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Abstract
Integrodifference equations are versatile models in theoretical ecology for the spatial
dispersal of species evolving in non-overlapping generations. The dynamics of these
infinite-dimensional discrete dynamical systems is often illustrated using computa-
tional simulations. This paper studies the effect of Nyström discretization to the local
dynamics of periodic integrodifference equations having Hölder continuous functions
over a compact domain as state space.Weprove persistence and convergence for hyper-
bolic periodic solutions and their associated stable and unstable manifolds respecting
the convergence order of the quadrature/cubature method.

Mathematics Subject Classification 65P40 · 45G15 · 65R20 · 37L45

1 Introduction

1.1 Growth and dispersal in discrete time

Difference equations of the form

ut+1 = gt (ut )

are commonly used to model the temporal evolution of single species which evolve
in nonoverlapping generations, reproduce at specific time intervals or are censused
at intervals (metered modells). The growth functions gt : R+ → R+ capture typical
features of a particular population and are of Beverton–Holt, Ricker or Allee type, as
well as related forms (see e.g. [22, pp. 11ff, Sect. 2.2]). On larger or inhomogeneous
habitats also spatial effects such as dispersal have to be taken into account. This is
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achieved in terms of a dispersal kernel kt (x, y) ≥ 0 indicating the probability of the
species to move from position x to position y in the habitatΩ ⊂ R

κ . Standard kernels
are of Laplace- or Gauß-type, among others, and are discussed in for instance [22,
pp. 17ff, Sect. 2.3]. This yields a recursion of the form

ut+1(x) =
∫

Ω

kt (x, y)gt (ut (y)) dy for all x ∈ Ω, (1.1)

which is denoted as integrodifference equation (IDE for short, cf. [18, 22]). The state
space variable ut (x) describes the population density in the t-th generation located at
x ∈ Ω . The right-hand side of (1.1) maps the density in generation t to the density
in the next generation t + 1 in two distinct stages: During the initial sedentary stage
individuals grow, reproduce or die, and the local population density ut (x) evolves into
gt (ut (x)). During the subsequent dispersal stage, the individualsmove according to the
dispersal kernel kt (x, y). Of course the above considerations extend to vector-valued
growth functions gt and matrix-valued dispersal kernels kt in order to model several
interacting or single but structured populations. In conclusion, difference equations
such as (1.1) describe growth and dispersal, therefore, can be considered as a discrete
time counterpart to reaction-diffusion equations, but with greater flexibility in the
choice of the kernel.

From a mathematical perspective, IDEs are infinite-dimensional discrete-time
dynamical systems. Besides being popular tools in theoretical ecology over the recent
years, they canonically arise as time discretizations of integrodifferential equations,
as time-1-map of evolutionary partial differential equations or in the iterative solu-
tion of (nonlinear) boundary value problems [23, p. 190]. It is understood that IDEs
involve an integral operator which in (1.1) is of Hammerstein-, but more general of
Urysohn-type. Indeed, for our purposes a sufficiently flexible class are the recursions

ut+1(x) =
∫

Ω

ft (x, y, ut (y)) dy for all x ∈ Ω, (I0)

whose natural state spaces consists of continuous or integrable functions over a
compact subset Ω (the habitat in applications from ecology).

1.2 Numerical dynamics

In applied sciences the long-termbehavior of IDEs iswillingly illustrated using numer-
ical simulations. For this purpose, [22, pp. 112–113] suggests to replace the integral in
(I0) by the trapezoidal or the Simpson rule. Both are special cases of general Nyström
methods

ut+1(x) =
∑
η∈Ωn

wη ft (x, η, ut (η)) for all x ∈ Ω (In)

based on convergent quadrature or cubature rules with weights wη ≥ 0 and nodes
η ∈ Ωn over a finite gridΩn ⊂ Ω . Here, n ∈ N is related to the number of nodes inΩn

and therefore the accuracy of the approximation, see [8]. We point out that Nyström
methods yield full discretizations of (I0) and can be evaluated immediately.
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While the numerical analysis of integral equations is a well-established field, e.g.
[4, 16], this paper enriches it by a dynamical aspect: We study and relate the long-term
behavior of the iterates ut generated by an IDE (I0) to those of aNyström discretization
(In). This brings us to the area of numerical dynamics [21, 31, 32] addressing the
following questions:

– Which dynamical or asymptotic properties of an IDE (I0) as t → ∞ are preserved
when passing to its Nyström discretizations (In)?

– What can be said about convergence as n → ∞when the approximations become
increasingly more accurate? In particular, are convergence rates of the integration
rules preserved?

For the classical qualitative behavior of autonomous ODEs, such problems originate
in [6] and are surveyed in [32]. In between various contributions to continuous-time
infinite-dimensional dynamical systems generated by functional differential equations
[15] or evolutionary (e.g. parabolic) partial differential equations [21, 31] arose, both
for spatial, as well as for full discretizations. IDEs merely require spatial discretiza-
tion, but have in common with these problems that conventional error estimates are
unsuitable to describe asymptotic behavior. In fact, bounds for the global discretiza-
tion error typically grow exponentially in time and therefore establish convergence as
n → ∞ only over compact time intervals [25, Thm. 4.1]. Thus, techniques extending
those of standard numerical analysis are required to tackle the above problems.

Previous contributions to the numerical dynamics of IDEs address basics and error
estimates [25], as well as the persistence/convergence of globally asymptotically
stable solutions [26]. This paper focusses on an another important aspect, namely
the local saddle-point structure near periodic solutions to (I0). Related work, but
for autonomous evolutionary differential equations near equilibria, is due to [6, 14]
(ODEs), [1] (parabolic PDEs) and [12] (retarded FDEs).

In contrast,we study time-periodic IDEs (I0) in the vicinity of periodic solutions.We
stress that periodic time-dependence is strongly motivated by applications to incor-
porate seasonal influences. While [25, 26] apply to semi-discretizations of (I0) of
collocation- or degenerate kernel-type [4, 16], which act between finite-dimensional
function spaces, but still contain integrals, we tackle Nyström discretizations (In),
because they can be evaluated immediately. At this point the question for an ambi-
ent state space of (I0) arises. A natural choice are the continuous functions C(Ω)

over a compact Ω ⊂ R
κ . Here however, already for linear integral operators, the

discretization error under Nyström methods converges only in the strong, but not in
the uniform topology as n → ∞, see [16, pp. 130–131, Lemma 4.7.6]. Using the
theory of collectively compact operators [2] one can still establish that fixed-points
of (I0) (and their stability properties) persist [3, 33]. Nonetheless, it is not clear how
to establish convergence of the associated stable and unstable manifolds of (In) to
those of the original problem (I0). For this reason we retreat to the Hölder continuous
functions Cα(Ω) as state space. This set-up is sufficiently general to capture most
relevant applied problems [18, 22] and has the advantage that a more conventional
perturbation theory (see App. A) applies to realize our goals. It should not be con-
cealed, though, that the prize for this endeavor are more involved assumptions and
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technical preliminaries on Urysohn operators (well-definedness, complete continuity,
differentiability). For the sake of a brief presentation they are outsourced to [27, 28].

The structure of our presentation is as follows: In Sect. 2 we introduce a flexible
framework for general periodic difference equations in Banach spaces and their lin-
earization. Perturbation results for the Floquet spectrum of linear periodic equations
are given in Theorem 2.1, while Theorem 2.2 addresses persistence and convergence
of hyperbolic solutions and Theorem 2.3 the associated stable and unstable manifolds
– when dealing with periodic equations we speak of fiber bundles. Although tailor-
made for Nyström discretizations of IDEs, these results also apply to collocation-
or degenerate kernel-discretizations, as well as when studying time-periodic evolu-
tionary differential equations via their time-h-maps. The concrete case of Urysohn
IDEs (I0) is saved for Sect. 3 and illustrates how Thms. 2.1–2.3 apply. One obtains
convergence of both hyperbolic solutions, and of the functions parametrizing their
invariant fiber bundles with a rate given by the Hölder exponent α ∈ (0, 1] of the
kernel functions ft in the first variable. Nonetheless, for smooth ft the higher-order
convergence rates inherited from the particular quadrature/cubature rules are estab-
lished. Section 4 contains numerical simulations confirming our theoretical results.
An example with separable kernel (logistic IDE) allows explicit results and a direct
comparison between exact with numerically obtained periodic solutions in the Hölder
norm. The closing Sect. 5 comments on related approaches and simulation techniques.
Finally, an “Appendix” summarizes the technical ingredients required in our analysis.

Notation We write R+ := [0,∞) for the nonnegative reals, S1 := {z ∈ C : |z| = 1}
for the unit circle in C, [·] : R → Z is the integer function and |·| denotes norms on
finite-dimensional spaces. On the Cartesian product X × Y of normed spaces X ,Y ,

‖(x, y)‖ := max
{‖x‖X , ‖y‖Y

}
(1.2)

is the product norm and we proceed accordingly on products of more than two spaces.
The open resp. closed balls in X with radius r ≥ 0 and center x ∈ X are

Br (x, X) := {y ∈ X : ‖y − x‖ < r} , B̄r (x, X) := {y ∈ X : ‖y − x‖ ≤ r} ;

on a finite-dimensional X we write Br (x) and B̄r (x). For nonempty A ⊆ X , diam A
denotes the diameter of A, distA(x) := infa∈A ‖x − a‖ the distance of a point x ∈ X
from A, dist(B, A) := supb∈B distA(b) the Hausdorff semidistance of B ⊆ X from
A and we set Br (A) := {x ∈ X : distA(x) < r}. We denote a subset A ⊆ Z × X as
nonautonomous set having the fibers A(t) := {x ∈ X : (t, x) ∈ A}, t ∈ Z and write
Br (φ) := {(t, u) ∈ Z × X : ‖u − φt‖ < r} for the r -neighborhood of a sequence
φ = (φt )t∈Z in X .

The bounded k-linear maps from the Cartesian product Xk to Y are denoted by
Lk(X ,Y ), L(X ,Y ) := L1(X ,Y ) and L0(X ,Y ) := Y . Moreover, we abbreviate
Lk(X) := Lk(X , X), L(X) := L(X , X), GL(X) are the invertible maps in L(X)

and IX is the identity on X . Furthermore, N (T ) is the kernel and R(T ) the range of
T ∈ L(X ,Y ); σ(S) is the spectrum and σp(S) the point spectrum of S ∈ L(X).
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2 Difference equations and perturbation

Let (X , ‖·‖) denote a Banach space.

2.1 Periodic difference equations

Abstractly, we are interested in a family of nonautonomous difference equations

ut+1 = Fn
t (ut ) (Δn)

with right-hand sides Fn
t : Ut → X on open sets Ut ⊆ X , t ∈ Z, parametrized

by n ∈ N0. In the following, n ∈ N is a discretization parameter such that Fn
t are

understood as approximations converging to the original problem F0
t as n → ∞ in a

sense to be defined below. A nonautonomous set A ⊆ Z × X with fibers A(t) ⊆ Ut

for all t ∈ Z is called forward invariant or invariant (w.r.t. (Δn)), provided

Fn
t (A(t)) ⊆ A(t + 1), Fn

t (A(t)) = A(t + 1) for all t ∈ Z

resp., holds. Given an initial time τ ∈ Z, a forward solution to (Δn) is a sequence
φ = (φt )τ≤t satisfying φt ∈ Ut and the solution identity φt+1 = Fn

t (φt ) for all τ ≤ t ,
a backward solution fulfills the solution identity for t < τ and for an entire solution
(φt )t∈Z one has φt+1 ≡ Fn

t (φt ) on Z. The forward solution starting at τ in the initial
state uτ ∈ Uτ is uniquely determined as composition

ϕn(t; τ, uτ ) :=
{
Fn
t−1 ◦ . . . ◦ Fn

τ (uτ ), τ < t,

uτ , t = τ

and denoted as the general solution to (Δn); it is defined as long as the compositions
stay in Ut . A difference equation (Δn) is called θ0-periodic, if both Fn

t+θ0
= Fn

t and
Ut+θ0 = Ut hold for all t ∈ Z with some basic period θ0 ∈ N; an autonomous
equation is 1-periodic, i.e. there exists a Fn : U → X with Fn

t ≡ Fn , Ut ≡ U on Z.
A θ1-periodic solution to (Δn) is an entire solution satisfying φt ≡ φt+θ1 on Z.

