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Abstract

Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m-th
Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix—
Raviart (m = 1) or Morley (m = 2) finite element eigensolver. Striking numerical
evidence for the superiority of a new adaptive eigensolver motivates the convergence
analysis in this paper with a proof of optimal convergence rates of the GLB towards
a simple eigenvalue. The proof is based on (a generalization of) known abstract argu-
ments entitled as the axioms of adaptivity. Beyond the known a priori convergence
rates, a medius analysis is enfolded in this paper for the proof of best-approximation
results. This and subordinated L? error estimates for locally refined triangulations
appear of independent interest. The analysis of optimal convergence rates of an adap-
tive mesh-refining algorithm is performed in 3D and highlights a new version of
discrete reliability.

Mathematics Subject Classification 65N12 - 65N15 - 65N25 - 65N30 - 65N50 -
65Y20

1 Introduction

Motivation. Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed
for the m-th Laplace operator from a global postprocessing of respective nonconform-
ing finite element eigensolvers like the Crouzeix—Raviart resp. Morley finite element
method (FEM) for m = 1 resp. m = 2 [15, 16]. The maximal mesh-size hpyax enters
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as an explicit parameter and this can be non-effective for an imperative adaptive
mesh-refinement. This has recently motivated the design of extra-stabilized noncon-
forming finite element eigensolvers for m = 1, 2 that directly compute GLB under
moderate mesh-size restrictions and allow an efficacious adaptive mesh-refinement
[11, 24, 27]. The striking superiority of those adaptive schemes has been displayed in
numerical experiments in [11, 24] and motivates the mathematical analysis of optimal
convergence rates in this paper. This appears to be the first method that combines the
localization of eigenvalues as GLB with their efficient approximation.

Model problem. The continuous eigenvalue problem (EVP) seeks eigenpairs (A, u) €
R* x (V\{0}) with

a(u,v) =Ab(u,v) forallveV (1.1)

in the Hilbert space V := H;'(Q2) with its energy scalar product a(e,e) :=
(D™e, D™e) 2 ) with the gradient D' := Vorthe Hessian D? and the L? scalar prod-
uct b(e,e) := (e, 0) 129 ona bounded polyhedral Lipschitz domain 2 C R3. The
infinite but countably many eigenvalues 0 < A1 < Ay < ... with lim jsoohj = 00
in (1.1) are enumerated in ascending order counting multiplicities [6, 7].

Discretization. The discrete space V), = P, (7) x V(7) C P,y (T) x Py (T) consists
of piecewise polynomials of degree at most m on the shape-regular triangulation
T of @ C R? into closed tetrahedra. Throughout this paper, V(7)) abbreviates the
Crouzeix—Raviart finite element space CR(l)(T) [25] for m = 1 and the Morley finite
element space M (7)) [40, 41] for m = 2. The algebraic eigenvalue problem seeks
eigenpairs (A, up) € RT x (V;\{0}) with

ap(uy, vy) = Apby(up, vy) forall v, € V. (1.2)
The discrete scalar product a; contains the scalar product apy(e, @) = (Dg’wo,

D) 12 (q) of the piecewise derivatives of order m and some stabilization with explicit

(known) constant x,, > 0 from [24], while the bilinear form by, is the L2 scalar product
b(e, @) of the piecewise polynomial components,

2, -2
ap(vp, Wp) = apw(Une, Wne) + &y, " (i " (Vpw — Vne)s Wpw — Wne) 12(0)

by (v, wp) = b(vpw, Wpw) for all vy = (Vpw, Unc)s Wh = (Wpw, Wne) € V.

The piecewise constant mesh-size function i € Py(7) has the value hr|p = hy =
diam(7) in each tetrahedron T € 7 and hp,x := maxyc7 A7 denotes the maximal
mesh-size. The M := dim(P,, (7)) finite discrete eigenvalues of (1.2) are enumerated
in ascending order 0 < A; (1) < Ap(2) < --- < Ap(M) < oo counting multiplicity.

GLB. For the biharmonic operator (m = 2) the discrete eigenvalue problem (1.2) is
analysed in [24]. For the Laplace operator (m = 1) in 2D, (1.2) describes the lowest-
order skeleton method in [27]; for 3D it is different and suggested in [24]. The discrete
eigenvalue problem (1.2) directly computes guaranteed lower bounds [24, Thm. 1.1]
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in that

min{i, (k), A )2 h2m <1 implies (k) < Ap forallk=1,...,M. (1.3)
AFEM. The adaptive algorithm [12, 26, 30, 39] is based on the refinement indicator
n(T) defined in (1.4) below for any triangulation 7 and any tetrahedron 7 € 7.
Let (An, up) € RT x Vi denote the k-th eigenpair of (1.2) with A, := A, (k) and
up = (Upw, Unc) € Vi For any tetrahedron T € 7 with volume |7'| and set of faces
F(T), the local estimator contribution n(T) = (n(T))? reads

(1) = TPl rnuncl gy + 1T1P Y I Dpyttnele X vEllZo ey (14)
FeF(T)

with the tangential components [Dg‘wunc] F X v of the jump [Dgwunc] r along any face
F € F(T) and the (piecewise) gradient D;1>w = Vpw (m=1) or Hessian Dgw (m=2).
Let T := T(7p) denote the set of all admissible regular triangulations computed by
successive newest-vertex bisection (NVB) [35, 48] of a regular initial triangulation 7y
of @ ¢ R3. The AFEM algorithm with Dorfler marking and newest-vertex bisection
abbreviates n¢(T) forany T € 7 := 7, € T and n% = n2(Ty) := ZTeTg n%(T). The
selection of the set My in the step Mark of AFEM4EVP with minimal cardinality is
possible at linear cost [44].

AFEM 4EVP
Input: regular triangulation 7 and parameters 0 < 6 < 1 and k € N
for(=0,1,2,... do
Solve the discrete problem (1.2) exactly and compute the k-th algebraic eigenpair
(Ag(k), ug(k)) with ug (k) = (upw, unc) € Pm(Zy) x V(Zy) and 7 replaced by 7y
Compute 1, (T) for any T € 7y from (1.4) with (Ap, unc, 7) replaced by (¢ (k), unc, Zp)
Mark minimal subset My C 7, with 977% < ZTEM[ n%(T)
Refine 7; with newest-vertex bisection to compute 741 with My € 7y \ Ty41 od

Output: sequence of triangulations (7p)eny, With (A¢(k), ug(k))gen, and (1¢)¢eN,

Optimal convergence rates. The optimal convergence rates of AFEM4EVP in the
error estimator means that the outputs (7)¢cn, and (1¢)¢en, of AFEM4EVP satisfy

sup (1 + |Z¢| = [Zo))*ne ~ sup (1 + N)* min{n(7) : 7 € T with |T| < |To| + N}
£eNy NeNp

(1.5)

for any s > 0 and the counting measure | e | = card(e). In other words, if the estimator
n(7) converges with rate s > 0 for some optimal selection of triangulations 7 € T,
then the output n, of AFEM4EVP converges with the same rate.

Theorem 1.1 (rate optimality of AFEM4EVP) Suppose that Ay = X is a simple eigen-
value of (1.1), then there exist ¢ > 0 and 0 < 6y < 1 such that 7y € T(e) .= {T €
T : hmax ;= maxye7r hr < e} and 0 with0 < 0 < 6y imply (1.5) for any s > 0.
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4 C. Carstensen, S. Puttkammer

At first glance the discrete problem (1.2) involves a stabilization that is expected to
generate the additional term «,, 2|T|72m 3 Upw —Unc || iz e in the error estimator (1.4).
The negative power of the mesh-size in the latter term prevents a reduction property
[12, 26, 39] and has to be circumvented. The only other known affirmative result for
optimal convergence rates of an adaptive algorithm with stabilization (and negative
powers of the mesh-size in the discrete problem) is [5] on discontinuous Galerkin (dG)
schemes. An over-penalization therein diminishes the influence of the stabilization
and eventually shows the dominance of the remaining a posteriori error terms. In the
present case, the stabilization parameter «, is fixed to maintain the GLB property and
this requires a different argument: Since (1.2) is equivalent to a rational eigenvalue
problem for a nonconforming scheme, a careful perturbation analysis eventually shows
efficiency and reliability of the nonconforming error estimator (1.4) for sufficiently
small mesh-sizes. The verification requires a medius analysis [37], which applies
arguments from a posteriori error analysis (e.g., efficiency in (3.10) below) in an
a priori error analysis.

Outline. The remaining parts of this paper are devoted to the proof of Theorem 1.1 and
are organized as follows. A general interpolation operator / and a right-inverse J in
Sect. 2 allow for a simultaneous analysis form = 1 and m = 2 in the Crouzeix—Raviart
and Morley FEM. The medius analysis in Sect.3 provides new best-approximation
results and thereby prepares the proof of Theorem 1.1 in Sect.4-5. The proof of the
optimal convergence rates requires a framework extended from [12,26] in Appendix A.

While more general boundary conditions appear feasible as in [15, 31], non-constant
coefficients in a general elliptic differential operator of order 2m appear a less straight-
forward extension from the m-harmonic operator (—1)" A™. An expected extension
revisits [24] for the question of lower eigenvalue bounds, while the convergence anal-
ysis of an adaptive algorithm expects extra terms for the perturbations of the piecewise
polynomial approximation of inhomogeneous coefficients as in [22]; this is therefore
left for future research. This first paper on optimal convergence rates of an adap-
tive algorithm for the direct guaranteed lower eigenvalue bounds focuses on a model
problem. The results hold in 2D and 3D and are presented in 3D for brevity.

2 Preliminaries
This section summarizes abstract conditions (I1)—(I4) on an interpolation operator
I:V — V(7T)and (J1)-(J4) on a right inverse J : V(7) — V. The conditions

hold for the Crouzeix—Raviart and the Morley finite element space in the two model
examples for the Laplacian m = 1 and the bi-Laplacian m = 2.

2.1 Notation
Standard notation on Lebesgue and Sobolev spaces applies throughout this paper;

(o, 0) 12(Q) abbreviates the L? scalar product and H™(T) abbreviates H™ (int(T))
for a tetrahedron T € 7. The vector space H"(T) = {v € L*(Q) : v|r €
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H™(T)} consists of piecewise H" functions and is equipped with the semi-norm
|| ® |||1[2)W = (D]’)”Wo, D;”Wo) 12()- The piecewise gradient Drl,W or piecewise Hessian
DSW is understood with respect to the (non-displayed) regular triangulation 7 € T of
the bounded polyhedral Lipschitz domain  C R into tetrahedra. The triangulation
T is computed by successive newest-vertex bisection (NVB) [35, 48] of a regular
initial triangulation 7y (plus some initialization of tagged tetrahedra) of @ C R3.
The set T := T(7Zy) of all admissible triangulations is (uniformly) shape-regular.
For any 7 € T, let T(7) abbreviate the set of all admissible refinements of 7. For
any 0 < ¢ < 1let T(e) := {7 € T : hmax ‘= maxger hy < &} denote the
set of all admissible triangulations with maximal mesh-size s < €. The context-
depending notation | e | denotes the Euclidean length of a vector, the cardinality of a
finite set, as well as the non-trivial three-, two-, or one-dimensional Lebesgue measure
of a subset of R3. For any positive, piecewise polynomial o € Py(7) with o > 0,
k € No, (o,0), 1= (0o, )2 abbreviates the weighted L? scalar product with
induced p-weighted L?norm || e lo == lo'/? e [ 2(q)- The discrete space Py, (T) :=
{(pm € LE(Q) : pmlr € Pu(T)isa polynomial of degree at most m forany T € 7'}
consists of piecewise polynomials, the spaces CR(I)(T ) resp. M (7)) will be defined
in Sect.2.4.1 resp. 2.4.2 below. Given a function v € L?(w), define the integral
mean fw vdx = 1/|ol| [ » Vdx. The L? projection I onto the piecewise constant
functions Py(7) reads (Ilo f)|7 = fT fdx forall f € L>(Q)and T € T. Let
o := min{l, oy} denote the minimum of one and the index of elliptic regularity
Oreg > 0 for the source problem of the m-Laplacian (—1)" A™ in Hj'(2): Given any
right-hand side f € L?(2), the weak solution u € V to (—1)" A™u = f satisfies

u € H™7(Q) and lull gmto @y < C@Ifll20)- 2.1

(This is well-established for m = 1 [1, 28, 34, 36, 42] and m = 2 in 2D [8] with
Owg > 1/2 and otherwise a hypothesis throughout this paper.) The Sobolev space
H™t5(Q)is defined for0 < s < 1 by complex interpolation of H™ (£2) and H"+1(Q),
m € Ny. Throughout this paper, a < b abbreviates a < Cb with a generic constant
C depending on ¢ in (2.1) and the shape-regularity of 7 € T only; a ~ b stands for
a<b<a.

