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Abstract
This paper analyzes a regularization scheme of the Monge–Ampère equation by
uniformly elliptic Hamilton–Jacobi–Bellman equations. The main tools are stability
estimates in the L∞ norm from the theory of viscosity solutions which are inde-
pendent of the regularization parameter ε. They allow for the uniform convergence
of the solution uε to the regularized problem towards the Alexandrov solution u to
the Monge–Ampère equation for any nonnegative Ln right-hand side and continuous
Dirichlet data. The main application are guaranteed a posteriori error bounds in the
L∞ norm for continuously differentiable finite element approximations of u or uε.

Mathematics Subject Classification 35J96 · 65N12 · 65N30 · 65Y20

1 Introduction

1.1 Overview

Let Ω ⊂ R
n , n ≥ 2, be a bounded and convex domain. Given a nonnegative function

0 ≤ f ∈ Ln(Ω) and continuous Dirichlet data g ∈ C(∂Ω), the Monge–Ampère
equation seeks the unique (convex) Alexandrov solution u ∈ C(Ω) to
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det D2u = ( f /n)n in Ω and u = g on ∂Ω. (1)

If the Dirichlet data g �= 0 is non-homogenous, then we additionally assume that Ω

is strictly convex. The re-scaling f̃ := ( f /n)n of the right-hand side is not essential,
but turns out convenient for purposes of notation. By the Alexandrov solution u to (1)
we mean a convex function u ∈ C(Ω) with u = g on ∂Ω and

Ln(∂v(ω)) =
∫

ω

f̃ dx for any Borel subset ω ⊂ Ω.

The left-hand side denotes the Monge–Ampère measure of ω, i.e., the n-dimensional
Lebesgue measure of all vectors in the subdifferential ∂v(ω) := ∪x∈ω∂v(x) where
∂v(x) is the usual subdifferential of v in a point x . We remark that this solution
concept admits more general right-hand sides (Borel measures), which are, however,
disregarded in this work. For further details, we refer to the monographs [14, 17]. It is
known [1] that the Alexandrov solution to (1) exists and is unique. In addition, it was
shown [4] that if f ∈ C0,α(Ω), 0 < λ ≤ f ≤ Λ, and g ∈ C1,β(∂Ω) with positive
constants 0 < α, β < 1 and 0 < λ ≤ Λ, then u ∈ C(Ω) ∩ C2,α

loc (Ω).
It is known [12, 19] that (1) can be equivalently formulated as a Hamilton–Jacobi–

Bellman (HJB) equation, a property that turned out useful for the numerical solution
of (1) [12, 15]; one of the reasons being that the latter is elliptic on the whole space of
symmetricmatricesS ⊂ R

n×n and, therefore, the convexity constraint is automatically
enforced by the HJB formulation. For nonnegative continuous right-hand sides 0 ≤
f ∈ C(Ω), the Monge–Ampère equation (1) is equivalent to

F0( f ; x,D2u) = 0 in Ω and u = g on ∂Ω

with F0( f ; x, M) := supA∈S(0)(−A : M + f n
√
det A) for any x ∈ Ω and M ∈ R

n×n .
Here, S(0) := {A ∈ S : A ≥ 0 and tr A = 1} denotes the set of positive semidefinite
symmetric matrices A with unit trace tr A = 1. Since F0 is only degenerate elliptic,
the regularization scheme proposed in [15] replaces S(0) by a compact subset S(ε) :=
{A ∈ S(0) : A ≥ εIn×n} ⊂ S(0) of matrices with eigenvalues bounded from below
by the regularization parameter 0 < ε ≤ 1/n. (We note that ε > 1/n would lead to an
empty set S(ε) because of the unit trace condition.) The solution uε to the regularized
PDE solves

Fε( f ; x,D2uε) = 0 in Ω and uε = g on ∂Ω (2)

where, for any x ∈ Ω and M ∈ R
n×n , the function Fε is defined as

Fε( f ; x, M) := supA∈S(ε)(−A : M + f
n
√
det A). (3)

In two space dimensions n = 2, uniformly elliptic HJB equations satisfy the Cordes
condition [20] and this allows for a variational setting for (2) with a unique strong
solution uε ∈ H2(Ω) in the sense that Fε( f ; x,D2uε) = 0 holds a.e. in Ω [25,
26]. The paper [15] establishes uniform convergence of uε towards the generalized
solution u to the Monge–Ampère equation (1) as ε ↘ 0 under the assumption g ∈
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H2(Ω) ∩ C1,α(Ω) and that 0 ≤ f ∈ L2(Ω) can be approximated from below by a
pointwise monotone sequence of positive continuous functions.

1.2 Contributions of this paper

The variational setting of (2) in two space dimensions leads to H2 stability estimates
that deteriorate with ε−1 → ∞ as the regularization parameter ε → 0 vanishes. This
can be explained by the regularity of Alexandrov solutions to the Monge–Ampère
equation (1) as they are, in general, not in H2(Ω) without additional assumptions on
the domain Ω and the data f , g. Consequently, error estimates in the H2 norm may
not be of interest, and the focus is on error estimates in the L∞ norm.

The analysis departs from the following L∞ stability estimate that arises from
the Alexandrov maximum principle. If v1, v2 ∈ C(Ω) are viscosity solutions to
Fε( f j ; x,D2v j ) = 0 in Ω with 0 ≤ ε ≤ 1/n and f1, f2 ∈ C(Ω), then

‖v1 − v2‖L∞(Ω) ≤ ‖v1 − v2‖L∞(∂Ω) + C(n, diam(Ω))‖ f1 − f2‖Ln(Ω). (4)

(For ε = 0, we additionally assume f1, f2 ≥ 0.) The constant C(n, diam(Ω)) exclu-
sively depends on the dimension n and the diameter diam(Ω) of Ω , but not on the
ellipticity constant of (2) or on the regularization parameter ε. Consequently, this
allows for control of the L∞ error even as ε → 0. By density of C(Ω) in Ln(Ω),
the L∞ stability estimate (4) leads to a generalized viscosity solution concept with
Ln right-hand sides, which coincides with Ln viscosity solutions from [3, 18]. Fur-
thermore, (4) also holds for these solutions as well with two applications highlighted
below. First, this paper establishes, in extension to [15], uniform convergence of (gen-
eralized) viscosity solutions uε of the regularized PDE (2) to the Alexandrov solution
u ∈ C(Ω)of theMonge–Ampère equation (2) under the (essentially)minimal assump-
tions 0 ≤ f ∈ Ln(Ω) and g ∈ C(∂Ω) on the data. Second, (4) provides guaranteed
error control in the L∞ norm (even for inexact solve) for H2 conforming FEM. The
observation that continuous dependence on the data can lead to a posteriori error
bounds was used in other contexts as well, see, e.g., [8, 13].

1.3 Outline

The principal tool we use for establishing our results is the celebrated Alexandrov
maximum principle. It provides an upper bound for the L∞ norm of any convex
function in dependence of its Monge–Ampère measure.

Lemma 1 (Alexandrov maximum principle) There exists a constant cn solely depend-
ing on the dimension n such that any convex function v ∈ C(Ω) with homogenous
boundary data v|∂Ω = 0 over an open bounded convex domain Ω satisfies

|v(x)|n ≤ cnndist(x, ∂Ω)diam(Ω)n−1Ln(∂v(Ω)) for any x ∈ Ω. (5)

Proof This is [14, Theorem 2.8] and the constant cn := (2(2π)n/2−1/((n − 1)!!n)

arises therein from the n-dimensional volume formula for a cone C ⊂ ∂v(Ω). If
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n = 2, then c2 = 1. We note that, under additional assumptions, the scaling with
respect to dist(x, ∂Ω) in (5) can be improved at the cost of control over the involved
constants, cf. [5] for n ≥ 3 and [16] for n = 2. ��
The remaining parts of this paper are organized as follows. Section 2 establishes L∞
stability estimates for viscosity solutions to the HJB equation (2) for all parameters
0 ≤ ε ≤ 1/n in any space dimension. Section 3 provides a proof of convergence of
the regularization scheme. A posteriori error estimates for the discretization error in
the L∞ norm for H2-conforming FEM are presented in Sect. 4. The three numerical
experiments in Sect. 5 conclude this paper.