Given a fixed θ ∈ N and a sequence u = (ut )t∈Z with ut ∈ Ut , t ∈ Z, let us
introduce the open product Û := U0 × . . . ×Uθ−1 and

û := (u0, . . . , uθ−1) ∈ Û , (u0, . . . , uθ−1) := (ut mod θ )t∈Z.

In order to characterize and compute periodic solutions to (Δn), n ∈ N0, we introduce
the nonlinear operators

F̂n : Û → X θ , F̂n(û) :=

⎛
⎜⎜⎜⎜⎜⎝

Fn
θ−1(uθ−1)

Fn
0(u0)

Fn
1(u1)
...

Fn
θ−2(uθ−2)

⎞
⎟⎟⎟⎟⎟⎠

(2.1)
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and use the norm induced via (1.2) on the Cartesian product X θ .
The next two results are immediate:

Lemma 2.1 Let n ∈ N0, (Δn) be θ0-periodic and θ be a multiple of θ0:

(a) If (φt )t∈Z is a θ -periodic solution to (Δn), then φ̂ ∈ Û is a fixed point of F̂n.
(b) Conversely, if φ̂ ∈ Û is a fixed point of F̂n, then (φ0, . . . , φθ−1) is a θ -periodic

solution to (Δn).

This characterization of periodic solutions to (Δn) via themapping F̂ has the numerical
advantage to avoid the computation of compositions ϕn(θ +τ ; τ, ·) : Uτ → X , τ ∈ Z,
and therefore preserves (numerical) backward stability (see [13]).

Lemma 2.2 Let n ∈ N0, m ∈ N, (Δn) be θ0-periodic and θ be a multiple of θ0. If
every Fn

t : Ut → X, 0 ≤ t < θ0, is m-times continuously (Fréchet) differentiable,
then F̂n : Û → X θ is of class Cm and for every û ∈ Û one has

DF̂n(û) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · · · · DFn
θ−1(uθ−1)

DFn
0(u0) 0 · · · · · · 0
0 DFn

1(u1) 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 DFn
θ−2(uθ−2) 0

⎞
⎟⎟⎟⎟⎟⎠

.

2.2 Linear periodic difference equations

Suppose thatKn
t ∈ L(X), t ∈ Z, and consider a family of linear difference equations

ut+1 = Kn
t ut (Ln)

in X parametrized by n ∈ N0. As above we understand (Ln), n ∈ N, as perturbations
of an initial problem (L0). The transition operator Φn(t, τ ) ∈ L(X) of (Ln) is

Φn(t, τ ) :=
{
Kn

t−1 · · ·Kn
τ , τ < t,

IX , t = τ.
(2.2)

We are interested in θ -periodic equations (Ln), that is

Kn
t = Kn

t+θ for all t ∈ Z, (2.3)

allowing us to introduce the period operator Ξn
θ := Φn(θ, 0) ∈ L(X) of (Ln). Its

eigenvalues are the Floquet multipliers and σp(Ξ
n
θ ) is the Floquet spectrum of (Ln).

One says a linear difference equation (Ln) is weakly hyperbolic, if 1 /∈ σ(Ξn
θ ), and

hyperbolic, if S1 ∩ σ(Ξn
θ ) = ∅ holds. In the hyperbolic situation, the spectrum can be

decomposed as σ(Ξn
τ ) = σ+∪̇σ− with spectral sets

σ+ ⊆ B1(0), σ− ⊆ C \ B̄1(0).

123
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With the spectral projections Pn+ := 1
2π ı

∫
S1

(z IX − Ξn
θ )−1 dz, Pn− := IX − Pn+ we

introduce the fibers Vn+(t) := Φn(t, 0)R(Pn+) and Vn−(t) := Φn(t, 0)R(Pn−), first for
t ≥ 0 and then by θ -periodic continuation onZ. This yields θ -periodic nonautonomous
sets Vn+ ⊆ Z× X (stable vector bundle) and Vn− ⊆ Z× X (unstable vector bundle) of
(Ln). Then Vn+ is forward invariant, while Vn− is invariant w.r.t. (Ln).

For compact operators Ξn
θ ∈ L(X) the Riesz-Schauder theory [19, pp. 428ff]

applies: Every Floquet multiplier λ ∈ σp(Ξ
n
θ ) possesses a minimal ι(λ) ∈ N so that

N (λIX − Ξn
θ ) j = N (λIX − Ξn

θ ) j+1 for all j ≥ ι(λ) leading to finite-dimensional
generalized eigenspaces N (λIX − Ξn

θ )ι(λ). All unstable fibers Vn−(t), t ∈ Z, have a
constant finite dimension, which is denoted as theMorse index of (Ln) and equals the
finite sum

∑
λ∈σ− dim N (λIX − Ξn

θ )ι(λ) of algebraic multiplicities.
We begin with a perturbation result for hyperbolic linear systems (Ln) under

uniform convergence:

Theorem 2.1 (Perturbed hyperbolicity) Suppose that the θ -periodic linear difference
equations (Ln), n ∈ N0, fulfill:

(i) limn→∞
∥∥Kn

t − K0
t

∥∥
L(X)

= 0 for all 0 ≤ t < θ ,
(ii) Ξn

θ ∈ L(X) is compact for all n ∈ N.

Then also the period operatorΞ0
θ ∈ L(X) of (L0) is compact and there exists a N ∈ N

such that the following holds for all n ≥ N or n = 0:

(a) With (L0) also the perturbed equation (Ln) is weakly hyperbolic,
(b) with (L0) also the perturbed equation (Ln) is hyperbolic. In particular, for reals

β ∈ (
max

{
0, 1 − 1

2 dist(σ (Ξ0
θ ),S1)

}
, 1
)
, there exists a θ -periodic sequence

(Pn
t )t∈Z of invariant projectors in L(X) with Kn

t P
n
t = Pn

t+1K
n
t for all t ∈ Z, so

that the transition operatorsΦn(t, s) satisfy dim Vn− = dim V0− and the estimates

∥∥Φn(t, s)Pn
s

∥∥
L(X)

≤ Kβ t−s for all s ≤ t,∥∥Φn(t, s)[IX − Pn
s ]∥∥L(X)

≤ Kβs−t for all t ≤ s,
(2.4)

(c) limn→∞
∥∥Pn

t − P0
t

∥∥
L(X)

= 0 for all t ∈ Z.

Proof Let 0 ≤ s < θ . Due to (i) the sequence
(∥∥Kn

s − K0
s

∥∥)
n∈N is bounded and con-

sequently we obtain from
∥∥Kn

s

∥∥ ≤ ∥∥K0
s

∥∥+∥∥Kn
s − K0

s

∥∥ and the periodicity condition
(2.3) that ct := supn∈N0

∥∥Kn
t

∥∥ < ∞ for all t ∈ Z.

(I) Claim: limn→∞ ‖Φn(t, 0) − Φ0(t, 0)‖ = 0 for all 0 ≤ t .
We proceed by mathematical induction. Thanks to (2.2), for t = 0 the assertion
is trivial and for t = 1 it results from (i). In the induction step t → t + 1 we
obtain

‖Φn(t + 1, 0) − Φ0(t + 1, 0)‖ (2.2)= ‖Kn
t Φ

n(t, 0) − K0
t Φ

0(t, 0)‖
≤ ‖Kn

t ‖‖Φn(t, 0) − Φ0(t, 0)‖ + ‖Kn
t − K0

t ‖‖Φ0(t, 0)‖
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≤ ct‖Φn(t, 0) − Φ0(t, 0)‖ + ‖Kn
t − K0

t ‖
t−1∏
r=0

cr
(i)−−−→

n→∞ 0

from the induction hypothesis and the triangle inequality, yielding the claim.
(II) Claim: Ξ0

θ ∈ L(X) is compact.
If we set t = θ in claim (I), then the period operators satisfy

lim
n→∞

∥∥∥Ξn
θ − Ξ0

θ

∥∥∥ = 0. (2.5)

Hence, Ξ0
θ is the uniform limit of by (ii) compact operators Ξn

θ , n ∈ N, and
consequently compact [19, p. 416, Thm. 1.1].

(III) Claim: For every nonempty closed S ⊆ C with σ(Ξ0
θ ) ∩ S = ∅ there exists a

n1 ∈ N such that σ(Ξn
θ ) ∩ S = ∅ for all n ≥ n1.

Since the closed S and the compact σ(Ξ0
θ ) are disjoint they have a positive distance.

Therefore, there is an ε > 0 so that S ∩ Bε(σ (Ξ0
θ )) = ∅. By the upper semicontinuity

of the spectrum [5, p. 80, Lemma 3] and relation (2.5) there is a n1 ∈ Nwith σ(Ξn
θ ) ⊂

Bε(σ (Ξ0
θ )) and consequently σ(Ξn

θ ) stays disjoint from S for all n ≥ n1.

(a) If (L0) is weakly hyperbolic, then σ(Ξ0
θ ) ∩ {1} = ∅ and (III) applied to the

singleton S = {1} yields the assertion.
(b) The hyperbolicity of (Ln) results as above in (a) with S = S

1. Furthermore, then
[30, p. 44, Prop. 3.13] implies that (Ln) possess an exponential dichotomy on Z

as claimed with the θ -periodic invariant projectors Pn
t satisfying

Kn
t |N (Pn

t ) ∈ GL(N (Pn
t ), N (Pn

t+1)) for all t ∈ Z (2.6)

and IX − Pn
0 = Pn−. In particular, by (2.5) and [5, p. 80, Cor. 1] the spectral

projections Pn− associated to the unstable spectral parts of Ξn
θ , n ∈ N0, fulfill that

dim R(Pn−) = dim R(P0−) for large n, say for n ≥ n2. Thanks to (2.6) this extends
to the dimension of the unstable bundles Vn−. Finally, we set N := max {n1, n2}.

(c) Combining (2.5) with [5, p. 80, Lemma 4] yields that the spectral projections
satisfy limn→∞

∥∥Pn− − P0−
∥∥ = 0. Together with claim (I) we obtain for t ∈ Z

that
∥∥∥Pn

t − P0
t

∥∥∥ =
∥∥∥[IX − Pn

t ] − [IX − P0
t ]
∥∥∥

(2.6)≤ ∥∥Φn(t, 0)
∥∥ ∥∥∥Pn− − P0−

∥∥∥
∥∥∥Φ0(0, t)

∥∥∥+
∥∥∥Φn(t, 0) − Φ0(t, 0)

∥∥∥
∥∥∥P0−Φ0(0, t)

∥∥∥

≤
( t−1∏

r=0

cr

)∥∥∥Pn− − P0−
∥∥∥
∥∥∥Φ0(0, t)

∥∥∥+
∥∥∥Φn(t, 0) − Φ0(t, 0)

∥∥∥
∥∥∥P0−Φ0(0, t)

∥∥∥

from the triangle inequality, whose right-hand side converges to 0 as n → ∞. ��
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2.3 Perturbation of hyperbolic solutions and invariant bundles

We next address the robustness of θ1-periodic solutions φ0 to general θ0-periodic
difference equations (Δ0), as well as their nearby saddle-point structure consisting of
stable and unstable bundles (see [17, pp. 143ff, Chap. 6], [24, pp. 256ff, Sect. 4.6])
under perturbation. By imposing a natural hyperbolicity condition on the solution φ0

it is shown that also the perturbations (Δn) have (locally unique) periodic solutions
φn for sufficiently large n, which converge to φ0 in the limit n → ∞.