2.2 Interpolation

The operators I and J concern the (nonconforming) discrete space V(7) C Py, (7)
and V := Hy'(Q) for an admissible triangulation 7 € T. An advantage of separate
interest is that the analysis with I and J is performed simultaneously for m > 1, while
the examples in Sect. 2.4 below concern m = 1, 2.

Suppose that, for each admissible triangulation 7 € T, there exists a linear interpo-
lation operator 7 onto V (7') thatis definedon V +V (’?) for any refinement T e T(7)
and that satisfies the following properties with universal positive constants «,, and k;
in all examples below «,, is known and the existence of « is clarified.

(1) Any T € T and v € H™(T) satisty |[v — v 2y < kmhT|v — Tv|gm(r).
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6 C. Carstensen, S. Puttkammer

(I2) The piecewise derivative D’” ofanyv € V+V(? ) satisfies D’” Iv = l'IoD

(I3) The operator acts as 1dent1ty in non- -refined tetrahedra in that (1—-1 )an|T =
OinT € T N7 forall 3, Une € V(’T ). The interpolation operator 7 associated
with V(’T) satisfies I o I =IinV+ V(T)

(I4) AnyT € T and vy € V(T) satisfy |[Unc —Inell 27y < Kah'} [Vnc—1ne|Hm ().

Corollary 2.1 (properties of 1 )

(a) Given T e T(7),anyveV+ V(?) and wye € V (T) satisfy apw (v —1v, wpe) =0
and |||v — Ivl|lpw = . min_ |[lv — Une || lpw-

(b) Any v € H"T(Q) with 1/2 < s < 1 satisfies ||[|(1 — Dvlllpw <
(hmax /T V| grm+s () -

(c) Any v, w € V and vye € V(T) satisfy apw (v, vnc) = apw(Tv, vnc) and
apw(v, (1 = Dw) = apw((1 — Do, (1 — Dw) < ming, cv) 1lv — vnclllpw
minwnCeV(T) [[lw — wnc|||pw-

(d) Anyw € Vandv € V + V(T) satisfy b(v, (1 — w) < ||h?v||Lz(Q)||h}m(1 —
I)w||L2(Q) me”h%l’U”Lz(Q) ming, .cv(7) lllw — wnc||lpw-

Proof Since D’" Wne € Py(T; ]R3m) (I2) implies (a). In combination with a piecewise
Poincaré 1nequa11ty, (I2) implies (b) (see [24, Cor. 2.2.a] for details). The first claim
in (c) follows from (a). The combination of (a) with the Cauchy—Schwarz inequality
proves (c). The Cauchy—Schwarz inequality, the approximation property (I1), and (c)
conclude the proof of (d). O

2.3 Conforming companion

Given any tetrahedron T € 7 in a triangulation 7 € T, let V(T') denote the set of its
vertices (0-subsimplices) and let F(7') denote the set of its faces (2-subsimplices). A
linear operator J : V(7)) — V is called conforming companion if (J1)—(J4) hold with
universal constants M, My, My (that exclusively depend on T).

(J1) J is aright inverse to the interpolation / in the sense that / o J acts as identity
in V(7).
(32) [1h7" (A=D)vncll 120y F A= vnclllpw < (M1 ST Y DR vaelr
TeT FeF(T)
5 172 )
X Vrl2p)) = Mamingey [l[vne = vlllpw for any vpe € V(T),
(J3) (1 —J)(V(T)) L P, (7) holds in L*(R).

J4) |vnc_JUnc|%{m(K) < My Z |T|1/3 Z ||[D Unc]FXVF”Lz(F) holds
TeT(QUK)) FeF(T)
for any v,e € V(7) and K € 7 with the set 7(Q(K)) = (T € 7 :
dist(T, K) = 0} of adjacent tetrahedra.

The properties (J1)-(J4) [18, 24, 32] are stated for convenient quotation throughout
this paper. The localized version (J4) applies at the very end (in Theorem 4.6) and
implies parts of (J2). The second inequality in (J2) is the efficiency of a posteriori error
estimators.
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Remark 2.2 (on (J4)) For any refinement T e T(7) of a triangulation 7 € T, let
Ri:={KeT:3T € T\'? with dist(K, T) = 0} C€ 7 denote the set of coarse
but not fine tetrahedra plus one layer of coarse tetrahedra around. Then (J4) and a finite
overlap argument imply the existence of Ms > 0 such that any v, € V(7) satisfies

1D Wne = Jvne) 1727 7y < Ms D ITIV? 37|
TeR, FeF(T)

2
[Dgi;vvnc]F X VF”LZ(F)-

The superset R of T\ 7 serves as a simple example and could indeed be replaced by
T\ T provided J may depend on 7T cf. [23, §6] for details in the two model problems
below. |

Corollary 2.3 (properties of J ) Any w € V and vy € V(7T) satisfy

(a) llvne — JUnc”LZ(Q) =1 - I)Jvnc||L2(Q) = Km|||h (vne = Jvne)|llpw

= hmameMZ E)rg‘l} [one — vlllpw;
(b) b(w, vne — June) = b(w — Iw, vne — June) < lw — Iw||L2(Q)||vnc - Jvnc||L2(Q)
2 : : .
= hn;ZmeMz min __|||w — wnc||lpw min |[|vne — v|||pw;
wnc€V veV

(¢c) apw(w, vne—Jnc) = dpw(W—Tw, vnc—Jvne) < [[lw—Twl|lpwll|vnc —J vnelllpw

<M, min |||w_wnc|||pwmin|||v_Unc|||pw'
wnc€V(T) veV

Proof The combination of (J1), (I1), and (J2) proves (a). The claim (b) follows from
(J3), the Cauchy—Schwarz inequality, (I1), and (a). Corollary 2.1.c and (J1)-(J2) lead
to (c). O

2.4 Examples

Two examples for V(7) C P, (7) are analysed simultaneously in this paper for
m = 1, 2. Itis appealing to follow our methodology for m > 3 [52] in future research.

2.4.1 Crouzeix—Raviart finite elements for the Laplacian (m = 1)

Given the shape-regular triangulation 7 € T, let F (resp. F (£2) or F(92)) denote the
set of all (resp. interior or boundary) faces. Throughout this paper, the model problem
with m = 1 approximates the Dirichlet eigenvectors u € HS(Q) of the Laplacian
—Au = Au in the Crouzeix—Raviart finite element space [25]

V(T) := CR(I)(T) :={v € P{(7) : vis continuous at mid(F) for all F € F(2) and
v(mid(F)) = 0 forall F € F(RQ)}.

Given the face-oriented basis functions Y € CRY(T) with ¥ (mid(E)) = 8¢ for
all faces E, F € F (§gF is Kronecker’s delta), the standard interpolation operator
reads

Icr(v) == Z (][

vda)l//p for any v € HOI(Q) + CR(I)(’?).
FeF@ v F
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8 C. Carstensen, S. Puttkammer

The interpolation operator Icr satisfies (11)—(I4) with k1 := /1/72 + 1/120, see [23,
Sec. 4.2-4.4] and the references therein. The constant « is provided in [15, 16, 27].

The design of the conforming companion J : CRY(T) — S3(7) := Ps(T) N
Co(2) with (J1)-(J4) is a straightforward generalization of [18, Prop. 2.3] to 3D.
The arguments in [18, Prop. 2.3] can be localized [10, Thm. 5.1] and lead with [9,
Thm. 3.2], [17, Thm. 4.9] to (J2) and (J4).

2.4.2 Morley finite elements for the bi-Laplacian (m = 2)

Given the shape-regular triangulation 7 € T, let £ (resp. £(£2) or £(d2)) denote the
set of all (resp. interior or boundary) edges. Let F(E) :={F € F : E C F} denote
the set of all faces containing the edge E € £. For any face F € F, let vr denote the
unit normal with fixed orientation and [e]f the jump across F. The model problem
with m = 2 approximates the Dirichlet eigenvectors u € HOZ(Q) of the bi-Laplacian
A%u = u in the discrete Morley finite element space [40, 41]

V(T):= M(T) := {v e Py (T) :][ [vlpds =0 forall E € £ and F € F(E),
E

and][ [Volr - vpdo = 0 forall F e .7-"}.
F

Given the nodal basis functions ® g, @ forany E € £and F € F (see [24,Eq. (2.1)-
(2.2)] for details), the standard interpolation operator [15, 23, 24, 32] reads

Iy = Y_ (ﬁvds)d)EqL > (ﬁVv-vde)@c

EcE(Q) FeF(Q)
for any v € Hg(Q) + M('j:).

The operator 1) satisfies (I1)—(14) with k3 1= «1 /7 +/ (3/{12 + 2k1)/80 as discussed
in [23, 24]; k7 is provided in [15, 24]; cf. also [38] for GLB in 2m-th order eigenvalue
problems in n-dimension.

There exists aconforming companion J : M(7) — V based on the Hsieh—Clough—
Tocher FEM [21, Chap. 6] with (J1)—(J4) in [23, 32, 50] in 2D and on the Worsey—Farin
FEM [46, 51] with (J1)—(J3) in [24] in 3D. Since the arguments in the proof of (J2) in
[24, Thm. 3.1.b] are local, (J4) follows in 3D as well.

3 Medius analysis

This section shows that (I1)-(I12) and (J1)—(J3) lead to best-approximation and error
estimates in weaker Sobolev norms.
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Adaptive guaranteed lower eigenvalue bounds... 9

3.1 Main result and layout of the proof

Throughout this paper, k € N is the number of a simple exact eigenvalue A = A;. The
aim of this section is the proof of Theorem 3.1 with || e ||5 defined in (3.1) below.

Theorem 3.1 (best-approximation) Let (A, u) € RT x V denote the k-th continuous
eigenpair of (1.1) with a simple eigenvalue A = Ay and ||\ullp2q) = 1. There exist
es > 0and Cy > 0 such that, for all T € T(es5) :={T € T : hmax < &5}, there
exists a discrete eigenpair (A, up) € RT x Vi, of number k of (1.2) with A, = Aj,(k),
up = (Upw, Unc), ||unc||Lz(Q) =1, and b(u, uye) > 0 such that

(a) ip(k)is a simple algebraic eigenvalue of (1.2) with A/2 < Aj(k),
(b) AMp(j) < Ajforallj=1,....k+1,
() 1 —= Anl + 11w = tnelllgg + rmnay 14 = tnell72 ) + ltncll3 < Colllu = Tulllpy,-

Some comments on related results and an outline of the proof of Theorem 3.1 are in
order before Sects. 3.2-3.5 provide details.

Remark 3.2 (known convergence results) The analysis in [24] (§ 2.3.3 form = 1 and
Thm. 1.2 for m = 2) guarantees the convergence of the eigenvalues A, to A and the
component upy € P, (T)tou € V.Theassumption that A = A is a simple eigenvalue
of (1.1) and the convergence A, (k) = A, — X as hpmax — 0 lead to the existence of
€o > 0 such that the number M := dim(P,, (7)) of discrete eigenvalues of (1.2) is
larger than k + 1 and A (k — 1) < Ap(k) = Ap < Ap(k+ 1) aswell as Ax /2 < Ap (k)
for all 7 € T(ep). Then the eigenfunction up = (upw, tnc) € Vi \{0} is unique.

