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Abstract
Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m-th
Laplace operatorwith a recently introduced extra-stabilized nonconformingCrouzeix–
Raviart (m = 1) or Morley (m = 2) finite element eigensolver. Striking numerical
evidence for the superiority of a new adaptive eigensolver motivates the convergence
analysis in this paper with a proof of optimal convergence rates of the GLB towards
a simple eigenvalue. The proof is based on (a generalization of) known abstract argu-
ments entitled as the axioms of adaptivity. Beyond the known a priori convergence
rates, a medius analysis is enfolded in this paper for the proof of best-approximation
results. This and subordinated L2 error estimates for locally refined triangulations
appear of independent interest. The analysis of optimal convergence rates of an adap-
tive mesh-refining algorithm is performed in 3D and highlights a new version of
discrete reliability.

Mathematics Subject Classification 65N12 · 65N15 · 65N25 · 65N30 · 65N50 ·
65Y20

1 Introduction

Motivation. Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed
for them-th Laplace operator from a global postprocessing of respective nonconform-
ing finite element eigensolvers like the Crouzeix–Raviart resp. Morley finite element
method (FEM) for m = 1 resp. m = 2 [15, 16]. The maximal mesh-size hmax enters
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2 C. Carstensen, S. Puttkammer

as an explicit parameter and this can be non-effective for an imperative adaptive
mesh-refinement. This has recently motivated the design of extra-stabilized noncon-
forming finite element eigensolvers for m = 1, 2 that directly compute GLB under
moderate mesh-size restrictions and allow an efficacious adaptive mesh-refinement
[11, 24, 27]. The striking superiority of those adaptive schemes has been displayed in
numerical experiments in [11, 24] and motivates the mathematical analysis of optimal
convergence rates in this paper. This appears to be the first method that combines the
localization of eigenvalues as GLB with their efficient approximation.

Model problem. The continuous eigenvalue problem (EVP) seeks eigenpairs (λ, u) ∈
R

+ × (V \{0}) with

a(u, v) = λ b(u, v) for all v ∈ V (1.1)

in the Hilbert space V := Hm
0 (�) with its energy scalar product a(•, •) :=

(Dm•, Dm•)L2(�) with the gradient D
1 := ∇ or theHessian D2 and the L2 scalar prod-

uct b(•, •) := (•, •)L2(�) on a bounded polyhedral Lipschitz domain � ⊂ R
3. The

infinite but countably many eigenvalues 0 < λ1 ≤ λ2 ≤ . . . with lim j→∞ λ j = ∞
in (1.1) are enumerated in ascending order counting multiplicities [6, 7].

Discretization. The discrete space Vh = Pm(T )× V (T )⊂ Pm(T )× Pm(T ) consists
of piecewise polynomials of degree at most m on the shape-regular triangulation
T of � ⊂ R

3 into closed tetrahedra. Throughout this paper, V (T ) abbreviates the
Crouzeix–Raviart finite element space CR1

0(T ) [25] for m = 1 and the Morley finite
element space M(T ) [40, 41] for m = 2. The algebraic eigenvalue problem seeks
eigenpairs (λh, uh) ∈ R

+ × (Vh\{0}) with

ah(uh, vh) = λhbh(uh, vh) for all vh ∈ Vh. (1.2)

The discrete scalar product ah contains the scalar product apw(•, •) := (Dm
pw•,

Dm
pw•)L2(�) of the piecewise derivatives of orderm and some stabilizationwith explicit

(known) constant κm > 0 from [24], while the bilinear form bh is the L2 scalar product
b(•, •) of the piecewise polynomial components,

ah(vh,wh) = apw(vnc, wnc) + κ−2
m (h−2m

T (vpw − vnc), wpw − wnc)L2(�),

bh(vh,wh) = b(vpw, wpw) for all vh = (vpw, vnc), wh = (wpw, wnc) ∈ Vh.

The piecewise constant mesh-size function hT ∈ P0(T ) has the value hT |T = hT :=
diam(T ) in each tetrahedron T ∈ T and hmax := maxT∈T hT denotes the maximal
mesh-size. The M := dim(Pm(T )) finite discrete eigenvalues of (1.2) are enumerated
in ascending order 0 < λh(1) ≤ λh(2) ≤ · · · ≤ λh(M) < ∞ counting multiplicity.

GLB. For the biharmonic operator (m = 2) the discrete eigenvalue problem (1.2) is
analysed in [24]. For the Laplace operator (m = 1) in 2D, (1.2) describes the lowest-
order skeleton method in [27]; for 3D it is different and suggested in [24]. The discrete
eigenvalue problem (1.2) directly computes guaranteed lower bounds [24, Thm. 1.1]
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Adaptive guaranteed lower eigenvalue bounds... 3

in that

min{λh(k), λk}κ2
mh

2m
max ≤ 1 implies λh(k) ≤ λk for all k = 1, . . . , M . (1.3)

AFEM. The adaptive algorithm [12, 26, 30, 39] is based on the refinement indicator
η(T ) defined in (1.4) below for any triangulation T and any tetrahedron T ∈ T .
Let

(
λh, uh

) ∈ R
+ × Vh denote the k-th eigenpair of (1.2) with λh := λh(k) and

uh = (upw, unc) ∈ Vh. For any tetrahedron T ∈ T with volume |T | and set of faces
F(T ), the local estimator contribution η2(T ) = (η(T ))2 reads

η2(T ) = |T |2m/3‖λhunc‖2L2(T )
+ |T |1/3

∑

F∈F(T )

‖[Dm
pwunc]F × νF‖2L2(F)

(1.4)

with the tangential components [Dm
pwunc]F×νF of the jump [Dm

pwunc]F along any face

F ∈ F(T ) and the (piecewise) gradient D1
pw =∇pw (m=1) or Hessian D2

pw (m=2).
Let T := T(T0) denote the set of all admissible regular triangulations computed by
successive newest-vertex bisection (NVB) [35, 48] of a regular initial triangulation T0
of � ⊂ R

3. The AFEM algorithm with Dörfler marking and newest-vertex bisection
abbreviates η�(T ) for any T ∈ T := T� ∈ T and η2� := η2(T�) := ∑

T∈T�
η2�(T ). The

selection of the set M� in the step Mark of AFEM4EVP with minimal cardinality is
possible at linear cost [44].

AFEM 4EVP
Input: regular triangulation T0 and parameters 0 < θ ≤ 1 and k ∈ N

for � = 0, 1, 2, . . . do
Solve the discrete problem (1.2) exactly and compute the k-th algebraic eigenpair

(λ�(k), u�(k)) with u�(k) = (upw, unc) ∈ Pm (T�) × V (T�) and T replaced by T�

Compute η�(T ) for any T ∈ T� from (1.4) with (λh , unc,T ) replaced by (λ�(k), unc,T�)

Mark minimal subset M� ⊆ T� with θη2
�

≤ ∑
T∈M�

η2
�
(T )

Refine T� with newest-vertex bisection to compute T�+1 with M� ⊆ T� \ T�+1 od

Output: sequence of triangulations (T�)�∈N0 with (λ�(k), u�(k))�∈N0 and (η�)�∈N0

Optimal convergence rates. The optimal convergence rates of AFEM4EVP in the
error estimator means that the outputs (T�)�∈N0 and (η�)�∈N0 of AFEM4EVP satisfy

sup
�∈N0

(1 + |T�| − |T0|)sη� ≈ sup
N∈N0

(1 + N )s min{η(T ) : T ∈ T with |T | ≤ |T0| + N }
(1.5)

for any s > 0 and the counting measure |• | = card(•). In other words, if the estimator
η(T ) converges with rate s > 0 for some optimal selection of triangulations T ∈ T,
then the output η� of AFEM4EVP converges with the same rate.

Theorem 1.1 (rate optimality of AFEM4EVP) Suppose that λk = λ is a simple eigen-
value of (1.1), then there exist ε > 0 and 0 < θ0 < 1 such that T0 ∈ T(ε) := {T ∈
T : hmax := maxT∈T hT ≤ ε} and θ with 0 < θ ≤ θ0 imply (1.5) for any s > 0.
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4 C. Carstensen, S. Puttkammer

At first glance the discrete problem (1.2) involves a stabilization that is expected to
generate the additional term κ−2

m |T |−2m/3‖upw−unc‖2L2(T )
in the error estimator (1.4).

The negative power of the mesh-size in the latter term prevents a reduction property
[12, 26, 39] and has to be circumvented. The only other known affirmative result for
optimal convergence rates of an adaptive algorithm with stabilization (and negative
powers of the mesh-size in the discrete problem) is [5] on discontinuous Galerkin (dG)
schemes. An over-penalization therein diminishes the influence of the stabilization
and eventually shows the dominance of the remaining a posteriori error terms. In the
present case, the stabilization parameter κm is fixed to maintain the GLB property and
this requires a different argument: Since (1.2) is equivalent to a rational eigenvalue
problem for a nonconforming scheme, a careful perturbation analysis eventually shows
efficiency and reliability of the nonconforming error estimator (1.4) for sufficiently
small mesh-sizes. The verification requires a medius analysis [37], which applies
arguments from a posteriori error analysis (e.g., efficiency in (3.10) below) in an
a priori error analysis.

Outline.The remaining parts of this paper are devoted to the proof of Theorem 1.1 and
are organized as follows. A general interpolation operator I and a right-inverse J in
Sect. 2 allow for a simultaneous analysis form = 1 andm = 2 in the Crouzeix–Raviart
and Morley FEM. The medius analysis in Sect. 3 provides new best-approximation
results and thereby prepares the proof of Theorem 1.1 in Sect. 4–5. The proof of the
optimal convergence rates requires a framework extended from [12, 26] inAppendixA.

While more general boundary conditions appear feasible as in [15, 31], non-constant
coefficients in a general elliptic differential operator of order 2m appear a less straight-
forward extension from the m-harmonic operator (−1)m
m . An expected extension
revisits [24] for the question of lower eigenvalue bounds, while the convergence anal-
ysis of an adaptive algorithm expects extra terms for the perturbations of the piecewise
polynomial approximation of inhomogeneous coefficients as in [22]; this is therefore
left for future research. This first paper on optimal convergence rates of an adap-
tive algorithm for the direct guaranteed lower eigenvalue bounds focuses on a model
problem. The results hold in 2D and 3D and are presented in 3D for brevity.

2 Preliminaries

This section summarizes abstract conditions (I1)–(I4) on an interpolation operator
I : V → V (T ) and (J1)–(J4) on a right inverse J : V (T ) → V . The conditions
hold for the Crouzeix–Raviart and the Morley finite element space in the two model
examples for the Laplacian m = 1 and the bi-Laplacian m = 2.

2.1 Notation

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper;
(•, •)L2(�) abbreviates the L2 scalar product and Hm(T ) abbreviates Hm(int(T ))

for a tetrahedron T ∈ T . The vector space Hm(T ) := {v ∈ L2(�) : v|T ∈
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Adaptive guaranteed lower eigenvalue bounds... 5

Hm(T )} consists of piecewise Hm functions and is equipped with the semi-norm
||| • |||2pw := (Dm

pw•, Dm
pw•)L2(�). The piecewise gradient D

1
pw or piecewise Hessian

D2
pw is understood with respect to the (non-displayed) regular triangulation T ∈ T of

the bounded polyhedral Lipschitz domain � ⊂ R
3 into tetrahedra. The triangulation

T is computed by successive newest-vertex bisection (NVB) [35, 48] of a regular
initial triangulation T0 (plus some initialization of tagged tetrahedra) of � ⊂ R

3.
The set T := T(T0) of all admissible triangulations is (uniformly) shape-regular.
For any T ∈ T, let T(T ) abbreviate the set of all admissible refinements of T . For
any 0 < ε < 1 let T(ε) := {T ∈ T : hmax := maxT∈T hT ≤ ε} denote the
set of all admissible triangulations with maximal mesh-size hmax ≤ ε. The context-
depending notation | • | denotes the Euclidean length of a vector, the cardinality of a
finite set, as well as the non-trivial three-, two-, or one-dimensional Lebesgue measure
of a subset of R

3. For any positive, piecewise polynomial � ∈ Pk(T ) with � ≥ 0,
k ∈ N0, (•, •)� := (�•, •)L2(�) abbreviates the weighted L2 scalar product with
induced �-weighted L2 norm ‖ • ‖� := ‖�1/2 • ‖L2(�). The discrete space Pm(T ) :=
{pm ∈ L2(�) : pm |T ∈ Pm(T ) is a polynomial of degree at most m for any T ∈ T }
consists of piecewise polynomials, the spaces CR1

0(T ) resp. M(T ) will be defined
in Sect. 2.4.1 resp. 2.4.2 below. Given a function v ∈ L2(ω), define the integral
mean −

∫
ω

v dx := 1/|ω| ∫
ω

v dx . The L2 projection 
0 onto the piecewise constant
functions P0(T ) reads (
0 f )|T := −

∫
T f dx for all f ∈ L2(�) and T ∈ T . Let

σ := min{1, σreg} denote the minimum of one and the index of elliptic regularity
σreg > 0 for the source problem of the m-Laplacian (−1)m
m in Hm

0 (�): Given any
right-hand side f ∈ L2(�), the weak solution u ∈ V to (−1)m
mu = f satisfies

u ∈ Hm+σ (�) and ‖u‖Hm+σ (�) ≤ C(σ )‖ f ‖L2(�). (2.1)

(This is well-established for m = 1 [1, 28, 34, 36, 42] and m = 2 in 2D [8] with
σreg > 1/2 and otherwise a hypothesis throughout this paper.) The Sobolev space
Hm+s(�) is defined for 0 < s < 1 by complex interpolation of Hm(�) and Hm+1(�),
m ∈ N0. Throughout this paper, a � b abbreviates a ≤ Cb with a generic constant
C depending on σ in (2.1) and the shape-regularity of T ∈ T only; a ≈ b stands for
a � b � a.

2.2 Interpolation

The operators I and J concern the (nonconforming) discrete space V (T ) ⊂ Pm(T )

and V := Hm
0 (�) for an admissible triangulation T ∈ T. An advantage of separate

interest is that the analysis with I and J is performed simultaneously form ≥ 1, while
the examples in Sect. 2.4 below concern m = 1, 2.

Suppose that, for each admissible triangulation T ∈ T, there exists a linear interpo-
lation operator I onto V (T ) that is defined on V +V (T̂ ) for any refinement T̂ ∈ T(T )

and that satisfies the following properties with universal positive constants κm and κd ;
in all examples below κm is known and the existence of κd is clarified.

(I1) Any T ∈ T and v ∈ Hm(T ) satisfy ‖v − Iv‖L2(T ) ≤ κmhmT |v − Iv|Hm (T ).
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6 C. Carstensen, S. Puttkammer

(I2) The piecewise derivative Dm
pw of any v ∈ V+V (T̂ ) satisfies Dm

pw Iv = 
0Dm
pwv.