Let θ := lcm {θ0, θ1}. We suppose that the right-hand sides Fn
t of (Δn) are

continuously differentiable. Our endeavor is based on the variational equations

vt+1 = DFn
t (φ

n
t )vt (Vn)

associated to θ -periodic solutions φn of (Δn), n ∈ N0. Since the linear equations
(Vn) are θ -periodic, the terminology and results from Sect. 2.2 apply to (Vn) with
Kn

t = DFn
t (φ

n
t ) and the period operator Ξn

θ , n ∈ N0. In this context, we understand
a solution φn of (Δn) as (weakly) hyperbolic, if (Vn) has the corresponding property.

Lemma 2.3 Let n ∈ N0. If Fn
t : Ut → X is continuously differentiable for all 0 ≤

t < θ0, then the derivatives of the mappings F̂n : Û → X θ defined in (2.1) satisfy
σ(Ξn

θ ) \ {0} = σ(DF̂n(φ̂n))θ \ {0} and σp(Ξ
n
θ ) \ {0} = σp(DF̂n(φ̂n))θ \ {0}.

Basedon this result, the (Floquet) spectrumof (Vn) canbe computed from the (point)
spectrum of the cyclic block operator given in Lemma 2.2. This has the numerical
advantage of avoiding to evaluate the compositions (matrix products) Ξn

θ .

Proof Keeping n ∈ N0 fixed, we abbreviate Kt = DFn
t (φ

n
t ), t ∈ Z, and observe that

the θ th power of DF̂(φ̂n) given in Lemma 2.2 becomes a block diagonal operator

DF̂(φ̂n)θ =

⎛
⎜⎜⎜⎝

Kθ−1Kθ−2 · · ·K0
K0Kθ−1 · · ·K1

. . .

Kθ−2 · · ·K0Kθ−1

⎞
⎟⎟⎟⎠ .

Referring to [30, p. 42, Prop. 3.11(a)] one has σ(Ξn
θ )\ {0} = σ(Kt+θ−1 · · ·Kt )\ {0}

for all t ∈ Z and thereforeσ(Ξn
θ )\{0} = σ(DF̂(φ̂n)θ )\{0}. Now theSpectralMapping

Theorem [5, p. 65, Thm. 2] yields the assertion for the spectra. Concerning the point
spectrum the claim follows directly from the corresponding eigenvalue-eigenvector
relations and the solution identity for (Vn). ��

Our next result establishes persistence of hyperbolic periodic solutions to (Δ0):

Theorem 2.2 (Perturbed periodic solutions) Let θ = lcm {θ0, θ1}. Suppose that the
θ0-periodic difference equations (Δn), n ∈ N0, fulfill:

(i) Fn
t : Ut → X are continuously differentiable for all 0 ≤ t < θ0 and n ∈ N0,
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(ii) DFn
t : Ut → L(X), n ∈ N, are uniformly continuous on bounded sets uniformly

in n ∈ N, the family
{
DFn

t

}
n∈N is equicontinuous for all 0 ≤ t < θ0 and for

every n ∈ N there exists a 0 ≤ t < θ0 such that DFn
t has compact values.

If φ0 is a weakly hyperbolic θ1-periodic solution to (Δ0) and there exists a function
Γ0 : R+ → R+ with lim�↘0 Γ0(�) = 0 satisfying for all 0 ≤ t < θ that

∥∥∥Fn
t (φ

0
t ) − F0

t (φ
0
t )

∥∥∥
X

≤ Γ0(
1
n ), (2.7)

lim
n→∞

∥∥∥DFn
t (φ

0
t ) − DF0

t (φ
0
t )

∥∥∥
L(X)

= 0, (2.8)

then there exist reals ρ0 > 0 and N0 ∈ N such that the following hold for all n ≥ N0:

(a) There is a unique θ -periodic solution φn to (Δn) in the neighborhood Bρ0(φ
0), it

is weakly hyperbolic and there exists a constant K0 ≥ 0 such that

sup
t∈Z

∥∥∥φn
t − φ0

t

∥∥∥
X

≤ K0Γ0(
1
n ), (2.9)

(b) with φ0 also the solution φn to (Δn) is hyperbolic with the same Morse index.

As the subsequent proof and Lemma 2.3 reveal, the constant K0 ≥ 0 essentially
depends on the distance of the Floquet spectrum of φ0 to the point 1 ∈ C. The value
of K0 blows up as this distance shrinks to 0, i.e. when (weak) hyperbolicity is lost.

Proof Let I denote the identity mapping on the Cartesian product X θ . Our aim is
to apply the quantitative Implicit Function Theorem A.1 with the open set Ω = Û ,
Banach spaces X = Y = X θ , the parameter space Λ := {0} ∪ { 1n : n ∈ N

} ⊆ R with

metric d(λ1, λ2) := |λ1 − λ2|, λ0 := 0, x0 := φ̂0, y0 := 0 and the mapping

T : Û × Λ → X θ , T (x, λ) :=
{
F̂n(φ̂) − φ̂, λ = 1

n ,

F̂0(φ̂) − φ̂, λ = 0

with x = φ̂. Let us first verify the assumptions of Theorem A.1. It follows from (2.1)
that the mapping T is well-defined.

ad (i’): Thanks to Lemma 2.1(a), for the θ -periodic solutionφ0 of (Δ0) the resulting

tuple φ̂0 is a fixed point of F̂0 and therefore T (x0, λ0) = F̂0(φ̂0) − φ̂0 = 0.
ad (ii’): Referring to Lemma 2.2 and assumption (i) every mapping F̂n is contin-

uously differentiable and so is each T (·, λ), λ ∈ Λ. Moreover, the partial derivative
D1T (x0, λ0) = DF̂0(φ̂0) − I is invertible, because otherwise 1 ∈ σ(DF̂0(φ̂0)) and
thus 1 ∈ σ(DF̂0(φ̂0))θ \ {0} = σ(Ξ0

θ ) \ {0} by Lemma 2.3. This contradicts the weak
hyperbolicity assumption on the solution φ0.
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ad (iii’): First, we obtain (A.1) from the estimates

‖T (x0, λ) − T (x0, λ0)‖ =
∥∥∥F̂n(φ̂0) − F̂0(φ̂0)

∥∥∥ (2.1)= θ
max
t=1

∥∥∥Fn
t (φ

0
t ) − F0

t (φ
0
t )

∥∥∥

and thus ‖T (x0, λ) − T (x0, λ0)‖ ≤ Γ0(λ) (cf. (2.7)) for all λ = 1
n ∈ Λ. Second,

by assumption (ii) the derivatives DFn
t : Ut → L(X) are uniformly continuous on

bounded sets, uniformly in n ∈ N, and consequently there exist moduli of continuity
ωt : R+ → R+ satisfying lim�↘0 ωt (�) = 0 and

∥∥∥DFn
t (φt ) − DFn

t (φ
0
t )

∥∥∥ ≤ ωt (

∥∥∥φt − φ0
t

∥∥∥) for all n ∈ N, 1 ≤ t ≤ θ,

where φ̂ ∈ Û . By the triangle inequality this results in

‖D1T (x, λ) − D1T (x0, λ0)‖
≤
∥∥∥DF̂n(φ̂) − DF̂n(φ̂0)

∥∥∥+
∥∥∥DF̂n(φ̂0) − DF̂0(φ̂0)

∥∥∥
(2.1)= θ

max
t=1

∥∥∥DFn
t (φt ) − DFn

t (φ
0
t )

∥∥∥+ θ
max
t=1

∥∥∥DFn
t (φ

0
t ) − DF0

t (φ
0
t )

∥∥∥
≤ θ

max
t=1

ωt (

∥∥∥φt − φ0
t

∥∥∥) + θ
max
t=1

∥∥∥DFn
t (φ

0
t ) − DF0

t (φ
0
t )

∥∥∥

for all λ = 1
n ∈ Λ. Now, withΩ ′(�) := maxθ

t=1

∥∥DF
[1/�]
t (φ0

t )−DF0
t (φ

0
t )
∥∥ satisfying

lim�↘0 Ω ′(�) = 0 due to (2.8), this gives for all λ = 1
n ∈ Λ that

‖D1T (x, λ) − D1T (x0, λ0)‖
(2.7)≤ θ

max
t=1

ωt (

∥∥∥φt − φ0
t

∥∥∥) + Ω ′( 1n ) ≤ Γ
(∥∥φ̂ − φ̂0

∥∥, λ),

with the function Γ (�1, �2) := maxθ
t=1 ωt (�1) + Ω ′(�2), which clearly satisfies the

limit relation lim�1,�2↘0 Γ (�1, �2) = 0, i.e. (A.2) holds.
(a) Because the assumptions (i’–iii’) of Theorem A.1 hold, we can choose ρ, δ > 0

so small that (A.3) holds for e.g. q := 1
2 . Moreover, there exists a unique fixed point

function φ̂ : Bδ(λ0) → B̄ρ0(φ̂
0, X θ ) with F̂n(φ̂( 1n )) = φ̂( 1n ) for all n > 1

δ
. Then

Lemma 2.1(b) guarantees that φn := (φ0(
1
n ), . . . , φθ−1(

1
n )) is the desired θ -periodic

solution to (Δn) whenever n ≥ N0 := [ 1
δ
] + 1. We establish that the solutions φn are

weakly hyperbolic. For this purpose, let ε > 0. First, thanks to (2.8) there exists a
n1 ∈ N such that

∥∥∥DF0
t (φ

0
t ) − DFn

t (φ
0
t )

∥∥∥ ≤ ε
3 for all t ∈ Z, n ≥ n1.

We know from Theorem A.1(c) that limn→∞ supt∈Z
∥∥φn

t − φ0
t

∥∥ = 0 and since DFn
t

is equicontinuous by assumption (ii), there exists a n2 ∈ N such that

∥∥∥DFn
t (φ

0
t ) − DFn

t (φ
n
t )

∥∥∥ ≤ ε
3 for all t ∈ Z, n ≥ n2.
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Combining the last two inequalities readily yields
∥∥DF0

t (φ
0
t ) − DFn

t (φ
n
t )
∥∥ < ε for

all t ∈ Z and n ≥ max {n1, n2}, which establishes the limit relation

lim
n→∞

∥∥∥DFn
t (φ

n
t ) − DF0

t (φ
0
t )

∥∥∥ = 0 for all t ∈ Z. (2.10)

Second, assumption (ii) implies that the period operators Ξn
θ of (Vn), n ∈ N, contain

a compact factor and hence are compact [19, p. 417, Thm. 1.2]. Thus, Theorem 2.1(a)
applies toKn

t := DFn
t (φ

n
t ), n ∈ N0, and shows that φn are weakly hyperbolic. Finally,

given N0 and φ̂ as in (a) one has

∥∥φn
t − φn

t

∥∥ (1.2)≤ ∥∥φ̂n − φ̂0
∥∥ ≤ K0Γ0(

1
n ) for all n ≥ N0, t ∈ Z

with K0 := 2
∥∥[DF̂0(φ̂0) − I ]−1

∥∥, which concludes the proof of (a).
(c) In case the solution φ0 is hyperbolic, then due to (2.10) and the compactness

of the period operators Ξn
θ (see above), Theorem 2.1(b) applies to Kn

t := DFn
t (φ

n
t ),

n ∈ N0. It follows that the solutions φn are hyperbolic as well. ��
The dynamics of (Δn) in the vicinity of hyperbolic solutions φn is determined by

a saddle-point structure consisting of local stable and unstable manifolds resp. fiber
bundles [24, p. 256ff, Sect. 4.6] (in the periodic case). These sets allow a dynamical
characterization and, given some r0 > 0, we define the local stable fiber bundle

Wn+ :=
{

(τ, uτ ) ∈ Br0(φ
n) : ϕn(t; τ, uτ ) exists for all t ≥ τ

and ϕn(t; τ, uτ ) − φn
t −−−→

t→∞ 0

}

and the local unstable fiber bundle

Wn− :=
{

(τ, uτ ) ∈ Br0(φ
n) : there exists a solution (φt )t≤τ of (Δn)

with φτ = uτ and φt − φn
t −−−−→

t→−∞ 0

}

associate to φn . The following result relates the fiber bundles of the perturbed equa-
tions (Δn), n ∈ N, to that of the initial problem (Δ0). It requires that

{
Fn
t

}
n∈N is

equidifferentiable in each u ∈ Ut , that is there exists a DFn
t (u) ∈ L(X) such that

lim
h→0

1
‖h‖X

∥∥Fn
t (u + h) − Fn

t (u) − DFn
t (u)h

∥∥
X = 0 for all t ∈ Z

holds uniformly in n ∈ N.
We can now show that the saddle-point structure near hyperbolic periodic solutions

to (Δ0) is preserved under perturbation (see Fig. 1).