The convergence analysis in [24] displays convergence of the eigenvector upy €
P,,(7T) but not for the nonconforming component up. € V(7). This section focusses
on the convergence analysis for uy. € V(7). Recall that k € N is fixed and (X, u)
denotes the k-th eigenpair of (1.1) with a simple eigenvalue A = A; > 0 and
lullp2y = 1. Set &1 := min{eo, (2)%4.1/(,%,)_1/(2'")} and suppose 7 € T(ey).
Let (A, up) denote the k-th discrete eigenpair in (1.2) with A, = Ap(k) > O,
up = (Upw, nc) € Vp, ”unc”LZ(Q) =1, and b(u, unc) > 0.

Proof of Theorem 3.1.a. This follows from Remark 3.2 for e; := min{gg,
Qhs1kz) MY, o

Proof of Theorem 3.1.b. The choice &1 := min{eg, (2Ag+142) '/ @™} implies for all

j=1,..., kthat )\,jK,%I h2m < )»k+1/c318%’"§1/2. Hence (1.3) proves Theorem 3.1.b.
O

Remark 3.3 (weight 8) The piecewise constant weight 8 € Py(7) in the weighted L>
norm || e ||s := |[/S @  22(g) on the left-hand side of Theorem 3.1.c reads

1 Ank 2"

= — =—=)‘K2h2m1+8€PT. 31
l—th,%h%f” l—th,%lh%?’ k7 ( ) € Po(T) 3.1

Notice that hp,x < &1 implies § < Spax := (1 — Ahkflhﬁl”gx)’l — 1 < 1. The constant

Cs = 2)»/(31 satisfies § < Céhsz < Cghrzlﬁx (because A;, < A from Theorem 3.1.b)

and § converges to zero as the maximal mesh-size hnax — 0 approaches zero.
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10 C. Carstensen, S. Puttkammer

Remark 3.4 (related work) This section extends the analysis in [18, Section 2-3] to
a simultaneous analysis of the Crouzeix—Raviart and Morley FEM and to the extra-
stabilized discrete eigenvalue problem (EVP) (1.2) and to 3D.

Remark 3.5 (equivalent problem) Since Ajk2 h2" < Ajy K,%lé‘]zm <1/2,(1.2)isequiv-

m max —
alent to areduced rational eigenvalue problem that seeks (A, unc) € RT x (V(T)\{0})
with

Unc
, = ——————, for all V(T 3.2
apw (ttnc, Unc) h(l By vnc>L2(9) or all vne € V(T) (3.2)
and upy = (1 — Apk2hE") " uye [24, Prop. 2.5, § 2.3.3].

Outline of the proof of Theorem 3.1.c. The outline of the proof of Theorem 3.1.c
provides an overview and clarifies the various steps for a reduction of ¢; to ¢s,
before the technical details follow in the subsequent subsections. The coefficient
(1 - )\h/c,%lh%?')_l =148 € Py(7) with A, = XAj(k) on the right-hand side of
(3.2) is frozen in the intermediate EVP.

Definition 3.6 (intermediate EVP) Recall (e, )45 = ((1 + §)e, );2q. Let
(1, ¢) € RT x (V(7) \ {0}) solve the (algebraic) eigenvalue problem

apw (@, Une) = (@, vnc)1+s forall vpe € V(T). (3.3)

The two coefficient matrices in (3.3) are SPD and there exist N := dim V(7') (alge-
braic) eigenpairs (i1, ¢1), ..., (un, ¢n) of (3.3). The eigenvectors ¢1, ..., ¢y are
(e, ®)14s-orthonormal and the eigenvalues ;1] < --- < uy are enumerated in ascend-
ing order counting multiplicities.

Since Aj, is an eigenvalue of the rational problem (3.2), A, € {u1, ..., un} belongs to
the eigenvalues of (3.3). Lemma 3.9 below guarantees the convergence | j —An ()| —
0 as hpmax — Ofor j = 1,...,k + 1. Hence there exist positive &2 < min{l/2, &1}
and Mg such that 7 € T(ey) implies

(H1) wpx = rp(k) is a simple algebraic eigenvalue of (3.3),

Y
(H2) max —* < Mq.
=N The — ]

J#Fk

The intermediate EVP and the following associated source problem allow for the
control of the extra-stabilization.

Definition 3.7 (auxiliary source problem) Let z,c € V(7) denote the solution to
apw(Zne, Une) = (AU, vnc)14s Torall vy € V(7). 3.4
For any 7 € T(g7), Sect. 3.3 below provides Cy, C> > 0 that satisfy

lu —uncllz2@) < Cillu — zncllz2(q)> (3.5)

—1
Cy Il = znell2(@) < hpaxlllu = znelllpw + 18Aull 12 (q).- (3.6)
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Adaptive guaranteed lower eigenvalue bounds... 11

The proof of (3.5)in Sect. 3.3 extends [18, Lem. 2.4]. The proof of (3.6) utilizes another
continuous source problem with the right-hand side u — Jz,c. For all 7 € T(ey),
Sect. 3.4 below provides a constant C3 > 0 such that

C3 11t = znelllpw < 11w = Tulllpw + 1822 L2(g).- (3.7

The proof of (3.7) below rests upon a decomposition of |||u — chlllgw into terms
controlled by the conditions (I1)—(12) and (J1)-(J3). Since Amax < 1, the combination
of (3.5)—(3.7) reads

lu = uncll 2@y < CrC2(Cahuglllu = Tulllpw + (1 + C3)[82ull 2(q)).  (3.8)

The control of [|§Au | ;2 g on the right-hand side of (3.8) consists of two steps and leads
tocy = 2)»2/<,%lC1C2(1 + C3) and &3 := min{e;, (201)’1/2’"} A triangle inequality
l6Aullr2(q) < I8A(u — unc)llp2(q) + [I8AUncli2(q), the estimate § < 2AKmh2m”;X i
Remark 3.3, and (3.8) imply

1 C3h2n
||3)~”||L2(Q) Tgmh;dxﬂm - IM|||pw + Clhﬁl";X”(”\“”LZ(Q) + ||5)»Mnc||L2(Q)~
The choice of &3 shows clhmax |8Aull 2y < lI8Aullp2(q)/2 for any T € T(e3).
Therefore

6Aull 2y < C3/(1 + C)hG |t — Tulllpw + 2118Auncll 2y (3.9)

Notice that [|Suncl12(q) < 2aK2h™ 1A% uncl 12(q) (from Remark 3.3) allows for the

m”"max
application of an efficiency estimate

CZI ||hn71'14nc||L2(sz) = hﬁax”’l - Mnc||L2(Q) +7! [Nu — Tulllpw (3.10)
based on Verfiirth’s bubble-function methodology [49]; see Sect. 3.4 for the proof of

(3.10). Abbreviate ¢p := 4A2K +C1C2(14C3)Cq and C5 := 2C1C2(2C3 +4AK,n(1 +
C3)C4) The combination of (3 9)—(3.10) controls [|dAull2(g) in (3.8) and shows

Cs
lu = tnell 2@y < 5 hipaxlle = Tulllpw + bl — tnell 2@y G.11)

The choice &4 := min{es, (2c2)™"/?"} < 1 shows c2h2 |lu — uncll 2y < llu —
Unc || Lz(Q)/Z for 7 € T(e4). This and (3.11) show the central estimate in Theorem 3.1.c

llu — uncllz2(@) < Cshfaxlllu = Tulllpw- (3.12)

Note that (3.12) and Corollary 2.1.b from (12) imply the convergence ||u—uncll2(q) =
0as hmax — 0. This and some &5 < g4 ensures b(u, un.) > 0forall 7 € T(es). Based
on this outline, it remains to prove (3.5)—(3.7), (3.10), and hence (3.12) and to identify
Co, ..., Cq below. The remaining estimates in Theorem 3.1.c follow in Sect.3.5.
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12 C. Carstensen, S. Puttkammer

3.2 Intermediate EVP

Recall &; := min{egg, (2)»k+1/c,%l)’1/(2m)} and that (A;, up) denotes the k-th eigen-
pair of (1.2) with &, = Ap(k) > 0, up = (upw, tnc) € Vi, luncllz2 (@) = 1, and
b(u, une) > 0. Recall the intermediate EVP (3.3) and that (A, upe) € RT x V(T)
solves the rational EVP (3.2).

Remark3.8 (|| @ ||145 ~ || @ ||L2(Q)) The weighted norm || e ||14+5 is equivalent to
the L2-norm. Since Ahxz 2m Ak+1kisf’" <1/2and 1 < (1 + 8)|7r < 2 for all

T €T € T(ey), ||vnc||Lz(9) < llvnclli+s < \/E”UHC”LZ(Q) holds for any vy, € V(7).
O

Lemma 3.9 (comparison of (1.2) with (3.3)) Given T € T(ey), let Ay (j) denote the
J-th eigenvalue of (1.2), and v the j-th eigenvalue of (3.3) forany j =1, ..., k+1.
Then

(1 = hy1kh

I/\

(= M GKEREm Y j < An(j) <y + 2022 R
(3.13)

max)

The upper bound Ap(j) < u; + Zk mhrzlﬁx holds for all j = 1,...,N; N =
dim V(7).

Proof of the upper bound Since the eigenfunctions ¢1, ..., ¢ of (3.3) are (e, ®)145-
orthonormal, apw (¢, ¢¢) = ;8¢ and (¢, pe)14s = e forall j,£=1,..., N.Set
Y= 1 +8¢; and Uj := span{(Yr1, ¢1), ..., (¥, ¢;)} C Vp. Since b/}, ¢¢) =

(@), de)1+s = 8¢, the functions ¢, . .., ¢y are linear independent and so dim(U ) =
j forany j = 1,..., N. The discrete min-max principle [7, 45] for the algebraic
eigenvalue problem (1.2) shows

In(j) = ma?\i ap (v, vp) /by (vp, vp). (3.14)
J

The maximum in (3.14) is attained for some v, = (¥, ¢) € U; \ {0} with ¢ =
) 1061Z¢e e V(DL ¥ =Y ¥ = (1 +8)¢ € Pu(T),and 1 = [9]},; =
Sl o Then by (o, v) = (1 + )12, = 1 and an(on, v) = [1IBIII3, +
o h" (W= )2, - Since apy (@, o) = pjdjeforl, j=1,...,N,3j_ of =

1implies [|1¢[112, = Y7_; a2ue < pj. Since 8 = Auk2h2" (1 + 8) ae. in Q. the
stabilization term in aj, reads

iy BT W = D20y = e BT 8172 0 = Mok I (1 + 8P 2 -

The bound 1 +§ < 2 from Remark 3.3 and [|¢||;+s = 1 imply [|A%-(1 + 8>

Lz(Q)
2h%" . Consequently, ||K_1hT Y — @)|? 2@ = < 222 ,%lh%”’ax The substitution of

max*
the resulting estimates by, (vy,, vp) > 1 and ay, (vy, vy) 5 wj+ ZAZ ihfn’ﬁx in (3.14)
concludes the proof of A,(j) < u; +2)»2 2p2m in (3.13) forj=1,...,N. O

m max

@ Springer



Adaptive guaranteed lower eigenvalue bounds... 13

Proof of the lower bound This situation is similar to [27, Thm. 6.4] and adapted below
for completeness. For j = 1, ..., k+1,let (A4 (j), ¢n(j)) € RT x V}, denote the first
by-orthonormal eigenpairs of (1.2) with ¢ (j) = (Ppw(j), $nc(j)). The test functions
(Vnes Une) € V(T) x V(T) C Vi and (vpw, 0) € Vj, in (1.2) show

apw((pnc(j)a Une) = A (])b(¢pw(J)’ Une) and
bow () — buc()) = n Gk hZ dpw (). (3.15)

For& = (§1,..., &) € R with Y/_ &7 = 1, set

J J J
Une 1= ) (), vpw = Y Egpw(®),  and  wpy =D Ehn(Opw (D).