(I3) The operator I acts as identity in non-refined tetrahedra in that (1 − I )̂vnc|T =
0 in T ∈ T ∩ T̂ for all v̂nc ∈ V (T̂ ). The interpolation operator Î associated
with V (T̂ ) satisfies I ◦ Î = I in V + V (T̂ ).

(I4) Any T ∈ T and v̂nc ∈ V (T̂ ) satisfy ‖̂vnc−I v̂nc‖L2(T ) ≤ κdhmT |̂vnc−I v̂nc|Hm (T ).

Corollary 2.1 (properties of I )

(a) Given T̂ ∈ T(T ), any v ∈ V +V (T̂ ) andwnc ∈ V (T ) satisfy apw(v− Iv,wnc) = 0
and |||v − Iv|||pw = min

vnc∈V (T )
|||v − vnc|||pw.

(b) Any v ∈ Hm+s(�) with 1/2 < s ≤ 1 satisfies |||(1 − I )v|||pw ≤
(hmax/π)s‖v‖Hm+s (�).

(c) Any v, w ∈ V and vnc ∈ V (T ) satisfy apw(v, vnc) = apw(Iv, vnc) and
apw(v, (1 − I )w) = apw((1 − I )v, (1 − I )w) ≤ minvnc∈V (T ) |||v − vnc|||pw
minwnc∈V (T ) |||w − wnc|||pw.

(d) Any w ∈ V and v ∈ V + V (T ) satisfy b(v, (1 − I )w) ≤ ‖hmT v‖L2(�)‖h−m
T (1 −

I )w‖L2(�) ≤κm‖hmT v‖L2(�) minwnc∈V (T ) |||w − wnc|||pw.

Proof Since Dm
pwwnc ∈ P0(T ; R

3m ), (I2) implies (a). In combination with a piecewise
Poincaré inequality, (I2) implies (b) (see [24, Cor. 2.2.a] for details). The first claim
in (c) follows from (a). The combination of (a) with the Cauchy–Schwarz inequality
proves (c). The Cauchy–Schwarz inequality, the approximation property (I1), and (c)
conclude the proof of (d). ��

2.3 Conforming companion

Given any tetrahedron T ∈ T in a triangulation T ∈ T, let V(T ) denote the set of its
vertices (0-subsimplices) and let F(T ) denote the set of its faces (2-subsimplices). A
linear operator J : V (T ) → V is called conforming companion if (J1)–(J4) hold with
universal constants M1, M2, M4 (that exclusively depend on T).

(J1) J is a right inverse to the interpolation I in the sense that I ◦ J acts as identity
in V (T ).

(J2) ‖h−m
T (1−J )vnc‖L2(�)+|||(1−J )vnc|||pw ≤

(
M1

∑

T∈T
|T |1/3

∑

F∈F(T )

‖[Dm
pwvnc]F

× νF‖2L2(F)

)1/2 ≤ M2 minv∈V |||vnc − v|||pw for any vnc ∈ V (T ).

(J3) (1 − J )(V (T )) ⊥ Pm(T ) holds in L2(�).
(J4) |vnc−Jvnc|2Hm (K ) ≤ M4

∑

T∈T (�(K ))

|T |1/3
∑

F∈F(T )

‖[Dm
pwvnc]F×νF‖2L2(F)

holds

for any vnc ∈ V (T ) and K ∈ T with the set T (�(K )) := {T ∈ T :
dist(T , K ) = 0} of adjacent tetrahedra.

The properties (J1)–(J4) [18, 24, 32] are stated for convenient quotation throughout
this paper. The localized version (J4) applies at the very end (in Theorem 4.6) and
implies parts of (J2). The second inequality in (J2) is the efficiency of a posteriori error
estimators.
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Adaptive guaranteed lower eigenvalue bounds... 7

Remark 2.2 (on (J4)) For any refinement T̂ ∈ T(T ) of a triangulation T ∈ T, let
R1 := {K ∈ T : ∃ T ∈ T \T̂ with dist(K , T ) = 0} ⊂ T denote the set of coarse
but not fine tetrahedra plus one layer of coarse tetrahedra around. Then (J4) and a finite
overlap argument imply the existence of M5 > 0 such that any vnc ∈ V (T ) satisfies

‖Dm
pw(vnc − Jvnc)‖2L2(T \T̂ )

≤ M5

∑

T∈R1

|T |1/3
∑

F∈F(T )

‖[Dm
pwvnc]F × νF‖2L2(F)

.

The supersetR1 of T \ T̂ serves as a simple example and could indeed be replaced by
T \ T̂ provided J may depend on T̂ ; cf. [23, §6] for details in the two model problems
below. �
Corollary 2.3 (properties of J ) Any w ∈ V and vnc ∈ V (T ) satisfy

(a) ‖vnc − Jvnc‖L2(�) = ‖(1 − I )Jvnc‖L2(�) ≤ κm |||hmT (vnc − Jvnc)|||pw
≤ hmmaxκmM2 min

v∈V |||vnc − v|||pw;
(b) b(w, vnc − Jvnc) = b(w − Iw, vnc − Jvnc) ≤ ‖w − Iw‖L2(�)‖vnc − Jvnc‖L2(�)

≤ h2mmaxκ
2
mM2 min

wnc∈V (T )
|||w − wnc|||pw min

v∈V |||vnc − v|||pw;
(c) apw(w, vnc− Jvnc) = apw(w− Iw, vnc− Jvnc) ≤ |||w− Iw|||pw|||vnc− Jvnc|||pw

≤ M2 min
wnc∈V (T )

|||w − wnc|||pw min
v∈V |||v − vnc|||pw.

Proof The combination of (J1), (I1), and (J2) proves (a). The claim (b) follows from
(J3), the Cauchy–Schwarz inequality, (I1), and (a). Corollary 2.1.c and (J1)–(J2) lead
to (c). ��

2.4 Examples

Two examples for V (T ) ⊂ Pm(T ) are analysed simultaneously in this paper for
m = 1, 2. It is appealing to follow our methodology form ≥ 3 [52] in future research.

2.4.1 Crouzeix–Raviart finite elements for the Laplacian (m = 1)

Given the shape-regular triangulation T ∈ T, letF (resp.F(�) orF(∂�)) denote the
set of all (resp. interior or boundary) faces. Throughout this paper, the model problem
with m = 1 approximates the Dirichlet eigenvectors u ∈ H1

0 (�) of the Laplacian
−
u = λu in the Crouzeix–Raviart finite element space [25]

V (T ) := CR1
0(T ) := {v ∈ P1(T ) : v is continuous at mid(F) for all F ∈ F(�) and

v(mid(F)) = 0 for all F ∈ F(∂�)}.

Given the face-oriented basis functions ψF ∈ CR1(T ) with ψF (mid(E)) = δEF for
all faces E, F ∈ F (δEF is Kronecker’s delta), the standard interpolation operator
reads

ICR(v) :=
∑

F∈F(�)

(
−
∫

F
v dσ

)
ψF for any v ∈ H1

0 (�) + CR1
0(T̂ ).
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8 C. Carstensen, S. Puttkammer

The interpolation operator ICR satisfies (I1)–(I4) with κ1 := √
1/π2 + 1/120, see [23,

Sec. 4.2–4.4] and the references therein. The constant κ1 is provided in [15, 16, 27].
The design of the conforming companion J : CR1

0(T ) → S50(T ) := P5(T ) ∩
C0(�) with (J1)–(J4) is a straightforward generalization of [18, Prop. 2.3] to 3D.
The arguments in [18, Prop. 2.3] can be localized [10, Thm. 5.1] and lead with [9,
Thm. 3.2], [17, Thm. 4.9] to (J2) and (J4).

2.4.2 Morley finite elements for the bi-Laplacian (m = 2)

Given the shape-regular triangulation T ∈ T, let E (resp. E(�) or E(∂�)) denote the
set of all (resp. interior or boundary) edges. Let F(E) := {F ∈ F : E ⊂ F} denote
the set of all faces containing the edge E ∈ E . For any face F ∈ F , let νF denote the
unit normal with fixed orientation and [•]F the jump across F . The model problem
with m = 2 approximates the Dirichlet eigenvectors u ∈ H2

0 (�) of the bi-Laplacian

2u = λu in the discrete Morley finite element space [40, 41]

V (T ) := M(T ) :=
{
v ∈ P2(T ) : −

∫

E
[v]F ds = 0 for all E ∈ E and F ∈ F(E),

and −
∫

F
[∇v]F · νF dσ = 0 for all F ∈ F

}
.

Given the nodal basis functions�E ,�F for any E ∈ E and F ∈ F (see [24, Eq. (2.1)–
(2.2)] for details), the standard interpolation operator [15, 23, 24, 32] reads

IM (v) :=
∑

E∈E(�)

(
−
∫

E
v ds

)
φE +

∑

F∈F(�)

(
−
∫

F
∇v · νF dσ

)
φF

for any v ∈ H2
0 (�) + M(T̂ ).

The operator IM satisfies (I1)–(I4) with κ2 := κ1/π +
√

(3κ2
1 + 2κ1)/80 as discussed

in [23, 24]; κ2 is provided in [15, 24]; cf. also [38] for GLB in 2m-th order eigenvalue
problems in n-dimension.

There exists a conforming companion J : M(T ) → V based on theHsieh–Clough–
Tocher FEM [21, Chap. 6] with (J1)–(J4) in [23, 32, 50] in 2D and on theWorsey–Farin
FEM [46, 51] with (J1)–(J3) in [24] in 3D. Since the arguments in the proof of (J2) in
[24, Thm. 3.1.b] are local, (J4) follows in 3D as well.

3 Medius analysis

This section shows that (I1)–(I2) and (J1)–(J3) lead to best-approximation and error
estimates in weaker Sobolev norms.
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Adaptive guaranteed lower eigenvalue bounds... 9

3.1 Main result and layout of the proof

Throughout this paper, k ∈ N is the number of a simple exact eigenvalue λ ≡ λk . The
aim of this section is the proof of Theorem 3.1 with ‖ • ‖δ defined in (3.1) below.

Theorem 3.1 (best-approximation) Let (λ, u) ∈ R
+ × V denote the k-th continuous

eigenpair of (1.1) with a simple eigenvalue λ ≡ λk and ‖u‖L2(�) = 1. There exist
ε5 > 0 and C0 > 0 such that, for all T ∈ T(ε5) := {T ∈ T : hmax ≤ ε5}, there
exists a discrete eigenpair (λh, uh) ∈ R

+ ×Vh of number k of (1.2) with λh ≡ λh(k),
uh = (upw, unc), ‖unc‖L2(�) = 1, and b(u, unc) > 0 such that

(a) λh(k) is a simple algebraic eigenvalue of (1.2) with λk/2 ≤ λh(k),
(b) λh( j) ≤ λ j for all j = 1, . . . , k + 1,
(c) |λ − λh | + |||u − unc|||2pw + h−2σ

max ‖u − unc‖2L2(�)
+ ‖unc‖2δ ≤ C0|||u − I u|||2pw.

Some comments on related results and an outline of the proof of Theorem 3.1 are in
order before Sects. 3.2–3.5 provide details.

Remark 3.2 (known convergence results) The analysis in [24] (§ 2.3.3 for m = 1 and
Thm. 1.2 for m = 2) guarantees the convergence of the eigenvalues λh to λ and the
component upw ∈ Pm(T ) to u ∈ V . The assumption that λ = λk is a simple eigenvalue
of (1.1) and the convergence λh(k) ≡ λh → λ as hmax → 0 lead to the existence of
ε0 > 0 such that the number M := dim(Pm(T )) of discrete eigenvalues of (1.2) is
larger than k + 1 and λh(k − 1) < λh(k) ≡ λh < λh(k + 1) as well as λk/2 ≤ λh(k)
for all T ∈ T(ε0). Then the eigenfunction uh = (upw, unc) ∈ Vh\{0} is unique.
The convergence analysis in [24] displays convergence of the eigenvector upw ∈
Pm(T ) but not for the nonconforming component unc ∈ V (T ). This section focusses
on the convergence analysis for unc ∈ V (T ). Recall that k ∈ N is fixed and (λ, u)

denotes the k-th eigenpair of (1.1) with a simple eigenvalue λ ≡ λk > 0 and
‖u‖L2(�) = 1. Set ε1 := min{ε0, (2λk+1κ

2
m)−1/(2m)} and suppose T ∈ T(ε1).

Let (λh, uh) denote the k-th discrete eigenpair in (1.2) with λh ≡ λh(k) > 0,
uh = (upw, unc) ∈ Vh, ‖unc‖L2(�) = 1, and b(u, unc) ≥ 0.

Proof of Theorem 3.1.a. This follows from Remark 3.2 for ε1 := min{ε0,
(2λk+1κ

2
m)−1/(2m)}. ��

Proof of Theorem 3.1.b. The choice ε1 := min{ε0, (2λk+1κ
2
m)−1/(2m)} implies for all

j = 1, . . . , k that λ jκ
2
m h2mmax ≤ λk+1κ

2
mε2m1 ≤1/2. Hence (1.3) proves Theorem 3.1.b.

��
Remark 3.3 (weight δ) The piecewise constant weight δ ∈ P0(T ) in the weighted L2

norm ‖ • ‖δ := ‖√δ • ‖L2(�) on the left-hand side of Theorem 3.1.c reads

δ := 1

1 − λhκ2
mh

2m
T

− 1 = λhκ
2
mh

2m
T

1 − λhκ2
mh

2m
T

= λhκ
2
mh

2m
T (1 + δ) ∈ P0(T ). (3.1)

Notice that hmax ≤ ε1 implies δ ≤ δmax := (1− λhκ
2
mh

2m
max)

−1 − 1 ≤ 1. The constant
Cδ := 2λκ2

m satisfies δ ≤ Cδh2mT ≤ Cδh2mmax (because λh ≤ λ from Theorem 3.1.b)
and δ converges to zero as the maximal mesh-size hmax → 0 approaches zero.
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10 C. Carstensen, S. Puttkammer

Remark 3.4 (related work) This section extends the analysis in [18, Section 2–3] to
a simultaneous analysis of the Crouzeix–Raviart and Morley FEM and to the extra-
stabilized discrete eigenvalue problem (EVP) (1.2) and to 3D.

Remark 3.5 (equivalent problem)Sinceλhκ
2
m h2mmax ≤ λk+1κ

2
mε2m1 ≤1/2, (1.2) is equiv-

alent to a reduced rational eigenvalue problem that seeks (λh , unc) ∈ R
+×(V (T )\{0})

with

apw(unc, vnc) = λh

( unc
1 − λhκ2

mh
2m
T

, vnc

)

L2(�)
for all vnc ∈ V (T ) (3.2)

and upw = (1 − λhκ
2
mh

2m
T )−1unc [24, Prop. 2.5, § 2.3.3].

Outline of the proof of Theorem 3.1.c. The outline of the proof of Theorem 3.1.c
provides an overview and clarifies the various steps for a reduction of ε1 to ε5,
before the technical details follow in the subsequent subsections. The coefficient
(1 − λhκ

2
mh

2m
T )−1 = 1 + δ ∈ P0(T ) with λh ≡ λh(k) on the right-hand side of

(3.2) is frozen in the intermediate EVP.