Theorem 2.3 (Perturbed stable and unstable fiber bundles) Let θ = lcm {θ0, θ1} and
m ∈ N. Suppose that the θ0-periodic difference equations (Δn), n ∈ N0, fulfill:

(i) Fn
t : Ut → X are m-times continuously differentiable for all n ∈ N0 on a convex,

open set Ut and
{
Fn
t

}
n∈N is equidifferentiable for all 0 ≤ t < θ0,
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Fig. 1 Persistence of the saddle-point structure near a hyperbolic solution: A θ1-periodic solution φ0 (•
black) of a θ0-periodic equation (Δ0) persists as as θ -periodic hyperbolic solution φn (◦ grey) to (Δn ),
n ≥ N1 (cf. Theorem 2.2). The corresponding stable bundle φ0 +W0+ (black fibers) persists as φn +Wn+
(grey fibers), both are locally graphs over R(Pτ ) (dashed), while the unstable bundle φ0 + W0− (black
fibers) persists as φn + Wn− (grey fibers), being locally graphs over N (Pτ ) (dashed, cf. Theorem 2.3)

(ii) DFn
t : Ut → L(X), n ∈ N, are uniformly continuous on bounded sets uniformly

in n ∈ N, the family
{
DFn

t

}
n∈N is equicontinuous for all 0 ≤ t < θ0 and for

every n ∈ N there exists a 0 ≤ t < θ0 such that DFn
t has compact values.

If φ0 is a hyperbolic θ1-periodic solution to (Δ0) satisfying (2.7), (2.8) and (Pt )t∈Z
is the invariant projector onto the stable vector bundle V0+ of (V0) (cf. Theorem 2.1),
then there exist ρ1 > 0 and integers N1 ≥ N0 so that the following holds for n ≥ N1
or n = 0, and the θ -periodic hyperbolic solutions φn ensured by Theorem 2.2:

(a) The local stable fiber bundle Wn+ of (Δn) allows the representation

Wn+ = φn + {(τ, v + wn+(τ, v)) ∈ Z × X : v ∈ Bρ1(0, R(Pτ ))
}

as graph of a mapping wn+ : Z × X → X with

wn+(τ + θ, u) = wn+(τ, u) = wn+(τ, Pτu) ∈ N (Pτ ) for all τ ∈ Z

and u ∈ X. Moreover, wn+(τ, 0) ≡ 0 on Z, the Lipschitz mappings wn+(τ, ·) are of
class Cm and the stable fiber bundles of (Δn) and (Δ0) are related via

∥∥∥wn+(τ, v) − w0+(τ, v)

∥∥∥
X

≤ 4K

1 − β
sup
τ≤t

∥∥∥∥
∫ 1

0

[
DF0

t (φ
0
t + ϑφt ) − DFn

t (φ
n
t + ϑφt )

]
φt dϑ

∥∥∥∥
X

(2.11)

for all τ ∈ Z, v ∈ Bρ1(0, R(Pτ )), where φt = ϕ0(t; τ, φ0
τ + v + w0+(τ, v)) − φ0

t
whenever τ ≤ t .

(b) The local unstable fiber bundle Wn− of (Δn) allows the representation

Wn− = φn + {(τ, v + wn−(τ, v)) ∈ Z × X : v ∈ Bρ1(0, N (Pτ ))
}
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as graph of a mapping wn− : Z × X → X with

wn−(τ + θ, u) = wn−(τ, u) = wn−(τ, [IX − Pτ ]u) ∈ R(Pτ ) for all τ ∈ Z

and u ∈ X. Moreover, wn−(τ, 0) ≡ 0 on Z, the Lipschitz mappings wn−(τ, ·) are of
class Cm and the unstable fiber bundles of (Δn) and (Δ0) are related via

∥∥∥wn−(τ, v) − w0−(τ, v)

∥∥∥
X

≤ 4K

1 − β
sup
t≤τ

∥∥∥∥
∫ 1

0

[
DF0

t (φ
0
t + ϑφt ) − DFn

t (φ
n
t + ϑφt )

]
φt dϑ

∥∥∥∥
X

(2.12)

for all τ ∈ Z, v ∈ Bρ1(0, N (Pτ )), where (φt )t≤τ is the (unique) backward solution
to (Δ0) starting in (τ, v + w0−(τ, v)), and have the same finite dimension.

(c) Wn+ ∩ Wn− = φn,

with the constants β ∈ (0, 1), K ≥ 1 from Theorem 2.1 applied to (V0).

In order to achieve convergence as n → ∞ via (2.11) and (2.12) one needs the
derivatives DFn

t to tend to DF0
t on bounded sets and, thanks toTheorem2.2, continuity

of the derivative DF0
t , 0 ≤ t < θ0. A concrete illustration follows in Sect. 3.

Remark 2.1 (Alternative representation of Wn+ and Wn−) With some ρ̃1 > 0 the local
stable and unstable fiber bundles of φn allow the alternative characterization

Wn+ = φn + {(τ, v + w̃n+(τ, v)) ∈ Z × X : v ∈ Bρ̃1(0, R(Pn
τ ))
}
,

Wn− = φn + {(τ, v + w̃n−(τ, v)) ∈ Z × X : v ∈ Bρ̃1(0, N (Pn
τ ))
}

as graphs over the vector bundles Vn+ resp. Vn− of the variational equations (Vn), rather
than over the vector bundles V0+ resp. V0− of (V0) (cf. [24, pp. 256ff, Sect. 4.6]) as
in Theorem 2.3. In addition, then the associate mappings w̃n+(τ, ·), w̃n−(τ, ·) possess
values in N (Pn

τ ) resp. in R(Pn
τ ) for all τ ∈ Z. According to Theorem 2.1(c) the

corresponding invariant projectors for (Vn) satisfy limn→∞
∥∥Pn

t − P0
t

∥∥ = 0 for all
t ∈ Z. Therefore, Wn− and W0− share their finite dimension.

Proof Since the existence ofW0+,W0− and their properties are well-established in the
literature [24, pp. 187ff], we focus on their persistence and the convergence estimates
(2.11) and (2.12). Letφn = (φn

t )t∈Z denote the θ -periodic solutions of (Δn) guaranteed
by Theorem 2.2 for n ≥ N0. The associate equations of perturbed motion

ut+1 = F̄n
t (ut ), F̄n

t (u) := Fn
t (u + φn

t ) − Fn
t (φ

n
t ) (Δ̄n)

are θ -periodic and have the trivial solution. The general solutions ϕn of (Δn) and ϕ̄n

to (Δ̄n) are related by ϕ̄n(t; τ, u) = ϕn(t; τ, u + φn
τ ) − φn

t for all τ ≤ t .

(a) For each fixed τ ∈ Z the sequence space

�+
τ := {(φt )τ≤t : φt ∈ X and lim

t→∞ ‖φt‖ = 0
}
,
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is complete w.r.t. the sup-norm ‖φ‖∞ := supτ≤t ‖φt‖. For ρ̄ > 0 so small that
‖φt‖ < ρ̄ implies φt +φn

t ∈ Ut for all t ∈ Z and n ≥ N0 we introduce the operator

T n+ : Bρ̄ (0, �+
τ ) → R(Pτ ) × �+

τ , T n+(φ)t := (Pτ φτ , φt+1 − F̄n
t (φt )

)

for all τ ≤ t . Then uτ = Pτuτ + [IX − Pτ ]uτ ∈ X is contained in the stable
bundle of (Δ̄n) if and only if φ := ϕ̄n(·; τ, uτ ) satisfies (cf. [6, proof of Thm. 3.1])

T n+(φ) = (Pτuτ , 0
)
. (2.13)

Our approach to (2.13) using the Lipschitz inverse function Theorem A.2 is based
on the representation T n+ = A+ + Gn+ with

A+ ∈ L(�+
τ , R(Pτ ) × �+

τ ), (A+φ)t := (Pτ φτ , φt+1 − DF0
t (φ

0
t )φt

)
,

Gn+ : �+
τ → R(Pτ ) × �+

τ , Gn+(φ)t := (0, DF0
t (φ

0
t )φt − F̄n

t (φt )
)

for all τ ≤ t . Note that the derivatives DF0
t : Ut → L(X) exist by assumption (i).

(I) Claim: A+ ∈ GL(�+
τ , R(Pτ ) × �+

τ ) with
∥∥∥A−1+

∥∥∥ ≤ 2K
1−β

.

First of all, the sequence (DF0
t (φ

0
t ))t∈Z in L(X) is θ -periodic and therefore

A+ is bounded. In order to show that A+ is invertible, given vτ ∈ R(Pτ ) and
a sequence ψ ∈ �+

τ , we observe that A+φ = (vτ , ψ) has the unique solution

φt = Φ0(t, τ )Pτ vτ +
t−1∑
s=τ

Φ0(t, s + 1)Psψs −
∞∑
s=t

Φ0(t, s + 1)[IX − Ps]ψs

in �+
τ (a proof can be modelled after e.g. [24, pp. 151–152, Thm. 3.5.3(a)]).

Using the dichotomy estimates (2.4) it is not hard to show ‖φt‖ ≤ K ‖vτ‖ +
K 1+β

1−β
‖ψ‖∞ for all τ ≤ t and therefore

∥∥∥A−1+
∥∥∥ ≤ K + K 1+β

1−β
= 2K

1−β
.

(II) Claim: There exist ρ ∈ (0, ρ̄], N1 ≥ N0 such that lipGn+|Bρ(0) ≤ 1−β
4K holds

for all n ≥ N1.
Due to the limit relation (2.10) in the proof of Theorem 2.2 there is an N1 ≥ N0
with

∥∥∥DF0
t (φ

0
t ) − DFn

t (φ
n
t )

∥∥∥ ≤ 1 − β

8K
for all t ∈ Z, n ≥ N1.

We next abbreviate Hn
t (u) := DFn

t (φ
n
t )u − F̄n

t (u). This function is continu-
ously differentiable DHn

t (u) = DFn
t (φ

n
t )−DF̄n

t (u) = DFn
t (φ

n
t )−DFn

t (u+
φn
t ). The Mean Value Inequality [19, p. 342, Cor. 4.3] and the fact that Fn

t is
equidifferentiable by assumption (i) with continuous derivative thus implies
that there exists a ρ ∈ (0, ρ̄] such that

∥∥Hn
t (u) − Hn

t (ū)
∥∥ ≤ 1−β

8K ‖u − ū‖
for all t ∈ Z, u, ū ∈ Bρ(0, X) and n ≥ N1. In combination, due to the
representation
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Gn+(φ)t = (0, DF0
t (φ

0
t )φt − DFn

t (φ
n
t )φt

)+ (0,Hn
t (φt )

)

we finally obtain for all φ, φ̄ ∈ Bρ(0, �+
τ ) that

∥∥Gn+(φ) − Gn+(φ̄)
∥∥∞ ≤ 1−β

4K

∥∥φ − φ̄
∥∥∞ for all n ≥ N1.