=1 =1 =1

Since (¢pw(a),¢pw(ﬁ))Lz(Q) =g fora,p=1,....k+1, lvpwllr2@) = 1 and
lwpwllz2@) = +/ Zi:l Sgkh(é)z < An(j). The combination of this with (3.15) and
a Cauchy—Schwarz inequality leads to |||an|||!2)W = b(wpw, vnc) < An(J)llvncllz2 ()
and vpy — Ve = K,%h%f" wpw- This and a reverse triangle inequality result in

0 <1—ap(juihim <1— Kr%1hr2nrzx”wPW“L2(Q)

212
< [lvpw — Kthmwpw”LZ(Q) = |loncll2)- (3.16)

This holds for all voe € U; := span{¢nc(1), ..., ¢nc(j)} C V(T) with coefficients
(¢1,...,&j) € R/ of Euclidean norm one. Hence dim(U;) = j and the discrete
min-max principle [7, 45] for (3.3) show

. 2 2
nj = X o Hvnelllpw/ lvne 145 (3.17)

Let vy = Zé:] aypnc(£) € U; denote a maximizer in (3.17) with Zé:l a% = 1.
The combination of |||vnc|||12)W < M(Dllvnellz2(q)> 3.16)=(3.17), and [lvncl 120y <
[lone|l1+4+s from Remark 3.8 provides

2 2 .

i < |||vl’1C|||pw < |||v1’1C|||pw < )\.h(j)
J = 2 = 2 = i :
lonelles ~ Monelfagg, — 1= 2n()imhii

Recall A5 (j) < Ap(k + 1) < Agy1 from the lower bound property in Theorem 3.1.b
to conclude the proof of the associated lower bound forall j =1, ..., k. O

The subsequent corollaries adapt the notation p;, A5(j), A; from Lemma 3.9.

Corollary 3.10 Forany j =1,...,k+ 1, it holds | — Ap ()| + |lj — Aj] — Oas
hmax — O.

@ Springer



14 C. Carstensen, S. Puttkammer

Proof The a priori convergence analysis [24, Thm. 1.2] implies limy,, 0 Ax(j) —
Aj.Lemma 3.9 shows |4, (j) —pu;| < h2" k2 max{212, A(mjt — 0ashpa — 0.

max'*m
O

Corollary 3.11 There exists 0 < & < min{l/2, &1} such that (HI)—(H2) hold for
T € T(ey).

Proof Corollary 3.10 and A, = Aj(k) € {uy1,...,un} lead to &, > 0 such that
A = Ap(k) = i hasthe correctindex k forall 7 € T(g,). Italsoleadstosome g, > 0
such that pug—1 < pr < pg41 forall 7 € T(ep). Then g := min{l/2, &1, &4, &} and
T € T(ep) imply (H1)-(H2). O

3.3 Proof of (3.5)—(3.6) for the L2 error control

Recall Mg from (H2), § from Remark 3.3, the norm equivalence from Remark 3.8,
and the auxiliary source problem (3.4).

Proof of (3.5) Recall the following straightforward result from [18, Eq. (2.8)]: Any
u,v e Lz(Q) with ”M”LZ(Q) = ”v”LZ(Q) =1 Satisfy

(1 + b, v)) = I ) = 2min fu — vl g,

2

This, a triangle inequality, £ := (Znc, Unc) 1+sl1Pkll72 )

and vy := Zne — tupc lead to

272w — unell 2y < llu — tuncll 2y < I — Znell 20y + llvnell2¢y-  (3.18)

Since the eigenvectors ¢1, . . ., ¢y of (3.3) are (e, @) s-orthonormal and form a basis
of V(7), there exist Fourier coefficients aq, ..., ay € R with v, = ijzl aj¢; and

||Unc||%+5 = Z;-v:l ajz.. Since (Ap, unc) solves (3.2), (H1) implies uy. € span{¢y} with
||Mnc||L2(Q) = 1. Hence uy. = :t¢k/||¢k||L2(Q), r = i(zn01¢k)l+5”¢k”L2(Q)a and
(ttne, Pr) 145 = :t||¢’k||221(9). Consequently,

o = (Vne, P) 148 = (Znes Pr)1+s — t(Une, Pr)145 = 0.

Since (upe, Pj)145 = Oforall j = 1,...,N with j # k, aj = (Unc, j)1+s =
(Zne» ®j)1+s- Since ¢; is an eigenvector in (3.3) and zpc solves (3.4), it follows

1 A
aj = (Zne» ¢j)1+8 = _apw(znc» ¢j) = —(u, ¢j)1+8-
M M
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Hence (4 — Zne, $j)145 = (10 j /A — 1)aj. These values for the coefficients «; and the
separation condition (H2) imply

A
loncll} s = Y- a? = 3 ||l = zac. )14l
SR T

< M6 ) (4 — zne, @d)145
J#k

for asign in oz} € {#a;} suchthat |(u —znc, @j@;)145] = (U —Zne, a}¢j)1+3 and with
the abbreviation ) k= Z;V=1, ke This and a Cauchy—Schwarz inequality show

-1 2
Mg Monellt s = (0= znes Y ots) = e = znclligsllvncliss.
J#k

The norm equivalence in Remark 3.8 proves [[vncllz2(q) < llvnclli+s < V2Mg|lu —
ch||L2(Q). This and (3.18) conclude the proof of (3.5) with C; := ﬁ(l + \/§M6). O

Proof of (3.6) Given the solution z,c € V(7)) to (3.4), let w € V := H}"(2) solve
a(w,p) =bu — Jzne, @) forallp € V. (3.19)

Since u — Jzye € V C L?(R), the elliptic regularity (2.1) guarantees w € H"17 (Q)
and

||U)||Hm+o(g2) <C(o)llu— Jch”LZ(Q). (3.20)
The combination of (3.20) with Corollary 2.1.b shows

max

h
lw = Twl|[pw < (
T

o h o
max
) lwll o (@) < C(o) (T) lu = Jznellr2(q)-

(3.21)
The test function ¢ = u — Jzj in the auxiliary problem (3.19) leads to
lu = Tznel G2 gy = @G, w = JTw) + apy (W, Zne = I 2nc)

+a(u, JIw) — apw (W, Znc). (3.22)

Since (J1) asserts I (w — JIw) = 0, Corollary 2.1.c and a triangle inequality show

a(u,w — JIw) = apw(u, (1 = I(w — JIw))
< llu — znclllpw (1w = Twlllpw + [[[{w — JTw]||pw)-
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16 C. Carstensen, S. Puttkammer

Then (J2) implies that a(u, w — JIw) < (1 4+ Mo)||lw — Tw||lpwlllu — znclllpw-
Corollary 2.3.c proves for the second term in the right-hand side of (3.22) that

apw(W, Zne — JZne) < Mall|lw — Iw|||pw|||u - ch|||pw~

Corollary 2.1.c ensures apw (W, Zne) = apw({w, Znc). Since (A, u) is an eigenpair of
(1.1) and zp satisfies (3.4), this implies

a(u, JIw) — apw(w, zne) = b(Au, JIw) — apw(Tw, Znc) = Ab(u, JIw — Tw — §1w).

Corollary 2.3.b shows b(u, JIw — Tw) < Mox2h2" ||lu — zZnel|lpwll|w — Tw|||pw-
The discrete Friedrichs inequality

lvnell z2(@) < Carlllvnclllpw for all vae € V(T) with Cap := Cr (1 + M2) + Mol
(3.23)

isadirect consequence of the Friedrichs inequality [[v[|;2(q) < Crll|v|||foranyv € V
and (J2); cf. [19, Cor. 4.11] for details in case m = 1; the proof for m = 2 is anal-
ogous. This, (I2), and the boundedness of ITy imply C(ﬁ:l w2 < IHw|llpw =
[Tlo D" wll12(q) < llwllam(g). The Cauchy—Schwarz inequality leads to

—b(u, §1w) < ||8Aull 2oy Hwll2q) < Carlldrullp2g)llwll gm+e (@)-

This bounds the last term on the right-hand side of (3.22). The substitution in (3.22)

and Ak2h2m < 1/2 result in

||lu — JZI]C”%Z(Q) < +5M2/2)|||w - Iw|||pw|||u - ZﬂC'”PW
+ CarllSrull 2@ llwll gmto () -

This and (3.20)—(3.21) imply
C) M= Jznell 20y < Crmax /77 (1 + 5SMa/2) 11 — znclllpw + Carl82ull 2.

Corollary 2.3.aimplies [|znc — J Znell 12(q) < M2kmhipax 114 = Zne|||pw- This, 0 < o <
1 <m, hmax < 1, and a triangle inequality show

lu = zncllp2¢) < 1V 2ne — Znellp2¢q) + 1 — Jznell L2()
< Co(MGa Il = znclllpw + 182ull2q))

with the constant C; := max {C(c)(1 4+ 5M»/2)/7° + Makp, C(0)Car}. o
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3.4 Proof of (3.7) and (3.10) for the energy error control
Recall § from Remark 3.3 and that z,. € V(7)) solves (3.4).

Proofof (3.7) Elementary algebra with apw(znc,#) = dpw(Zne, Tu) from
Corollary 2.1.c shows

Ml = znclll5y = au, u — JTu) + apw (4, JZne = 2Znc)

+Cl(1/t, Jlu — Jch)+Clpw(ch, nc — II/t) (324)
Corollary 2.1.c and Corollary 2.3.c control the first two terms in the decomposition

a(u,u — J1lu) + apw(u, Jznc — Zne)
= apw(u, u — lu) + apw(u, Tu — JIu) + apw(u, JZne — Znc)
< (1+ M)\l — Tul| 3, + Mallu — Tull|pw |l = Znelllpw-

Recall that (&, u) is an eigenpair of (1.1) and zy satisfies (3.4). Consequently,

a(u, JIu — Jzne) + apw(ch» Zne — Iu) = b(Au, JIu — Jzne + (1 + 8)(znc — Iu))
=1b(u, (J — D)({u — znc))
+ Ab(Su, zne — Tu).

Corollary 2.3.b, k2 Ah2" < 1/2, and a triangle inequality show

Ab(u, (J — D(Tu — zne)) = M2/2|[|u — Tul[lpw ([l — Tulllpw + |14 = Znelllpw)-

Since Cauchy—Schwarz and triangle inequalities show b(8Au, znc —Iu) < [[6Aul| 2,
(lu —znellL2(q) + Il — Tul| 12(q)), (I1) provides the first and (3.6) the second estimate
in

b(8au, zne — Tu) < [|82ull L2y (It — znell 2 () + Kkmhimax 11w — Tulllpw)
= 8Aull 20y (Cohiux 1t = znelllpw + C2lldAull L2 (e

+ Kn‘lhgaxnlu - IMl”pw)

Since Ay, 1w —Tul|lpw < ha [l —2Znell|pw from Corollary 2.1.a, a weighted Young
inequality shows b(8Au, zne — Tu) < ((C2 4 km)*hpgyy + C2)|I82u]17, @ Il —

Znell |§W /4. The substitution of the displayed estimates in (3.24) shows
Ilu — znclllgw <(I1+3M2/2)||lu — IulllfjW +3M>/2 |[lu — Tulllpw!llu — znc|llpw

+ ((C2 + ko) gy + CONISMul| 72 ) + 11 = zncl Il /4
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18 C. Carstensen, S. Puttkammer

conclude the proof of (3.7) with C7 := 2 max{1+3M>/2+9M>? /4, (Co+km)*h25 +
Cy}. O

This and 3M2/2|[Ju — Tul||pw ||l = zncllpw < OM3 /4[lu— Tull[3y + 11w —znc 15 /4

Proofof (3.10) The proof of the efficiency estimate of the volume residual is based
on Verfiirth’s bubble-function methodology [49], comparable to [3, Thm. 2], [33,
Prop. 3.1], and given here for completeness. Let ¢, € S Y(T) := P(T)NC(R) denote
the nodal basis function associated with the vertex z € V. Forany T € 7T, let by :=
q4m [Lever) ¢ € Pam(T) N Wy"°°(T) C V denote the volume-bubble-function
with supp(br) = T and [|br|lc = 1. An inverse estimate || pll 27y < cpllpllp, for
any polynomial p € P, (T) leads to