Definition 3.6 (intermediate EVP) Recall (•, •)1+δ := ((1 + δ)•, •)L2(�). Let
(μ, φ) ∈ R

+ × (V (T ) \ {0}) solve the (algebraic) eigenvalue problem

apw(φ, vnc) = μ(φ, vnc)1+δ for all vnc ∈ V (T ). (3.3)

The two coefficient matrices in (3.3) are SPD and there exist N := dim V (T ) (alge-
braic) eigenpairs (μ1, φ1), . . . , (μN , φN ) of (3.3). The eigenvectors φ1, . . . , φN are
(•, •)1+δ-orthonormal and the eigenvalues μ1 ≤ · · · ≤ μN are enumerated in ascend-
ing order counting multiplicities.

Since λh is an eigenvalue of the rational problem (3.2), λh ∈ {μ1, . . . , μN } belongs to
the eigenvalues of (3.3). Lemma3.9 belowguarantees the convergence |μ j−λh( j)| →
0 as hmax → 0 for j = 1, . . . , k + 1. Hence there exist positive ε2 ≤ min{1/2, ε1}
and M6 such that T ∈ T(ε2) implies

(H1) μk = λh(k) is a simple algebraic eigenvalue of (3.3),

(H2) max
j=1,...,N

j �=k

λk

|λk − μ j | ≤ M6.

The intermediate EVP and the following associated source problem allow for the
control of the extra-stabilization.

Definition 3.7 (auxiliary source problem) Let znc ∈ V (T ) denote the solution to

apw(znc, vnc) = (λu, vnc)1+δ for all vnc ∈ V (T ). (3.4)

For any T ∈ T(ε2), Sect. 3.3 below provides C1,C2 > 0 that satisfy

‖u − unc‖L2(�) ≤ C1‖u − znc‖L2(�), (3.5)

C−1
2 ‖u − znc‖L2(�) ≤ hσ

max|||u − znc|||pw + ‖δλu‖L2(�). (3.6)
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Adaptive guaranteed lower eigenvalue bounds... 11

Theproof of (3.5) in Sect. 3.3 extends [18, Lem. 2.4]. The proof of (3.6) utilizes another
continuous source problem with the right-hand side u − J znc. For all T ∈ T(ε2),
Sect. 3.4 below provides a constant C3 > 0 such that

C−1
3 |||u − znc|||pw ≤ |||u − I u|||pw + ‖δλu‖L2(�). (3.7)

The proof of (3.7) below rests upon a decomposition of |||u − znc|||2pw into terms
controlled by the conditions (I1)–(I2) and (J1)–(J3). Since hmax ≤ 1, the combination
of (3.5)–(3.7) reads

‖u − unc‖L2(�) ≤ C1C2
(
C3h

σ
max|||u − I u|||pw + (1 + C3)‖δλu‖L2(�)

)
. (3.8)

The control of‖δλu‖L2(�) on the right-hand side of (3.8) consists of two steps and leads
to c1 := 2λ2κ2

mC1C2(1 + C3) and ε3 := min{ε2, (2c1)−1/2m}. A triangle inequality
‖δλu‖L2(�) ≤ ‖δλ(u − unc)‖L2(�) + ‖δλunc‖L2(�), the estimate δ ≤ 2λκ2

mh
2m
max in

Remark 3.3, and (3.8) imply

‖δλu‖L2(�) ≤ c1C3h2mmax

1 + C3
hσ
max|||u − I u|||pw + c1h

2m
max‖δλu‖L2(�) + ‖δλunc‖L2(�).

The choice of ε3 shows c1h2mmax‖δλu‖L2(�) ≤ ‖δλu‖L2(�)/2 for any T ∈ T(ε3).
Therefore

‖δλu‖L2(�) ≤ C3/(1 + C3)h
σ
max|||u − I u|||pw + 2‖δλunc‖L2(�). (3.9)

Notice that ‖δunc‖L2(�) ≤ 2λκ2
mh

m
max‖hmT unc‖L2(�) (from Remark 3.3) allows for the

application of an efficiency estimate

C−1
4 ‖hmT unc‖L2(�) ≤ hmmax‖u − unc‖L2(�) + λ−1|||u − I u|||pw (3.10)

based on Verfürth’s bubble-function methodology [49]; see Sect. 3.4 for the proof of
(3.10). Abbreviate c2 := 4λ2κ2

mC1C2(1+C3)C4 and C5 := 2C1C2
(
2C3 +4λκ2

m(1+
C3)C4

)
. The combination of (3.9)–(3.10) controls ‖δλu‖L2(�) in (3.8) and shows

‖u − unc‖L2(�) ≤ C5

2
hσ
max|||u − I u|||pw + c2h

2m
max‖u − unc‖L2(�). (3.11)

The choice ε4 := min{ε3, (2c2)−1/2m} < 1 shows c2h2mmax‖u − unc‖L2(�) ≤ ‖u −
unc‖L2(�)/2 forT ∈ T(ε4). This and (3.11) show the central estimate in Theorem3.1.c

‖u − unc‖L2(�) ≤ C5h
σ
max|||u − I u|||pw. (3.12)

Note that (3.12) andCorollary 2.1.b from (I2) imply the convergence‖u−unc‖L2(�) →
0 as hmax → 0. This and some ε5 ≤ ε4 ensures b(u, unc) > 0 for all T ∈ T(ε5). Based
on this outline, it remains to prove (3.5)–(3.7), (3.10), and hence (3.12) and to identify
C0, . . . ,C4 below. The remaining estimates in Theorem 3.1.c follow in Sect. 3.5.
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12 C. Carstensen, S. Puttkammer

3.2 Intermediate EVP

Recall ε1 := min{ε0, (2λk+1κ
2
m)−1/(2m)} and that (λh, uh) denotes the k-th eigen-

pair of (1.2) with λh ≡ λh(k) > 0, uh = (upw, unc) ∈ Vh, ‖unc‖L2(�) = 1, and
b(u, unc) ≥ 0. Recall the intermediate EVP (3.3) and that (λh, unc) ∈ R

+ × V (T )

solves the rational EVP (3.2).

Remark 3.8 (‖ • ‖1+δ ≈ ‖ • ‖L2(�)) The weighted norm ‖ • ‖1+δ is equivalent to
the L2-norm. Since λhκ

2
mε2m1 < λk+1κ

2
mε2m1 ≤ 1/2 and 1 ≤ (1 + δ)|T ≤ 2 for all

T ∈ T ∈ T(ε1), ‖vnc‖L2(�) ≤ ‖vnc‖1+δ ≤ √
2‖vnc‖L2(�) holds for any vnc ∈ V (T ).

��
Lemma 3.9 (comparison of (1.2) with (3.3)) Given T ∈ T(ε1), let λh( j) denote the
j-th eigenvalue of (1.2), andμ j the j-th eigenvalue of (3.3) for any j = 1, . . . , k+1.
Then

(1 − λk+1κ
2
mh

2m
max)μ j ≤ (1 − λh( j)κ

2
mh

2m
max)μ j ≤ λh( j) ≤ μ j + 2λ2hκ

2
mh

2m
max.

(3.13)

The upper bound λh( j) ≤ μ j + 2λ2hκ
2
mh

2m
max holds for all j = 1, . . . , N; N :=

dim V (T ).

Proof of the upper bound Since the eigenfunctions φ1, . . . , φN of (3.3) are (•, •)1+δ-
orthonormal, apw(φ j , φ�) = μ jδ j� and (φ j , φ�)1+δ = δ j� for all j, � = 1, . . . , N . Set
ψ j := (1 + δ)φ j and U j := span{(ψ1, φ1), . . . , (ψ j , φ j )} ⊂ Vh. Since b(ψ j , φ�) =
(φ j , φ�)1+δ = δ j�, the functionsφ1, . . . , φN are linear independent and so dim(U j ) =
j for any j = 1, . . . , N . The discrete min-max principle [7, 45] for the algebraic
eigenvalue problem (1.2) shows

λh( j) ≤ max
vh∈U j\{0}

ah(vh, vh)/bh(vh, vh). (3.14)

The maximum in (3.14) is attained for some vh = (ψ, φ) ∈ U j \ {0} with φ =
∑ j

�=1 α�φ� ∈ V (T ), ψ = ∑ j
�=1 α�ψ� = (1 + δ)φ ∈ Pm(T ), and 1 = ‖φ‖21+δ =

∑ j
�=1 α2

� . Then bh(vh, vh) = ‖(1 + δ)φ‖2
L2(�)

≥ 1 and ah(vh, vh) = |||φ|||2pw +
‖κ−1

m h−m
T (ψ−φ)‖2

L2(�)
.Since apw(φ j , φ�) = μ jδ j� for �, j = 1, . . . , N ,

∑ j
�=1 α2

� =
1 implies |||φ|||2pw = ∑ j

�=1 α2
�μ� ≤ μ j . Since δ = λhκ

2
mh

2m
T (1 + δ) a.e. in �, the

stabilization term in ah reads

‖κ−1
m h−m

T (ψ − φ)‖2L2(�)
= ‖κ−1

m h−m
T δφ‖2L2(�)

= λ2hκ
2
m‖hmT (1 + δ)φ‖2L2(�)

.

The bound 1+ δ ≤ 2 from Remark 3.3 and ‖φ‖1+δ = 1 imply ‖hmT (1+ δ)φ‖2
L2(�)

≤
2h2mmax. Consequently, ‖κ−1

m h−m
T (ψ − φ)‖2

L2(�)
≤ 2λ2hκ

2
mh

2m
max. The substitution of

the resulting estimates bh(vh, vh) ≥ 1 and ah(vh, vh) ≤ μ j + 2λ2hκ
2
mh

2m
max in (3.14)

concludes the proof of λh( j) ≤ μ j + 2λ2hκ
2
mh

2m
max in (3.13) for j = 1, . . . , N . ��
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Adaptive guaranteed lower eigenvalue bounds... 13

Proof of the lower bound This situation is similar to [27, Thm. 6.4] and adapted below
for completeness. For j = 1, . . . , k+1, let (λh( j),φh( j)) ∈ R

+ ×Vh denote the first
bh-orthonormal eigenpairs of (1.2) with φh( j) = (φpw( j), φnc( j)). The test functions
(vnc, vnc) ∈ V (T ) × V (T ) ⊂ Vh and (vpw, 0) ∈ Vh in (1.2) show

apw(φnc( j), vnc) = λh( j)b(φpw( j), vnc) and

φpw( j) − φnc( j) = λh( j)κ
2
mh

2m
T φpw( j). (3.15)

For ξ = (ξ1, . . . , ξ j ) ∈ R
j with

∑ j
�=1 ξ2� = 1, set

vnc :=
j∑

�=1

ξ�φnc(�), vpw :=
j∑

�=1

ξ�φpw(�), and wpw :=
j∑

�=1

ξ�λh(�)φpw(�).

Since (φpw(α), φpw(β))L2(�) = δαβ for α, β = 1, . . . , k + 1, ‖vpw‖L2(�) = 1 and

‖wpw‖L2(�) =
√∑ j

�=1 ξ2� λh(�)2 ≤ λh( j). The combination of this with (3.15) and

a Cauchy–Schwarz inequality leads to |||vnc|||2pw = b(wpw, vnc) ≤ λh( j)‖vnc‖L2(�)

and vpw − vnc = κ2
mh

2m
T wpw. This and a reverse triangle inequality result in

0 < 1 − λh( j)κ
2
mh

2m
max ≤ 1 − κ2

mh
2m
max‖wpw‖L2(�)

≤ ‖vpw − κ2
mh

2m
T wpw‖L2(�) = ‖vnc‖L2(�). (3.16)

This holds for all vnc ∈ Uj := span{φnc(1), . . . , φnc( j)} ⊂ V (T ) with coefficients
(ξ1, . . . , ξ j ) ∈ R

j of Euclidean norm one. Hence dim(Uj ) = j and the discrete
min-max principle [7, 45] for (3.3) show

μ j ≤ max
vnc∈Uj\{0}

|||vnc|||2pw/‖vnc‖21+δ. (3.17)

Let vnc = ∑ j
�=1 α�φnc(�) ∈ Uj denote a maximizer in (3.17) with

∑ j
�=1 α2

� = 1.
The combination of |||vnc|||2pw ≤ λh( j)‖vnc‖L2(�), (3.16)–(3.17), and ‖vnc‖L2(�) ≤
‖vnc‖1+δ from Remark 3.8 provides

μ j ≤ |||vnc|||2pw
‖vnc‖21+δ

≤ |||vnc|||2pw
‖vnc‖2L2(�)

≤ λh( j)

1 − λh( j)κ2
mh

2m
max

.

Recall λh( j) ≤ λh(k + 1) ≤ λk+1 from the lower bound property in Theorem 3.1.b
to conclude the proof of the associated lower bound for all j = 1, . . . , k. ��
The subsequent corollaries adapt the notation μ j , λh( j), λ j from Lemma 3.9.

Corollary 3.10 For any j = 1, . . . , k + 1, it holds |μ j − λh( j)| + |μ j − λ j | → 0 as
hmax → 0.
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14 C. Carstensen, S. Puttkammer

Proof The a priori convergence analysis [24, Thm. 1.2] implies limhmax→0 λh( j) →
λ j . Lemma 3.9 shows |λh( j)−μ j | ≤ h2mmaxκ

2
m max{2λ2h, λh( j)μ j } → 0 as hmax → 0.

��

Corollary 3.11 There exists 0 < ε2 ≤ min{1/2, ε1} such that (H1)–(H2) hold for
T ∈ T(ε2).

Proof Corollary 3.10 and λh = λh(k) ∈ {μ1, . . . , μN } lead to εa > 0 such that
λh = λh(k) = μk has the correct index k for allT ∈ T(εa). It also leads to some εb > 0
such that μk−1 < μk < μk+1 for all T ∈ T(εb). Then ε2 := min{1/2, ε1, εa, εb} and
T ∈ T(ε2) imply (H1)–(H2). ��

3.3 Proof of (3.5)–(3.6) for the L2 error control

Recall M6 from (H2), δ from Remark 3.3, the norm equivalence from Remark 3.8,
and the auxiliary source problem (3.4).

Proof of (3.5) Recall the following straightforward result from [18, Eq. (2.8)]: Any
u, v ∈ L2(�) with ‖u‖L2(�) = ‖v‖L2(�) = 1 satisfy

(
1 + b(u, v)

)‖u − v‖2L2(�)
= 2min

t∈R ‖u − tv‖2L2(�)
.