(III) In this step we apply the Lipschitz inverse function Theorem A.2 to solve the
nonlinear equation (2.13) in the Banach spaces X = �+

τ , Y = R(Pτ ) × �+
τ ,

points x0 := 0, y0 := (Pτuτ , 0), the Lipschitz constant l := 1−β
4K and σ :=

1−β
2K . Therefore, for every uτ ∈ B1−β

4K 2 ρ
(0, X) one has

‖(Pτuτ , 0)‖ (1.2)= ‖Pτuτ‖ <
1 − β

4K
ρ =: ρ1

and there exists a unique solution φn+(uτ ) ∈ Bρ(0, �+
τ ) to (2.13). Then the

function wn+ parametrizing the stable bundle of (Δ̄n) is wn+(τ, vτ ) := [IX −
Pτ ]φn+(vτ )τ , where vτ = Pτuτ . We define φ := ϕ̄0(·; τ, vτ + w0+(τ, vτ )),
φ̄ := φn+(vτ ) and obtain

∥∥∥wn+(τ, vτ ) − w0+(τ, vτ )

∥∥∥ = ∥∥φ̄τ − φτ

∥∥ ≤ ∥∥φ̄ − φ
∥∥∞

(A.4)≤ 4K

1 − β

∥∥T n+(φ̄) − T n+(φ)
∥∥∞

(1.2)= 4K

1 − β
max

{∥∥Pn[φ̄τ − φτ ]
∥∥ , sup

τ≤t

∥∥φ̄t+1 − F̄n
t (φ̄t ) − [φt+1 − F̄n

t (φt )]
∥∥}

= 4K

1 − β
sup
τ≤t

∥∥φ̄t+1 − F̄n
t (φ̄t ) − [φt+1 − F̄n

t (φt )]
∥∥ .

Because φ̄ solves (Δ̄n) and φ solves (Δ̄0), this simplifies to

∥∥∥wn+(τ, vτ ) − w0+(τ, vτ )

∥∥∥
≤ 4K

1 − β
sup
τ≤t

∥∥φt+1 − F̄n
t (φt )]

∥∥ = 4K
1−β

sup
τ≤t

∥∥∥F̄0
t (φt ) − F̄n

t (φt )]
∥∥∥

(Δ̄n )= 4K

1 − β
sup
τ≤t

∥∥∥F0
t (φt + φ0

t ) − F0
t (φ

0
t ) − [Fn

t (φt + φn
t ) + Fn

t (φ
n
t )]
∥∥∥

and it remains to estimate the right-hand side in this inequality. Since Ut is
assumed to be convex,we apply theMeanValueTheorem [19, p. 341, Thm. 4.2]
and arrive at

∥∥∥wn+(τ, vτ ) − w0+(τ, vτ )

∥∥∥
≤ 4K

1 − β
sup
τ≤t

∥∥∥∥
∫ 1

0
[DF0

t (φ
0
t + ϑφt ) − DFn

t (φ
n
t + ϑφt )]φt dϑ

∥∥∥∥
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for each vτ ∈ R(Pτ ). Here, let us point out that for all integers τ ≤ t one has the
relation φt = ϕ̄0(t; τ, vτ +w0+(τ, vτ )) = ϕ0(t; τ, φ0

τ +vτ +w0+(τ, vτ ))−φ0
t .

(b) The argument is dual to the proof of (a), but now one works in the sequence space
�−
τ := {

(φt )t≤τ : φt ∈ X and limt→−∞ ‖φt‖ = 0
}
being complete in the sup-

norm. One applies Theorem A.2 with X = �−
τ , Y = N (Pτ ) × �−

τ and x0 := 0,
y0 := (uτ − Pτuτ , 0), l := 1−β

4K , σ := 1−β
2K to the nonlinear operator

T n− : Bρ(0, �−
τ ) → N (Pτ ) × �−

τ , T n−(φ)t := (φτ − Pτ φτ , φt − F̄n
t−1(φt−1)

)

for all t ≤ τ . If the unique solution to T n−(φ) = (Pτuτ , 0) is denoted by φn−(vτ ) ∈
�−
τ such that vτ = uτ − Pτuτ , then wn−(τ, vτ ) := Pτ φ

n−(vτ )τ has the claimed
properties.

(c) is a consequence of [24, pp. 259–260, Thm. 4.6.4]. ��

3 Urysohn integrodifference equations

Let us now illustrate the applicability of our abstract perturbation results from Sect. 2,
when the initial problem (Δ0) is an integrodifference equation

ut+1 = F0
t (ut ), F0

t (u) :=
∫

Ω

ft (·, y, u(y)) dy, (I0)

whose right-hand side is an Urysohn operator over a compact nonempty Ω ⊂ R
κ .

For the sake of having well-defined and smooth mappings F0
t , t ∈ Z, in an ambient

setting, several assumptions on the kernel functions ft are due:

Hypothesis 3.1 Let m ∈ N and α ∈ (0, 1]. Suppose there exists a θ0 ∈ N and open,
convex sets Zt ⊆ R

d such that the kernel functions

ft = ft+θ0 : Ω2 × Zt → R
d , Zt = Zt+θ0 for all t ∈ Z (3.1)

fulfill the following assumptions for all 0 ≤ t < θ0 and 0 ≤ k ≤ m:

(i) The derivative Dk
3 ft : Ω2 × Zt → Lk(R

d) exists as continuous function,
(ii) for all r > 0 there exists a continuous function hr : Ω → R+ such that

∣∣∣Dk
3 ft (x, y, z) − Dk

3 ft (x̄, y, z)
∣∣∣
Lk (R

d )
≤ hr (y) |x − x̄ |α (3.2)

for all x, x̄, y ∈ Ω , z ∈ Zt ∩ B̄r (0),
(iii) for all r > 0 there exists a function cr : R+ × Ω → R+ satisfying the limit

relation limδ↘0 supy∈Ω cr (δ, y) = 0, such that |z − z̄| ≤ δ implies

∣∣∣Dk
3 ft (x, y, z) − Dk

3 ft (x, y, z̄) −
[
Dk
3 ft (x̄, y, z) − Dk

3 ft (x̄, y, z̄)
]∣∣∣

Lk (R
d )

≤ cr (δ, y) |x − x̄ |α for all x, x̄, y ∈ Ω, z̄ ∈ Zt ∩ B̄r (0). (3.3)
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Let C(Ω,Rd) denote the set of continuous functions u : Ω → R
d equipped with

the norm ‖u‖0 := supx∈Ω |u(x)|. If α ∈ (0, 1], then functions u : Ω → R
d having a

bounded Hölder constant

[u]α := sup
x,x̄∈Ω
x �=x̄

|u(x) − u(x̄)|
|x − x̄ |α < ∞

are called α-Hölder (Lipschitz in case α = 1) and Cα(Ω,Rd) ⊂ C(Ω,Rd) denotes
the entity of all such functions. It is a Banach space when equipped with the norm

‖u‖α :=
{

‖u‖0 , α = 0,

max {‖u‖0 , [u]α} , α ∈ (0, 1]. (3.4)

Since the compact domain Ω is fixed throughout, we conveniently abbreviate

Cα
d := Cα(Ω,Rd), C0

d := C(Ω,Rd)

and obtain the open sets Ut := {u ∈ Cα
d : u(Ω) ⊂ Zt

}
for all t ∈ Z.

For our subsequent analysis it is important to note that Hypothesis 3.1 implies the
corresponding assumptions made in [28, Sect. 2]. In detail, one has:

Proposition 3.1 (Properties of (I0)) Let t ∈ Z. If Hypothesis 3.1 holds, then the
Urysohn operator F0

t = F0
t+θ0

: Ut → Cα
d is well-defined, completely continuous

and of class Cm with compact derivative

DF0
t (u)v =

∫
Ω

D3 ft (·, y, u(y))v(y) dy for all u ∈ Ut , v ∈ Cα
d . (3.5)

Combined with the solution identity this shows that entire solutions φ to (I0) inherit
the smoothness of the kernel function, i.e. φt ∈ Cα

d , t ∈ Z. Yet for kernel functions of
convolution type a higher smoothness can be expected (cf. [28, Sect. 2.3]).

Proof Above all, (I0) and (3.1) show that F0
t is θ0-periodic in t . The results from [28]

formulated in an abstract measure-theoretical set-up apply to F0
t with the κ-dimen-

sional Lebesgue measure μ = λκ . By [28, Thm. 2.6], F0
t is well-defined and due to

[28, Cor. 2.7(i)] also completely continuous. In [28, Thm. 2.12] it is shown that F0
t is

of class Cm and [23, p. 89, Prop. 6.5] implies that DF0
t (u), u ∈ Ut , is compact. ��

Corollary 3.1 Let t ∈ Z and 2 ≤ m. If for every r > 0 there exists a continuous
function lr : Ω2 → R+ with

|D3 ft (x, y, z) − D3 ft (x, y, z̄)|L(Rd ) ≤ lr (x, y) |z − z̄| for all x, y ∈ Ω

and z, z̄ ∈ Zt ∩ B̄r (0), then DF0
t : Ut → L(Cα

d ) is Lipschitz on C0
d -bounded sets,

that is, for each r > 0 there exists a Lr ≥ 0 such that

∥∥∥DF0
t (u) − DF0

t (ū)

∥∥∥
L(Cα

d )
≤ Lr ‖u − ū‖α for all u, ū ∈ Ut ∩ B̄r (0,C

0
d ) (3.6)
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with the Lipschitz constant Lr := max
{
supξ∈Ω

∫
Ω
lr (ξ, y) dy,

∫
Ω
hr (y) dy

}
.

Proof Let v ∈ Cα
d , r > 0 and u, ū ∈ Ut ∩ B̄r (0,C0

d ).

(I) We derive that

Hence,
∥∥[DF0

t (u) − DF0
t (ū)]v∥∥0 ≤ supξ∈Ω

∫
Ω
lr (ξ, y) dy ‖u − ū‖α ‖v‖α

holds after passing to the least upper bound over all x ∈ Ω .
(II) With Zt ⊆ R

d also Ut ⊆ Cα
d is convex. Therefore, the Mean Value Theorem

[19, p. 341, Thm. 4.2] applies and shows for x, x̄ ∈ Ω that

[DF0
t (u) − DF0

t (ū)]v(x) −
[
DF0

t (u) − DF0
t (ū)

]
v(x̄)

(3.5)=
∫

Ω

[
D3 ft (x, y, u(y)) − D3 ft (x, y, ū(y))

− (D3 ft (x̄, y, u(y)) − D3 ft (x̄, y, ū(y))
)]

v(y) dy

=
∫

Ω

∫ 1

0

[
D2
3 ft (x, y, ū(y) + ϑ(u(y) − ū(y)))

− D2
3 ft (x̄, y, ū(y) + ϑ(u(y) − ū(y))) dϑ [u(y) − ū(y)]

]
v(y) dy.

Consequently Hypothesis 3.1(ii) leads to

∣∣∣[DF0
t (u) − DF0

t (ū)]v(x) −
[
DF0

t (u) − DF0
t (ū)

]
v(x̄)

∣∣∣
(3.4)≤

∫
Ω

∫ 1

0

∣∣D2
3 f
(
x, y, ū(y) + ϑ(u(y) − ū(y))

)

− D2
3 f
(
x̄, y, ū(y) + ϑ(u(y) − ū(y))

)∣∣ dϑ dy ‖u − ū‖α ‖v‖α

(3.2)≤
∫

Ω

hr (y) dy ‖u − ū‖α ‖v‖α |x − x̄ |α for all x, x̄ ∈ Ω,

which guarantees that [[DF0
t (u) − DF0

t (ū)]v]α ≤ ∫
Ω
hr (y) dy ‖u − ū‖α ‖v‖α .