-2 2 2
Cp ||unc||L2(T) = ||unc||bT = (Unc, u)br — (Une, U — Mnc)br' (3.25)

The Cauchy-Schwarz inequality and [|b7llcc = 1 show (unc,u — unc)p, =<

luncllp2¢ryll —uncll 27y Anintegration by parts proves fT D" (bruye) dx = 0since
brunc € HY'(T), ie., D™ (brupc) is Lz-orthogonal to Py(T). Recall that (A, u) is an
eigenpair of (1.1) and the support of bruy is T'. This, (I12), and the Cauchy—Schwarz
inequality result in

Ab(u, brunc) = apw (U, brine) = (D™ u, D" (brunc)) 12(1)
<|u-— [u|Hm(T)|bTunc|Hm(T)‘

An inverse estimate for polynomials in Ps,, (T') with the constant cipy and the bound-
edness of by show Ab(u, bruy) < cinvh}mm — Tulpgm(T) ||unc||Lz(T). This provides
cb_zh’z’f luncllp2(ry < h”;||u—um||Lz(T)+cim,)F1 |u—Tu|gmryforallT € T in(3.25).
The sum over all T € 7 concludes the proof of (3.10) with C4 = cg max{l, cijpy}. O

3.5 Proof of Theorem 3.1.c

Proof of (3.12) for e4 > 0 Recall ¢| := 2)L2K,%1C1C2(1 + C3) and (3.8) as a result of
(3.5)—(3.7). A triangle inequality, Remark 3.3, and (3.8) show

2,242
||8)"u||L2(Q) <2 Kmhm";xllu - Mnc”LZ(Q) + ”8)‘unc||L2(Q)

Clc?’hrzrgx o 2m
< T@hm‘”"”" — Lulllpw + c1hpax 182ull 1 2(q) + 18Auncl 2(g)-
Since 0 < &3 := min{ez, (2¢1)~/#"} ensures C1hr2n"§x < 1/2 for all 7 € T(e3),

N 2m
the previously displayed estimate reads [§Au;2(q) < ”fj@;‘”* he = Tulllpw +

8Aull 12(c2)/2 + I8Aunc |l 12(q)- This implies (3.9). The bound (3.9) for [|SAull;2g)
recasts (3.8) as

Cr'C M = nell 12y < 2C3hGu Il — Tulllpw + 2(1 + C3)A[Suncll 12 (-
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Remark 3.3 and (3.10) control the last term in

k2 C) Muncll 20y < Cp A lh S tncll 12

2
=< Mgl — uncll 22y + Pimax 1w — Tulllpw.

Recall that ¢; := 4A2K31C1C2(1 + C3)C4 and &4 := min{es, (262)_1/2’"} < 1 ensure

C2h§{gx < 1/2.Hence thelasttermin (3.11)is < [[u—unc|l;2(q)/2 and can be absorbed.

This concludes the proof of (3.12) with Cs := 2CC2(2C3 + 4k2A(1 4+ C3)C4). O
Recall 0 < &5 < g4 such that b(u, upc) > 0 for any 7 € T(es).

Proof of Theorem 3.1.c for es > 0 Recall A, < A and [lull;2(q) = luncll2(q) = 1.
The continuous eigenpair (A, u) in (1.1) satisfies A = ||u|||%. The discrete eigenpair
(An, tne) solves (3.2) and 50 Ap = [[[uncll |5y /Iltnc I Ty5 With [luncllz2qy = 1. Then

it — tnell2y = A — 2apw (i, ttn) + Apltnc I3, s and
p 3 +

litnellT 5 — 1= bBttne, tne) = lluncll3-
This and elementary algebra show for the left-hand side of Theorem 3.1.c that

LHS := 4 — A + [l — ttnelllgy + Nttncll§ = 24 — 2apw (i, tne) + (1 + An) llutnc I3

Since u is the eigenfunction in (1.1) and 2b(u, u — unc) = |lu — unc||iz(9) from
luncll 2@y =1 = llullz2(q), it follows

A= Ab(u, unc) + Ab(u, u — unc)
= Ab(u, tne — Jttne) + apu (, Jutne) + 1/2 [l = ttnc |72 gy -

The combination of the last two displayed identities eventually leads to

LHS = (1 + a)lluncl§ + Miu = uncll72 gy + 22D, tne — Jutne)
+ 2apw(u, June — Une). (3.26)

Recall 2ik2h?" < 1. The combination of Remark 3.3 and (3.10) implies that

m’"max —

lunclls < ~V2kmA 2| W5 uncll 2y < Callu — tnell 2y + v/2/Mem Calllu — Tul|lpw

and (3.12) controls [lu — uncll12(q) < Cshiux!llu — Tul||pw. Corollary 2.3.b asserts

max

2Ab(u, une — June) < Ma||lu — Tulllpwlllu — tnclllpw. Corollary 2.3.c shows
apw(, June — une) < Mal|lu — Tulllpwlllu — wnc|||pw- Since A; < A, these esti-
mates lead in (3.26) to

LHS < ((1+A)C3(Csh%uy + v/2/Mem)* +1C2R2 ) u — Tul||?
+3Ma|||u — Tulllpw!ltne — ulllpw-
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20 C. Carstensen, S. Puttkammer

A weighted Young inequality and the absorption of |||up. — u]| |I%W /2 conclude the
proof of Theorem 3.1.c with Cy := max{CS, 2((1 + )\)C4(C5hmdx + «/2/)u<m)2 +
ACER2e ) +9M3). O

5" max

4 Optimal convergence rates

This section verifies some general axioms of adaptivity [12, 26] sufficient for optimal
rates for AFEM4EVP and prepares the conclusion of the proof of Theorem 1.1 in
Sect. 5.

4.1 Stability and reduction

The 2-level notation of Table 1 concerns one coarse triangulation 7 € T and one fine
triangulation 7 € T(7). Let (A, u) € RT x V denote the k-th continuous eigenpair of
(1.1) with a simple eigenvalue A = A and the normalization [u| ;2(q) = 1. Choose

&5 > 0 as in Theorem 3.1, suppose 7 € T(es), and let T e T(7) be any admissible
refinement of 7.

Definition 4.1 (2-level notation) Let (A, up) € Rt x V, (resp (up, ip) € RT x Vi)
with up = (upw, tnc) € Vi 1= Pu(T) x V(T) (resp. Up = (Upw, lnc) € Vh =
P, (T ) x V(7)) denote the k- th dlscrete eigenpair of (1.2) with the simple algebraic
eigenvalue A, = Aj (k) (resp. Ah = )»;, (k)), the normalization ||ty || 2@ = 1 (resp.
||Mnc||L2(Q) = 1), and the sign convention b(u, unc) > 0 (resp b(u, Une) > 0). Recall
hmax ‘=maxp g hr < hmax '= maxyer hr < e&s, Ah, Ah < X from Theorem 3.1.b,
and § from Remark 3.3 with its analogue 3= (1 - N KmhzT’") I_1e PO(T) on
the fine level. The constant Cs := 2)«31 satisfies § < C,;hzT’" and 8 < Cgh%’_n. Recall
the estimator (7' for any T € ] from (1.4) and define 7>(T), forany T € T with
volume |T'| and the set of faces F(T'), by

B(T) = TP Al T oy + 1T1V? D" IDpylinelre X vEITapy. 41
FeF(T)

The sum conventions 7° Z(M) =Y rem 2(T) for M C T and 7 (M)
Do 2(T) for M c T from Table 1 apply throughout this section. Abbrev1ate
the distance function

83T, T) := lInttne = Mnthncl 32 g + litne = Tncllljy- 42)

Theo/r\em 4.2 (stability and reduction) There exist A1, Ao > 0, such that, for any T
and T from Definition 4.1, the following holds

(A1) Stability. |n(T NT) = 5T NT)| < Ms(T, T),
(A2) Reduction. 7(T\T) < 27 Y20(T\T) + A28(T, 7).
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l‘able 1 : 2-level notation with respectto 7 € T(¢) (left) and an admissible refinement
T € T(7) (right)

(Ap,up) € RY x V, k-th eigenpair in (1.2) (/):h, iy) € RT x Vh k-th eigenpair in (1.2)
with uy, = (upw, tnc) € P (T) x V(T) with @y, = [@pw, finc) € Pu(T) x V(T)
”unCHLZ(Q) =1, b(“s Mnc) > O, )\h <X Hil\nc”LZ(Q) = 1, b(”s/u\nc) > vah <A
hmax = maxpe7 hr hmax = max; 5 hr

8= (1 —ape2h3 =1 —1 < Csh2m <1 s:=q —th,%hg")—l —1< c(;hz?m <1
n2(T) from (1.4) for T € T 52(T) from (4.1) for T € T

M) = Y pepq 12T for MC T PM) =Yg g 12T for M S T

Proof A reverse triangle inequality in R for the number L =17TN T | of tetrahedra
in 7 N7 and one for each common tetrahedra T € 7 N 7 and each of its faces
F € F(T) lead to

s ~ 412 ~ ~
@D =A@ D = > (ITP"Plsne = el
TeTnT

+ |T|l/3 Z ”[D]’)nw(unc _ﬁnc)]F X ‘)F”iz(F))'
FeF(T)

The discrete jump control from [26, Lem. 5.2] with constant Cjc(£) (that only depends
on the shape-regularity of T and the polynomial degree £ € Np) reads

DATI Y llglFl sy < Cie®ligll7ag, forany g € Pe(T).
TeT FeF(T)

The combination of the two displayed estimates concludes the proof of (A1) with A? =
max { maxre7; |T|2”’/3, Cjc(O)z}. For any tetrahedron K € ’T\’?, let ’?(K) ={T e
T7:TCK } denote its fine triangulation. The newest-vertex bisection guarantees
|T| < |K|/2 for the volume |T| of any T € 7 (K). This, a triangle inequality, and
(a+b? <0+ pB)a*+0A+1/B)b*fora, b>0, g =2 —1> 0show

PTK) <272 (K) +A+1/B) Y. (|T|2'"/3||xhunc — onttne 7 4
TeT (K)

HITI Y NDjpyGine = wn) 1 X VEI2a )
FeF(T)

The summation over all K € 7 \ 7 and the above jump control conclude the proof
of (A2) with A3 = 21/6/(21/6 — 1) max { maxzcg; |T|*"/3, Cjc(0)*}. The arguments
for (A1)—(A2) are similar for other problems; cf., e.g., [12, 20, 22, 26] for more details.