Standard notation for function spaces applies throughout this paper. Let Ck(Ω) for
k ∈ N denote the space of scalar-valued k-times continuously differentiable functions.
Given a positive parameter 0 < α ≤ 1, the Hölder space Ck,α(Ω) is the subspace of
Ck(Ω) such that all partial derivates of order k are Hölder continuous with exponent α.
For any set ω ⊂ R

n , χω denotes the indicator function associated with ω. For A, B ∈
R
n×n , the Euclidean scalar product A : B := ∑n

j,k=1 A jk B jk induces the Frobenius

norm |A| := √
A : A in R

n×n . The notation | · | also denotes the absolute value of a
scalar or the length of a vector. The relation A ≤ B of symmetric matrices A, B ∈ S

holdswhenever B−A is positive semidefinite. The notation a � b abbreviates a ≤ Cb
for a generic constant C independent of the mesh-size as well as the regularization
parameter ε and a ≈ b abbreviates a � b � a.

2 Stability estimate

We first recall the concept of viscosity solutions to the HJB equation (2).

Definition 1 (Viscosity solution) Given f ∈ C(Ω) and 0 ≤ ε ≤ 1/n, a function
v ∈ C(Ω) is a viscosity subsolution (resp. supersolution) to Fε( f ; x,D2v) = 0 if, for
all x0 ∈ Ω and ϕ ∈ C2(Ω) such that v − ϕ has a local maximum (resp. minimum)
at x0, Fε( f ; x0,D2ϕ(x0)) ≤ 0 (resp. Fε( f ; x0,D2ϕ(x0)) ≥ 0). If v is viscosity sub-
and supersolution, then v is called viscosity solution to Fε( f ; x,D2v) = 0.

The following result provides the first tool in the analysis of this section.

Lemma 2 (Classical comparison principle) Given 0 ≤ ε ≤ 1/n and a continuous
right-hand side f ∈ C(Ω), where we assume f ≥ 0 if ε = 0, let v∗ ∈ C(Ω) resp.
v∗ ∈ C(Ω) be a super- resp. subsolution to the PDE

Fε( f ; x,D2v) = 0 in Ω. (6)

If v∗ ≤ v∗ on ∂Ω , then v∗ ≤ v∗ in Ω .

Proof The proof applies the arguments from [9, Section 3] to the PDE (6) and can fol-
low [12, Lemma 3.6] with straightforward modifications; further details are therefore
omitted. ��
An extended version of Lemma 2 is the following.
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Lemma 3 (Comparison principle)Given any 0 ≤ ε∗ ≤ ε∗ ≤ 1/n and f∗, f ∗ ∈ C(Ω)

with f∗ ≤ f ∗ inΩ , where we assume f∗ ≥ 0 if ε∗ = 0, let v∗, v∗ ∈ C(Ω) be viscosity
solutions to

Fε∗( f∗; x,D2v∗) = 0 in Ω and Fε∗( f
∗; x,D2v∗) = 0 in Ω.

If v∗ ≤ v∗ on ∂Ω , then v∗ ≤ v∗ in Ω .

Proof Given any test function ϕ ∈ C2(Ω) and x ∈ Ω such that v∗ − ϕ has a local
minimum at x , then Fε∗( f∗; x,D2v∗) = 0 in the sense of viscosity solutions implies
0 ≤ Fε∗( f∗; x,D2ϕ(x)). This, f∗ ≤ f ∗ in Ω , and S(ε∗) ⊂ S(ε∗) show

0 ≤ Fε∗( f∗; x,D2ϕ(x)) ≤ Fε∗( f
∗; x,D2ϕ(x)),

whence v∗ is viscosity supersolution to the PDE Fε∗( f
∗; x,D2v∗) = 0. Therefore,

the comparison principle from Lemma 2 with v∗ ≤ v∗ on ∂Ω concludes v∗ ≤ v∗ in
Ω . ��
The comparison principle from Lemma 2 allows for the existence and uniqueness
of viscosity solutions (2) by Perron’s method. In the next proposition we summarize
some results from the literature [6, 12, 17, 19, 24] applied to our context.

Proposition 1 (Properties of HJB equation) Given any 0 ≤ ε ≤ 1/n, f ∈ C(Ω) ∩
Ln(Ω), where we assume f ≥ 0 if ε = 0, and g ∈ C(∂Ω), there exists a unique
viscosity solution u ∈ C(Ω) to the HJB equation (2). It satisfies (a)–(b):

(a) (viscosity = Alexandrov) If ε = 0 and f ≥ 0 is nonnegative, then the viscosity
solution to theHJB equation (2) and theAlexandrov solution to theMonge–Ampère
equation (1) coincide.

(b) (interior regularity for HJB) If ε > 0 and f ∈ C0,α(Ω) with 0 < α < 1, then
u ∈ C(Ω) ∩ C2,κ

loc (Ω) with a constant 0 < κ < 1 that solely depends on α and ε.
(c) (interior regularity for Monge–Ampère) If ε = 0, f ∈ C0,α(Ω) with 0 < α < 1,

f > 0 in Ω , and g ∈ C1,β(∂Ω) with β > 1 − 2/n, then u ∈ C(Ω) ∩ C2,α
loc (Ω).

Proof On the one hand, an elementary reasoning as in the proof of Lemma 3 proves
that the viscosity solution v∗ to the Poisson equation Fε∗( f∗; x,D2v∗) = 0 with
ε∗ := 1/n, f∗ := f , and Dirichlet data v∗ = g on ∂Ω is a viscosity supersolution to
(2). On the other hand, the Alexandrov solution v∗ to the Monge–Ampère equation
(1) with the right-hand side | f | [14, Theorem 2.14] is the viscosity solution to the
HJB equation Fε∗( f

∗; x,D2v∗) = 0 with ε∗ := 0, f ∗ := | f |, and Dirichlet data
v∗ = g on ∂Ω [17, Proposition 1.3.4]. Hence, the function v∗ is viscosity subsolution
to (2). Therefore, Perron’s method [9, Theorem 4.1] and the comparison principle
fromLemma 2 conclude the existence and uniqueness of viscosity solutions to (2). The
combinationof [12,Theorem3.3 andTheorem3.5]with [17, Proposition1.3.4] implies
the assertion in (a). The interior regularity in (b) is a classical result from [6, 24]. For the
Monge–Ampère equation, the interior regularity in (c) holds under the assumption that
the Alexandrov solution u is strictly convex [14, Corollary 4.43]. Sufficient conditions
for this are that f > 0 is bounded away from zero and g ∈ C1,β(∂Ω) is sufficiently
smooth [14, Corollary 4.11]. ��
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112 D. Gallistl, N. T. Tran

Some comments are in order, before we state a precise version of the L∞ stabil-
ity estimate (4) from the introduction. In general, these estimates arise from the
Alexandrov–Bakelman–Pucci maximum principle for the uniform elliptic Pucci oper-
ator, cf. [3] and the references therein for further details. However, the constant therein
may depend on the ellipticity constant of Fε and therefore, on ε. In the case of the
HJB equation (2) that approximates the Monge–Ampère equation (1) as ε → 0, the
Alexandrov maximum principle is the key argument to avoid a dependency on ε.
Recall the constant cn from Lemma 1.

Theorem 1 (L∞ stability) Given a nonnegative parameter 0 ≤ ε ≤ 1/n and right-
hand sides f1, f2 ∈ C(Ω), where we assume f1, f2 ≥ 0 if ε = 0, let v1, v2 ∈ C(Ω)

be viscosity solutions to the HJB equation Fε( f j ; x,D2v j ) = 0 in Ω for j ∈ {1, 2}.
Then, for any subset ω ⊂ Ω ,

‖v1 − v2‖L∞(ω) ≤ ‖v1 − v2‖L∞(∂Ω) + C

n
max
x∈ω

dist(x, ∂Ω)1/n‖ f1 − f2‖Ln(Ω) (7)

with the constant C := cndiam(Ω)(n−1)/n. In particular,

‖v1 − v2‖L∞(Ω) ≤ ‖v1 − v2‖L∞(∂Ω) + C

n
(diam(Ω)/2)1/n‖ f1 − f2‖Ln(Ω). (8)

Proof The proof is divided into two steps.