Referring to (3.4) this implies the local Lipschitz estimate (3.6). ��
Along with IDEs (I0) we now consider their Nyström discretizations. They are

based on quadrature (κ = 1) or cubature rules (κ > 1), i.e. a family of mappings

Qn : C0
d → R

d , Qnu :=
∑
η∈Ωn

wηu(η) for all n ∈ N (Qn)

determined by a grid Ωn ⊂ Ω of finitely many nodes η ∈ Ωn and weights wη ≥ 0;
the dependence of wη on n ∈ N is suppressed here. A rule (Qn) is called (cf. [16])

– convergent, if limn→∞ Qnu = ∫
Ω
u(y) dy holds for all u ∈ C0

d ,
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268 C. Pötzsche

– stable, provided the weights satisfy

W := sup
n∈N

Wn < ∞, Wn :=
∑
η∈Ωn

wη. (3.7)

Thanks to [16, p. 20, Thm. 1.4.17], convergence implies stability.
In order to evaluate the right-hand side of (I0) approximately, we replace the integral

by a convergent integration rule (Qn), n ∈ N. The resulting Nyström method (see [4,
16] for integral equations) yields the family of difference equations

ut+1 = Fn
t (ut ), Fn

t (u) :=
∑
η∈Ωn

wη ft (·, η, u(η)). (In)

Proposition 3.2 (Properties of (In))Let t ∈ Z. IfHypothesis3.1holds, then the discrete
Urysohn operator Fn

t = Fn
t+θ0

: Ut → Cα
d , n ∈ N, is well-defined, completely

continuous and of class Cm with compact derivative

DFn
t (u)v =

∑
η∈Ωn

wηD3 ft (·, η, u(η))v(η) for all u ∈ Ut , v ∈ Cα
d . (3.8)

Moreover, if (Qn) is stable, then
{
Fn
t

}
n∈N is equidifferentiable, DFn

t are uniformly
continuous on bounded sets uniformly in n ∈ N and

{
DFn

t

}
n∈N is equicontinuous.

Proof The grids Ωn , n ∈ N, are a family of compact and discrete subsets of Ω . If
we equip them with the measure μ(Ωn) := ∑

η∈Ωn
wη, then due to [28, Ex. 2.2 and

Rem. 2.5] the abstract measure-theoretical integral from [28] becomes

∫
Ωn

ft (x, y, u(y)) dμ(y) =
∑
η∈Ωn

wη ft (x, η, u(η)) for all x ∈ Ω

and leads to the discrete integral operators in (In). Given this, well-definedness,
complete continuity and smoothness of Fn

t result from [28] as in the proof of
Proposition 3.1. From now on, assume that (Qn) is stable and choose u ∈ Ut .

(I) Claim:
{
Fn
t

}
n∈N is equidifferentiable.

For functions h ∈ Cα
d the remainder terms [28, (16) resp. (18)] become

r0(h) = sup
ϑ∈[0,1]

∥∥∥∥
∑
η∈Ωn

wη [D3 ft (·, η, (u + ϑh)(η)) − D3 ft (·, η, u(η))]

∥∥∥∥
0
,

ρ0(h) =
∫ 1

0

∑
η∈Ωn

wηc̄
1
r (ϑ ‖h‖0 , y) dϑ ≤

∑
η∈Ωn

wηc̄
1
r (‖h‖0 , η).

Now it follows from (3.7) that limh→∞ r0(h) = limh→∞ ρ0(h) = 0 hold
uniformly in n ∈ N. This yields the claimed equidifferentiability.
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(II) Claim: DFn
t are uniformly continuous on bounded sets uniformly in n ∈ N (and

thus
{
DFn

t

}
n∈N is equicontinuous).

Let ε > 0, v ∈ Cα
d and given u, ū ∈ Ut choose r > 0 so large that ‖u‖0 , ‖ū‖0 ≤

r holds. Because the (extended) derivative D3 ft : Ω2 × Zt → L(Rd) is uni-
formly continuous on the compact set Ω2 × (Zt ∩ B̄r (0)), there exists a δ1 > 0
such that

|z − z̄| < δ1 ⇒ |D3 ft (x, y, z) − D3 ft (x, y, z̄)| < ε
2W for all z, z̄ ∈ Zt ∩ B̄r (0)

and x, y ∈ Ω . If u, ū ∈ Ut satisfy ‖u − ū‖0 < δ1, then we obtain
|u(y) − ū(y)| < δ1 for all y ∈ Ω . First, this implies

∣∣[DFn
t (u) − DFn

t (ū)]v(x)
∣∣

(3.8)≤
∑
η∈Ωn

wη |D3 ft (x, η, u(η)) − D3 ft (x, η, ū(η))| |v(η)|

(3.4)≤
∑
η∈Ωn

wη
ε

2W ‖v‖α ≤ ε
2 ‖v‖α for all x ∈ Ω

and passing to the supremum over x ∈ Ω yields ‖[DFt (u) − DFt (ū)]v‖0 ≤
ε
2 ‖v‖α . Second, from Hypothesis 3.1(iii) there exists a δ2 > 0 such that
supy∈Ω cr (δ, y) < ε

2W for every δ ∈ (0, δ2] and consequently ‖u − ū‖0 < δ2
guarantees for all x, x̄ ∈ Ω that

∣∣[DFn
t (u) − DFn

t (ū)]v(x) − [DFn
t (u) − DFn

t (ū)]v(x̄)
∣∣

(3.8)≤
∑
η∈Ωn

wη|D3 ft (x, η, u(η)) − D3 ft (x, η, ū(η))

−[D3 ft (x̄, η, u(η)) − D3 ft (x̄, η, ū(η))]| |v(η)|
(3.3)≤

∑
η∈Ωn

wηcr (δ, η) |x − x̄ |α ‖v‖α

(3.7)≤ W sup
y∈Ω

cr (δ, η) |x − x̄ |α ‖v‖α

and therefore [[DFn
t (u) − DFn

t (ū)]v]α ≤ ε
2 ‖v‖α . Referring to (3.4) this results

in

‖u − ū‖0 < min {δ1, δ2} ⇒ ∥∥[DFn
t (u) − DFn

t (ū)]v∥∥
α

≤ ε
2 ‖v‖α

for all n ∈ N. Since v ∈ Cα
d was arbitrary, this readily implies the claim. ��
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3.1 Hölder continuous kernel functions

We say an integration rule (Qn) has consistency order α ∈ (0, 1] (cf. [16, p. 21,
Def. 1.4.19]), if there exists a c0 ≥ 0 with

∣∣∣∣
∫

Ω

u(y) dy − Qnu

∣∣∣∣ ≤ c0
nα

‖u‖α for all u ∈ Cα
d .

Example 3.1 (Quadrature rules) Let Ω = [a, b] and n ∈ N. The (left) resp. (right)
rectangular rules

Qn
LRu := b−a

n

n−1∑
j=0

u(a + j b−a
n ), Qn

RRu := b−a
n

n∑
j=1

u(a + j b−a
n )

are convergent and satisfy the quadrature error (cf. [8, p. 52, Theorem])

∣∣∣∣
∫ b

a
u(y) dy − Qn

i u

∣∣∣∣ ≤ (b − a)α+1

nα
[u]α for i ∈ {LR, RR} .

Also the midpoint rule Qn
Mu := b−a

n

∑n−1
j=0 u(a + ( j + 1

2 )
b−a
n ) is convergent and as

in [8, p. 52, Theorem] one derives the quadrature error

∣∣∣∣
∫ b

a
u(y) dy − Qn

Mu

∣∣∣∣ ≤ (b − a)α+1

2αnα
[u]α.

The trapezoidal rule Qn
T u := 1

2 (Q
n
LRu+Qn

RRu) is convergent with the same quadra-
ture error as for the rectangular rules. Finally, let n ∈ N be even. Representing the
Simpson rule as convex combination Qn

Su := 2
3Q

n/2
M u + 1

3Q
n/2
T u, one obtains

∣∣∣∣
∫ b

a
u(y) dy − Qn

Su

∣∣∣∣ ≤ 2 + 2α

3

(b − a)α+1

nα
[u]α.

The next two results provide sufficient conditions on the kernel functions ft such
that the assumptions (2.7) or (2.8) are satisfied for Nyström discretizations (In).

Proposition 3.3 (Convergence of Fn
t ) Let t ∈ Z. Suppose Hypothesis 3.1 holds and

that for every r > 0 there exists a l0r ≥ 0 such that

| ft (x, y, z) − ft (x, ȳ, z̄)| ≤ l0r max
{|y − ȳ|α , |z − z̄|} (3.9)

for all x, y, ȳ ∈ Ω and z, z̄ ∈ Zt ∩ B̄r (0). If (Qn) has consistency order α, then for
every r > 0 there exists a c0r ≥ 0 such that

∥∥∥Fn
t (u) − F0

t (u)

∥∥∥
α

≤ c0c0r
nα

for all n ∈ N, u ∈ Ut ∩ B̄r (0,C
α
d ). (3.10)
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The magnitude of the constant c0r is increasing in the Hölder norm of u ∈ Ut .

Proof Let t ∈ Z, r > 0 and u ∈ Ut ∩ B̄r (0,Cα
d ). Because (Qn) has consistency order

α, there exists a c0 ≥ 0 such that
∣∣F0

t (u)(x) − Fn
t (u)(x)

∣∣ ≤ c0
nα ‖ ft (x, ·, u(·))‖α for

all x ∈ Ω . First, one has ‖ ft (x, ·, u(·))‖0 ≤ supξ,y∈Ω | ft (ξ, y, u(y))| =: bt for every
x ∈ Ω . Second, due to the assumption (3.9) we conclude

| ft (x, y, u(y)) − ft (x, ȳ, u(ȳ))| ≤ l0r max {1, [u]α} |y − ȳ|α for all y, ȳ ∈ Ω

and thus [ ft (x, ·, u(·))]α ≤ l0r max {1, [u]α} holds. In conclusion, because of (3.4)
we arrive at ‖ ft (x, ·, u(·))‖α ≤ max

{
bt , l0r max {1, [u]α}} for every x ∈ Ω and

consequently choose c0r := maxθ0
t=1

{
bt , l0r max {1, r}}. ��

Proposition 3.4 (Convergence of DFn
t ) Let t ∈ Z. Suppose Hypothesis 3.1 holds and

that for every r > 0 there exist constants

(iv) l1r ≥ 0 such that for all x, y, ȳ ∈ Ω and z ∈ Zt ∩ B̄r (0) one has

|D3 ft (x, y, z) − D3 ft (x, ȳ, z̄)|L(Rd ) ≤ l1r max
{|y − ȳ|α , |z − z̄|} ,

(v) γr ≥ 0 such that for all x, x̄, y, ȳ ∈ Ω and u ∈ Ut ∩ B̄r (0,Cα
d ) one has

|D3 ft (x, y, u(y)) − D3 ft (x̄, y, u(y)) − [D3 ft (x, ȳ, u(ȳ)) − D3 ft (x̄, ȳ, u(ȳ))]|L(Rd )

≤ γr |x − x̄ |α |y − ȳ|α . (3.11)

If (Qn) has consistency order α, then for every r > 0 there exists a c1r ≥ 0 such that

∥∥∥DFn
t (u) − DF0

t (u)

∥∥∥
L(Cα

d )
≤ c0c1r

nα
for all n ∈ N, u ∈ Ut ∩ B̄r (0,C

α
d ). (3.12)

Sufficient conditions for (3.11) to hold were given in [27, Rem. 1] on convex
Ω ⊂ R

κ . Furthermore, the explicit form of the constant c1r can be obtained from [27,
(11)].