O
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22 C. Carstensen, S. Puttkammer

4.2 Towards discrete reliability

Given the 2-level notation of Definition 4.1 with respect to 7 and T et Ry :={K €
7T : 3T € T\? with dist(K, T) = 0} C 7 denote the set of coarse but not fine
tetrahedra plus one layer of coarse tetrahedra around. Lemma 4.3—4.5 prepare the
proof of the discrete reliability in Theorem 4.6 below. Let 7:V + V(’/T\) — V(’?)
denote the interpolation operator on the fine level of 7T so that (I3) and a Cauchy—
Schwarz inequality show, for any v € V + V(”f) andanyw € V 4+ V(7T) + V(”Z\' ),
that

[b(( — Dv, w)| < |I(1 — I)UHLZ(T\'?) ”w”LZ(T\’?)’ @3)
(g (1 = Tyo, w)| < 100 = Dol 27 | Dl 2 7

Lemma 4.3 (distance control I) There exists Ce¢ > O such that any T € T(es) and the
difference e := lne — Uy satisfy

-1 2 2 2 2
Co llellipu = I1Dpy Gtne = Junc) 1227 7, + WG Attncl 2 2, + el 20

HlSuncll 32 ) + 187Encll7 5 g -

Proof Corollary 2.1.c shows apy(e,ine — June) = apw(tnc, lne — Tjunc) -
Apw (unc, I (thye — Junc)). Since (Ap, unc) and (Ay, Une) solve (3.2), this and (J1) lead
to

apw (e, Tine — Jttne) = b(hntine, (1 +8)(@ne — 1Jtnc))
— b(hpttne, (14 8)(ITine — ttne))
= b(Rhline — Mhltnes €) + b(Rptine, 8€) — b(Apitne, )
+ b(hpiine, (1+8) (tne — TJttne))

+ b()\hunm (14 8) (tne — [ﬁnc)). 4.4
Elementary algebra with |[unc|l;2(q) = ”ﬁnC”LZ(Q) = 1 shows (as, e.g., in [13,
Lem. 3.1])
~ o+ A h—Ah, o~ ~
b(ApUne — Apline, €) = Tllelliz@) + Tb(unc + Unc, Une — Unc)
. o + My

Cauchy—Schwarz inequalities verify

b(hptine, 8¢) — b(upttne, 8€) < llell 2 (qy (Rnll8Tne | L2y + M lISttnell 12(c))-
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Since 1 + 8 < 2 and A, < A from Table 1, the right inverse property (J1) and (4.3)
result in
b((l +’8\)5\\h74\nm Unc — Tjunc) = b((l “l‘?s\)xhﬁnc’ - T)Junc)
< 2||hl%1')tﬁnc ”LZ(']‘\?) ”h'}m (I = I)Junc ”Lz(f]'\"f)-
The triangle inequality ||h¥)»it\ncl|L2(T\f) < hpaxrllellz) + ||h?)»uncl|L2(T\?)

and A /A, <2 from Theorem 3.1.a imply ||hgkuncl|L2(T\7A-) < 2||h§khunc||L2(T\?).
Since the interpolation operators I and Tsatisfy (I3)—(I14), it follows that

”h'}m(l - I)J’/lnc”LZ(T\ff') = ”h'}m(l - I)Ijunc||L2(T\f')
< kall D (1 = DT ttnell 27\ 7

Recall Df,"wunc € Py (T, R3m). The condition (I12) and the Lz-orthogonal projections
I (resp. ﬁo) onto Py(7) (resp. Po(7)) lead to the estimate

kg A" (I = D Juncll 27y < (Mo = To) D™ Tunel 2077
= ||(ITp — HO)D{)"W(J”HC - unc)||L2(T\f') = ||D;,nw(~]unc - unc)||L2(T\f')-

The estimate (4.3) and § < 1 from Table 1 imply the first inequality and (I4) and
Corollary 2.1.a the second in

b(Anttne, (14 8) (line — ITine)) = b(hpttne, (1 +8)(T — Ditnc)
= 2||h%1*)~hunc||L2(T\f*) ||h'}m (Wne — Iﬁnc)”LZ(T\?)

=< 2Kd"h"§l')‘-huncl|L2(T\ff‘) Il |e|||pw-

The combination of the six previously displayed estimates and Ah,xh < X lead in
(4.4) to

apw(ea Tine — Jtne) < 2Kd||D£)nw(unc - Junc)||L2(T\'f') ()‘h’rgax”e”Lz(Q)
+ 2||hr'5!')"hunc||L2(7'\'f')) + )‘”e”Lz(Q)(”e“Lz(Q) + ||8unc||L2(Q)
+ 18tncll 20)) + 2kalllelllpw A Antncl 277

Additionally, Corollary 2.3.c and (4.3) show

apw(ey June — tne) = apw((l — De, June — tne) = apw((T_ Ditne, June — unc)

= “D;nw(l - I)e||L2(7—\,j>) ||Dg1w(unc - Junc)||L2(T\f')-

Condition (I2) and the boundedness of 1y show ||DI',"W(1 — I)e||L2(T\¢) =< lllelllpw-
This and the combination of the two previously displayed estimates with a triangle
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24 C. Carstensen, S. Puttkammer

inequality prove

|||e|||r2JW = apw(e, June — tnc) + apw(e, Une — Jitnc)
< 1Dy (ttne = Junc) |l 27 (el lpw + 2karhipayllell 2 (o)
+ dicallhg Antincll 2 7y) + Mell 2 (lell 2
+ 18uncll 2 + 18Tncll 12(q)) + 2kalllelllpwllA% Antinell 20\ 7
< (L 44i] + i ghhom )| D, (ne — June) |12

max

LZ(T\T) + ||3unc||L2(Q)
+ ||3unc||L2(Q) + (1 + A + )\'2/2)”6”L2(9)

+ (1 + 43| 2 ,\humuLz(T\T)+|||e|||pw/2

with weighted Young inequalities in the last step. This concludes the proof with C¢ :=
2max{l + 4k + k22202 1+ A+ 22/2). O

4.2.1 Reliability and efficiency

A first consequence of Lemma 4.3 is the reliability of the error estimator 1(7") from
(1.4).

Theorem 4.4 (reliability and efficiency) There exist Crel, Cefr, and g6 > 0 such that
Cot n(T) = |llu = tnelllpw < Cre11(T) holds for T € T(es).

Proof of reliability L.emma 4.3 holds for any refinement T e T(7T) of T € T(es)
and we may consider a sequence 7 = 7; of uniform mesh-refinements of 7". The
reliability follows in the limit as hmX — O for ¢ — oo and |||lu — unc| [lpw — 0 from

Theorem 3.1.c. The left- hand side of Lemma 4.3 converges to Cy |||u — tnc|llpw-
On the right-hand side, ||8unc||Lz(Q) < Cmaax converges to zero and |[le][z2(q) —
e — tncll 2 as Timax — 0. Moreover the shape-regularity hy < Cq|T|'/3 for
T €T eT,(J2),and |[Suncll2(q) < 2K%h$axl|h’7"—khuncl|Lz(Q) show

1Dy (ttne = June) 72, + I Anttncl G2, + 18uncll7a g
< max{My, CZ"(1 + 4w h2m ) n*(T).

m "max

For the remaining term on the right-hand side, (3.12) and Corollary 2.1.a show
C5 Ml = tnell 20y < Mipax 1 = Tatlllpw < Al — tenel -

A reduction to g¢ := min{es, (2C2C6) 1/(20)} such that C5 C6hmax < 1/2 allows
for the absorption of C2C6hmax| [lu — tncl| |pW < |llu — uncll| W/2 and concludes the
proof with Crel = 2Ce¢ max{M,, Cszrm(l + 4Kd h2m ). O

m "max
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Proof of efficiency The condition (J2) guarantees

Mi/M3 Y ATV Y WDpunel F X vElIgapy < min lllo = unelllgy
TeT FeF(T)

2
<l = tnellZy

The combination of |T|1/3 < hr, Ay < A, and the efficiency (3.10) with |||u —
Tul|lpw < Illu — unc||lpw from Corollary 2.1.a implies that

AT P ntnelF gy < WG Attne 72 g
TeT

2
= 2Cz()‘zhgnm‘lx” MﬂC”iZ(Q) + |||u - unc|||pw)-

Theorem 3.1.c concludes the proof with Ceff = M22/M1 + ZCf + 2C£COA2h2’"+20.

max

O

4.2.2 Discrete reliability

Lemma 4.5 (distance control II) There exists a constant C7 > 0 such that ||3:h'12nc —

)»hunc||L2(Q)+||Mnc—unc||L2(Q)+||5Mnc||L2(Q)+||3“nc||L2(Q) = C7hmdx|||u_“nc|||pw =
C7Crethy (T holds for any T € T(gs).

Proof Triangle inequalities and the normalization [lu|;2(q) = 1 show
[ Antine — )Lhunc”Lz(Q) <Anllu — ”nc“LZ(Q) + Anllu — ﬁnc”Lz(Q) + [An — Anl.

Theorem 3.1.c and Corollary 2.1.b imply |A — Ap| < Colllu — I”|||;2>w <

Co(hmax/n)2"||u||Hm+{,(Q) Since the eigenfunction u € V in (1.1) solves the

source problem with right-hand side Au € L?(R2), (2.1) implies wll pmto (@) =<
C(a)||ku||Lz(Q) = C(o)A. The same arguments apply to |A — Ap|. This and

Rl = Tulllpw < h

max| 11 — Tu|||pw result in

Do = Al < |4 = Al + [ = Ap| < 2CoC (o)1) RS,

max 14— Tul[[pw-

1/2 275
Recall i < Ay [Stncll o) < Cy/ g llincllss and [[8incll 2y < Cy/*R2

max
[#nclls from Table 1. The last two dlsplayed estimates, a triangle mequallty, and

Theorem 3.1.c show

[AnTine — Mnttnell 2(q) + ldne = tnell 120y + ”Eﬁnc”Lz(Q) + [18uncllz2 ()
< 2((CoC (@)1 /7 + Cy/* (1 + )% + (C5Co) ' PhI ) — Tul||pw

max

with |[lu — Tulllpw < |llu — Tullpw and 7imax < Fmax. Since hmay < &6 < 1 and
1/2 < o <1 < m,Corollary 2.1.a concludes the proof of the first bound in Lemma 4.5
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with C7 := 2CoC(o)1/7% + 2C1/2(1 + 1+ Cal/z). The second claim follows from
Theorem 4.4. O

Theorem 4.6 (discrete reliability) There exist constants A3, M3z > 0 such that T €
T(ee) with maximal mesh-size hmax < €6 (€6 from Theorem 4.4) and €3 := Mghfn"ax

imply R
(A3,) Discrete reliability. 8*(T,T) < Asn*(R1) + e3n*(T).

Proof Recall that Lemma 4.3 shows

—1~ 2 2
C6 [[[ttne — Mnc|||pw = ||D (unc JunC)”LZ(T\T) + ||hm khunc||L2(T\§‘-)

+ ””nc - MIIC”LZ(Q) + ”(SM},” (Q) + ”‘SMIIC”LZ(Q)
This and Lemma 4.5 lead with M3 := C%Cfel max{1, Cg} to

8 (T, T) = niine = ttnell32 ) + line — tnellpy

< Co|| Dpy (ttne — + CllhF Antinell + M3h 50 (T).

2
‘]u“C)”LZ(T\T) LZ(T\T)

The shape regularity iy < Cy|T|'/3 forany T € T € T guarantees
”h'r]n’)‘hunC”LZ(T\T) = Cm|T|m/ ||)\hunc||L2(T\T) = Csrfl(T\T) <C ;?77(721)
with 7 \’f C R1 in the last step. Remark 2.2 asserts

s 1D Gttne = Jund) 1327y < D ITI D0 IIDpunelr X vFll72
TeR FeF(T)

< n*(Ry).

The combination of the last three displayed inequalities concludes the proof of (A3,)
with A3 := C6(C2" + Ms). O

4.3 Quasiorthogonality

The quasiorthogonality in Theorem 4.7 below concerns the outcome (7;)jen, of
AFEMA4EVP. Letu ; € V(7;) abbreviate the nonconforming component of the discrete
solution u; = (upw, unc) =: (upw,uj) € Py(T;) x V(T;) with b(u,u;) > 0,
lujllz2@) = 1, and 4 j(k) < A the associated eigenvalue from AFEM4EVP on the
level j € Ny. Recall the distance

8Ty, Tje1) = 12w = djia (u I g + g — ujralllgy,

for the triangulations 7; and 7;,. Set hg := maxye7; hr and recall &6 > 0 from
Theorem 4.4.
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Theorem 4.7 (quasiorthogonality) For any 0 < f < Ceff /Crel, there exist A4, A4,
and €4 = A4(,3 + hz"(l + B™Y) > 0, such that Ty € T(g¢) implies that the output
(m}) jen, and (1) jen, of AFEMA4EVP satisfies

4L 4L
(A4.) Quasiorthogonality. Z 82(7}, Tiv1) < Aa(1+ ,3_1)17% + €4 Z n? for any
j=t j=¢

£, L € Np.

The following Lemma 4.8 in the 2-level notation of Definition 4.1 prepares the
proof of Theorem 4.7 below.

Lemma 4.8 (2-level quasiorthogonality) There exists Cqo > O such that, for

T € T(6), apw(u—linc, Unec — Une) < Cqo(hay 11t — ttnelllpw + ”hg)‘“”m(ﬂ?))
[lu — uncl”pw holds.