This, a triangle inequality, t := (znc, unc)1+δ‖φk‖2L2(�)
, and vnc := znc − tunc lead to

2−1/2‖u − unc‖L2(�) ≤ ‖u − tunc‖L2(�) ≤ ‖u − znc‖L2(�) + ‖vnc‖L2(�). (3.18)

Since the eigenvectors φ1, . . . , φN of (3.3) are (•, •)1+δ-orthonormal and form a basis
of V (T ), there exist Fourier coefficients α1, . . . , αN ∈ R with vnc = ∑N

j=1 α jφ j and

‖vnc‖21+δ = ∑N
j=1 α2

j . Since (λh, unc) solves (3.2), (H1) implies unc ∈ span{φk} with
‖unc‖L2(�) = 1. Hence unc = ±φk/‖φk‖L2(�), t = ±(znc, φk)1+δ‖φk‖L2(�), and

(unc, φk)1+δ = ±‖φk‖−1
L2(�)

. Consequently,

αk = (vnc, φk)1+δ = (znc, φk)1+δ − t(unc, φk)1+δ = 0.

Since (unc, φ j )1+δ = 0 for all j = 1, . . . , N with j �= k, α j = (vnc, φ j )1+δ =
(znc, φ j )1+δ . Since φ j is an eigenvector in (3.3) and znc solves (3.4), it follows

α j = (znc, φ j )1+δ = 1

μ j
apw(znc, φ j ) = λ

μ j
(u, φ j )1+δ.
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Adaptive guaranteed lower eigenvalue bounds... 15

Hence (u − znc, φ j )1+δ = (μ j/λ − 1)α j . These values for the coefficients α j and the
separation condition (H2) imply

‖vnc‖21+δ =
∑

j �=k

α2
j =

∑

j �=k

∣∣∣
λ

μ j − λ

∣∣∣|α j ||(u − znc, φ j )1+δ|

≤ M6

∑

j �=k

(u − znc, α
′
jφ j )1+δ

for a sign in α′
j ∈ {±α j } such that |(u−znc, α jφ j )1+δ| = (u−znc, α′

jφ j )1+δ and with

the abbreviation
∑

j �=k = ∑N
j=1, j �=k . This and a Cauchy–Schwarz inequality show

M−1
6 ‖vnc‖21+δ ≤

(
u − znc,

∑

j �=k

α′
jφ j

)

1+δ
≤ ‖u − znc‖1+δ‖vnc‖1+δ.

The norm equivalence in Remark 3.8 proves ‖vnc‖L2(�) ≤ ‖vnc‖1+δ ≤ √
2M6‖u −

znc‖L2(�). This and (3.18) conclude the proof of (3.5) with C1 := √
2(1+ √

2M6). ��
Proof of (3.6) Given the solution znc ∈ V (T ) to (3.4), let w ∈ V := Hm

0 (�) solve

a(w, ϕ) = b(u − J znc, ϕ) for all ϕ ∈ V . (3.19)

Since u − J znc ∈ V ⊂ L2(�), the elliptic regularity (2.1) guarantees w ∈ Hm+σ (�)

and

‖w‖Hm+σ (�) ≤ C(σ )‖u − J znc‖L2(�). (3.20)

The combination of (3.20) with Corollary 2.1.b shows

|||w − Iw|||pw ≤
(
hmax

π

)σ

‖w‖Hm+σ (�) ≤ C(σ )

(
hmax

π

)σ

‖u − J znc‖L2(�).

(3.21)

The test function ϕ = u − J znc in the auxiliary problem (3.19) leads to

‖u − J znc‖2L2(�)
= a(u, w − J Iw) + apw(w, znc − J znc)

+ a(u, J Iw) − apw(w, znc). (3.22)

Since (J1) asserts I (w − J Iw) = 0, Corollary 2.1.c and a triangle inequality show

a(u, w − J Iw) = apw(u, (1 − I )(w − J Iw))

≤ |||u − znc|||pw(|||w − Iw|||pw + |||Iw − J Iw|||pw).
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16 C. Carstensen, S. Puttkammer

Then (J2) implies that a(u, w − J Iw) ≤ (1 + M2)|||w − Iw|||pw|||u − znc|||pw.

Corollary 2.3.c proves for the second term in the right-hand side of (3.22) that

apw(w, znc − J znc) ≤ M2|||w − Iw|||pw|||u − znc|||pw.

Corollary 2.1.c ensures apw(w, znc) = apw(Iw, znc). Since (λ, u) is an eigenpair of
(1.1) and znc satisfies (3.4), this implies

a(u, J Iw) − apw(w, znc) = b(λu, J Iw) − apw(Iw, znc) = λb(u, J Iw − Iw − δ Iw).

Corollary 2.3.b shows b(u, J Iw − Iw) ≤ M2κ
2
mh

2m
max|||u − znc|||pw|||w − Iw|||pw.

The discrete Friedrichs inequality

‖vnc‖L2(�) ≤ CdF|||vnc|||pw for all vnc ∈ V (T ) with CdF := CF (1 + M2) + M2h
m
max

(3.23)

is a direct consequence of the Friedrichs inequality ‖v‖L2(�) ≤ CF |||v||| for any v ∈ V
and (J2); cf. [19, Cor. 4.11] for details in case m = 1; the proof for m = 2 is anal-
ogous. This, (I2), and the boundedness of 
0 imply C−1

dF ‖Iw‖L2(�) ≤ |||Iw|||pw =
‖
0Dmw‖L2(�) ≤ ‖w‖Hm (�). The Cauchy–Schwarz inequality leads to

−b(λu, δ Iw) ≤ ‖δλu‖L2(�)‖Iw‖L2(�) ≤ CdF‖δλu‖L2(�)‖w‖Hm+σ (�).

This bounds the last term on the right-hand side of (3.22). The substitution in (3.22)
and λκ2

mh
2m
max ≤ 1/2 result in

‖u − J znc‖2L2(�)
≤ (1 + 5M2/2)|||w − Iw|||pw|||u − znc|||pw

+ CdF‖δλu‖L2(�)‖w‖Hm+σ (�).

This and (3.20)–(3.21) imply

C(σ )−1‖u − J znc‖L2(�) ≤ (hmax/π)σ (1 + 5M2/2)|||u − znc|||pw + CdF‖δλu‖L2(�).

Corollary 2.3.a implies ‖znc− J znc‖L2(�) ≤ M2κmhmmax|||u− znc|||pw. This, 0 < σ ≤
1 ≤ m, hmax < 1, and a triangle inequality show

‖u − znc‖L2(�) ≤ ‖J znc − znc‖L2(�) + ‖u − J znc‖L2(�)

≤ C2
(
hσ
max|||u − znc|||pw + ‖δλu‖L2(�)

)

with the constant C2 := max
{
C(σ )(1 + 5M2/2)/πσ + M2κm,C(σ )CdF

}
. ��
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Adaptive guaranteed lower eigenvalue bounds... 17

3.4 Proof of (3.7) and (3.10) for the energy error control

Recall δ from Remark 3.3 and that znc ∈ V (T ) solves (3.4).

Proof of (3.7) Elementary algebra with apw(znc, u) = apw(znc, I u) from
Corollary 2.1.c shows

|||u − znc|||2pw = a(u, u − J Iu) + apw(u, J znc − znc)

+ a(u, J Iu − J znc) + apw(znc, znc − I u). (3.24)

Corollary 2.1.c and Corollary 2.3.c control the first two terms in the decomposition

a(u, u − J Iu) + apw(u, J znc − znc)

= apw(u, u − I u) + apw(u, I u − J Iu) + apw(u, J znc − znc)

≤ (1 + M2)|||u − I u|||2pw + M2|||u − I u|||pw|||u − znc|||pw.

Recall that (λ, u) is an eigenpair of (1.1) and znc satisfies (3.4). Consequently,

a(u, J Iu − J znc) + apw(znc, znc − I u) = b(λu, J Iu − J znc + (1 + δ)(znc − I u))

= λb(u, (J − 1)(I u − znc))

+ λb(δu, znc − I u).

Corollary 2.3.b, κ2
mλh2mmax ≤ 1/2, and a triangle inequality show

λb(u, (J − 1)(I u − znc)) ≤ M2/2 |||u − I u|||pw(|||u − I u|||pw + |||u − znc|||pw).

SinceCauchy–Schwarz and triangle inequalities show b(δλu, znc− I u) ≤ ‖δλu‖L2(�)

(‖u− znc‖L2(�) +‖u− I u‖L2(�)), (I1) provides the first and (3.6) the second estimate
in

b(δλu, znc − I u) ≤ ‖δλu‖L2(�)(‖u − znc‖L2(�) + κmh
m
max|||u − I u|||pw)

≤ ‖δλu‖L2(�)(C2h
σ
max|||u − znc|||pw + C2‖δλu‖L2(�)

+ κmh
m
max|||u − I u|||pw).

Since hmmax|||u− I u|||pw ≤ hσ
max|||u−znc|||pw fromCorollary 2.1.a, a weightedYoung

inequality shows b(δλu, znc − I u) ≤ ((C2 + κm)2h2σmax + C2)‖δλu‖2
L2(�)

+ |||u −
znc|||2pw/4. The substitution of the displayed estimates in (3.24) shows

|||u − znc|||2pw ≤(1 + 3M2/2)|||u − I u|||2pw + 3M2/2 |||u − I u|||pw|||u − znc|||pw
+ ((C2 + κm)2h2σmax + C2)‖δλu‖2L2(�)

+ |||u − znc|||2pw/4.
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18 C. Carstensen, S. Puttkammer

This and 3M2/2|||u− I u|||pw|||u−znc|||pw ≤ 9M2
2/4|||u− I u|||2pw+|||u−znc|||2pw/4

conclude the proof of (3.7)withC2
3 := 2max{1+3M2/2+9M2

2/4, (C2+κm)2h2σmax+
C2}. ��
Proof of (3.10) The proof of the efficiency estimate of the volume residual is based
on Verfürth’s bubble-function methodology [49], comparable to [3, Thm. 2], [33,
Prop. 3.1], and given here for completeness. Let ϕz ∈ S1(T ) := P1(T )∩C(�) denote
the nodal basis function associated with the vertex z ∈ V . For any T ∈ T , let bT :=
44m

∏
z∈V(T ) ϕm

z ∈ P4m(T ) ∩ Wm,∞
0 (T ) ⊂ V denote the volume-bubble-function

with supp(bT ) = T and ‖bT ‖∞ = 1. An inverse estimate ‖p‖L2(T ) ≤ cb‖p‖bT for
any polynomial p ∈ Pm(T ) leads to

c−2
b ‖unc‖2L2(T )

≤ ‖unc‖2bT = (unc, u)bT − (unc, u − unc)bT . (3.25)

The Cauchy–Schwarz inequality and ‖bT ‖∞ = 1 show (unc, u − unc)bT ≤
‖unc‖L2(T )‖u−unc‖L2(T ).An integration by parts proves

∫
T Dm(bT unc) dx = 0 since

bT unc ∈ Hm
0 (T ), i.e., Dm(bT unc) is L2-orthogonal to P0(T ). Recall that (λ, u) is an

eigenpair of (1.1) and the support of bT unc is T . This, (I2), and the Cauchy–Schwarz
inequality result in

λb(u, bT unc) = apw(u, bT unc) = (Dmu, Dm(bT unc))L2(T )

≤ |u − I u|Hm (T )|bT unc|Hm (T ).

An inverse estimate for polynomials in P5m(T ) with the constant cinv and the bound-
edness of bT show λb(u, bT unc) ≤ cinvh

−m
T |u − I u|Hm (T )‖unc‖L2(T ). This provides

c−2
b hmT ‖unc‖L2(T ) ≤ hmT ‖u−unc‖L2(T )+cinvλ−1|u− I u|Hm (T ) for all T ∈ T in (3.25).
The sum over all T ∈ T concludes the proof of (3.10) with C4 = c2b max{1, cinv}. ��

3.5 Proof of Theorem 3.1.c

Proof of (3.12) for ε4 > 0 Recall c1 := 2λ2κ2
mC1C2(1+C3) and (3.8) as a result of

(3.5)–(3.7). A triangle inequality, Remark 3.3, and (3.8) show

‖δλu‖L2(�) ≤ 2λ2κ2
mh

2m
max‖u − unc‖L2(�) + ‖δλunc‖L2(�)

≤ c1C3h2mmax

1 + C3
hσ
max|||u − I u|||pw + c1h

2m
max‖δλu‖L2(�) + ‖δλunc‖L2(�).

Since 0 < ε3 := min{ε2, (2c1)−1/2m} ensures c1h2mmax ≤ 1/2 for all T ∈ T(ε3),

the previously displayed estimate reads ‖δλu‖L2(�) ≤ c1C3h2mmax
1+C3

hσ
max|||u − I u|||pw +

‖δλu‖L2(�)/2 + ‖δλunc‖L2(�). This implies (3.9). The bound (3.9) for ‖δλu‖L2(�)

recasts (3.8) as

C−1
1 C−1

2 ‖u − unc‖L2(�) ≤ 2C3h
σ
max|||u − I u|||pw + 2(1 + C3)λ‖δunc‖L2(�).
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Adaptive guaranteed lower eigenvalue bounds... 19

Remark 3.3 and (3.10) control the last term in

(2κ2
mC4)

−1‖δunc‖L2(�) ≤ C−1
4 λhmmax‖hmT unc‖L2(�)

≤ λh2mmax‖u − unc‖L2(�) + hmmax|||u − I u|||pw.

Recall that c2 := 4λ2κ2
mC1C2(1+ C3)C4 and ε4 := min{ε3, (2c2)−1/2m} < 1 ensure

c2h2mmax ≤ 1/2.Hence the last term in (3.11) is≤ ‖u−unc‖L2(�)/2 and canbe absorbed.
This concludes the proof of (3.12) with C5 := 2C1C2

(
2C3 + 4κ2

mλ(1 + C3)C4
)
. ��

Recall 0 < ε5 ≤ ε4 such that b(u, unc) > 0 for any T ∈ T(ε5).

Proof of Theorem 3.1.c for ε5 > 0 Recall λh ≤ λ and ‖u‖L2(�) = ‖unc‖L2(�) = 1.
The continuous eigenpair (λ, u) in (1.1) satisfies λ = |||u|||2. The discrete eigenpair
(λh, unc) solves (3.2) and so λh = |||unc|||2pw/‖unc‖21+δ with ‖unc‖L2(�) = 1. Then

|||u − unc|||2pw = λ − 2apw(u, unc) + λh‖unc‖21+δ and

‖unc‖21+δ − 1 = b(δunc, unc) = ‖unc‖2δ .

This and elementary algebra show for the left-hand side of Theorem 3.1.c that

LHS := λ − λh + |||u − unc|||2pw + ‖unc‖2δ = 2λ − 2apw(u, unc) + (1 + λh)‖unc‖2δ .

Since u is the eigenfunction in (1.1) and 2b(u, u − unc) = ‖u − unc‖2L2(�)
from

‖unc‖L2(�) = 1 = ‖u‖L2(�), it follows

λ = λb(u, unc) + λb(u, u − unc)

= λb(u, unc − Junc) + apw(u, Junc) + λ/2 ‖u − unc‖2L2(�)
.