Proof Let t ∈ Z, r > 0 and u ∈ Ut ∩ B̄r (0,Cα
d ) be fixed. By Proposition 3.1 the

derivative of F0
t is DF0

t (u)v = ∫
Ω
D3 ft (·, y, u(y))v(y) dy for all v ∈ Cα

d . Given this,
our goal is to apply the convergence result [27, Thm. 2] with the corresponding kernel
kt (x, y) := D3 ft (x, y, u(y)), whose assumptions are verified next:

ad (i): Thanks to |u(y)| ≤ r it holds |kt (x, y) − kt (x̄, y)| ≤ hr (y) |x − x̄ |α for all
x, x̄ ∈ Ω due to (3.2) and therefore [kt (·, y)]α ≤ supη∈Ω hr (η) for all y ∈ Ω .

ad (ii): The assumption (iv) and [u]α ≤ r yield

|kt (x, y) − kt (x, ȳ)| ≤ l1r max {1, [u]α} |y − ȳ|α for all y, ȳ ∈ Ω

and thus [kt (x, ·)]α ≤ l1r max {1, r} for all x ∈ Ω .
ad (iii): As consequence of our assumption (3.11) one obtains for x, x̄, y, ȳ ∈ Ω

that |kt (x, y) − kt (x̄, y) − [kt (x, ȳ) − kt (x̄, ȳ)]| ≤ γr |x − x̄ |α |y − ȳ|α .
Finally, combining (i–iii) with the consistency order α of (Qn) shows (3.12). ��
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Combining the assumptions of Propositions 3.1–3.4 and Corrollary 3.1 yields

Theorem 3.1 (Saddle-point structure of (I0), Cα-case) Suppose Hypothesis 3.1 holds
with 2 ≤ m and φ0 is a weakly hyperbolic θ1-periodic solution to (I0). If

(iv) (Qn) has consistency order α ∈ (0, 1],
then there exist constants K∗, K+, K− ≥ 0 and N1 ∈ N such that the following holds
for all n ≥ N1: The associate weakly hyperbolic and θ -periodic solutions φn to (In)
satisfy

sup
t∈Z

∥∥∥φn
t − φ0

t

∥∥∥
α

≤ K∗c0
nα

. (3.13)

If φ0 is even hyperbolic, then for each τ ∈ Z one has the estimates

(a)
∥∥wn+(τ, v) − w0+(τ, v)

∥∥
α

≤ 4K
1−β

K+
nα supτ≤t ‖φt‖α for all v ∈ Bρ1(0, R(Pτ )),

(b)
∥∥wn−(τ, v) − w0−(τ, v)

∥∥
α

≤ 4K
1−β

K−
nα supt≤τ ‖φt‖α for all v ∈ Bρ1(0, N (Pτ )),

with the forward resp. backward solution φ to the IDE (I0) from Theorem 2.3.

Proof Let t ∈ Z and r := maxθ1
t=1

∥∥φ0
t

∥∥
α
. It results from Propositions 3.1 and 3.2 that

(In), n ∈ N0, satisfy the assumptions (i), (ii) of Theorem2.2.Moreover, Proposition 3.3
implies (2.7) with Γ0(�) := c0c0r �

α , while Proposition 3.4 guarantees that (2.8) holds.
Hence, Theorem 2.2 applies and yields (3.13)with K∗ := K0c0r . In particular, for N0 ∈
N and ρ0 > 0 from Theorem 2.2 there is a N1 ≥ N0 so that supt∈Z

∥∥φn
t − φ0

t

∥∥
α

<
ρ0
2

for all n ≥ N1.

(a) Let ρ1 > 0 be so small that the sequence (φt )τ≤t from Theorem 2.3(a) satisfies
‖φt‖α <

ρ0
2 for all τ ≤ t ; such a ρ1 exists since the sequence is contained in the

stable fiber bundle of φ0. Furthermore, for each ϑ ∈ [0, 1] we obtain
∣∣∣φn

t (y) + ϑφt (y) − φ0
t (y)

∣∣∣ ≤
∥∥∥φn

t + ϑφt − φ0
t

∥∥∥
0

< ρ0 for all y ∈ Ω.

Now set r̄ := r + ρ0. Combining the triangle inequality, Corrollary 3.1 and
Proposition 3.4 yields that there exist Lr̄ ≥ 0 such that

∥∥∥[DFn
t (φ

n
t + ϑφt ) − DF0

t (φ
0
t + ϑφt )]φt

∥∥∥
α

(3.6)≤
∥∥∥[DFn

t (φ
n
t + ϑφt ) − DF0

t (φ
n
t + ϑφt )]φt

∥∥∥
α

+ Lr̄

∥∥∥φn
t − φ0

t

∥∥∥
α

‖φt‖α

(3.12)≤ c0c1r̄
nα

‖φt‖α + Lr̄

∥∥∥φn
t − φ0

t

∥∥∥
α

‖φt‖α

(2.9)≤ c0c1r̄
nα

‖φt‖α + Lr̄ K∗c0
nα

‖φt‖α

and with K+ := c0c1r̄ + Lr̄ K∗c0 we obtain

∥∥∥[DFn
t (φ

n
t + ϑφt ) − DF0

t (φ
0
t + ϑφt )]φt

∥∥∥
α

≤ K+
nα

sup
τ≤s

‖φs‖α for all ϑ ∈ [0, 1],

n ≥ N1 and τ ≤ t . Hence, the claimed estimate follows from (2.11).
(b) As in (a), applying (2.12) rather than (2.11) leads to the assertion. ��
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3.2 Differentiable kernel functions

Convergence rates improving the consistency orderα ∈ (0, 1] obtained inTheorem3.1
can be expected for integrands in (I0) being differentiable in y ∈ Ω . Here we follow
the convention to consider a function on a not necessarily open set Ω ⊂ R

κ as
differentiable, if it allows a differentiable extension to an open superset of Ω .

Given p-times continuously differentiable functions u : Ω → R
d assume that

(Qn) allows a quadrature or cubature error of the form (see [8])

∣∣∣∣
∫

Ω

u(y) dy − Qnu

∣∣∣∣ ≤ cp
n p

sup
x∈Ω

∣∣Dpu(x)
∣∣ for all n ∈ N (3.14)

with constants cp ≥ 0.
A smooth framework allows the following improvement of Proposition 3.3:

Proposition 3.5 (Higher order convergence of Fn
t ) Let t ∈ Z, p ∈ N andΩ be convex.

Suppose the kernel function ft : Ω2 × Zt → R
d fulfills:

(iv) The partial derivative D1 ft : Ω2 × Zt → L(Rκ ,Rd) exists,
(v) both ft , D1 ft are of class C

p
(2,3).

If (Qn) satisfies (3.14), then for every r > 0 there exists a c̄0r ≥ 0 such that

∥∥∥Fn
t (u) − F0

t (u)

∥∥∥
α

≤ cpc̄0r
n p

for all n ∈ N (3.15)

and p-times continuously differentiable functions u ∈ Ut .

Proof Let t ∈ Z and with u ∈ Ut of class C p it is convenient to define

F (1)
t : Ω2 → L(Rκ ,Rd), F (1)

t (x, y) := D1 ft (x, y, u(y)).

The estimate (3.15) for the ‖·‖0-norm is an immediate consequence of the error esti-
mate (3.14) and the higher-order chain rule. Let x, x̄ ∈ Ω and theMeanValueTheorem
[19, p. 341, Thm. 4.2] gives

[Fn
t (u) − F0

t (u)](x) − [Fn
t (u) − F0

t (u)](x̄)
=
∑
η∈Ωn

wη ft (x, η, u(η)) −
∫

Ω

ft (x, y, u(y)) dy

−
∑
η∈Ωn

wη ft (x̄, η, u(η)) +
∫

Ω

ft (x̄, y, u(y)) dy

=
∫

Ω

∫ 1

0
D1 ft (x̄ + ϑ(x − x̄), y, u(y)) dϑ dy (x − x̄)

−
∑
η∈Ωn

wη

∫ 1

0
D1 ft (x̄ + ϑ(x − x̄), η, u(η)) dϑ (x − x̄) ,
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from which Fubini’s theorem [19, p. 162, Thm. 8.4] yields

[Fn
t (u) − F0

t (u)](x) − [Fn
t (u) − F0

t (u)](x̄)

=
∫ 1

0

(∫
Ω

F (1)
t (x̄ + ϑ(x − x̄), y) dy−

∑
η∈Ωn

wηF
(1)
t (x̄+ϑ(x − x̄), η)

)
dϑ (x − x̄)

and passing to the norm implies

∣∣∣[Fn
t (u) − F0

t (u)](x) − [Fn
t (u) − F0

t (u)](x̄)
∣∣∣

(3.14)≤ cp
n p

∫ 1

0
sup
y∈Ω

∣∣∣Dp
2 F

(1)
t (x̄ + ϑ(x − x̄), y)

∣∣∣ dϑ |x − x̄ |

≤ cp
n p

(diamΩ)1−α sup
x,y∈Ω

∣∣∣Dp
2 F

(1)
t (x, y)

∣∣∣ |x − x̄ |α .

Hence, [Fn
t (u) − F0

t (u)]α ≤ cp
n p (diamΩ)1−α supx,y∈Ω

∣∣∣Dp
2 F

(1)
t (x, y)

∣∣∣ and if we

abbreviate c̄0r := max
{
1, (diamΩ)1−α

}
max1i=0 supx,y∈Ω

∣∣∣Dp
2 F

(i)
t (x, y)

∣∣∣, then (3.4)

implies the claimed estimate (3.15). ��
Smooth functions ft and reference solutions φ0 allow better convergence rates.

Indeed under the assumptions of Propositions 3.1, 3.2 and 3.4, 3.5, as well as
Corrollary 3.1 results:

Theorem 3.2 (Saddle-point structure of (I0), C p-case) Let Ω ⊂ R
κ be convex. Sup-

pose Hypothesis 3.1 holds with max {2, p} ≤ m and φ0 is a weakly hyperbolic
θ1-periodic solution to (I0). If

(iv) (Qn) is stable, has consistency order α ∈ (0, 1] and satisfies (3.14),
(v) the partial derivatives Dk

1 ft : Ω2 × Zt → Lk(R
κ ,Rd) exists for 0 ≤ k ≤ p,

(vi) both ft and D1 ft are of class C
p
(2,3),

then there exist constants K∗, K+, K− ≥ 0 and N1 ∈ N such that the following holds
for all n ≥ N1: The associate weakly hyperbolic and θ -periodic solutions φn to (In)
satisfy

sup
t∈Z

∥∥∥φn
t − φ0

t

∥∥∥
α

≤ K∗cp
n p

. (3.16)

If φ0 is even hyperbolic, then for each τ ∈ Z one has the estimates

(a)
∥∥wn+(τ, v) − w0+(τ, v)

∥∥
α

≤ 4K
1−β

K+
n p (1 + supτ≤t ‖φt‖α) for p-times continuously

differentiable v ∈ Bρ1(0, R(Pτ )),

(b)
∥∥wn−(τ, v) − w0−(τ, v)

∥∥
α

≤ 4K
1−β

K−
n p (1 + supt≤τ ‖φt‖α) for v ∈ Bρ1(0, N (Pτ ))

with the forward resp. backward solution φ to the IDE (I0) from Theorem 2.3.

Proof Let t ∈ Z. Above all, as entire solutions to (I0) the functions φ0
t are of class C

p

due to (v) and [19, p. 355, Thm. 8.1]. By means of Proposition 3.5 the estimate (3.16)
results as in the above proof of Theorem 3.1, with (3.10) replaced by (3.15).
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(a) As in the above proof of Theorem 3.1 one obtains

∥∥∥[DFn
t (φ

n
t + ϑφt ) − DF0

t (φ
0
t + ϑφt )]φt

∥∥∥
α

(3.15)≤
∥∥∥[DFn

t (φ
n
t + ϑφt ) − DF0

t (φ
n
t + ϑφt )]φt

∥∥∥
α

+ Lr̄ cpc̄0r̄
n p

‖φt‖α (3.17)

for all ϑ ∈ [0, 1] and n ≥ N1. Proposition 3.1 yields the explicit derivative

DF0
t (φ

n
t + ϑφt )φt

(3.5)=
∫

Ω

D3 ft (·, y, φn
t (y) + ϑφt (y))φt (y) dy

and for the integrand on the right-hand side we observe: Thanks to (v) the periodic
solution φn consists of C p-functions φn

t : Ω → R
d and also forward solutions to the

IDE (I0) are of class C p, i.e. φt is a C p-function for all t > τ . For t = τ we have
φτ = v+w0+(τ, v) and becausew0+(τ, ·) is of classCm by Theorem 2.3(a) and p ≤ m,
with v also the initial function φτ is p-times continuously differentiable. Due to (vi)
this yields that the integrand D3 ft (x, ·, φn

t (·)+ϑφt (·))φt (·) : Ω → R
d is of class C p

and the estimate (3.14) applies. Hence, as in the proof of Proposition 3.5 one shows

that there exists a C̃ ≥ 0 so that
∥∥[DFn

t (φ
n
t + ϑφt ) − DF0

t (φ
n
t + ϑφt )]φt

∥∥
α

≤ C̃
n p

and whence (3.17) yields for all ϑ ∈ [0, 1], n ≥ N1 and τ ≤ t that

∥∥∥[DFn
t (φ

n
t + ϑφt ) − DF0

t (φ
0
t + ϑφt )]φt

∥∥∥
α

≤
(
C̃ + LrC sup

τ≤s
‖φs‖α

)
1

n p
.