Step 1: The first step establishes (7) under the assumptions f2 ≤ f1 in Ω and v1 ≤ v2
on ∂Ω . For fΔ := f1 − f2 ≥ 0, let the sequence ( fΔ,k)k∈N of smooth functions
fΔ,k ∈ C∞(Ω) approximate fΔ ∈ C(Ω) from above such that fΔ ≤ fΔ,k and
0 < fΔ,k in Ω for all k ∈ N and limk→∞ ‖ fΔ − fΔ,k‖L∞(Ω) = 0. Let wk ∈ C(Ω)

be viscosity solutions to the PDE, for all k ∈ N,

Fε( fΔ,k; x,D2wk) = 0 in Ω and wk = 0 on ∂Ω. (9)

Since v1 ≤ v2 on ∂Ω and f2 ≤ f1 by assumption of Step 1, Lemma 3 proves

v1 ≤ v2 in Ω. (10)

Proposition 1(b)–(c) provides the interior regularity wk ∈ C2,α
loc (Ω) for some pos-

itive parameter α that (possibly) depends on ε. In particular, wk ∈ C2(Ω) is a
classical solution to the PDE (9). We define the continuous function v∗ := v2 −
‖v1 − v2‖L∞(∂Ω) + wk ∈ C(Ω). Given any x ∈ Ω and ϕ ∈ C2(Ω) such that
v∗ − ϕ = v2 − (‖v1 − v2‖L∞(∂Ω) − wk + ϕ) has a local maximum at x , the function
ψ := ‖v1 − v2‖L∞(∂Ω) − wk + ϕ ∈ C2(Ω) is smooth and, therefore, an admissible
test function in the definition of viscosity solutions. Since v2 is viscosity solution to
Fε( f2; x,D2v2) = 0, Fε( f2; x,D2ψ(x)) ≤ 0 follows. This, D2ψ = D2(ϕ − wk),
the sub-additivity sup(X + Y ) ≤ sup X + sup Y of the supremum, fΔ ≤ fΔ,k , and
Fε( fΔ,k; x,D2wk(x)) = 0 from (9) lead to

Fε( f1; x,D2ϕ(x)) ≤ Fε( f2; x,D2ψ(x)) + Fε( fΔ; x,D2wk(x))
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≤ Fε( f2; x,D2ψ(x)) + Fε( fΔ,k; x,D2wk(x)) ≤ 0,

whence v∗ is viscosity subsolution to the PDE Fε( f1; x,D2v) = 0 in Ω . Therefore,
v∗ ≤ v1 on ∂Ω by design and the comparison principle from Lemma 2 provide

v∗ ≤ v1 in Ω. (11)

On the one hand, the zero function with Fε( fΔ,k; x, 0) ≥ 0 is a viscosity superso-
lution to Fε( fΔ,k; x,D2wk) = 0. Hence, the comparison principle from Lemma 2
shows wk ≤ 0 in Ω . On the other hand, Proposition 1(a) proves that the Alexan-
drov solution zk ∈ C(Ω) to det D2zk = ( fΔ,k/n)n with homogenous boundary is
viscosity solution to F0( fΔ,k; x,D2zk) = 0 and Lemma 3 reveals zk ≤ wk , whence
zk ≤ wk ≤ 0 inΩ . Consequently, the Alexandrov maximum principle from Lemma 1
and Ln(∂zk(Ω))1/n = ‖( fΔ,k/n)n‖1/n

L1(Ω)
= ‖ fΔ,k‖Ln(Ω)/n imply

0 ≤ −wk ≤ −zk ≤ C

n
max
x∈ω

dist(x, ∂Ω)1/n‖ fΔ,k‖Ln(Ω) in ω (12)

for any subsetω ⊂ Ω . The combinationof (10)–(12)withv∗ = v2−‖v1−v2‖L∞(∂Ω)+
wk results in

‖v1 − v2‖L∞(ω) ≤ ‖v2 − v∗‖L∞(ω) = ‖v1 − v2‖L∞(∂Ω) + ‖wk‖L∞(ω)

≤ ‖v1 − v2‖L∞(∂Ω) + C

n
max
x∈ω

dist(x, ∂Ω)1/n‖ fΔ,k‖Ln(Ω).

A passage of the right-hand side to the limit as k → ∞ and limk→∞ ‖ fΔ,k‖Ln(Ω) =
‖ fΔ‖Ln(Ω) conclude (7).

Step 2: The second step establishes (7) without the additional assumptions from Step
1. For the functions f∗ := min{ f1, f2}, f ∗ := max{ f1, f2}, and fΔ := f ∗ − f∗ =
| f1 − f2| ≥ 0, let v∗, v∗ ∈ C(Ω) be viscosity solutions to the PDE

Fε( f∗; x,D2v∗) = 0 in Ω and v∗ = max{v1, v2} on ∂Ω, (13)

Fε( f
∗; x,D2v∗) = 0 in Ω and v∗ = min{v1, v2} on ∂Ω, (14)

Since f∗ ≤ f j ≤ f ∗ and v∗ ≤ v j ≤ v∗ on ∂Ω for j ∈ {1, 2}, Lemma 3 verifies
v∗ ≤ {v1, v2} ≤ v∗ in Ω , whence

‖v1 − v2‖L∞(ω) ≤ ‖v∗ − v∗‖L∞(ω) for any open subset ω ⊂ Ω. (15)

The application of Step 1 to the viscosity solutions v∗, v∗ of (13)–(14) with f∗ ≤ f ∗
and v∗ ≤ v∗ on ∂Ω , and the identity max{a, b} − min{a, b} = |a − b| reveal

‖v∗ − v∗‖L∞(ω) ≤ ‖v1 − v2‖L∞(∂Ω) + C

n
max
x∈ω

dist(x, ∂Ω)1/n‖ f1 − f2‖Ln(Ω).
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The combination of this with (15) concludes (7). ��
The stability estimate from Theorem 1 motivates a solution concept for the HJB

equation (2) with Ln (rather than continuous) right-hand sides.

Lemma 4 (Generalized viscosity solution) Given f ∈ Ln(Ω), g ∈ C(∂Ω) and 0 ≤
ε ≤ 1/n, where we assume f ≥ 0 if ε = 0, there exists a unique function u ∈ C(Ω)

such that u is the uniform limit of any sequence (u j ) j∈N of viscosity solutions u j ∈
C(Ω) to

Fε( f j ; x,D2u j ) = 0 in Ω and u j = g j on ∂Ω (16)

for right-hand sides f j ∈ C(Ω) and Dirichlet data g j ∈ C(Ω) with lim j→∞ ‖ f −
f j‖Ln(Ω) = 0 and lim j→∞ ‖g−g j‖L∞(∂Ω) = 0. The function u is called generalized
viscosity solution to (2). If ε = 0 and f ≥ 0, then the generalized viscosity solution
to (2) and the Alexandrov solution to (1) coincide.

Proof Let ( f j ) j∈N ⊂ C(Ω) (resp. (g j ) j∈N ⊂ C(Ω)) approximate f in Ln(Ω) (resp. g
inC(∂Ω)). For any index j, k ∈ N, the stability estimate (8) from Theorem 1 provides

‖u j − uk‖L∞(Ω) ≤ ‖g j − gk‖L∞(∂Ω) + C

n
(diam(Ω)/2)1/n‖ f j − fk‖Ln(Ω).

Since ( f j ) j∈N (resp. (g j ) j∈N) is a Cauchy sequence in Ln(Ω) (resp. C(∂Ω)), this
implies that (u j ) j∈N is a Cauchy sequence in the Banach space C(Ω) endowed with
the L∞ norm. Therefore, there exists u ∈ C(Ω) with lim j→∞ ‖u− u j‖L∞(Ω) = 0. It
remains to prove that u is independent of the choice of the approximation sequences
for f and g. To this end, let ( f̃ j ) j∈N be another sequence of continuous functions
f̃ j ∈ C(Ω)with lim j→∞ ‖ f − f̃ j‖Ln(Ω) = 0. Then the sequence (̃u j ) j∈N of viscosity
solutions ũ j ∈ C(Ω) to (16) with f j replaced by f̃ j converges uniformly to some
ũ ∈ C(Ω). The stability estimate (8) from Theorem 1 shows

‖u j − ũ j‖L∞(Ω) ≤ C

n
(diam(Ω)/2)1/n‖ f j − f̃ j‖Ln(Ω)

for any j ∈ N. The right-hand side of this vanishes in the limit and the left-hand
side converges to ‖u − ũ‖L∞(Ω) as j → ∞, whence u = ũ in Ω . If f ≥ 0, then
there exists a sequence ( f j ) j∈N of nonnegative continuous functions 0 ≤ f j ∈ C(Ω)

with lim j→∞ ‖ f − f j‖L∞(Ω) (e.g., from convolution with a nonnegative mollifier).
Proposition 1(a) provides, for all j ∈ N, that the viscosity solution u j to (16) with
ε = 0 is theAlexandrov solution to det D2u j = f j inΩ . Since u j converges uniformly
to the generalized viscosity solution u to (2), the stability of Alexandrov solutions [14,
Corollary 2.12 and Proposition 2.16] concludes that u is the Alexandrov solution to
(1). ��

We note that, for the HJB equation (2) with ε > 0, the generalized viscosity
solutions coincide with the Ln viscosity solutions from the literature [3, 18]. While
our approach is limited to a smaller class of operators, it requires less technical effort.
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By approximation of the right-hand sides, the stability estimates from Theorem 1 also
applies to generalized viscosity solutions to the HJB equation (2).

