Vξ(ω) and Q is dense in
H , there exists uQ ∈ B∩Q such that |〈g(ω, uQ), v〉V ∗×V | < ε. Thus, uQ ∈ rv

ε (ω) and

in particularω∈(
rv
ε

)−1
(B∩Q). This shows altogether that

(
rv
ε

)−1
(B)=(

rv
ε

)−1
(B∩Q).

We can now finish the proof as

r−1(B) =
⋂

v∈Q,‖v‖V =1

⋂
i∈N

(
rv
1
i

)−1
(B) =

⋂
v∈Q,‖v‖V =1

⋂
i∈N

(
rv
1
i

)−1
(B ∩ Q) ∈ Fξ

is fulfilled. ��
Lemma A.4 Let Assumptions 2.1–2.5 be fulfilled. Further, let fξn be an element of
C([0, T ]; V ∗

ξn
) almost surely for every n ∈ {1. . . . .N }. For u′ ∈ Cγ ([0, T ]; H), γ ∈

(0, 1], and a maximal step size h = maxi∈{1,...,N } hi , it then follows that

N∑
i=1

hiEξi

[∥∥∥ fξi (ti ) − Aξi (ti )u(ti ) − 1

hi

∫ ti

ti−1

(
f (t) − A(t)u(t)

)
dt

∥∥∥2
H

]

≤ 2
N∑
i=1

hiEξi

[∥∥ fξi (ti ) − Aξi (ti )u(ti ) − ( f (ti ) − A(ti )u(ti ))
∥∥2
H

]
+ 2h2γ |u′|2Cγ ([0,T ];H)T

123



A randomized operator splitting scheme… 459

and
N∑
i=1

hi
∥∥∥Eξi

[
fξi (ti ) − Aξi (ti )u(ti ) − 1

hi

∫ ti

ti−1

(
f (t) − A(t)u(t)

)
dt

]∥∥∥2
H

≤ h2γ |u′|2Cγ ([0,T ];H)T ,

where |u′|Cγ ([0,T ];H) is the Hölder semi-norm with values in H of the function u′.
Proof To prove the first bound, we find that

N∑
i=1

hiEξi

[∥∥∥ fξi (ti ) − Aξi (ti )u(ti ) − 1

hi

∫ ti

ti−1

(
f (t) − A(t)u(t)

)
dt

∥∥∥2
H

]

≤ 2
N∑
i=1

hiEi
[∥∥ fξi (ti ) − Aξi (ti )u(ti ) − ( f (ti ) − A(ti )u(ti ))

∥∥2
H

]

+ 2
N∑
i=1

hiEi

[∥∥∥ 1

hi

∫ ti

ti−1

(
f (ti ) − A(ti )u(ti ) − ( f (t) − A(t)u(t))

)
dt

∥∥∥2
H

]

≤ 2
N∑
i=1

hiEi
[∥∥ fξi (ti ) − Aξi (ti )u(ti ) − ( f (ti ) − A(ti )u(ti ))

∥∥2
H

]

+ 2
N∑
i=1

1

hi

∥∥∥ ∫ ti

ti−1

(u′(ti ) − u′(t)) dt
∥∥∥2
H

.

To further bound the term in the last row, we apply Hölder’s inequality and the regu-
larity condition u′ ∈ Cγ ([0, T ]; H). We then find that

2
N∑
i=1

1

hi

∥∥∥ ∫ ti

ti−1

(u′(ti ) − u′(t)) dt
∥∥∥2
H

≤ 2
N∑
i=1

∫ ti

ti−1

‖u′(ti ) − u′(t)‖2H dt

≤ 2h2γ |u′|2Cγ ([0,T ];H)T .

It remains to prove the second estimate of the lemma. Recall that Eξi

[
fξi (ti )

] =
f (ti ) and Eξi

[
Aξi (ti )u(ti )

] = A(ti )u(ti ) is fulfilled by Assumption 2.5. Using these
equalities, it follows that

N∑
i=1

hi
∥∥∥Eξi

[
fξi (ti ) − Aξi (ti )u(ti ) − 1

hi

∫ ti

ti−1

(
f (t) − A(t)u(t)

)
dt

]∥∥∥2
H

=
N∑
i=1

hi
∥∥∥ f (ti ) − A(ti )u(ti ) − 1

hi

∫ ti

ti−1

( f (t) − A(t)u(t)) dt
∥∥∥2
H

≤
N∑
i=1

∫ ti

ti−1

‖u′(ti ) − u′(t)‖2H dt ≤ h2γ |u′|2Cγ ([0,T ];H)T .

��
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