The combination of the last two displayed identities eventually leads to

LHS = (1 + λh)‖unc‖2δ + λ‖u − unc‖2L2(�)
+ 2λb(u, unc − Junc)

+ 2apw(u, Junc − unc). (3.26)

Recall 2λκ2
mh

2m
max ≤ 1. The combination of Remark 3.3 and (3.10) implies that

‖unc‖δ ≤ √
2κmλ1/2‖hmT unc‖L2(�) ≤ C4‖u − unc‖L2(�) + √

2/λκmC4|||u − I u|||pw
and (3.12) controls ‖u − unc‖L2(�) ≤ C5hσ

max|||u − I u|||pw. Corollary 2.3.b asserts
2λb(u, unc − Junc) ≤ M2|||u − I u|||pw|||u − unc|||pw. Corollary 2.3.c shows
apw(u, Junc − unc) ≤ M2|||u − I u|||pw|||u − unc|||pw. Since λh ≤ λ, these esti-
mates lead in (3.26) to

LHS≤ (
(1+λ)C2

4 (C5h
σ
max + √

2/λκm)2 +λC2
5h

2σ
max

)|||u − I u|||2
+3M2|||u − I u|||pw|||unc − u|||pw.
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20 C. Carstensen, S. Puttkammer

A weighted Young inequality and the absorption of |||unc − u|||2pw/2 conclude the

proof of Theorem 3.1.c with C0 := max{C2
5 , 2((1 + λ)C2

4 (C5hσ
max + √

2/λκm)2 +
λC2

5h
2σ
max) + 9M2

2 }. ��

4 Optimal convergence rates

This section verifies some general axioms of adaptivity [12, 26] sufficient for optimal
rates for AFEM4EVP and prepares the conclusion of the proof of Theorem 1.1 in
Sect. 5.

4.1 Stability and reduction

The 2-level notation of Table 1 concerns one coarse triangulation T ∈ T and one fine
triangulation T̂ ∈ T(T ). Let (λ, u) ∈ R

+ ×V denote the k-th continuous eigenpair of
(1.1) with a simple eigenvalue λ ≡ λk and the normalization ‖u‖L2(�) = 1. Choose
ε5 > 0 as in Theorem 3.1, suppose T ∈ T(ε5), and let T̂ ∈ T(T ) be any admissible
refinement of T .

Definition 4.1 (2-level notation) Let (λh, uh) ∈ R
+ ×Vh (resp. (̂λh, ûh) ∈ R

+ × ̂Vh)
with uh = (upw, unc) ∈ Vh := Pm(T ) × V (T ) (resp. ûh = (̂upw, ûnc) ∈ ̂Vh :=
Pm(T̂ ) × V (T̂ )) denote the k-th discrete eigenpair of (1.2) with the simple algebraic
eigenvalue λh ≡ λh(k) (resp. λ̂h ≡ λ̂h(k)), the normalization ‖unc‖L2(�) = 1 (resp.
‖ûnc‖L2(�) = 1), and the sign convention b(u, unc) > 0 (resp. b(u, ûnc) > 0). Recall
ĥmax := maxT∈T̂ hT ≤ hmax := maxT∈T hT ≤ ε5, λh, λ̂h ≤ λ from Theorem 3.1.b,
and δ from Remark 3.3 with its analogue δ̂ := (1 − λ̂hκ

2
mh

2m
T̂ )−1 − 1 ∈ P0(T̂ ) on

the fine level. The constant Cδ := 2λκ2
m satisfies δ ≤ Cδh2mT and δ̂ ≤ Cδh2mT̂ . Recall

the estimator η2(T ) for any T ∈ T from (1.4) and define η̂2(T ), for any T ∈ T̂ with
volume |T | and the set of faces F̂(T ), by

η̂2(T ) := |T |2m/3‖̂λhûnc‖2L2(T )
+ |T |1/3

∑

F∈F̂(T )

‖[Dm
pwûnc]F × νF‖2L2(F)

. (4.1)

The sum conventions η2(M) := ∑
T∈M η2(T ) for M ⊂ T and η̂2(M̂) :=∑

T∈M̂ η̂2(T ) for M̂ ⊂ T̂ from Table 1 apply throughout this section. Abbreviate
the distance function

δ2(T , T̂ ) := ‖λhunc − λ̂hûnc‖2L2(�)
+ |||unc − ûnc|||2pw. (4.2)

Theorem 4.2 (stability and reduction) There exist �1,�2 > 0, such that, for any T
and T̂ from Definition 4.1, the following holds

(A1) Stability.
∣∣η(T ∩ T̂ ) − η̂(T ∩ T̂ )

∣∣ ≤ �1δ(T , T̂ ),

(A2) Reduction. η̂(T̂ \T ) ≤ 2−1/12η(T \T̂ ) + �2δ(T , T̂ ).
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Adaptive guaranteed lower eigenvalue bounds... 21

Table 1 : 2-level notation with respect to T ∈ T(ε) (left) and an admissible refinement
T̂ ∈ T(T ) (right)

(λh , uh) ∈ R
+ × Vh k-th eigenpair in (1.2) (̂λh , ûh) ∈ R

+ × ̂Vh k-th eigenpair in (1.2)

with uh = (upw, unc) ∈ Pm (T ) × V (T ) with ûh = (̂upw, ûnc) ∈ Pm (T̂ ) × V (T̂ )

‖unc‖L2(�) = 1, b(u, unc) > 0, λh ≤ λ ‖ûnc‖L2(�) = 1, b(u, ûnc) > 0, λ̂h ≤ λ

hmax := maxT∈T hT ĥmax := maxT∈T̂ hT

δ := (1 − λhκ2mh
2m
T )−1 − 1 ≤ Cδh

2m
T ≤ 1 δ̂ := (1 − λ̂hκ2mh

2m
T̂ )−1 − 1 ≤ Cδh

2m
T̂ ≤ 1

η2(T ) from (1.4) for T ∈ T η̂2(T ) from (4.1) for T ∈ T̂
η2(M) := ∑

T∈M η2(T ) forM ⊆ T η̂2(M̂) := ∑
T∈M̂ η̂2(T ) for M̂ ⊆ T̂

Proof A reverse triangle inequality in R
L for the number L := |T ∩ T̂ | of tetrahedra

in T ∩ T̂ and one for each common tetrahedra T ∈ T ∩ T̂ and each of its faces
F ∈ F(T ) lead to

∣∣η(T ∩ T̂ ) − η̂(T ∩ T̂ )
∣∣2 ≤

∑

T∈T ∩T̂

(
|T |2m/3‖λhunc − λ̂hûnc‖2L2(T )

+ |T |1/3
∑

F∈F(T )

‖[Dm
pw(unc − ûnc)]F × νF‖2L2(F)

)
.

The discrete jump control from [26, Lem. 5.2] with constantCjc(�) (that only depends
on the shape-regularity of T and the polynomial degree � ∈ N0) reads

∑

T∈T
|T |1/3

∑

F∈F(T )

‖[g]F‖2L2(F)
≤ Cjc(�)

2‖g‖2L2(�)
for any g ∈ P�(T ).

The combination of the two displayed estimates concludes the proof of (A1)with�2
1 =

max
{
maxT∈T0 |T |2m/3,Cjc(0)2

}
. For any tetrahedron K ∈ T \ T̂ , let T̂ (K ) := {T ∈

T̂ : T ⊂ K } denote its fine triangulation. The newest-vertex bisection guarantees
|T | ≤ |K |/2 for the volume |T | of any T ∈ T̂ (K ). This, a triangle inequality, and
(a + b)2 ≤ (1 + β)a2 + (1 + 1/β)b2 for a, b ≥ 0, β = 21/6 − 1 > 0 show

η̂2(T̂ (K )) ≤ 2−1/6η2(K ) + (1 + 1/β)
∑

T∈T̂ (K )

(
|T |2m/3‖λhunc − λ̂hûnc‖2L2(K )

+ |T |1/3
∑

F∈F̂(T )

‖[Dm
pw(̂unc − unc)]F × νF‖2L2(F)

)
.

The summation over all K ∈ T \ T̂ and the above jump control conclude the proof
of (A2) with�2

2 = 21/6/(21/6 −1) max
{
maxT∈T0 |T |2m/3,Cjc(0)2

}
. The arguments

for (A1)–(A2) are similar for other problems; cf., e.g., [12, 20, 22, 26] for more details.
��
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22 C. Carstensen, S. Puttkammer

4.2 Towards discrete reliability

Given the 2-level notation of Definition 4.1 with respect to T and T̂ , letR1 := {K ∈
T : ∃ T ∈ T \T̂ with dist(K , T ) = 0} ⊂ T denote the set of coarse but not fine
tetrahedra plus one layer of coarse tetrahedra around. Lemma 4.3–4.5 prepare the
proof of the discrete reliability in Theorem 4.6 below. Let Î : V + V (T̂ ) → V (T̂ )

denote the interpolation operator on the fine level of T̂ so that (I3) and a Cauchy–
Schwarz inequality show, for any v ∈ V + V (T̂ ) and any w ∈ V + V (T ) + V (T̂ ),
that

|b((I − Î )v,w)| ≤ ‖(I − Î )v‖L2(T \T̂ )‖w‖L2(T \T̂ ),

|apw((I − Î )v,w)| ≤ ‖Dm
pw(I − Î )v‖L2(T \T̂ )‖Dm

pww‖L2(T \T̂ ).
(4.3)

Lemma 4.3 (distance control I) There exists C6 > 0 such that any T ∈ T(ε5) and the
difference e := ûnc − unc satisfy

C−1
6 |||e|||2pw ≤ ‖Dm

pw(unc − Junc)‖2L2(T \T̂ )
+ ‖hmT λhunc‖2L2(T \T̂ )

+ ‖e‖2L2(�)

+‖δunc‖2L2(�)
+ ‖̂δûnc‖2L2(�)

.

Proof Corollary 2.1.c shows apw(e, ûnc − Junc) = apw
(
ûnc, ûnc − Î Junc

) −
apw

(
unc, I (̂unc − Junc)

)
. Since (λh, unc) and (̂λh, ûnc) solve (3.2), this and (J1) lead

to

apw(e, ûnc − Junc) = b
(
λ̂hûnc, (1 + δ̂)(̂unc − Î Junc)

)

− b
(
λhunc, (1 + δ)(I ûnc − unc)

)

= b(̂λhûnc − λhunc, e) + b(̂λhûnc, δ̂e) − b(λhunc, δe)

+ b
(
λ̂hûnc, (1+ δ̂)(unc − Î Junc)

)

+ b
(
λhunc, (1+ δ)(̂unc − I ûnc)

)
. (4.4)

Elementary algebra with ‖unc‖L2(�) = ‖ûnc‖L2(�) = 1 shows (as, e.g., in [13,
Lem. 3.1])

b(̂λhûnc − λhunc, e) = λ̂h + λh

2
‖e‖2L2(�)

+ λ̂h − λh

2
b(̂unc + unc, ûnc − unc)

= λ̂h + λh

2
‖e‖2L2(�)

.

Cauchy–Schwarz inequalities verify

b(̂λhûnc, δ̂e) − b(λhunc, δe) ≤ ‖e‖L2(�)

(
λ̂h ‖̂δûnc‖L2(�) + λh‖δunc‖L2(�)

)
.
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Since 1 + δ̂ ≤ 2 and λ̂h ≤ λ from Table 1, the right inverse property (J1) and (4.3)
result in

b
(
(1 + δ̂)̂λhûnc, unc − Î Junc

) = b
(
(1 + δ̂)̂λhûnc, (I − Î )Junc

)

≤ 2‖hmT λûnc‖L2(T \T̂ )‖h−m
T (I − Î )Junc‖L2(T \T̂ ).

The triangle inequality ‖hmT λûnc‖L2(T \T̂ ) ≤ hmmaxλ‖e‖L2(�) + ‖hmT λunc‖L2(T \T̂ )

and λ/λh ≤ 2 from Theorem 3.1.a imply ‖hmT λunc‖L2(T \T̂ ) ≤ 2‖hmT λhunc‖L2(T \T̂ ).

Since the interpolation operators I and Î satisfy (I3)–(I4), it follows that

‖h−m
T (I − Î )Junc‖L2(T \T̂ ) = ‖h−m

T (1 − I ) Î Junc‖L2(T \T̂ )

≤ κd‖Dm
pw(1 − I ) Î Junc‖L2(T \T̂ ).

Recall Dm
pwunc ∈ P0(T ; R

3m ). The condition (I2) and the L2-orthogonal projections


0 (resp. 
̂0) onto P0(T ) (resp. P0(T̂ )) lead to the estimate

κ−1
d ‖h−m

T (I − Î )Junc‖L2(T \T̂ ) ≤ ‖(
0 − 
̂0)D
m Junc‖L2(T \T̂ )

= ‖(
0 − 
̂0)D
m
pw(Junc − unc)‖L2(T \T̂ ) ≤ ‖Dm

pw(Junc − unc)‖L2(T \T̂ ).

The estimate (4.3) and δ ≤ 1 from Table 1 imply the first inequality and (I4) and
Corollary 2.1.a the second in

b
(
λhunc, (1 + δ)(̂unc − I ûnc)

) = b
(
λhunc, (1 + δ)( Î − I )̂unc

)

≤ 2‖hmT λhunc‖L2(T \T̂ )‖h−m
T (̂unc − I ûnc)‖L2(T \T̂ )

≤ 2κd‖hmT λhunc‖L2(T \T̂ )|||e|||pw.

The combination of the six previously displayed estimates and λh, λ̂h ≤ λ lead in
(4.4) to

apw(e, ûnc − Junc) ≤ 2κd‖Dm
pw(unc − Junc)‖L2(T \T̂ )

(
λhmmax‖e‖L2(�)

+ 2‖hmT λhunc‖L2(T \T̂ )

) + λ‖e‖L2(�)

(‖e‖L2(�) + ‖δunc‖L2(�)

+ ‖̂δûnc‖L2(�)

) + 2κd |||e|||pw‖hmT λhunc‖L2(T \T̂ ).

Additionally, Corollary 2.3.c and (4.3) show

apw(e, Junc − unc) = apw((1 − I )e, Junc − unc) = apw
(
( Î − I )̂unc, Junc − unc

)

≤ ‖Dm
pw(1 − I )e‖L2(T \T̂ )‖Dm

pw(unc − Junc)‖L2(T \T̂ ).

Condition (I2) and the boundedness of 
0 show ‖Dm
pw(1 − I )e‖L2(T \T̂ ) ≤ |||e|||pw.