Corollary 1 (Extended L∞ stability) Given any 0 ≤ ε ≤ 1/n, f j ∈ Ln(Ω), where
we assume f j ≥ 0 if ε = 0, the generalized viscosity solutions v j ∈ C(Ω) to
Fε( f j ; x,D2v j ) = 0 in Ω for j ∈ {1, 2} satisfy (7)–(8).
Proof For any index j ∈ {1, 2}, there exists a sequence ( f j,k) j∈N of smooth functions
f j,k ∈ C∞(Ω) that approximates f j in Ln(Ω), i.e., limk→∞ ‖ f j − f j,k‖Ln(Ω) = 0.
Given any j ∈ {1, 2} and k ∈ N, let v j,k ∈ C(Ω) denote the viscosity solution to the
HJB equation Fε( f j,k; x,D2v j,k) = 0 in Ω and v j,k = v j on ∂Ω . The L∞ stability
estimate (7) from Theorem 1 shows, for any k ∈ N, that

‖v1,k − v2,k‖L∞(ω) ≤ ‖v1 − v2‖L∞(∂Ω) + C

n
max
x∈ω

dist(x, ∂Ω)1/n‖ f1,k − f2,k‖Ln(Ω).

The left-hand side of this converges to ‖v1−v2‖L∞(Ω) by the definition of generalized
viscosity solutions in Lemma 4. Hence, limk→∞ ‖ f1,k− f2,k‖Ln(Ω) = ‖ f1− f2‖Ln(Ω)

concludes the proof. ��
Remark 1 (L∞ stability for Alexandrov solutions) If the right-hand sides 0 ≤ f1, f2 ∈
Ln(Ω) are nonnegative, then the generalized solutions v1, v2 from Corollary 1 are
Alexandrov solutions to det D2v j = ( f j/n)n , cf. Lemma 4. Therefore, Corollary 1
provides L∞ stability estimates for Alexandrov solutions.

The convexity and uniform ellipticity of the differential operator Fε in S lead to
existence (and uniqueness) of strong solutions uε ∈ C(Ω) ∩ W 2,n

loc (Ω) to (2) for
any ε > 0, f ∈ Ln(Ω), and g ∈ C(∂Ω) [3]. It turns out that strong solutions are
generalized viscosity solutions. For the purpose of this paper, we only provide aweaker
result.

Theorem 2 (Strong solution implies generalized viscosity solution) Let 0 < ε ≤ 1/n,
f ∈ Ln(Ω), and g ∈ C(∂Ω) be given. Suppose that uε ∈ W 2,n(Ω) is a strong
solution to (2) in the sense that (2) is satisfied a.e. in Ω . Then this strong solution uε

is the unique generalized viscosity solution to (2).

The proof of Theorem 2 utilizes the following elementary result.

Lemma 5 (Computation and stability of right-hand side) Let ε > 0 be given. For
any M ∈ S, there exists a unique ξ(M) ∈ R such that maxA∈S(ε)(−A : M +
ξ(M)

n
√
det A) = 0. Furthermore, any M, N ∈ S satisfy the stability |ξ(M)−ξ(N )| ≤

C(ε)|M − N | with a constant C(ε) depending on the regularization parameter ε.

Proof Given a symmetric matrix M ∈ S, define the continuous real-valued function

ΨM (ξ) := max
A∈S(ε)

(−A : M + ξ
n
√
det A). (17)
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Since ΨM is strictly monotonically increasing with the limits limξ→−∞ ΨM = −∞
and limξ→∞ ΨM = +∞, there exists a unique root ξ(M) such that ΨM (ξ(M)) = 0.
For any M, N ∈ S, the inequality max X − max Y ≤ max(X − Y ) shows

0 = ΨM (ξ(M)) − ΨN (ξ(N )) ≤ ΨM−N (ξ(M) − ξ(N )). (18)

Let A ∈ S(ε) be chosen such thatΨM−N (ξ(M)−ξ(N )) = −A : (M−N )+ (ξ(M)−
ξ(N ))

n
√
det A. Then it follows from (18) that

ξ(N ) − ξ(M) ≤ A : (N − M)/
n
√
det A ≤ |A||M − N |/ n

√
det A. (19)

Exchanging the roles ofM and N in (19) leads to ξ(M)−ξ(N ) ≤ |B||M−N |/ n
√
det B

for some B ∈ S(ε). Since |A|/ n
√
det A ≤ 1/(

√
εn−1(1 − (n − 1)ε)) holds for any

A ∈ S(ε), the combination of this with (19) concludes |ξ(N ) − ξ(M)| ≤ |M −
N |/ n

√
εn−1(1 − (n − 1)ε). ��

Proof of Theorem 2 Let v j ∈ C2(Ω) be a sequence of smooth functions that approx-
imate uε with lim j→∞ ‖uε − v j‖W 2,n(Ω) = 0. Lemma 5 proves that there exists a
(unique) function f j := ξ(D2v j ) with Fε( f j ; x,D2v j ) = 0 in Ω . We apply the sta-
bility from Lemma 5 twice. First, | f j (x) − f j (y)| ≤ C(ε)|D2v j (x) − D2v j (y)|
for any x, y ∈ Ω implies continuity f j ∈ C(Ω) of f j and second, | f (x) −
f j (x)| ≤ C(ε)|D2uε(x) − D2v j (x)| for a.e. x ∈ Ω implies the convergence
lim j→∞ ‖ f − f j‖Ln(Ω) = 0. Notice from the Sobolev embedding that v j converges
uniformly to uε in Ω as j → ∞. In conclusion, uε is the uniform limit of classical
(and in particular, viscosity) solutions v j such that the corresponding right-hand sides
and Dirichlet data converge in the correct norm, i.e., lim j→∞ ‖ f − f j‖Ln(Ω) = 0 and
lim j→∞ ‖g − v j‖L∞(∂Ω) = 0. Lemma 4 proves that uε is the unique (generalized)
viscosity solution. ��

3 Convergence of the regularization

This section establishes the uniform convergence of the generalized viscosity solution
uε of the regularized HJB equation (2) to the Alexandrov solution u of the Monge–
Ampère equation (1) for any nonnegative right-hand side 0 ≤ f ∈ Ln(Ω). The proof
is carried out in any space dimension n and does not rely on the concept of strong
solutions in two space dimensions from [25, 26]. It departs from a main result of [15].

Theorem 3 (Convergence of regularization for smooth data) Let f ∈ C0,α(Ω), 0 <

λ ≤ f ≤ Λ, and g ∈ C1,β(∂Ω)with positive constants 0 < α < 1, 1−2/n < β < 1,
and 0 < λ ≤ Λ be given. Let u ∈ C(Ω) ∩ C2,α

loc (Ω) be the unique classical solution
to (1) from Proposition 1(c).

(a) For any sequence 0 < (ε j ) j∈N ≤ 1/n with lim j→∞ ε j = 0, the sequence
(uε j ) j∈N of classical solutions uε j ∈ C(Ω) ∩ C2(Ω) to (2) with ε := ε j from
Proposition 1(b) converges uniformly to u in Ω as j → ∞.
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(b) If g ≡ 0, f ∈ C2,α(Ω), and f > 0 in Ω , then, for some constant C and all
0 < ε ≤ 1/n, the generalized viscosity solution uε to (2) satisfies

‖u − uε‖L∞(Ω) � ε1/(n
2(2n+3)).