Proof Since (A, une) (resp. (Ah Une)) solves (3.2) with respect to 7 and § € Py(7T)

(resp. 7 and$ € PO(T) from Table 1), Corollary 2.1.c and elementary algebra show
that

apw (Unc — Tne, U — Unc) = apw(unm I(u — ﬁnc)) - apw(ii\nc’ Tu — ﬁnc)
= b()\hunc(1 +0), I(u _ﬁnc)) - b(xhﬁnc(l +§)1 Tu _ﬁnc)
= b()\hunc(l +9) _’):hﬁnc(1 +/8\)7 Tu — ﬁnc) + ()\hunc’ - /I\)(u - ﬁnc))H_(y
4.5)

The Cauchy—Schwarz inequality, A, /):h < A, and Lemma 4.5 in the last step prove

1= b(khunc(l +39) _/):hii\nc(1 +§), TM _ﬁnc)
< (Anttne — Antinell L2y + A ll8uncll L2y + Anl8Tnell L2y ) I1TU — ncl L2 ()
(2) (2)

< max{l, )L}C7hmax|||u - “nc|||pw||lu _i‘\nc||L2(Q)~

The discrete Friedrichs inequality (3.23) with respect to V(’? ), (I2), and the L>-
projection Iy onto Py(7) lead to

CdF ”I” - ”nc”LZ(Q) = |||I’/‘ - Unc“lpw = ”H()Dm (u — ”nc)”LZ(Q) =< Ilu _ﬁncmpw-

Consequently, 11 < max{l, A}C7Carhd |1 —tinc|||pwl |4 —Tnc| [ |pw- Since 148 < 2
from Table 1, the arguments behind (4.3) also show

tr :=(hnttne, (I = Dt = ne)) 5 < 20W% Anttne | 27y 1A Z" (T = D)@ = Tne) 12 -

Since (I13) implies 1(Tu) = Iu, (12) and (14) for I and (I2) for T show ||h_'"(1—7)(u—
Unc)ll 2 = Il "= 1) (Tu— Tne)ll12(q) < Kalll(1—= DT (u— Tne)|llpw < Kalllu—
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Tnel| |pw. On the other hand, A, < A, a triangle inequality, (3.12), and Corollary 2.1.a
imply

WS dnttncl 2y < WAl 2y + Ml 2 =t 2
=< ”h¥)\u”L2(']’\"]\') + Cskh;ﬁ;;(ﬂ”u - “nc”lpw-

Hence the upper bound #; + #; in (4.5) is controlled and the above estimates lead to
the assertion with Cyo := max{2«y, max{1, A}C7Cqgr + 2CsAhp kq}. O

Proof of Theorem 4.7 Recall that u; € V (7;) is the nonconforming component of the
discrete solution # ; = (upw, tnc) =: (tpw, uj) € Pu(7;) x V(7;) and that 1 ;(k) < A
is the associated eigenvalue from AFEM4EVP on the j-th level for £ < j < £ + L.
Since 7, Tj41 € T(7p) for £ < j < £+ L, Lemma 4.5 shows

8 (Tj, Tin) < luj — ujprllly + C3Coih" 05

Elementary algebra, Lemma 4.8, and two weighted Young inequalities show

2 2 2
Mej — wjprllpw =1 —ujlllny + 1w —wjprlllpy = 2apw(u — ujpr, uj —ujir)

scho( G 11l = 1w + 15 At 2775 ) e = 201
2 2

C 2C,
90,2 2 .2 qo
:3 ——h UCrelnj + ﬁCrelnj+l + ,8 ”hm )LMHLZ(T\T_H)

with Theorem 4.4 in the last step. Theorem 4.4 controls the telescoping sum

{+L

2 2 2 2
> (= 1P = Ml = it l1B) = e = well By = o = ezl 2y
j=t

2 2 02
= Crang — CepMogp41-

Since g < Ceff/C <] implies (BC?
estimates show

o gff) n% i1 = 0, the last three displayed

{+L {+L

DT T <) (|||u — Il = Nl — uj+1|||$,w)
j=t j=t
2C2 {+L
q0 2 20
+(( B )h() ) relzn]
2 {+L
+ BCaMs L1 + Z 177, W”LZ(T \Tie1)
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2c2 {+L
qo 2 2 2 2
Creln£+(< B +C7> hOU"i_ﬂ) Crelznj
k=t

2 (+L

qo 2
) ST N @
Jj=t

Recall that 27 |7 := diam(T) for any T € 7; and compare it with the piecewise
constant function fzj € Po(Tj) defined by ﬁj|T = |T|1/3 < hr < Csr|T|l/3 (from
shape-regularity) for any 7 € 7; and j € No. Then /; ~ h1, € Py(7;) and hj e
Py(T;) satisfies the reduction h JERES h ~/21/ 3 a.e. in the set of refined tetrahedra
U (Z; \ 7j+1). Hence hm e hzm — hzﬁl a.e.in{J(Z; \ 7j4+1) and

/4171/%
4m/3 _1 {+L 4,,,/3 _1 {+L _
—2m m 2 m 2
™ Z WA T2 gy < g 2 W Ml g1y
=t j=t

: ZHW"’ e

Since fie < h7, < ho := maxgeg, ht < &, a triangle inequality implies

L@ f(hzm hEE ) Ga)’dx < IIflfg"kullizm).

IR Al 2 ) < 20/ Ae G NRT Ao Ul 2 g + 227G = well7 2 -

Theorem 3.1.a and (1.4) show ()L/M(k)) ||hm)»g(k)u[||
Theorem 4.4, and (3.12) imply ||u — ug||

L2(Q) < 417%. Corollary 2.1.a,

T < h? C2CZ n7. The substitution in (4.6)
concludes the proof with A4 := max{C2, C(io c j://:ﬂi @+ h2m+2g C5Cra")) and
A4 = C2ymax(1,2C2,, C3). .

5 Conclusion and comments

5.1 Proof of Theorem 1.1

The proven properties (A1)—(A4;) are the axioms of adaptivity in [12, 26] and known
to imply (1.5). Compared to [12, 26] the discrete reliability in Theorem 4.6 is extended
in that (A3,) includes the additional term M3h maxn 2(T). Minor modifications of the

arguments in [12, 26] prove that (A1)—(A4,) imply (1.5). This is stated and proven as
Theorem A.1 in Appendix A for some ¢ := €3 < €. ]

5.2 Optimal convergence rates of the error

The reliability and efficiency in Theorem 4.4 provide the equivalence |||u — ug|||pw ~
n¢(7¢). This and Theorem 1.1 lead to optimal convergence rates for the error as well.
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5.3 Global convergence

This paper on the asymptotic convergence rates justifies that a small initial mesh-size
guarantees the asymptotic convergence from the beginning. Although the reasons are
presented in several steps for gy, . .., €3, the computation of g may be cumbersome
and ahuge overestimation in practice. To guarantee global convergence without a priori
knowledge of £g, we may modify the marking step in AFEM4EVP as follows: Enlarge
the set My in AFEM4EVP by one tetrahedron of maximal mesh-size in 7;. This
guarantees that the maximal mesh-size tends to zero as the level £ — oco. Consequently
there exists some L. € Nsuchthat 7, € T(eg) forallé = L, L+1, L+2,...Relabel 7,
by 7y so that Theorem 1.1 leads to optimal convergence rates for nz, np+1, 1L+2, - - -
whence for the entire outcome of the adaptive algorithm. However, the constant in
the overhead control [48, Thm. 6.1] depends on 77 and this possibly enlarges the
equivalence constants in (1.5).

5.4 Numerical experiments

Numerical experiments in [11, 24] show an asymptotic convergences of AFEM4EVP
with & = 0.5 even for coarse initial triangulation and confirm the optimal convergence
rates of Theorem 1.1 even for one example with a multiple eigenvalue. The extension
to eigenvalue clusters requires an algorithm from [4, 29, 33]. This paper assumes exact
solve of the algebraic eigenvalue problem (1.2), but perturbation results in numerical
linear algebra [43] can be included as in [14].
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A. Appendix - A review and extension of the axioms of adaptivity

The framework (A1)—(A4,) in Sect.4 is a modification of [ 12, 26] with a more general
discrete reliability (A3;). Theorem A.l below proves that the modified axioms are
sufficient for optimal convergence rates of the AFEM algorithm with Dorfler marking
and newest-vertex bisection [12, Algorithm 2.2]. On level ¢ € Ny of the general
purpose adaptive algorithm AFEM there is given a regular triangulation 7y of Q C R”
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into closed simplices and an undisplayed discrete problem with a discrete solution
ug. These allow for the computation of n¢(T) for all T € 7; in the step compute.
The step mark uses the sum convention n%(./\/l) =D reM n%(T) for any M C 7,
and n% = n%(’]}). The selection of a set M with almost minimal cardinality in this
step means that there exists a constant Agpe > 1 such that the cardinality satisfies
M| < Agpt| Mj|, where M C 7, denotes some set of minimal cardinality | M|
with 97]% < ZTEM; n%(T); cf. [12, 26, 47] for details; this is more general than in
AFEMA4EVP, which utilizes a minimal set M, with Aope = 1 constructed at linear cost
in [44].

AFEM
Input: regular initial triangulation 7 of € C R”" and bulk parameter 0 < 6 < 1
fort=0,1,2,... do
Solve the discrete problem for the discrete solution u, based on 7y
Compute n,(T) for any T € 7; with respect to the discrete solution
Mark almost minimal subset M, C 7, with Gryg < nf(./\/l ?)
Refine 7; with newest vertex bisection to compute 74| with My € 7y \ Ty4 od

Output: sequence of triangulations (7p)¢eny, With (ug)gen, and (n¢)geN,

This appendix is written in a self-contained way based on the set T := T(7) of all
admissible triangulation computed by successive newest-vertex bisection [35, 48] of
aregular initial triangulation 7y (plus some initialization of tagged n-simplices) of the
bounded polyhedral Lipschitz domain 2 C R” into closed simplices and the subset
T(7) of admissible refinements of 7 € T.For N € Ng,set T(N) :={7 € T: |7T] <
|70] + N}. To analyse the error estimates 1¢(7y) and their rates and in particular to
compare with error estimators 1n(7, e) for any admissible triangulation 7 € T, we
need to assume that the error estimators are computable for any 7 € T. This leads to
afamily n(7, e) € R7Z of error estimators parametrized by 7 € T with n(7, K) > 0
for all K € 7. For any subset M C 7 € T, the sum convention reads

(T M) = (T M) =Y 2(T.T) and A(T)=nT.T). ()
TeM

For any triangulation 7; in the AFEM algorithm, we abbreviate ng(e) := 1n(7Z;, o)
and ny = ne(7y) = n(’]}, 7¢). Recall the Axioms (A1)-(A4,) with constants Ay,
N3, A3, Ay, Ares > 0, Ag, €3, €4> 0,and 0 < py < 1 for convenient reading. For
any 7 € T and admissible refinement T e T(7), there exists a set R(Z, T yC T
with T\’T C R(T, T) and |R(7, T)l < AreflT\T|, such that 7 € T, T e T(7),
R(T, ’?), and the output (7x)ren, and (x)ken, of AFEM satisfy (A1)—(A4,).

(A1) Stability. |n(7, 7 NT) — (T, TNT)| < A8(T, 7).

(A2) Reduction. n(7,T\T) < pon(T, T\T) + A»8(T, 7).

(A3,) Discrete reliability. 82(7, 7) < Asn*(T, R(T, T)) + Asn*(T) + esn*(T).