This and the combination of the two previously displayed estimates with a triangle
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24 C. Carstensen, S. Puttkammer

inequality prove

|||e|||2pw = apw(e, Junc − unc) + apw(e, ûnc − Junc)

≤ ‖Dm
pw(unc − Junc)‖L2(T \T̂ )

(|||e|||pw + 2κdλh
m
max‖e‖L2(�)

+ 4κd‖hmT λhunc‖L2(T \T̂ )

) + λ‖e‖L2(�)

(‖e‖L2(�)

+ ‖δunc‖L2(�) + ‖̂δûnc‖L2(�)

) + 2κd |||e|||pw‖hmT λhunc‖L2(T \T̂ )

≤ (1 + 4κ2
d + κ2

dλ2h2mmax)‖Dm
pw(unc − Junc)‖2L2(T \T̂ )

+ ‖δunc‖2L2(�)

+ ‖̂δûnc‖2L2(�)
+ (1 + λ + λ2/2)‖e‖2L2(�)

+ (1 + 4κ2
d )‖hmT λhunc‖2L2(T \T̂ )

+ |||e|||2pw/2

with weighted Young inequalities in the last step. This concludes the proof withC6 :=
2max{1 + 4κ2

d + κ2
dλ2h2mmax, 1 + λ + λ2/2}. ��

4.2.1 Reliability and efficiency

A first consequence of Lemma 4.3 is the reliability of the error estimator η(T ) from
(1.4).

Theorem 4.4 (reliability and efficiency) There exist Crel, Ceff , and ε6 > 0 such that
C−1
eff η(T ) ≤ |||u − unc|||pw ≤ Crel η(T ) holds for T ∈ T(ε6).

Proof of reliability Lemma 4.3 holds for any refinement T̂ ∈ T(T ) of T ∈ T(ε5)

and we may consider a sequence T̂ = T̂� of uniform mesh-refinements of T . The
reliability follows in the limit as ĥmax → 0 for � → ∞ and |||u − ûnc|||pw → 0 from
Theorem 3.1.c. The left-hand side of Lemma 4.3 converges to C−1

6 |||u − unc|||pw.
On the right-hand side, ‖̂δûnc‖L2(�) ≤ Cδ ĥ2mmax converges to zero and ‖e‖L2(�) →
‖u − unc‖L2(�) as ĥmax → 0. Moreover the shape-regularity hT ≤ Csr|T |1/3 for
T ∈ T ∈ T, (J2), and ‖δunc‖L2(�) ≤ 2κ2

mh
m
max‖hmT λhunc‖L2(�) show

‖Dm
pw(unc − Junc)‖2L2(�)

+ ‖hmT λhunc‖2L2(�)
+ ‖δunc‖2L2(�)

≤ max{M1,C
2m
sr (1 + 4κ4

mh
2m
max)}η2(T ).

For the remaining term on the right-hand side, (3.12) and Corollary 2.1.a show

C−1
5 ‖u − unc‖L2(�) ≤ hσ

max|||u − I u|||pw ≤ hσ
max|||u − unc|||pw.

A reduction to ε6 := min{ε5, (2C2
5C6)

−1/(2σ)} such that C2
5C6h2σmax ≤ 1/2 allows

for the absorption of C2
5C6h2σmax|||u − unc|||2pw ≤ |||u − unc|||2pw/2 and concludes the

proof with C2
rel := 2C6 max{M1,C2m

sr (1 + 4κ4
mh

2m
max)}. ��
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Proof of efficiency The condition (J2) guarantees

M1/M
2
2

∑

T∈T
|T |1/3

∑

F∈F(T )

‖[Dm
pwunc]F × νF‖2L2(F)

≤ min
v∈V |||v − unc|||2pw

≤ |||u − unc|||2pw.

The combination of |T |1/3 ≤ hT , λh ≤ λ, and the efficiency (3.10) with |||u −
I u|||pw ≤ |||u − unc|||pw from Corollary 2.1.a implies that

∑

T∈T
|T |2m/3‖λhunc‖2L2(T )

≤ ‖hmT λhunc‖2L2(�)

≤ 2C2
4

(
λ2h2mmax‖u − unc‖2L2(�)

+ |||u − unc|||2pw
)
.

Theorem 3.1.c concludes the proof with C2
eff := M2

2/M1 + 2C2
4 + 2C2

4C0λ
2h2m+2σ

max .
��

4.2.2 Discrete reliability

Lemma 4.5 (distance control II) There exists a constant C7 > 0 such that ‖̂λhûnc −
λhunc‖L2(�)+‖ûnc−unc‖L2(�)+‖̂δûnc‖L2(�)+‖δunc‖L2(�) ≤ C7h

σ
max|||u−unc|||pw ≤

C7Crelh
σ
maxη(T ) holds for any T ∈ T(ε6).

Proof Triangle inequalities and the normalization ‖u‖L2(�) = 1 show

‖̂λhûnc − λhunc‖L2(�) ≤λh‖u − unc‖L2(�) + λ̂h‖u − ûnc‖L2(�) + |̂λh − λh |.

Theorem 3.1.c and Corollary 2.1.b imply |λ − λh | ≤ C0|||u − I u|||2pw ≤
C0(hmax/π)2σ ‖u‖2Hm+σ (�)

. Since the eigenfunction u ∈ V in (1.1) solves the

source problem with right-hand side λu ∈ L2(�), (2.1) implies ‖u‖Hm+σ (�) ≤
C(σ )‖λu‖L2(�) = C(σ )λ. The same arguments apply to |λ − λ̂h |. This and
ĥσ
max|||u − Î u|||pw ≤ hσ

max|||u − I u|||pw result in

|̂λh − λh | ≤ |λ − λh | + |λ − λ̂h | ≤ 2C0C(σ )λ/πσ hσ
max|||u − I u|||pw.

Recall λh, λ̂h ≤ λ, ‖δunc‖L2(�) ≤ C1/2
δ hmmax‖unc‖δ , and ‖̂δûnc‖L2(�) ≤ C1/2

δ ĥmmax
‖ûnc‖δ̂ from Table 1. The last two displayed estimates, a triangle inequality, and
Theorem 3.1.c show

‖̂λhûnc − λhunc‖L2(�) + ‖ûnc − unc‖L2(�) + ‖̂δûnc‖L2(�) + ‖δunc‖L2(�)

≤ 2
(
(C0C(σ )λ/πσ + C1/2

0 (1 + λ))hσ
max + (CδC0)

1/2hmmax

)|||u − I u|||pw

with |||u − Î u|||pw ≤ |||u − I u|||pw and ĥmax ≤ hmax. Since hmax ≤ ε6 < 1 and
1/2 < σ ≤ 1 ≤ m, Corollary 2.1.a concludes the proof of the first bound inLemma4.5
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with C7 := 2C0C(σ )λ/πσ + 2C1/2
0 (1 + λ + C1/2

δ ). The second claim follows from
Theorem 4.4. ��
Theorem 4.6 (discrete reliability) There exist constants �3, M3 > 0 such that T ∈
T(ε6) with maximal mesh-size hmax ≤ ε6 (ε6 from Theorem 4.4) and ε3 := M3h2σmax
imply
(A3ε) Discrete reliability. δ

2(T , T̂ ) ≤ �3η
2(R1) + ε3η

2(T ).

Proof Recall that Lemma 4.3 shows

C−1
6 |||̂unc − unc|||2pw ≤ ‖Dm

pw(unc − Junc)‖2L2(T \T̂ )
+ ‖hmT λhunc‖2L2(T \T̂ )

+ ‖ûnc − unc‖2L2(�)
+ ‖̂δûh‖2L2(�)

+ ‖δunc‖2L2(�)
.

This and Lemma 4.5 lead with M3 := C2
7C

2
rel max{1,C6} to

δ2(T , T̂ ) = ‖̂λhûnc − λhunc‖2L2(�)
+ |||̂unc − unc|||2pw

≤ C6‖Dm
pw(unc − Junc)‖2L2(T \T̂ )

+ C6‖hmT λhunc‖2L2(T \T̂ )
+ M3h

2σ
maxη

2(T ).

The shape regularity hT ≤ Csr|T |1/3 for any T ∈ T ∈ T guarantees

‖hmT λhunc‖L2(T \T̂ ) ≤ Cm
sr |T |m/3‖λhunc‖L2(T \T̂ ) ≤ Cm

srη(T \ T̂ ) ≤ Cm
srη(R1).

with T \T̂ ⊂ R1 in the last step. Remark 2.2 asserts

M−1
5 ‖Dm

pw(unc − Junc)‖2L2(T \T̂ )
≤

∑

T∈R1

|T |1/3
∑

F∈F(T )

‖[Dm
pwunc]F × νF‖2L2(F)

≤ η2(R1).

The combination of the last three displayed inequalities concludes the proof of (A3ε)
with �3 := C6(C2m

sr + M5). ��

4.3 Quasiorthogonality

The quasiorthogonality in Theorem 4.7 below concerns the outcome (T j ) j∈N0 of
AFEM4EVP.Let u j ∈ V (T j ) abbreviate the nonconforming component of the discrete
solution u j = (upw, unc) =: (upw, u j ) ∈ Pm(T j ) × V (T j ) with b(u, u j ) > 0,
‖u j‖L2(�) = 1, and λ j (k) ≤ λ the associated eigenvalue from AFEM4EVP on the
level j ∈ N0. Recall the distance

δ2(T j , T j+1) = ‖λ j (k)u j − λ j+1(k)u j+1‖2L2(�)
+ |||u j − u j+1|||2pw

for the triangulations T j and T j+1. Set h0 := maxT∈T0 hT and recall ε6 > 0 from
Theorem 4.4.
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Theorem 4.7 (quasiorthogonality) For any 0 < β ≤ C2
eff/C

2
rel, there exist �4, �̃4,

and ε4 := �̃4(β + h2σ0 (1 + β−1)) > 0, such that T0 ∈ T(ε6) implies that the output
(η j ) j∈N0 and (T j ) j∈N0 of AFEM4EVP satisfies

(A4ε) Quasiorthogonality.
�+L∑

j=�

δ2(T j , T j+1) ≤ �4(1+ β−1)η2� + ε4

�+L∑

j=�

η2j for any

�, L ∈ N0.

The following Lemma 4.8 in the 2-level notation of Definition 4.1 prepares the
proof of Theorem 4.7 below.

Lemma 4.8 (2-level quasiorthogonality) There exists Cqo > 0 such that, for
T ∈ T(ε6), apw(u−ûnc, unc − ûnc) ≤ Cqo

(
hσ
max|||u−unc|||pw + ‖hmT λu‖L2(T \T̂ )

)

|||u − ûnc|||pw holds.

Proof Since (λh, unc) (resp. (̂λh, ûnc)) solves (3.2) with respect to T and δ ∈ P0(T )

(resp. T̂ and δ̂ ∈ P0(T̂ ) from Table 1), Corollary 2.1.c and elementary algebra show
that

apw(unc − ûnc, u − ûnc) = apw
(
unc, I (u − ûnc)

) − apw
(
ûnc, Î u − ûnc

)

= b
(
λhunc(1 + δ), I (u − ûnc)

) − b
(
λ̂hûnc(1 + δ̂), Î u − ûnc

)

= b
(
λhunc(1 + δ) − λ̂hûnc(1 + δ̂), Î u − ûnc

) + (
λhunc, (I − Î )(u − ûnc)

)
1+δ

.

(4.5)

The Cauchy–Schwarz inequality, λh, λ̂h ≤ λ, and Lemma 4.5 in the last step prove

t1 := b
(
λhunc(1 + δ) − λ̂hûnc(1 + δ̂), Î u − ûnc

)

≤
(
‖λhunc − λ̂hûnc‖L2(�) + λh‖δunc‖L2(�) + λ̂h ‖̂δûnc‖L2(�)

)
‖ Î u − ûnc‖L2(�)

≤ max{1, λ}C7h
σ
max|||u − unc|||pw‖ Î u − ûnc‖L2(�).

The discrete Friedrichs inequality (3.23) with respect to V (T̂ ), (I2), and the L2-
projection 
̂0 onto P0(T̂ ) lead to

C−1
dF ‖ Î u − ûnc‖L2(�) ≤ ||| Î u − ûnc|||pw = ‖
̂0D

m
pw(u − ûnc)‖L2(�) ≤ |||u − ûnc|||pw.

Consequently, t1 ≤ max{1, λ}C7CdFhσ
max|||u−unc|||pw|||u−ûnc|||pw.Since 1+δ ≤ 2

from Table 1, the arguments behind (4.3) also show

t2 :=(
λhunc, (I − Î )(u − ûnc)

)
1+δ

≤ 2‖hmT λhunc‖L2(T \T̂ )‖h−m
T (I − Î )(u − ûnc)‖L2(�).

Since (I3) implies I ( Î u) = I u, (I2) and (I4) for I and (I2) for Î show ‖h−m
T (I− Î )(u−

ûnc)‖L2(�) = ‖h−m
T (1− I )( Î u− ûnc)‖L2(�) ≤ κd |||(1− I ) Î (u− ûnc)|||pw ≤ κd |||u−
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28 C. Carstensen, S. Puttkammer

ûnc|||pw. On the other hand, λh ≤ λ, a triangle inequality, (3.12), and Corollary 2.1.a
imply

‖hmT λhunc‖L2(T \T̂ ) ≤ ‖hmT λu‖L2(T \T̂ ) + λhmmax‖u − unc‖L2(�)

≤ ‖hmT λu‖L2(T \T̂ ) + C5λh
m+σ
max |||u − unc|||pw.

Hence the upper bound t1 + t2 in (4.5) is controlled and the above estimates lead to
the assertion with Cqo := max{2κd ,max{1, λ}C7CdF + 2C5λhmmaxκd}. ��

Proof of Theorem 4.7 Recall that u j ∈ V (T j ) is the nonconforming component of the
discrete solution u j = (upw, unc) =: (upw, u j ) ∈ Pm(T j )×V (T j ) and that λ j (k) ≤ λ

is the associated eigenvalue from AFEM4EVP on the j-th level for � ≤ j ≤ � + L .
Since T j , T j+1 ∈ T(T0) for � ≤ j ≤ � + L , Lemma 4.5 shows

δ2(T j , T j+1) ≤ |||u j − u j+1|||2pw + C2
7C

2
relh

2σ
0 η2j .

Elementary algebra, Lemma 4.8, and two weighted Young inequalities show

|||u j − u j+1|||2pw−|||u − u j |||2pw + |||u − u j+1|||2pw = 2apw(u − u j+1, u j − u j+1)

≤2Cqo

(
hσ
0 |||u − u j |||pw + ‖hmT j

λu‖L2(T j\T j+1)

)
|||u − u j+1|||pw

≤2C2
qo

β
h2σ0 C2

relη
2
j + βC2

relη
2
j+1 + 2C2

qo

β
‖hmT j

λu‖2L2(T j\T j+1)

with Theorem 4.4 in the last step. Theorem 4.4 controls the telescoping sum

�+L∑

j=�

(|||u − u j |||2pw − |||u − u j+1|||2pw
) = |||u − u�|||2pw − |||u − u�+L+1|||2pw

≤ C2
relη

2
� − C2

effη
2
�+L+1.