Proof The proof of Theorem 3 can follow the lines of the proof of [15, Theorem
4.1], where Lemma 6 below replaces its counterpart [15, Lemma 4.2] in two space
dimensions. We note that the assumption g ∈ H2(Ω) in [15, Theorem 4.1] is only
required for the existence of strong solutions uε ∈ H2(Ω) and can be dropped. Further
details of the proof are omitted. ��
Lemma 6 (Effect of regularization) Given 0 < ε ≤ 1/n, M ∈ S, and ξ > 0, suppose
that |M |nn ≤ ξn(1/ε − (n − 1))/nn and maxA∈S(0)(−A : M + ξ

√
det A) = 0, then

maxA∈S(ε)(−A : M + ξ
√
det A) = 0.

Proof The assumption maxA∈S(0)(−A : M + ξ
√
det A) = 0 implies that M > 0 is

positive definite and det M = (ξ/n)n [19, p. 51]. Let �1, . . . , �n denote the positive
eigenvalues of M and t j := �−1

j /(
∑n

k=1 �−1
k ) for j = 1, . . . , n. By design of t j ,

�−1
j = t j

(
�−1
1 . . . �−1

n

t1 . . . tn

)1/n

,

whence � j = ξ(t1 . . . tn)1/n/(nt j ). Without loss of generality, suppose that t1 ≤ t2 ≤
· · · ≤ tn . The elementary bound t1 . . . tn ≥ tn−1

1 (1 − (n − 1)t1) proves

ξn(1 − (n − 1)t1)/t1 ≤ ξn(t1 . . . tn)/(nt1)
n = nn�n

1 ≤ nn|M |nn .

Hence, 1/t1 ≤ nn|M |nn/ξn+(n−1) ≤ 1/ε by assumption and so, t1 ≥ ε. In particular,
ε ≤ t1 ≤ · · · ≤ tn and t1 +· · ·+ tn = 1. Notice that t := (t1, . . . , tn) ∈ R

n maximizes
the scalar-valued function g : Rn → R with

ψ(s) := −s1�1 − · · · − sn�n + ξ n
√
s1 . . . sn

among s ∈ S(0) with S(ε) := {s = (s1, . . . , sn) : s ≥ ε and s1 + · · · + sn = 1}.
Sinceψ(t) = maxs∈S(0) ψ(s) = maxA∈S(0)(−A : M+ξ

√
det A) [19, pp. 51–52] and

t ∈ S(ε), this implies that 0 = ψ(t) = maxA∈S(ε)(−A : M + ξ
√
det A). ��

The approximation of nonsmooth data leads to the following convergence result
under (almost) minimal assumptions (general Borel measures as right-hand sides are
excluded).

Theorem 4 (Convergence of regularization) Let a sequence (ε j ) j∈N ⊂ (0, 1/n] with
lim j→∞ ε j = 0, a nonnegative right-hand side 0 ≤ f ∈ Ln(Ω), and Dirichlet data
g ∈ C(∂Ω) be given. Then the sequence (u j ) j∈N of generalized viscosity solutions
u j ∈ C(Ω) to

Fε j ( f ; x,D2u j ) = 0 in Ω and u j = g on ∂Ω
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converges uniformly lim j→∞ ‖u − u j‖L∞(Ω) = 0 to the Alexandrov solution u to the
Monge–Ampère equation (1).

Proof Recall the constant cn from Lemma 1 and C := cndiam(Ω)(n−1)/n . Given
δ > 0, there exist smooth functions fδ, gδ ∈ C∞(Ω) such that

(i) fδ > 0 in Ω and ‖ f − fδ‖Ln(Ω) ≤ nδ/(8C(diam(Ω)/2)1/n) (the approximation
fδ can be constructed by the convolution of f with a nonnegative mollifier plus
an additional small constant),

(ii) ‖g − gδ‖L∞(∂Ω) ≤ δ/4.

Notice that the bound fδ > 0 in Ω and the smoothness of the Dirichlet data
gδ ∈ C∞(∂Ω) allow for strict convexity of the Alexandrov solution uδ to the Monge–
Ampère equation det D2uδ = ( fδ/n)n with Dirichlet data uδ = gδ on ∂Ω [14,
Corollary 4.11]. This is a crucial assumption in Theorem 3, which leads to the uniform
convergence of the sequence (uδ, j ) j∈N of viscosity solutions uδ, j ∈ C(Ω) to the HJB
equation

Fε j ( fδ; x,D2uδ, j ) = 0 a.e. in Ω and uδ, j = gδ on ∂Ω

towards uδ as j → ∞. Therefore, there exists a j0 ∈ N such that ‖uδ −uδ, j‖L∞(Ω) ≤
δ/4 for all j ≥ j0. The stability estimate (8) from Corollary 1 and (i)–(ii) provide

‖u − uδ‖L∞(Ω) + ‖u j − uδ, j‖L∞(Ω)

≤ 2‖g − gδ‖L∞(∂Ω) + 2C

n
(diam(Ω)/2)1/n‖ f − fδ‖Ln(Ω) ≤ 3δ/4.

This, the triangle inequality, and ‖uδ − uδ, j‖L∞(Ω) ≤ δ/4 verify, for all j ≥ j0, that
‖u − u j‖L∞(Ω) ≤ δ, whence u j converges uniformly to u as j → ∞. ��

4 A posteriori error estimate

In this section we prove an a posteriori error bound for a given approximation vh to the
viscosity solution uε of the regularized PDE (2) as well as the Alexandrov solution u
of the Monge–Ampère equation. In what follows we assume a given finite partition T
of Ω of closed polytopes such that the interiors of any distinct T , K ∈ T are disjoint
and the union over T equals Ω . Let Vh ⊂ C1,1(Ω) ∩ W 2,∞(Ω) be a subspace of
functions in C2(T ) when restricted to any set T ∈ T of the partition. (Here, C2 up
to the boundary of T means that there exists a sufficiently smooth extension of the
function vh |int(T ) to T for vh ∈ Vh .) In practical examples, we think of Vh as a space
of C1-regular finite element functions. Given any v ∈ C(Ω), its convex envelope is
defined as

Γv(x) := sup
w:Rn→R affine

w≤v

w(x) for any x ∈ Ω. (20)

Let Cv := {x ∈ Ω : v(x) = Γv(x)} denote the contact set of v.
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Theorem 5 (Guaranteed error control for Monge–Ampère) Given a nonnegative
right-hand side f ∈ Ln(Ω) and g ∈ C(∂Ω), let u ∈ C(Ω) be the Alexandrov
solution to (1). Let vh ∈ Vh with its convex envelope Γvh be given and define
fh := χCvh

n(det D2vh)
1/n. For any convex subset Ω ′ ⊂ Ω , we have, for the constant

cn from Lemma 1, that

‖u − Γvh‖L∞(Ω) ≤ lim sup
x→∂Ω

|(g − Γvh )(x)| + cn
21/nn

diam(Ω ′)‖ f − fh‖Ln(Ω ′)

+ cn
n
diam(Ω)(n−1)/n max

x∈Ω\Ω ′
dist(x, ∂Ω)1/n‖ f − fh‖Ln(Ω) =: RHS0. (21)

The practical evaluation of fh is described in Sect. 5.1. The proof of Theorem 5
requires the following result on the Monge–Ampère measure of the convex envelope
Γvh .

Lemma 7 (MA measure of the convex envelope) The convex envelope Γvh of any
vh ∈ Vh satisfies det D2Γvh = f̃h dx in the sense of Monge–Ampère measure with the
nonnegative function f̃h := χCvh

det D2vh ∈ L∞(Ω).

Proof We first claim that ∂Γvh (x) = ∂vh(x) = {∇vh(x)} holds for all x ∈ Ω ∩Cvh . In
fact, if p ∈ ∂Γvh (x), then �x,p(z) := Γvh (x) + p · (z − x) is a supporting hyperplane
touching Γvh from below at x . By design of the convex envelope Γvh , �x,p ≤ vh . Since
�x,p(x) = vh(x) because x ∈ Ω ∩ Cvh , �x,p touches vh at x from below. We deduce
p = ∇vh(x) from the differentiability of vh . The claim then follows from the fact that
the subdifferential ∂Γvh is nonempty in Ω [23, Theorem 23.4]. The set ∂Γvh (Ω\Cvh )

has Lebesgue measure zero [10, p. 995] and ∂Γvh (x) = ∂vh(x) = {∇vh(x)} holds
for all x ∈ Ω ∩ Cvh . Therefore, the area formula [14, Theorem A.31] implies, for any
Borel set ω ⊂ Ω , that

μΓvh
(ω) = Ln(∂Γvh (ω)) = Ln(∇vh(ω ∩ Cvh )) =

∫
ω∩Cvh

det D2vh dx .