L+m C+m
(A4,) Quasiorthogonality. Z 82(7}, Tiy1) < A4n% + €4 Z n? for any £, m € Ny.
j=t j=t
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Theorem A.1 below contains smallness assumptions for the constants X3, €3, and
€4. In a typical application such as Theorem 1.1 the quantities Kg, €3, €4 contain
a power of the initial mesh-size h¢ := maxrc7; At such that the assumptions are
satisfied for a sufficiently fine initial triangulation 7. Given €3 < Afz, set ® =
(1 — A}e3)/(1 + A} A3). Any choice of x and & with0 < p < p; > —1and 0 < £ <
(1 — (14 w)p3)®/(1 — ©) implies

P12 = ®p§(l +uw)+1-0)(14+&) <1 and
A =1+ 1/6)A2+ A +1/u)A} < oo

Theorem A.1 (rate optimality of the adaptive algorithm) Suppose (Al)—(Ad,) with
A%E3 <1, Kg(A% +A%) <1, e4a<(1—p12)/A12, and 0<6 < O.
The output (1) ¢en, and (n¢)eeN, of AFEM satisfy, for any s > 0, the equivalence

sup (1 + |Ze| — [ToD)*ne =~ sup (1 4+ N)* _min (7).
teNy NeNy TeT(N)

The proof of Theorem A.l reviews parts of the analysis in [12, 26] and focusses
on the relevant extensions in Theorem A.2 and Theorem A.3 below. The following
results (A12), (A4), and (2) follow verbatim as in [12, 26]: (A1)—(A2) and the Dorfler
marking strategy with bulk parameter & < ® < 1 provide the estimator reduction [26,
Thm. 4.1]

(1) < 01an*(T) + Aas*(T, T) (A12)

for any 7 € T and any admissible refinement T e T(7). The estimator reduction
(A12), (Ad;), and Ago := A4+ €4(1 + A12A4)/(1 — p12 — €4A12) > 0 guarantee
the stricter quasi-orthogonality [26, Thm. 3.1]

L4+m
> 8 (Tk. Tir1) < Agon;  forany £,m € Ny. (A4)
k=t

This and (A12) imply plain and R-linear convergence on each level for the output
(n¢)¢en, of AFEM in [26, Thm. 4.2]: The constants A, := (14+A12Ag)/(1—p12) > 0
and g := A:/(1 + A,) < 1 satisfy

L+m q"

Z ni < Acn? and n§+m =7 € _p? forany €, m € Ny. )
—4c

k=t

On the other hand, (A1)—(A3) are sufficient for the quasimonotonicity (QM) and the
comparison lemma. But the discrete reliability is relaxed in (A3,) in this paper, so the
proofs of (QM) and the comparison lemma are revisited below.
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Theorem A.2 (QM) The axioms (Al), (A2), (A3;), and X3 (A% + A%) < 1 imply the
existence of Amon > 0 such that n(7T) < Amonn(7) holds for any T € T and
T € T(T).

Proof This proof extends [12, Lem. 3.5] and [26, Thm. 3.2]. The axioms (A1)-(A2)
apply to the decomposition (7)) =n*(T,TNT)+n*(T,T\T) of the estimator
of the fine triangulation 7 € T(7") and show

@ < (T T+ M8T. D) + (01T T\T) + A:8(T. D))’
< 1+ Ya)n* (D) + (1 + a)(A2 + ADSX(T. T)
with (a + b)?> < (1 + a)a® + (1 + 1/a)b? for any positive a, b and 0 < o <

(a3 —|—A%)’/§3)71 —1inthe second step. (For A3 = 0, the upper bound for0 < & < o0
is understood as infinity.) The Axiom (A3;) controls the distance 82(T,T) and leads

to
(1) < (14 1o+ A+ a) (A2 + A3 (A3 +e))n*(T) + (1 +a) (A + A3 Asn* (D).

Since (1 + oz)(A2 + A2 )Ag < 1, this proves n (T) < Amonnz(T) for

A2 l+1/a+(l+ot)(A2+A2)(A3+63)
mon += 1—(1+a)(A}+ ADA;

O

The convergence is guaranteed with (2) and the optimality requires the sufficient
smallness of the bulk parameter & < © in the adaptive algorithm. This enters with the
help of the comparison lemma, where some 6y (¢, ) depends on parameter , « that
allow for 6 < 0yg(sz, &) < ©. The lemma dates back to the seminal contribution [47].

Lemma A.3 (comparison) Suppose (OM), i.e., the axioms (Al), (A2), (A3¢), and
A3(A%+A%) <1 Let0 < < 1,0 < o < 00, and let s > 0 satisfy

M = sup (N +1)° mm n(T) < 0.
NeNy TeT(N

Then for any level £ € Ny, there exist ﬁg e T(7y) and

1—52((1+a) + (14 1/a)A3A3) — (1 + 1/a)Ales o

Oo(a, ) =
1+ (1+1/a)A2A;

such that

(a) 7)(72) = %U(ﬂ) = AmonMﬂz\?H s and R
(b) Oo(a, %)71 (To) < n*(Te, Re) with T\T; C Ry = R(Te,T¢) and |Re| <
Aretﬂz\?ﬂ
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Proof The proof of (a) is verbatim that of [12, Prop. 4.12] or that of [26, Lem. 4.3]
based on the overlay control (i.e., (6) below) and Theorem A.2. It remains to modify
the proofs in [12, Prop. 4.12] or [26, Lem. 4.3] for the verification of (b). Axiom (A1)
and (a) imply that

n(Te. TeNT) < n(To. T N To) + M8(To, To) < >en(To) + M8(Te. T). (3)

Recall nf(My) = n*(To. M) == Y repq, 1*(Ze. T) for any My C Ty and ng :=
n(7y) = n(7y,T¢) and abbreviate 7, := 77(7:2) = n(’f]g, ’7\2). A weighted Young
inequality with @ > 0, the Axiom (A3,) with R(Z, ﬁ) replaced by R, defined in
(b), and (a) show that

o~ 2 -~
(ene + M18(Te. T0))” < (L + )5} + (1 + 1) AT (A3nF (Re) + Asiiy + e3ng)
< (1 + )02 4+ (1 + 1) A2 (A3 (Re) + D302 + e3n?).

“)
Recall > < 1, @ > 0, and set
Co=0+a)?+ 1+ 1/a)A3(es + A35%) and Cp = (1+ 1/a)A3A5.
Then the combination of (3)—(4) reads
i (Te N To) < Cani + Cont (Ry). )
Since 7y \ ff[ C Ry, the estimate (5) implies
Ny < m(Re) +nf(TeNTy) < Cay + (1 + Cp)g (Ro).
This proves (b) with
1-C, 1= (A +a)s?+ 1+ 1/a)A2 (e + Azs?))
1+Cp 1+ (1 + 1) AZA; = b0 ) <1.
O

The proof of Theorem A.l can be concluded as in [12, Proof of Theorem 4.1
(i1)] or [26, Section 4.3]. The function 6y(«, ) in Theorem A.3.b is bounded from
above by limgy— 00 6p(0, @) = (1 — A%e3)/(1 + A%A3) and there exist a choice of
0<»2<land0 < a < oo such that 0 < 6 < 6y(c, >¢) < ©. This is the first
formula on page 2655 in [26] and the remaining parts of the proof are summarized
below for convenient reading and almost verbatim to Case A in [26]. The choice of 6
and Theorem A.3.b show

00> (Ty) < o, 59> (Te) < n*(To, Re),
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i.e., Ry satisfies the Dorfler marking condition. Recall that M, denotes the set of
marked elements on level £ in AFEM, while M7 with | M| = M, is a minimal set
of marked elements. Then there; exists Agpr > 1 with [My] < AgpeMy < AopelRel.
The control over Ry := R(7Zy, 7¢) and Theorem A.3.a ensure

IRel < Aref|Te \i\ﬂ = Aref(AmonM/(%nE))l/s-

Hence | Mg| < CCMI/‘YnZI/S with C, := AoptArefAlln/(fn%_l/s. One important ingre-
dient of NVB is the overhead control [2, 48]

-1

Tl — 170l < Apav Y IMil (6)
k=0

with a universal constant Agpgv that exclusively depends on 7j. The combination of
the above with the overhead control leads to

-1
7| — 1To| < AppavCeM'/* an_l/s. @)
k=0

The R-linear convergence (2) bounds the sum Zﬁ;(l) nk_l/ ¥ asin[26, Thm.4.2.c]. Forall

0 < k < ¢,thesecond identity in (2) implies nk_l/s < ne_l/sqé[_k)/(zs)(l —qe) V@),

Hence the formula for the partial sum of the geometric series shows
1/2
qc/ (29)

(1 _ qg/(ZS))(l _ qc)l/(2s) '

—1
St < can, ' with ¢qi= 8)
k=0

The combination of (7)—(8) reads |7;| — |Zo| < AppavCeCyM /s ne_l/ ¥ Hence 1 <

_— -1
|Te| — | To| implies (1 + |Te| — |To]) < 2(T¢l — |To]) < 2AppavCeCaMn; ',
while |7;| = |To| implies 1 < M/ nzl/s. This concludes the proof of

ne(1 +17¢| — |7o))* < max{l, 2ApavCcCa)*}M

with M := sup (N + 1) min n(7)
NeN TE€T(N)

and so of “<” in Theorem A.1.

For the proof of the converse implication, assume, without loss of generality, that
0 < mingervy n(7) and so 0 < ne for any £ € Ny with Ny := || — |To] < N.
AFEM leads to Ny < Ny41 (since no refinement only occurs for n, = 0). Hence there
exists a level £ with Ny < N < Nyq1 and (N + 1)  mingervy n(7) < (Ney1 +
1)*ne. On each refinement level ¢ each simplex creates at most a finite number K ()
(depending only on the spatial dimension n) of children in the next level £ + 1 [35].
In other words |Z¢+1| < K(n)|7¢| and (Neg1 + 1)/(Ne + 1) < K(n) + (K(n) —
D(Tl - D S L.
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This concludes the proof of rate optimality for AFEM in Theorem A.1. ]
Proof of Theorem 1.1. The AFEM4EVP in Theorem 1.1 is a particular case with
R(T,T):=Ri:={K eT: 3T e T\T withdist(K, T) = 0}. Theorem 4.2, 4.6,
and 4.7 guarantee (A1)~(Ad,) with A3 := 0,3 := M3h2%, ,and es := Aa(B+h37 (1+
1/B)) > 0. Let &7 := min {e6, 2ATM3)~!/27)} such that €3 < A7? and select py2
and A2, then abbreviate c3 := (I — p12)/(2A12A4), B := min{C2;/C2,, c3/2}, and
define

& := eg ;= min [e7, ((c3 — B)/(1 + /)" D}. ©9)

Then A3(A? 4+ A2) = 0,e3A% < 1/2,and €4 < (1 — p12)/(2A12) in Theorem A.1.

Remark A.4 (smallness assumptions on s, &g, £7, €g) The reduction to &5 guarantees
the best approximation result in Theorem 3.1, while g := min{es, (2C§)_1/ (20))
is sufficient for reliability in Theorem 4.4. Optimal rates follow with ¢ := &g
from (9). Since Cs from (3.12), ¢3 := (1 — ,012)/(2A121~\4), and M3 are bounded
O(1), independent of the mesh-size, &5 = min{es, O(1)}, &7 = min{eg, O(1)}, and
eg = min{e7, O(1)} are not expected to be dramatically smaller than &5.

Remark A.5 (modification with global convergence) The modified algorithm of
Sect.5.3, with 77,7741, ... has no influence on the constants 1/2 < ©(1 +
ATA3) < 1, Ay < Ago = 2A4 + 1/Ap, 1+ (A7 + ADA3 = Afy, <

(1+ \/(A% + A)(As + Afz/Z))z. But Appgy in the overhead control (6) (e.g. [48,
Thm. 6.1]) depends on 77, and could become larger (when replacing 7y by 7;) and
leads to larger equivalence constants in Theorem A.l. Fortunately, the asymptotic
convergence rate remains optimal and the choice of 6 is not affected.

Remark A.6 (parameter choice in practice) In a practical computation, we suggest
uniform mesh-refinement until the eigenvalue Aj of interest is resolved in that 5/«
is smaller or equal the estimated wavelength of A. This triangulation serves as initial
triangulation in 7y in the modified algorithm of Sect. 5.3 with some bulk parameter 6
smaller than (1 — A%A3)_1. In this way, the pre-asymptotic range is (hopefully) kept
small while the asymptotic convergence rate remains optimal.
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