Since β ≤ C2
eff/C

2
rel implies (βC2

rel − C2
eff) η2�+L+1 ≤ 0, the last three displayed

estimates show

�+L∑

j=�

δ2(T j , T j+1) ≤
�+L∑

j=�

(
|||u − u j |||2pw − |||u − u j+1|||2pw

)

+
((

2C2
qo

β
+ C2

7

)

h2σ0 + β

)

C2
rel

�+L∑

k=�

η2j

+ βC2
relη

2
�+L+1 + 2C2

qo

β

�+L∑

j=�

‖hmT j
λu‖2L2(T j\T j+1)
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≤ C2
relη

2
� +

((
2C2

qo

β
+ C2

7

)

h2σ0 + β

)

C2
rel

�+L∑

k=�

η2j

+ 2C2
qo

β

�+L∑

j=�

‖hmT j
λu‖2L2(T j\T j+1)

. (4.6)

Recall that hT j |T := diam(T ) for any T ∈ T j and compare it with the piecewise

constant function h̃ j ∈ P0(T j ) defined by h̃ j |T := |T |1/3 ≤ hT ≤ Csr|T |1/3 (from
shape-regularity) for any T ∈ T j and j ∈ N0. Then h̃ j ≈ hT j ∈ P0(T j ) and h̃ j ∈
P0(T j ) satisfies the reduction h̃ j+1 ≤ h̃ j/21/3 a.e. in the set of refined tetrahedra
⋃ (

T j \ T j+1
)
. Hence h̃mj ≤ 2m/3√

4m/3−1

√
h̃2mj − h̃2mj+1 a.e. in

⋃ (
T j \ T j+1

)
and

C−2m
sr

4m/3 − 1

4m/3

�+L∑

j=�

‖hmT j
λu‖2L2(T j \T j+1)

≤ 4m/3 − 1

4m/3

�+L∑

j=�

‖h̃mj λu‖2L2(T j \T j+1)

≤
�+L∑

j=�

∥∥∥
√
h̃2mj − h̃2mj+1λu

∥∥∥
2

L2(�)
=

∫

�

(h̃2m� − h̃2m�+L+1)(λu)2dx ≤ ‖h̃m� λu‖2L2(�)
.

Since h̃� ≤ hT�
≤ h0 := maxT∈T0 hT ≤ ε6, a triangle inequality implies

‖h̃m� λu‖2L2(�)
≤ 2(λ/λ�(k))

2‖h̃m� λ�(k)u�‖2L2(�)
+ 2λ2h2m0 ‖u − u�‖2L2(�)

.

Theorem 3.1.a and (1.4) show (λ/λ�(k))2‖h̃m� λ�(k)u�‖2L2(�)
≤ 4η2� . Corollary 2.1.a,

Theorem4.4, and (3.12) imply ‖u−u�‖2L2(�)
≤ h2σ0 C2

5C
2
relη

2
� .The substitution in (4.6)

concludes the proof with�4 := max{C2
rel,C

2
qoC

2m
sr

4m/3+1

4m/3−1
(4+h2m+2σ

0 C2
5C

2
relλ

2)} and
�̃4 := C2

rel max{1, 2C2
qo,C

2
7 }. ��

5 Conclusion and comments

5.1 Proof of Theorem 1.1

The proven properties (A1)–(A4ε) are the axioms of adaptivity in [12, 26] and known
to imply (1.5). Compared to [12, 26] the discrete reliability in Theorem 4.6 is extended
in that (A3ε) includes the additional term M3h2σmaxη

2(T ). Minor modifications of the
arguments in [12, 26] prove that (A1)–(A4ε) imply (1.5). This is stated and proven as
Theorem A.1 in Appendix A for some ε := ε8 ≤ ε6. �

5.2 Optimal convergence rates of the error

The reliability and efficiency in Theorem 4.4 provide the equivalence |||u−u�|||pw ≈
η�(T�). This and Theorem 1.1 lead to optimal convergence rates for the error as well.
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30 C. Carstensen, S. Puttkammer

5.3 Global convergence

This paper on the asymptotic convergence rates justifies that a small initial mesh-size
guarantees the asymptotic convergence from the beginning. Although the reasons are
presented in several steps for ε0, . . . , ε8, the computation of ε8 may be cumbersome
and a huge overestimation in practice. To guarantee global convergencewithout a priori
knowledge of ε8, we maymodify the marking step in AFEM4EVP as follows: Enlarge
the set M� in AFEM4EVP by one tetrahedron of maximal mesh-size in T�. This
guarantees that themaximalmesh-size tends to zero as the level � → ∞. Consequently
there exists some L ∈ N such thatT� ∈ T(ε8) for all � = L, L+1, L+2, . . .RelabelTL
by T0 so that Theorem 1.1 leads to optimal convergence rates for ηL , ηL+1, ηL+2, . . .,
whence for the entire outcome of the adaptive algorithm. However, the constant in
the overhead control [48, Thm. 6.1] depends on TL and this possibly enlarges the
equivalence constants in (1.5).

5.4 Numerical experiments

Numerical experiments in [11, 24] show an asymptotic convergences of AFEM4EVP
with θ = 0.5 even for coarse initial triangulation and confirm the optimal convergence
rates of Theorem 1.1 even for one example with a multiple eigenvalue. The extension
to eigenvalue clusters requires an algorithm from [4, 29, 33]. This paper assumes exact
solve of the algebraic eigenvalue problem (1.2), but perturbation results in numerical
linear algebra [43] can be included as in [14].
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A. Appendix – A review and extension of the axioms of adaptivity

The framework (A1)–(A4ε) in Sect. 4 is a modification of [12, 26] with a more general
discrete reliability (A3ε). Theorem A.1 below proves that the modified axioms are
sufficient for optimal convergence rates of the AFEM algorithm with Dörfler marking
and newest-vertex bisection [12, Algorithm 2.2]. On level � ∈ N0 of the general
purpose adaptive algorithm AFEM there is given a regular triangulation T� of� ⊂ R

n
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into closed simplices and an undisplayed discrete problem with a discrete solution
u�. These allow for the computation of η�(T ) for all T ∈ T� in the step compute.
The step mark uses the sum convention η2�(M) := ∑

T∈M η2�(T ) for any M ⊆ T�

and η2� := η2�(T�). The selection of a set M� with almost minimal cardinality in this
step means that there exists a constant �opt ≥ 1 such that the cardinality satisfies
|M�| ≤ �opt|M�

�|, where M�
� ⊂ T� denotes some set of minimal cardinality |M�

�|
with θη2� ≤ ∑

T∈M�
�
η2�(T ); cf. [12, 26, 47] for details; this is more general than in

AFEM4EVP, which utilizes a minimal set M� with�opt = 1 constructed at linear cost
in [44].

AFEM
Input: regular initial triangulation T0 of � ⊂ R

n and bulk parameter 0 < θ ≤ 1
for � = 0, 1, 2, . . . do

Solve the discrete problem for the discrete solution u� based on T�

Compute η�(T ) for any T ∈ T� with respect to the discrete solution
Mark almost minimal subset M� ⊆ T� with θη2

�
≤ η2

�
(M�)

Refine T� with newest vertex bisection to compute T�+1 with M� ⊆ T� \ T�+1 od

Output: sequence of triangulations (T�)�∈N0 with (u�)�∈N0 and (η�)�∈N0

This appendix is written in a self-contained way based on the set T := T(T0) of all
admissible triangulation computed by successive newest-vertex bisection [35, 48] of
a regular initial triangulation T0 (plus some initialization of tagged n-simplices) of the
bounded polyhedral Lipschitz domain � ⊂ R

n into closed simplices and the subset
T(T ) of admissible refinements of T ∈ T. For N ∈ N0, set T(N ) := {T ∈ T : |T | ≤
|T0| + N }. To analyse the error estimates η�(T�) and their rates and in particular to
compare with error estimators η(T , •) for any admissible triangulation T ∈ T, we
need to assume that the error estimators are computable for any T ∈ T. This leads to
a family η(T , •) ∈ R

T of error estimators parametrized by T ∈ T with η(T , K ) ≥ 0
for all K ∈ T . For any subset M ⊆ T ∈ T, the sum convention reads

η2(T ,M) := (
η(T ,M)

)2 :=
∑

T∈M
η2(T , T ) and η2(T ) := η(T , T ). (1)

For any triangulation T� in the AFEM algorithm, we abbreviate η�(•) := η(T�, •)

and η� := η�(T�) ≡ η(T�, T�). Recall the Axioms (A1)–(A4ε) with constants �1,
�2, �3, �4, �ref > 0, �̂3, ε3, ε4≥ 0, and 0 < ρ2 < 1 for convenient reading. For
any T ∈ T and admissible refinement T̂ ∈ T(T ), there exists a set R(T , T̂ ) ⊆ T
with T \T̂ ⊂ R(T , T̂ ) and |R(T , T̂ )| ≤ �ref |T \T̂ |, such that T ∈ T, T̂ ∈ T(T ),
R(T , T̂ ), and the output (Tk)k∈N0 and (ηk)k∈N0 of AFEM satisfy (A1)–(A4ε).

(A1) Stability.
∣∣η(T , T ∩ T̂ ) − η(T̂ , T ∩ T̂ )

∣∣ ≤ �1δ(T , T̂ ).

(A2) Reduction. η(T̂ , T̂ \T ) ≤ ρ2η(T , T \T̂ ) + �2δ(T , T̂ ).

(A3ε) Discrete reliability. δ
2(T , T̂ ) ≤ �3η

2(T ,R(T , T̂ )) + �̂3η
2(T̂ ) + ε3η

2(T ).

(A4ε) Quasiorthogonality.
�+m∑

j=�

δ2(T j , T j+1) ≤ �4η
2
� + ε4

�+m∑

j=�

η2j for any �,m ∈ N0.
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Theorem A.1 below contains smallness assumptions for the constants �̂3, ε3, and
ε4. In a typical application such as Theorem 1.1 the quantities �̂3, ε3, ε4 contain
a power of the initial mesh-size h0 := maxT∈T0 hT such that the assumptions are
satisfied for a sufficiently fine initial triangulation T0. Given ε3 < �−2

1 , set � :=
(1 − �2

1ε3)/(1 + �2
1�3). Any choice of μ and ξ with 0 < μ < ρ−2

2 −1 and 0 < ξ <

(1 − (1 + μ)ρ2
2 )�/(1 − �) implies

ρ12 := �ρ2
2 (1 + μ) + (1 − �)(1 + ξ) < 1 and

�12 := (1 + 1/ξ)�2
1 + (1 + 1/μ)�2

2 < ∞.

Theorem A.1 (rate optimality of the adaptive algorithm) Suppose (A1)–(A4ε) with

�2
1ε3 < 1, �̂3(�

2
1 + �2

2) < 1, ε4 < (1 − ρ12)/�12, and 0 < θ < �.

The output (T�)�∈N0 and (η�)�∈N0 of AFEM satisfy, for any s > 0, the equivalence

sup
�∈N0

(1 + |T�| − |T0|)sη� ≈ sup
N∈N0

(1 + N )s min
T ∈T(N )

η(T ).

The proof of Theorem A.1 reviews parts of the analysis in [12, 26] and focusses
on the relevant extensions in Theorem A.2 and Theorem A.3 below. The following
results (A12), (A4), and (2) follow verbatim as in [12, 26]: (A1)–(A2) and the Dörfler
marking strategy with bulk parameter θ < � < 1 provide the estimator reduction [26,
Thm. 4.1]

η2(T̂ ) ≤ �12η
2(T ) + �12δ

2(T , T̂ ) (A12)

for any T ∈ T and any admissible refinement T̂ ∈ T(T ). The estimator reduction
(A12), (A4ε), and �qo := �4 + ε4(1 + �12�4)/(1 − ρ12 − ε4�12) > 0 guarantee
the stricter quasi-orthogonality [26, Thm. 3.1]

�+m∑

k=�

δ2(Tk, Tk+1) ≤ �qoη
2
� for any �,m ∈ N0. (A4)

This and (A12) imply plain and R-linear convergence on each level for the output
(η�)�∈N0 ofAFEMin [26, Thm. 4.2]: The constants�c := (1+�12�qo)/(1−ρ12) > 0
and qc := �c/(1 + �c) < 1 satisfy

�+m∑

k=�

η2k ≤ �cη
2
� and η2�+m ≤ qmc

1 − qc
η2� for any �,m ∈ N0. (2)

On the other hand, (A1)–(A3) are sufficient for the quasimonotonicity (QM) and the
comparison lemma. But the discrete reliability is relaxed in (A3ε) in this paper, so the
proofs of (QM) and the comparison lemma are revisited below.
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Theorem A.2 (QM) The axioms (A1), (A2), (A3ε), and �̂3(�
2
1 + �2

2) < 1 imply the
existence of �mon > 0 such that η(T̂ ) ≤ �monη(T ) holds for any T ∈ T and
T̂ ∈ T(T ).

Proof This proof extends [12, Lem. 3.5] and [26, Thm. 3.2]. The axioms (A1)–(A2)
apply to the decomposition η2(T̂ ) = η2(T̂ , T ∩ T̂ ) + η2(T̂ , T̂ \T ) of the estimator
of the fine triangulation T̂ ∈ T(T ) and show

η2(T̂ ) ≤ (
η(T , T ∩ T̂ ) + �1δ(T , T̂ )

)2 + (
ρ2η(T , T \ T̂ ) + �2δ(T , T̂ )

)2

≤ (1 + 1/α)η2(T ) + (1 + α)(�2
1 + �2

2)δ
2(T , T̂ )

with (a + b)2 ≤ (1 + α)a2 + (1 + 1/α)b2 for any positive a, b and 0 < α <(
(�2

1+�2
2)�̂3

)−1−1 in the second step. (For �̂3 = 0, the upper bound for 0 < α < ∞
is understood as infinity.) The Axiom (A3ε) controls the distance δ2(T , T̂ ) and leads
to

η2(T̂ ) ≤ (
1 + 1/α + (1 + α)(�2

1 + �2
2)(�3 + ε3)

)
η2(T ) + (1 + α)(�2

1 + �2
2)�̂3η

2(T̂ ).

Since (1 + α)(�2
1 + �2

2)�̂3 < 1, this proves η2(T̂ ) ≤ �2
monη

2(T ) for

�2
mon := 1 + 1/α + (1 + α)(�2

1 + �2
2)(�3 + ε3)

1 − (1 + α)(�2
1 + �2

2)�̂3
.

��
The convergence is guaranteed with (2) and the optimality requires the sufficient

smallness of the bulk parameter θ < � in the adaptive algorithm. This enters with the
help of the comparison lemma, where some θ0(κ, α) depends on parameter κ, α that
allow for θ ≤ θ0(κ, α) < �. The lemma dates back to the seminal contribution [47].

Lemma A.3 (comparison) Suppose (QM), i.e., the axioms (A1), (A2), (A3ε), and
�̂3(�

2
1 + �2

2) < 1. Let 0 < κ < 1, 0 < α < ∞, and let s > 0 satisfy

M := sup
N∈N0

(N + 1)s min
T ∈T(N )

η(T ) < ∞.