This formula implies that χCvh
det D2vh ≥ 0 is a nonnegative function a.e. in Ω .

Consequently, μΓvh
= f̃h dx with f̃h := χCvh

det D2vh ≥ 0. ��
Proof of Theorem 5 Lemma 7 proves that the Monge–Ampère measure μΓvh

=
( fh/n)nx. of Γvh can be expressed by the L1 density function ( fh/n)n . In particular,
Γvh is the generalized viscosity solution to F0( fh; x,D2Γvh ) = 0 in Ω . The appli-
cation of the stability estimate (8) from Corollary 1 on the convex subset Ω ′ ⊂ Ω

instead of Ω leads to

‖u − Γvh‖L∞(Ω ′) ≤ ‖u − Γvh‖L∞(∂Ω ′) + cn
21/nn

diam(Ω ′)‖ f − fh‖Ln(Ω ′).

The unknown error ‖u − Γvh‖L∞(∂Ω ′) ≤ ‖u − Γvh‖L∞(Ω\Ω ′) can be bounded by the
local estimate (7) from Corollary 1 with ω := Ω\Ω ′. If Γvh ∈ C(Ω) is continuous
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up to the boundary ∂Ω of Ω , this reads

‖u − Γvh‖L∞(Ω\Ω ′) ≤ ‖g − Γvh‖L∞(∂Ω)

+ cn
n
diam(Ω)(n−1)/n max

x∈Ω\Ω ′
dist(x, ∂Ω)1/n‖ f − fh‖Ln(Ω).

Since Γvh may only be continuous in the domain Ω , ‖g − Γvh‖L∞(∂Ω) is replaced
by lim supx→∂Ω |(g − Γvh )(x)| in general. The combination of the two previously
displayed formula concludes the proof. ��
We note that, for certain examples, the convex envelope Γvh of an approximation vh
is continuous up to the boundary.

Proposition 2 (Continuity at boundary) Let v ∈ C0,1(Ω) be Lipschitz continuous such
that v|∂Ω can be extended to a Lipschitz-continuous convex function g ∈ C0,1(Ω).
Then Γv ∈ C(Ω) and Γv = v on ∂Ω .

Proof We first prove the assertion for homogenous boundary condition v|∂Ω = 0.
Given any point x ∈ Ω , let x ′ ∈ ∂Ω denote a best approximation of x onto the
boundary ∂Ω so that |x − x ′| = dist(x, ∂Ω). Define the affine function ax (z) :=
L(z − x ′) · (x ′ − x)/|x − x ′| for z ∈ Ω , where L denotes the Lipschitz constant
of the function v ∈ C0,1(Ω). It is straight-forward to verify that ax ≤ v in Ω [17,
p. 12]. Therefore, −Ldist(x, ∂Ω) = ax (x) ≤ Γv(x) ≤ 0 by definition of the convex
envelope. This shows Γv ∈ C(Ω)with Γv ≡ 0 on ∂Ω . In the general case, we observe
that v − g ∈ C0,1(Ω) is Lipschitz continuous. The first case proves Γv−g ∈ C(Ω)

with Γv−g = v − g on ∂Ω . We deduce that w := g + Γv−g ∈ C(Ω) is a convex
function with w ≤ v in Ω and w = v on ∂Ω . Let (x j ) j ⊂ Ω be a sequence of
points converging to some point x ∈ ∂Ω on the boundary. For a given γ > 0, there
exists, from the uniform continuity of v − w in the compact set Ω , a δ > 0 such that
|(v − w)(x j ) − (v − w)(x)| ≤ γ whenever |x − x j | ≤ δ. Since w ≤ Γv ≤ v in
Ω , this implies |(v − Γv)(x j )| ≤ γ for sufficiently large j . In combination with the
triangle inequality and the Lipschitz continuity of v, we conclude |v(x) − Γv(x j )| ≤
γ + |v(x) − v(x j )| ≤ γ + L|x − x j |. Therefore, lim j→∞ Γv(x j ) = v(x). ��

The theory of this paper also allows for an a posteriori error control for the regu-
larized HJB equation (2). We state this for the sake of completeness as, in general, it
is difficult to quantify the regularization error ‖u − uε‖L∞(Ω).

Theorem 6 (Guaranteed L∞ error control for uniform elliptic HJB) Given a positive
parameter 0 < ε ≤ 1/n and a C1 conforming finite element function vh ∈ Vh, there
exists a unique fh ∈ L∞(Ω) such that

Fε( fh; x,D2vh) = 0 a.e. in Ω. (22)

The viscosity solution uε to (2) with right-hand side f ∈ Ln(Ω) and Dirichlet data
g ∈ C(∂Ω) satisfies, for any convex subset Ω ′ � Ω , that

‖uε − vh‖L∞(Ω) ≤ ‖g − vh‖L∞(∂Ω) + cn
21/nn

diam(Ω ′)‖ f − fh‖Ln(Ω ′)
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+ cn
n
diam(Ω)(n−1)/n max

x∈Ω\Ω ′
dist(x, ∂Ω)1/n‖ f − fh‖Ln(Ω) =: RHSε. (23)

Proof As in the proof of Theorem 2, Lemma 5 provides a (unique) piecewise con-
tinuous and essentially bounded function fh := ξ(D2

pwvh) ∈ L∞(Ω) with (22).
Theorem 2 shows that vh is the generalized viscosity solution to (22). Therefore, the
stability estimates from Corollary 1 can be applied to uε and vh . First, the application
of (8) to the subdomain Ω ′ instead Ω leads to

‖uε − vh‖L∞(Ω ′) ≤ ‖uε − vh‖L∞(∂Ω ′) + cn
21/nn

diam(Ω ′)‖ f − fh‖Ln(Ω ′).

Second, the local estimate (7) with ω := Ω \ Ω ′ implies

‖uε − vh‖L∞(Ω\Ω ′) ≤ ‖g − vh‖L∞(∂Ω)

+ cn
n
diam(Ω)(n−1)/n max

x∈Ω\Ω ′
dist(x, ∂Ω)1/n‖ f − fh‖Ln(Ω).

Since ‖uε −vh‖L∞(∂Ω ′) ≤ ‖uε −vh‖L∞(Ω\Ω ′), the combination of the two previously
displayed formulas concludes the proof. ��
In Theorems 5 and 6, it is possible to apply the stability estimate (7) to further subsets
of Ω to localize the error estimator. We proceed with a discussion on the efficiency
of the proposed error estimators. The point of departure is the following efficiency
estimate for the uniformly elliptic HJB equation (2), which bounds the error estimator
from above by the error in the W 2,n norm. It is proven in [3] that, for any ε > 0, the
(generalized) viscosity solution uε to (2) satisfies the regularity uε ∈ C(Ω)∩W 2,n

loc (Ω),
i.e., uε ∈ W 2,n(ω) for any open subset ω � Ω of Ω .

Theorem 7 (Local efficiency for HJB with respect toW 2,n)Under the assumptions of
Theorem 6, the difference f − fh satisfies

‖ f − fh‖Ln(ω) � ε(1−n)/n‖D2(uε − vh)‖Ln(ω) (24)

for any open subset ω � Ω of Ω . If uε ∈ W 2,n(Ω), then (24) holds with ω = Ω .

Proof For a.e. x ∈ Ω , the solution properties (2), (22), and the elementary bound
sup X − sup Y ≤ sup(X − Y ) reveal

0 = Fε( f ; x,D2uε(x)) − Fε( fh; x,D2vh(x))

≤ sup
A∈S(ε)

( − A : D2(uε(x) − vh(x)) + ( f (x) − fh(x))
n
√
det A

)
.

(25)

The set S(ε) is compact, whence the supremum on the right-hand side is attained a.e. in
Ω . Let A = A(x) ∈ S(ε) denote the maximizer. Since the eigenvalues of A(x) are
nonnegative and sum up to 1, the Frobenius norm is bounded as |A(x)| ≤ 1. As in
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the proof of Lemma 6, the product of the eigenvalues satisfies the bound det A(x) ≥
εn−1(1 − (n − 1)ε), so that

|A(x)|/ n
√
det A(x) ≤ 1/ n

√
εn−1(1 − (n − 1)ε).