Therefore, the estimate (a) follows from (2.11).
(b) As above in (a), applying (2.12) rather than (2.11) leads to the claimed estimate.

Note here that (φt )t≤τ is a backward solution to (I0) and consequently consists of
C p-solutions. Whence, also the initial value φτ = v + w0−(τ, v) is of class C p and it
is not necessary to assume v to be smooth. ��

4 Numerical illustrations

In order to illustrate our theoretical results, we consider an autonomous logistic IDE
with separable kernel in 1d. It allows to analyze the behavior of periodic solutions
under approximation (largely) explicitly. We demonstrate this by means of Nyström
discretizations based on several quadrature rules (taken from [11, pp. 361ff]).

Let L > 0. On the interval Ω = [− L
2 , L

2 ] consider the kernel [18, Sect. 6]

k(x, y) := π

4L

{
cos
(

π
2L (x − y)

)
, |x − y| ≤ L,

0, else,

which is separable, since it allows the representation

k(x, y) = cos
(

π
2L x

)
cos
(

π
2L y

)+ sin
(

π
2L x

)
sin
(

π
2L y

)
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Fig. 2 Left: The solid and the dashed lines are branches of 5-periodic solutions to the scalar difference
equation (4.3), which in turn represent solutions to the logistic IDE (4.1) (traversed in the sequence red,
orange, green, blue, black) Right: Floquet spectrum for (4.2) along the 5-periodic solutions indicated as
solid resp. dashed lines

=
√

π+2
2π L cos

(
π
2L y

)
e1(x) +

√
π−2
2π L sin

(
π
2L y

)
e2(x)

with the linearly independent functions e1, e2 : [− L
2 , L

2 ] → R,

e1(x) :=
√

2π
(π+2)L cos

(
πx
2L

)
, e2(x) :=

√
2π

(π−2)L sin
(

πx
2L

)

being L2-orthonormal, i.e.
∫ L/2
−L/2 ei (y)e j (y) dy = δi j for 1 ≤ i, j ≤ 2 holds with the

Kronecker symbol δi j ∈ {0, 1}. Given this, the autonomous Hammerstein IDE

ut+1(x) = a
∫ L/2

−L/2
k(x, y)ut (y)(1 − ut (y)) dy (4.1)

depends on a growth parameter a > 0. The ansatz ut := vt e1 +wt e2 with coefficients
vt , wt ∈ R leads to the autonomous planar difference equation

⎧⎨
⎩

vt+1 = a
(

π+2
8 vt − 10

3

√
π

(π+2)L v2t − 2(π+2)
3(π−2)

√
π

(π+2)L w2
t

)
,

wt+1 = a
(

π−2
8 − 1

3

√
π

(π+2)L vt

)
wt ,

(4.2)

which fully describes the dynamics of (4.1). It has the invariant set R× {0} and when
restricted to this v-axis the behavior is determined by the scalar difference equation

vt+1 = avt

(
π+2
8 − 10

3

√
π

(π+2)L vt
) =: ha(vt ). (4.3)

If we fix L = π , then (4.3) possesses a pair of 5-periodic solutions emanating from
a supercritical fold bifurcation at a ≈ 5.8164. These solutions and their hyperbolicity
are illustrated in Fig. 2(the graphics were obtained using a simple continuation scheme
with Brent’s method [29, p. 256, Sect. 6.2.3] as corrector). In particular, for a = 6 we
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Fig. 3 C0-errors (left) and Cα-errors (with α = 1, right) for the rectangular (square �), midpoint (asterisk
∗), trapezoidal (diamond �) and Simpson (+) rule

solve h5a(v
∗
0) = v∗

0 in order to arrive at the 5-periodic solution

(v∗
t , w

∗
t ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1.1402499962803, 0), t mod 5 = 0,

(1.5300677569209, 0), t mod 5 = 1,

(0.73794766757321, 0), t mod 5 = 2,

(1.6448652484936, 0), t mod 5 = 3,

(0.37693991665699, 0), t mod 5 = 4

of (4.2) resulting in the 5-periodic solution φ0
t := v∗

t e1 to the IDE (4.1). This provides
us with a precisely known periodic reference solution for the logistic IDE (4.1) in
order to illustrate Theorem 2.2 when applied to its Nyström discretizations (In).

In order to determine the 5-periodic solutions φn of (In) we apply a Newton solver
to the fixed point problem F̂n(û) = û having φ̂0 as initial value. For various common
summed integration methods we display the development of the C0-error

errn = θ
sup
t=1

sup
η∈Ωn

∣∣∣φn
t (η) − φ0

t (η)

∣∣∣ ,

as well as the Cα-error, α = 1,

err1n := max

⎧⎪⎨
⎪⎩errn,

θ
sup
t=1

sup
η,η̄∈Ωn

η �=η̄

∣∣φn
t (η)−φ0

t (η̄)
∣∣

|η−η̄|

⎫⎪⎬
⎪⎭

over the numbers of nodes dn in the error diagrams Figs. 3and 4.
They illustrate that the solutions φn approximate φ0 preserving the order of the

particular quadrature rule. This confirms Theorem 2.2 and specifically the estimate
(3.16) of Theorem 3.2. An exception is the fast convergence of the Clenshaw-Curtis
method (see Fig. 4) due to the fact that the functions to be approximated are cosine
shaped.
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Fig. 4 C0-errors (left) and Cα-errors (with α = 1, right) for the Chebyshev (square �), 4th order Gauß
(asterisk ∗), 6th order Gauß (diamond �) and Clenshaw-Curtis (+) rule

5 Summary and perspectives

This paper studied the local dynamics of abstract periodic difference equations of
the form (Δ0) near periodic solutions under discretizations. For sufficiently accurate
approximations, in Theorem 2.1 it is established that hyperbolicity of a periodic linear
equation persists. Applied to the variational equations (Vn), Theorem 2.2 guarantees
that also hyperbolic periodic solutions persist as hyperbolic solutions to the discretiza-
tions (Δn). The same holds true for their associated stable and unstablemanifolds (fiber
bundles), as shown in Theorem 2.3.

These abstract perturbation results might apply to various spatial discretizations of
evolutionary equations, such as projection methods. We nevertheless illustrate them
in terms of integrodifference equations (I0) and their Nyström approximations (In),
which can be immediately implemented in simulations. Indeed, for these full dis-
cretizations the integral is replaced by a convergent quadrature/cubature rule. Its
convergence rate regarding the error to the discretized objects (hyperbolic periodic
solutions, graphs of their stable and unstable fiber bundles) is preserved throughout.
This rate in turn depends on the smoothness of the kernel functions ft . In case they
are Hölder continuous, then the convergence rate coincides with the corresponding
Hölder exponent (cf. Theorem 3.1), while for higher-order smoothness one obtains
polynomial convergence as shown in Theorem 3.2.

Our contribution concentrates onNyströmmethods. Nevertheless, rather than using
quadrature/cubature formulas, an alternative tool to evaluate the right-hand sides of
IDEs is the Fast Fourier Transformation (for short FFT, [22, pp. 106ff, Sect. 8.2]).
Although this approach is fairly popular in the literature, it is restricted toHammerstein
IDEs of convolution type ut+1(x) = ∫

Ω
kt (x − y)gt (ut (y)) dy, while we deal with

general Urysohn equations (I0). In comparison, as pointed out in [22], in order to
arrive at a similar accuracy, Nyström methods require less nodes but tend to be slower
than FFTmethods. Up to the author’s knowledge, questions concerning the Numerical
Dynamics for FFT discretizations were not tackled so far.

We finally point out that global dynamical features of integrodifference equations
were addressed in [9] (for polynomial growth functions) and [10] (for general smooth
growth functions). Using rigorous numerics they establish the existence of periodic
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solutions, connecting orbits, and ultimately chaotic dynamics. The methods involve
set oriented numerics and topological tools such as the Conley index, which are
fundamentally different from ours. Regarding connecting orbits, see also [20].
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AQuantitative implicit and Lipschitz inverse function theorem

LetX,Y be Banach spaces.We formulate an abstract, but tailor-made implicit function
theorem, whose parameter set is merely supposed to be a metric space (Λ, d):

Theorem A.1 (Quantitative implicit function theorem) Let Ω ⊆ X be nonempty open,
x0 ∈ Ω , λ0 ∈ Λ, y0 ∈ Y, q ∈ [0, 1), and suppose T : Ω × Λ → Y satisfies

(i’) T (x0, λ0) = y0,
(ii’) the partial derivative D1T : Ω × Λ → L(X,Y) exists with D1T (x0, λ0) ∈

GL(X,Y),
(iii’) there exist functions Γ0 : R+ → R+ and Γ : R

2+ → R+ which satisfy
lim�↘0 Γ0(�) = 0, lim�1,�2↘0 Γ (�1, �2) = 0, such that for all x ∈ Ω , λ ∈ Λ it
holds

‖T (x0, λ) − T (x0, λ0)‖ ≤ Γ0(d(λ, λ0)), (A.1)

‖D1T (x, λ) − D1T (x0, λ0)‖ ≤ Γ (‖x − x0‖ , d(λ, λ0)). (A.2)

If K := ∥∥D1T (x0, λ0)−1
∥∥ and ρ0, δ > 0 are chosen so small that

Γ0(δ) ≤ 1−q
K ρ0, Γ (ρ0, δ) ≤ q

K , (A.3)

then there exists a function φ : Bδ(λ0,Λ) → B̄ρ0(x0,X) satisfying

(a) φ(λ0) = x0,
(b) T (x, λ) = y0 in B̄ρ0(x0,X) × Bδ(λ0,Λ) if and only if x = φ(λ),
(c) ‖φ(λ) − x0‖ ≤ K

1−qΓ0(d(λ, λ0)) for all λ ∈ Bδ(λ0,Λ).

Proof The proof is similar to the one of [25, Thm. A.1]. ��
Theorem A.2 (Lipschitz inverse function theorem) Let x0 ∈ X and ρ > 0 be given. If
a mapping T : B̄ρ(x0,X) → Y is of the form T = A + G with
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(i) A ∈ GL(X,Y),
(ii) G : B̄ρ(x0,X) → Y is Lipschitz with Lipschitz constant l <

∥∥A−1
∥∥−1

,

then the following holds with σ ∈ (l, ∥∥A−1
∥∥−1]

:

(a) For all x, x̄ ∈ B̄ρ(x0,X) one has

(σ − l) ‖x − x̄‖ ≤ ‖T (x) − T (x̄)‖ ≤ (‖A‖ + l) ‖x − x̄‖ , (A.4)

(b) for all y ∈ B̄(σ−l)ρ(T (x0),Y) the equation T (x) = y has a unique solution
x∗(y) ∈ B̄ρ(x0,X),

(c) with G|Bρ(x0,X) also the function x∗ : B(σ−l)ρ(T (x0),Y) → X is of class Cm,
m ∈ N0.

Proof See [17, p. 224, (C.11)], with the smoothness assertion resulting from the
Uniform Contraction Principle [7, p. 25, Thm. 2.2]. ��
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