Then for any level � ∈ N0, there exist T̂� ∈ T(T�) and

θ0(α, κ) := 1 − κ
2
(
(1 + α) + (1 + 1/α)�2

1�̂3
) − (1 + 1/α)�2

1ε3

1 + (1 + 1/α)�2
1�3

< 1

such that

(a) η(T̂�) ≤ κη(T�) ≤ �monM |T�\T̂�|−s and
(b) θ0(α, κ)η2(T�) ≤ η2(T�,R�) with T�\T̂� ⊂ R� := R(T�, T̂�) and |R�| ≤

�ref |T�\T̂�|.
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Proof The proof of (a) is verbatim that of [12, Prop. 4.12] or that of [26, Lem. 4.3]
based on the overlay control (i.e., (6) below) and Theorem A.2. It remains to modify
the proofs in [12, Prop. 4.12] or [26, Lem. 4.3] for the verification of (b). Axiom (A1)
and (a) imply that

η(T�, T� ∩ T̂�) ≤ η(T̂�, T� ∩ T̂�) + �1δ(T�, T̂�) ≤ κη(T�) + �1δ(T�, T̂�). (3)

Recall η2�(M�) := η2(T�,M�) := ∑
T∈M�

η2(T�, T ) for any M� ⊂ T� and η� :=
η(T�) ≡ η(T�, T�) and abbreviate η̂� := η(T̂�) ≡ η(T̂�, T̂�). A weighted Young
inequality with α > 0, the Axiom (A3ε) with R(T�, T̂�) replaced by R� defined in
(b), and (a) show that

(
κη� + �1δ(T�, T̂�)

)2 ≤ (1 + α)κ2η2� + (1 + 1/α)�2
1

(
�3η

2
�(R�) + �̂3η̂

2
� + ε3η

2
�

)

≤ (1 + α)κ2η2� + (1 + 1/α)�2
1

(
�3η

2
�(R�) + �̂3κ

2η2� + ε3η
2
�

)
.

(4)

Recall κ < 1, α > 0, and set

Ca := (1 + α)κ2 + (1 + 1/α)�2
1(ε3 + �̂3κ

2) and Cb := (1 + 1/α)�2
1�3.

Then the combination of (3)–(4) reads

η2�(T� ∩ T̂�) ≤ Caη
2
� + Cbη

2
�(R�). (5)

Since T� \ T̂� ⊆ R�, the estimate (5) implies

η2� ≤ η2�(R�) + η2�(T� ∩ T̂�) ≤ Caη
2
� + (1 + Cb)η

2
�(R�).

This proves (b) with

1 − Ca

1 + Cb
= 1 − (

(1 + α)κ2 + (1 + 1/α)�2
1(ε3 + �̂3κ

2)
)

1 + (1 + 1/α)�2
1�3

= θ0(κ, α) < 1.

��
The proof of Theorem A.1 can be concluded as in [12, Proof of Theorem 4.1

(ii)] or [26, Section 4.3]. The function θ0(α, κ) in Theorem A.3.b is bounded from
above by limα→∞ θ0(0, α) = (1 − �2

1ε3)/(1 + �2
1�3) and there exist a choice of

0 < κ < 1 and 0 < α < ∞ such that 0 < θ < θ0(α, κ) < �. This is the first
formula on page 2655 in [26] and the remaining parts of the proof are summarized
below for convenient reading and almost verbatim to Case A in [26]. The choice of θ

and Theorem A.3.b show

θη2(T�) ≤ θ0(α, κ)η2(T�) ≤ η2(T�,R�),
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i.e., R� satisfies the Dörfler marking condition. Recall that M� denotes the set of
marked elements on level � in AFEM, while M�

� with |M�
�| = M� is a minimal set

of marked elements. Then there exists �opt ≥ 1 with |M�| ≤ �optM� ≤ �opt|R�|.
The control over R� := R(T�, T̂�) and Theorem A.3.a ensure

|R�| ≤ �ref |T� \ T̂�| ≤ �ref
(
�monM/(κη�)

)1/s
.

Hence |M�| ≤ CcM1/sη
−1/s
� with Cc := �opt�ref�

1/s
monκ

−1/s . One important ingre-
dient of NVB is the overhead control [2, 48]

|T�| − |T0| ≤ �BDdV

�−1∑

k=0

|Mk | (6)

with a universal constant �BDdV that exclusively depends on T0. The combination of
the above with the overhead control leads to

|T�| − |T0| ≤ �BDdVCcM
1/s

�−1∑

k=0

η
−1/s
k . (7)

TheR-linear convergence (2) bounds the sum
∑�−1

k=0 η
−1/s
k as in [26,Thm.4.2.c]. For all

0 ≤ k < �, the second identity in (2) impliesη−1/s
k ≤ η

−1/s
� q(�−k)/(2 s)

c (1 − qc)−1/(2 s).
Hence the formula for the partial sum of the geometric series shows

�−1∑

k=0

η
−1/s
k ≤ Cdη

−1/s
� with Cd := q1/(2s)c

(
1 − q1/(2s)c

)
(1 − qc)1/(2s)

. (8)

The combination of (7)–(8) reads |T�| − |T0| ≤ �BDdVCcCdM1/sη
−1/s
� . Hence 1 ≤

|T�| − |T0| implies (1 + |T�| − |T0|) ≤ 2(|T�| − |T0|) ≤ 2�BDdVCcCdM1/sη
−1/s
� ,

while |T�| = |T0| implies 1 ≤ M1/sη
−1/s
� . This concludes the proof of

η�(1 + |T�| − |T0|)s ≤ max{1, (2�BDdVCcCd)
s}M

with M := sup
N∈N0

(N + 1)s min
T ∈T(N )

η(T )

and so of “�” in Theorem A.1.
For the proof of the converse implication, assume, without loss of generality, that

0 < minT ∈T(N ) η(T ) and so 0 < η� for any � ∈ N0 with N� := |T�| − |T0| ≤ N .
AFEM leads to N� < N�+1 (since no refinement only occurs for η� = 0). Hence there
exists a level � with N� < N ≤ N�+1 and (N + 1)s minT ∈T(N ) η(T ) ≤ (N�+1 +
1)sη�. On each refinement level � each simplex creates at most a finite number K (n)

(depending only on the spatial dimension n) of children in the next level � + 1 [35].
In other words |T�+1| ≤ K (n)|T�| and (N�+1 + 1)/(N� + 1) ≤ K (n) + (K (n) −
1)(|T0| − 1) � 1.
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This concludes the proof of rate optimality for AFEM in Theorem A.1. �
Proof of Theorem 1.1. The AFEM4EVP in Theorem 1.1 is a particular case with
R(T , T̂ ):= R1 := {K ∈ T : ∃ T ∈ T \T̂ with dist(K , T ) = 0}. Theorem 4.2, 4.6,
and4.7 guarantee (A1)–(A4ε)with �̂3 := 0, ε3 := M3h2σmax, and ε4 := �̃4(β+h2σ0 (1+
1/β)) > 0. Let ε7 := min

{
ε6, (2�2

1M3)
−1/(2σ)

}
such that ε3 < �−2

1 and select ρ12

and �12, then abbreviate c3 := (1− ρ12)/(2�12�̃4), β := min{C2
eff/C

2
rel, c3/2}, and

define

ε := ε8 := min
{
ε7, ((c3 − β)/(1 + 1/β))1/(2σ)

}
. (9)

Then �̂3(�
2
1 + �2

2) = 0, ε3�2
1 ≤ 1/2, and ε4 ≤ (1 − ρ12)/(2�12) in Theorem A.1.

Remark A.4 (smallness assumptions on ε5, ε6, ε7, ε8) The reduction to ε5 guarantees
the best approximation result in Theorem 3.1, while ε6 := min{ε5, (2C2

5 )
−1/(2σ)}

is sufficient for reliability in Theorem 4.4. Optimal rates follow with ε := ε8
from (9). Since C5 from (3.12), c3 := (1 − ρ12)/(2�12�̃4), and M3 are bounded
O(1), independent of the mesh-size, ε6 = min{ε5,O(1)}, ε7 = min{ε6,O(1)}, and
ε8 = min{ε7,O(1)} are not expected to be dramatically smaller than ε5.

Remark A.5 (modification with global convergence) The modified algorithm of
Sect. 5.3, with TL , TL+1, . . . has no influence on the constants 1/2 ≤ �(1 +
�2

1�3) ≤ 1, �4 ≤ �qo ≤ 2�4 + 1/�12, 1 + (�2
1 + �2

2)�3 ≤ �2
mon ≤

(
1+

√
(�2

1 + �2
2)(�3 + �−2

1 /2)
)2. But �BDdV in the overhead control (6) (e.g. [48,

Thm. 6.1]) depends on TL and could become larger (when replacing T0 by TL ) and
leads to larger equivalence constants in Theorem A.1. Fortunately, the asymptotic
convergence rate remains optimal and the choice of θ is not affected.

Remark A.6 (parameter choice in practice) In a practical computation, we suggest
uniform mesh-refinement until the eigenvalue λk of interest is resolved in that 5hmax
is smaller or equal the estimated wavelength of λk . This triangulation serves as initial
triangulation in T0 in the modified algorithm of Sect. 5.3 with some bulk parameter θ

smaller than (1− �2
1�3)

−1. In this way, the pre-asymptotic range is (hopefully) kept
small while the asymptotic convergence rate remains optimal.

References

1. Agmon, S.: Lectures on Elliptic Boundary Value Problems. AMS Chelsea Publishing, Providence, RI
(2010). Revised edition of the 1965 original

2. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer.
Math. 97(2), 219–268 (2004)

3. Beirao daVeiga, L., Niiranen, J., Stenberg, R.: A posteriori error estimates for theMorley plate bending
element. Numer. Math. 106(2), 165–179 (2007)

4. Boffi, D., Gallistl, D., Gardini, F., Gastaldi, L.: Optimal convergence of adaptive FEM for eigenvalue
clusters in mixed form. Math. Comput. 86(307), 2213–2237 (2017)

5. Bonito, A., Nochetto, R.H.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin
method. SIAM J. Numer. Anal. 48(2), 734–771 (2010)

6. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, pp. 641–
787. North-Holland, Amsterdam (1991)

123



Adaptive guaranteed lower eigenvalue bounds... 37

7. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)
8. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with

angular corners. Math. Methods Appl. Sci. 2(4), 556–581 (1980)
9. Carstensen, C., Bartels, S., Jansche, S.: A posteriori error estimates for nonconforming finite element

methods. Numer. Math. 92(2), 233–256 (2002)
10. Carstensen, C., Eigel, M., Hoppe, R.H.W., Löbhard, C.: A review of unified a posteriori finite element

error control. Numer. Math. Theory Methods Appl. 5(4), 509–558 (2012)
11. Carstensen, C., Ern, A., Puttkammer, S.: Guaranteed lower bounds on eigenvalues of elliptic operators

with a hybrid high-order method. Numer. Math. 149(2), 273–304 (2021)
12. Carstensen, C., Feischl, M., Page, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl.

67(6), 1195–1253 (2014)
13. Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems.

Numer. Math. 118(3), 401–427 (2011)
14. Carstensen, C., Gedicke, J.: An adaptive finite element eigenvalue solver of asymptotic quasi-optimal

computational complexity. SIAM J. Numer. Anal. 50(3), 1029–1057 (2012)
15. Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer.

Math. 126(1), 33–51 (2014)
16. Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comput. 83(290), 2605–

2629 (2014)
17. Carstensen, C., Gallistl, D., Schedensack, M.: Discrete reliability for Crouzeix–Raviart FEMs. SIAM

J. Numer. Anal. 51(5), 2935–2955 (2013)
18. Carstensen, C., Gallistl, D., Schedensack, M.: Adaptive nonconforming Crouzeix–Raviart FEM for

eigenvalue problems. Math. Comput. 84, 1061–1087 (2015)
19. Carstensen, C., Hellwig, F.: Constants in discrete Poincaré and Friedrichs inequalities and discrete

quasi-interpolation. Comput. Methods Appl. Math. 18(3), 433–450 (2017)
20. Carstensen, C., Hellwig, F.: Optimal convergence rates for adaptive lowest-order discontinuous Petrov–

Galerkin schemes. SIAM J. Numer. Anal. 56(2), 1091–1111 (2018)
21. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Appli-

cations, vol. 4. North-Holland, Amsterdam (1978)
22. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an

adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)
23. Carstensen, C., Puttkammer, S.: How to prove the discrete reliability for nonconforming finite element

methods. J. Comput. Math. 38(1), 142–175 (2020)
24. Carstensen, C., Puttkammer, S.: Direct guaranteed lower eigenvalue bounds with optimal a priori

convergence rates for the bi-laplacian. SIAM J. Numer. Anal. 61(2), 812–836 (2023)
25. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the

stationary Stokes equations. I. Rev. FrançaiseAutomat. Informat. RechercheOpérationnelle Sér. Rouge
7(R-3), 33–75 (1973)

26. Carstensen, C., Rabus, H.: Axioms of adaptivity with separate marking for data resolution. SIAM J.
Numer. Anal. 55(6), 2644–2665 (2017)

27. Carstensen, C., Zhai, Q., Zhang, R.: A skeletal finite element method can compute lower eigenvalue
bounds. SIAM J. Numer. Anal. 58(1), 109–124 (2020)

28. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics,
vol. 1341. Springer, Berlin (1988)

29. Dai, X., He, L., Zhou, A.: Convergence and quasi-optimal complexity of adaptive finite element
computations for multiple eigenvalues. IMA J. Numer. Anal. 35(4), 1934–1977 (2015)

30. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3),
1106–1124 (1996)

31. Gallistl, D.: Adaptive finite element computation of eigenvalues. Doctoral dissertation, Humboldt-
Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II (2014)

32. Gallistl, D.: Morley finite element method for the eigenvalues of the biharmonic operator. IMA J.
Numer. Anal. 35(4), 1779–1811 (2015)

33. Gallistl, D.: An optimal adaptive FEM for eigenvalue clusters. Numer. Math. 130(3), 467–496 (2015)
34. Grisvard, P.: Singularities in boundary value problems, volume 22 of Recherches en Mathématiques

Appliquées [Research in Applied Mathematics]. Masson, Paris. Springer, Berlin (1992)
35. Gallistl, D., Schedensack, M., Stevenson, R.: A remark on newest vertex bisection in any space dimen-

sion. Comput. Methods Appl. Math. 14(3), 317–320 (2014)

123



38 C. Carstensen, S. Puttkammer

36. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der
Mathematischen Wissenschaften, vol. 224. Springer, Berlin (1983)

37. Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems.
Math. Comput. 79(272), 2169–2189 (2010)

38. Hu, J., Huang,Y.,Ma,R.:Guaranteed lower bounds for eigenvalues of elliptic operators. J. Sci. Comput.
67(3), 1181–1197 (2016)

39. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev.
44(4), 631–658 (2003)

40. Morley, L.S.D.: The triangular equilibriumelement in the solution of plate bending problems.Aeronaut.
Q. 19(2), 149–169 (1968)

41. Ming, W., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer.
Math. 103(1), 155–169 (2006)
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