Therefore, (25) and the Cauchy inequality lead to

fh(x) − f (x) ≤ A(x) : D2(vh(x) − uε(x))
n
√
det A(x)

� ε(1−n)/n|D2(uε(x) − vh(x))|.

Exchanging the roles of uε and vh leads to the same upper bound for | f (x) − fh(x)|.
The assertion then follows from integration over ω. ��
We note the discrepancy of norms in the reliability (L∞) of Theorem 6 and the effi-
ciency estimate (W 2,n) of Theorem 7. This is to be expected as pointed out by the
following remark.

Remark 2 (Equivalence in 2d) Suppose that n = 2 and g ≡ 0, then it is known from
[26] that uε ∈ H2(Ω) for any fixed ε > 0 and so, ‖ f − fh‖L2(Ω) � ε−1/2‖D2(uε −
vh)‖L2(Ω). On the other hand, the stability estimate from [15, Theorem3.3(a)] provides
‖uε − vh‖H2(Ω) � ‖ f − fh‖L2(Ω)/ε under the natural assumption vh = 0 on ∂Ω . In
conclusion, ε1/2‖ f − fh‖L2(Ω) � ‖u − vh‖H2(Ω) � ‖ f − fh‖L2(Ω)/ε.

Proving the efficiency of the error estimator of Theorem 5 turns out much more
challenging: in constrast to what is used in the proof of Theorem 7, in the case of
the Monge–Ampère equation it is not known whether the maximizer A(x) in S(0)
belongs to a prescribed subset S(ε). We are therefore formulate a weaker and partly
conditional efficiency estimate.

Theorem 8 (Local efficiency for Monge–Ampère with respect to W 2,n) Let the
assumptions of Theorem 5 hold. Assume additionally that f ∈ C0,α(Ω), 0 < λ ≤
f ≤ Λ, and g ∈ C1,β(∂Ω) with positive parameters 0 < λ ≤ Λ, 0 < α < 1, and
1− 2/n < β < 1. For any open subset ω � Ω such that ω ⊂ Cvh and |det D2vh | ≥ μ

a.e. inω for someμ > 0, there exists ε > 0 depending on ‖D2u‖L∞(ω), ‖D2vh‖L∞(ω),
λ, μ and n such that the difference f − fh satisfies

‖ f − fh‖Ln(ω) � ε(1−n)/n‖D2
pw(u − vh)‖Ln(ω).

Proof The assumptions on f and g allow for interior regularity results [4] and leads to
u ∈ C2,α(ω). In particular, D2u andD2vh are uniformly bounded inω. FromLemma6,
F0( f ; x,D2u) = 0, and F0( fh; x,D2vh) = 0 a.e. in ω, we deduce that there exists
a ε > 0, which solely depends on ‖D2u‖L∞(ω), ‖D2vh‖L∞(ω), λ, μ, and n, such that
Fε( f ; x,D2u) = 0 and Fε( fh; x,D2vh) = 0 a.e. in ω. The remaining parts of the
proof follow the same lines as for Theorem 7. ��
Although the term ‖D2vh‖L∞(ω) can be computed a posteriori for a given discrete
approximation vh of u, we remark that the efficiency in Theorem 8 is mainly of
theoretical interest due to the lack of bounds on the L∞ norm of D2u.
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5 Numerical examples

In this section, we apply the theory from Sect. 4 to numerical benchmarks on the
(two-dimensional) unit square domain Ω := (0, 1)2.

5.1 Implementation

Some remarks on the practical realization precede the numerical benchmarks of this
section.

5.1.1 Setup

Given T as a rectangular partition of the domainΩ with the set E of edges, we choose
Vh to be the Bogner–Fox–Schmit finite element space [7]. It is the space of global
C1,1(Ω) functions that are bicubic when restricted to any element T ∈ T .We compute
the discrete approximation in Vh by approximating the regularized problem (3) with
a Galerkin method. In the two-dimensional setting, this yields a strongly monotone
problem with a unique discrete solution uh,ε [15]. Since vh := uh,ε is a C1,1(Ω)

function, we can apply Theorem 5 to obtain error bounds for ‖u − Γvh‖L∞(Ω), which
motivates an adaptive scheme as outlined below.

5.1.2 Evaluation of the upper bound of Theorem 5

We proceed as follows for the computation of the right-hand side RHS0 of (21).
Integration of f − fh for fh := 2χCvh

(det D2vh)
1/2. The integral ‖ f − fh‖L2(ω)

for any subset ω ⊂ Ω is computed via numerical integration. Given a set of Gauss
points N� associated to the degree of exact integration �, this reads

∑
T∈T

∑
x∈N�∩T∩ω

meas(T )w�,T (x)( f (x) − 2χCvh
(x)(det D2vh(x))

1/2)2 (26)

with some positive weight functionw�,T ∈ L∞(T ). In the evaluation of (26), the term
χCvh

(x) determines whether the quadrature point x belongs to the contact set. A point
x ∈ N� is in the contact set Cvh of vh if (and only if)

0 ≤ vh(z) − vh(x) − ∇vh(x) · (z − x) for all z ∈ Ω (27)

(because ∂Γvh (x) = {∇vh(x)} for any x ∈ Ω ∩ Cvh from the proof of Theorem 5).
While this condition can be checked explicitly, it is a global condition and, therefore,
leads to a global problem for each Gauss point, which may become rather expensive.
Instead, (27) is verified at only a finite number of points, e.g., z ∈ V� := N� ∪ N b

� ,
whereN b

� ⊂ ∂Ω is a discrete subset of ∂Ω . The set of pointsV� create a quasi-uniform
refinement T� of the partition T into triangles and we assume that the mesh-size of T�

tends to zero as � → ∞. Let I�vh denote the nodal interpolation of vh w.r.t. the mesh
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T�. We replace the function χCvh
in (26) by the indicator function χC�

vh
of the set

C�
vh

:= CI�vh ∩ {x ∈ Ω\ ∪ E : D2vh(x) ≥ 0 is positive semi-definite}.

Similar discrete contact sets were considered in [22] with application to the Monge–
Ampère equation in [21]. In practice, the numerical integration formula for ‖ f −
fh‖L2(ω) reads

∑
T∈T

∑
x∈N�∩T∩ω

meas(T )w�,T (x)( f (x) − 2χC�
vh

(x)(det D2vh(x))
1/2)2. (28)

The convex envelope ΓI�vh of I�vh can be computed, for instance, by the Quickhull
algorithm [2]. Therefore, it is straight-forward to compute (28). We note that if x ∈
Cvh ∩N�, then (27) holds for any z ∈ V�. Since the convex envelope of the continuous
piecewise affine function I�vh only depends on the nodal values of vh , this implies
x ∈ C�

vh
∩N�. However, the reverse is not true. Hence, (28) and (26) may not coincide.

From the uniform convergence of I�vh to vh as � → ∞, we deduce

lim sup
�→∞

C�
vh

:= ∩�∈N ∪k≥� C�
vh

⊂ Cvh ,

cf. [3, Lemma A.1]. Given any δ > 0, this implies C�
vh

\Cvh ⊂ {x ∈ Ω\Cvh :
dist(x, Cvh ) ≤ δ} for sufficiently large �. Therefore, the set of all points x ∈ N�

with χCvh
�= χC�

vh
(x) is a subset of C�

vh
\Cvh , whose Lebesgue measure vanishes in the

limit as � → ∞. In conclusion, the limits of (26) and (28) coincide.
Computation of μ := lim supx→∂Ω |(g − Γvh )(x)|. The boundary residual μ is

approximated by ‖g − ΓI�vh‖L∞(∂Ω). Since Γvh ≤ I�vh and I�vh is piecewise affine,
Γvh ≤ ΓI�vh holds in Ω . On the other hand, we have lim�→∞ ‖vh − I�vh‖L∞(Ω) = 0.
Hence, any supporting hyperplane ax of ΓI�vh at x ∈ Ω satisfies ax − δ� ≤ vh in Ω

with δ� := ‖vh − I�vh‖L∞(Ω). Since ax − δ� is an affine function, ΓI�vh (x) − δ� =
ax (x) − δ� ≤ Γvh (x). We conclude ΓI�vh − δ� ≤ Γvh ≤ ΓI�vh in Ω . In particular,
lim�→∞ ‖g − ΓI�vh‖L∞(∂Ω) = μ.

Choice of Ω ′. Let δ := minE∈E hE denote the minimal edge length of the mesh
T . For all integers 0 ≤ j < 1/(2δ), define Ω jδ := {x ∈ Ω : dist(x, ∂Ω) ≥ jδ}. It
seems canonical to choose Ω ′ := Ω jδ , where j is the index that minimizes RHS0.
However, this choice may lead to significant computational effort. From the interior
regularity of Alexandrov solutions [4], we can expect that the error is concentrated on
the boundary and so, the best j will be close to one. Accordingly, the smallest j ≥ 0
is chosen so that RHS0 with Ω ′ := Ω( j+1)δ is larger than RHS0 with Ω ′ := Ω jδ .

5.1.3 Adaptive marking strategy

We define the refinement indicator

η(T ) := jδ
√
2‖ f − fh‖2L2(T )

+ (1 − 2 jδ)2‖ f − fh‖2L2(T∩Ω jδ)
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for any T ∈ T , where the scaling in δ arises from (21) with n = 2. Let σ := RHS0−μ

denote the remaining contributions of RHS0, whereμ = lim supx→∂Ω |(g−Γuh,ε
)(x)|

from above. If σ/10 < ‖g − uh,ε‖L∞(∂Ω), then we mark one fifth of all boundary
edges E ∈ E with the largest contributions ‖g − uh,ε‖L∞(E). Otherwise, we mark a
setM of rectangles with minimal cardinality so that

1

2

∑
T∈T

η(T ) ≤
∑
T∈M

η(T ).

5.1.4 Displayed quantities

The convergence history plots display the errors ‖u − uh,ε‖L∞(Ω), LHS := ‖u −
Γuh,ε

‖L∞(Ω) as well as the error estimator RHS0 against the number of degrees of
freedom ndof in a log–log plot. (Note that ndof scales like h−2

max on uniformly refined
meshes.) We utilize ‖u − ΓI�uh,ε

‖L∞(Ω) as an approximation of ‖u − Γuh,ε
‖L∞(Ω),

where ΓI�uh,ε
is computed by the Quickhull algorithm [2]. Whenever the solution u is

sufficiently smooth, the errors ‖u−uh,ε‖H1(Ω) and ‖u−uh,ε‖H2(Ω) are also displayed.
Solid lines in the convergence history plots indicate adaptive mesh-refinements, while
dashed lines are associated with uniform mesh-refinements. The experiments are car-
ried out for the regularization parameters ε = 10−3 in the first two experiments and
ε = 10−4 for the third experiment. For a numerical comparison of various ε, we refer
to [15].

5.2 Regular solution

In this example from [11], the exact solution u is given by

u(x) = (2|x |)3/2
3

with f (x) = 1/|x |. The solution belongs to H5/2−ν(Ω) for any ν > 0, but not to
C2(Ω). It is proven in [15] that u is the viscosity solution to Fε( f ; x,D2u) = 0
in Ω for any regularization parameter 0 < ε ≤ 1/3. Accordingly, we observed
no visual differences in the convergence history plots for different 0 < ε ≤ 1/3.
Figure 1 displays the convergence rates 0.8 for ‖u − uh,ε‖L∞(Ω) and RHS, 3/4 for
‖u − uh,ε‖H1(Ω), and 1/4 for ‖u − uh,ε‖H2(Ω) on uniform meshes. The adaptive
algorithm refines towards the singularity of u at 0 and leads to improved convergence
rates for all displayed quantities. We observe the rate 1.75 for ‖u − uh,ε‖L∞(Ω), 1 for
LHS, RHS0, and ‖u−uh,ε‖H2(Ω), and 1.5 for ‖u−uh,ε‖H1(Ω). It is also worth noting
that RHS0 seems to be efficient on adaptive meshes.
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Fig. 1 Convergence history for the first experiment with ε = 10−3

5.3 Convex envelope of boundary data

In the second example, we approximate the exact solution

u(x, y) := |x − 1/2|

to det D2u = 0 in Ω , which is the largest convex function with prescribed boundary
data. The solution belongs to H3/2−δ(Ω) for any δ > 0, but not to H3/2(Ω). It was
observed in [15] that the regularization error ofu−uε dominates the discretization error
u− uh,ε on finer meshes. Therefore, the errors ‖u− uh,ε‖L∞(Ω) and ‖u− uh,ε‖H1(Ω)

stagnate at a certain value (depending on ε) as displayed in Fig. 2. However, LHS
converges with convergence rate 1/2 on uniform meshes even for fixed ε. At first

Fig. 2 Convergence history for the second experiment with ε = 10−4
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Fig. 3 Discrete solution on a uniform mesh with 4225 nodes

Fig. 4 Adaptive mesh with 1907
nodes for the second experiment

glance on the discrete solution shown in Fig. 3, we can expect that the maximum of
|u − uh,ε| is attained along the line conv{(1/2, 0), (1/2, 1)}. This error depends on
the regularization parameter and only vanishes in the limit as ε → 0, but the convex
envelope of uh,ε provides an accurate approximation of u along this line. In fact, Fig. 4
shows that the adaptive algorithm refines towards the points (1/2, 0) and (1/2, 1),
but the whole line conv{(1/2, 0), (1/2, 1)} is only of minor interest. We observe the
improved convergence rate 2.5 for LHS on adaptive meshes. The guaranteed upper
bound RHS0 can provide an accurate estimate of LHS, but seems to oscillate due to
the nature of the problem. The goal of the adaptive algorithm is the reduction of RHS0,
which consists of the error ‖ f − fh‖L2(Ω) in theMonge–Ampèremeasures and of some
boundary data approximation error. Thanks to the additional regularization provided
by the convex envelope, ‖ f − fh‖L2(Ω) is concentrated at the points (1/2, 0) and
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(1/2, 1), but becomes very small after some mesh-refining steps. We even observed
in Fig. 2 that LHS = RHS0 on two meshes, i.e., ‖ f − fh‖L2(Ω) = 0. Then RHS0 is
dominated by the data boundary approximation error and leads tomesh refinements on
the boundary. This may result in significant changes in the Monge–Ampère measure
of Γuh,ε

, because the convex envelope of the discrete function uh,ε depends heavily on
its values on the boundary in this class of problems.

5.4 Nonsmooth exact solution

In this example, the function

u(x, y) := −(
sin(πx)−1 + sin(π y)−1)−1

is the solution to the Monge–Ampère equation (1) with homogenous boundary data
and right-hand side

f (x, y) = 4π2 sin(πx)2 sin(π y)2(2 − sin(πx) sin(π y))

(sin(πx) + sin(π y))4
.

The function u belongs to C2(Ω) ∩ H2−δ(Ω) for all δ > 0, but neither to H2(Ω)

nor C2(Ω). The convergence history is displayed in Fig. 5. Notice from Proposi-
tion 2 that RHS0 consists solely of the error in the Monge–Ampère measures. In this
example, f exhibits strong oscillations at the four corners of the domain Ω and the
adaptive algorithm seems to solely refine towards these corners as displayed in Fig. 6.
While RHS0 converges on uniform meshes (although with a slow rate), there is only a

Fig. 5 Convergence history for the third experiment with ε = 10−4
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Fig. 6 Adaptive mesh with 1351
nodes for the third experiment

Fig. 7 Convergence history of LHS for the third experiment with ε = 10−4 and different initial meshes

marginal reduction of RHS0 for adaptive computation. We can conclude that the dis-
crete approximation cannot resolve the infinitesimal oscillation of theMonge–Ampère
measure of u properly. This results in the stagnation of ‖u − uh,ε‖L∞(Ω) and LHS at
an early level in comparison to uniformmesh refinements. However, we also observed
that the stagnation point depends on the maximal mesh-size. In fact, if we start from
an initial uniform mesh with a small mesh-size h0, significant improvements of RHS0
are obtained on the first levels of adaptive mesh refinements as displayed in Fig. 7.
Undisplayed experiments show the same behaviour for ‖u−uh,ε‖L∞(Ω). This leads us
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to believe that, in this example, a combination of uniform and adaptive mesh-refining
strategy provides the best results.
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