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Abstract
Wesay that�, the boundary of a boundedLipschitz domain, is locally dilation invariant
if, at each x ∈ �,� is either locallyC1 or locally coincides (in some coordinate system
centred at x) with a Lipschitz graph �x such that �x = αx�x , for some αx ∈ (0, 1).
In this paper we study, for such �, the essential spectrum of D� , the double-layer (or
Neumann–Poincaré) operator of potential theory, on L2(�). We show, via localisa-
tion and Floquet–Bloch-type arguments, that this essential spectrum is the union of the
spectra of related continuous families of operators Kt , for t ∈ [−π, π ]; moreover, each
Kt is compact if � is C1 except at finitely many points. For the 2D case where, addi-
tionally,� is piecewise analytic, we construct convergent sequences of approximations
to the essential spectrum of D�; each approximation is the union of the eigenvalues of
finitelymanyfinitematrices arising fromNyström-method approximations to the oper-
ators Kt . Through error estimateswith explicit constants, we also construct functionals
that determine whether any particular locally-dilation-invariant piecewise-analytic �
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636 S. N. Chandler-Wilde et al.

satisfies the well-known spectral radius conjecture, that the essential spectral radius of
D� on L2(�) is < 1/2 for all Lipschitz �. We illustrate this theory with examples; for
each we show that the essential spectral radius is < 1/2, providing additional support
for the conjecture. We also, via new results on the invariance of the essential spectral
radius under locally-conformal C1,β diffeomorphisms, show that the spectral radius
conjecture holds for all Lipschitz curvilinear polyhedra.

Mathematics Subject Classification 31A10 · 65R15 · 45P05 · 45E05 · 45L05

1 Introduction

Given a bounded Lipschitz domain1 �− ⊂ R
d , d ≥ 2, with boundary � and

outward-pointing unit normal vector n, the interior and exteriorDirichlet andNeumann
problems for Laplace’s equation (posed in �− and in �+ := R

d\�−, respectively),
can be reformulated as boundary integral equations involving the operators

D� ± 1
2 I and D′

� ± 1
2 I (1.1)

(see, e.g., [64], [46, Sects. 5.9, 5.15.1]), where the double-layer (or Neumann or
Neumann-Poincaré) operator D� and the adjoint double-layer operator D′

� are
defined by

D�φ(x) =
∫

�

∂	(x, y)

∂n(y)
φ(y) ds(y) and D′

�φ(x) =
∫

�

∂	(x, y)

∂n(x)
φ(y) ds(y),

(1.2)
for φ ∈ L2(�) and (almost all) x ∈ �, with the integrals understood, in general,
as Cauchy principal values. Here 	(x, y) is the fundamental solution for Laplace’s
equation, defined by2

	(x, y) := 1

2π
log

(
1

|x − y|
)

, d = 2, := 1

(d − 2)cd

1

|x − y|d−2 , d ≥ 3,

(1.3)
where cd is the surface measure of the unit sphere in R

d . Explicitly,

D�φ(x) = 1

cd

∫
�

(x − y) · n(y)

|x − y|d φ(y) ds(y) and

D′
�φ(x) = 1

cd

∫
�

(y − x) · n(x)

|x − y|d φ(y) ds(y), (1.4)

for φ ∈ L2(�) and (almost all) x ∈ �.
Complementing (1.1),

D′
� − λI , (1.5)

1 For us, as, e.g., in [47], “domain” will just mean “non-empty open set”; a domain need not be connected.
2 Our sign convention and normalisation are those of many authors (e.g. [41, 62]), but other authors (e.g.
[34]), use a fundamental solution that is the negative of ours.
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The double-layer operator on locally-dilation-invariant domains 637

with λ ∈ C\{− 1
2 ,

1
2 }, arises as the operator in the boundary integral equation reformu-

lation of transmission problems in electrostatics, where the Laplace equation �u = 0
holds in �− and �+ and the trace of u or its normal derivative jumps across � (see,
e.g., [46, Sect. 5.12]). In this context the case |λ| ≥ 1/2, especially with λ real, is clas-
sically of interest (e.g., [46, Sect. 5.12]); more recently the case where λ is complex
with |λ| < 1/2 has been studied intensively as a model of quasi-static electromagnetic
plasmonic problems (e.g., [1, 15, 27, 59]).

Motivated by these physical applications, and by questions in harmonic analysis,
there has been long-standing interest in the computation of the spectrum and essential
spectrum3 of D� as an operator on a variety of function spaces, especially for non-
smooth domains (e.g., [1, 12, 18, 27, 34, 38, 39, 48, 52, 53]). The largest part of this
literature is concerned specifically with the 2D/3D cases where � is a (curvilinear)
polygon (e.g., [10, 49, 50, 60, 61]) or polyhedron (e.g., [15, 16, 20, 26, 27, 48, 50, 56]).
In this paper we will study and compute the essential spectrum of D� as an operator
on L2(�) for a substantially larger class of boundaries, namely for the case where the
boundary � is locally dilation invariant in the sense of Definition 1.3 below. In 2D
(3D) this class includes polygons (polyhedra) but it also admits much wilder boundary
behaviour (e.g., Fig. 1) as we discuss next in Sect. 1.1.

1.1 The spectral radius conjecture and themain question we address

Given a bounded linear operator T : Y → Y on a Banach space Y , we define its
spectral radius, ρ(T ; Y ), and its essential spectral radius, ρess(T ; Y ), by

ρ(T ; Y ) := sup
λ∈σ(T ;Y )

|λ| and ρess(T ; Y ) := sup
λ∈σess(T ;Y )

|λ|, (1.6)

abbreviating ρ(T ; Y ) and ρess(T ; Y ) by ρ(T ) and ρess(T ), respectively, when the
space Y is clear from the context. The analysis and computation we will carry out are
motivated by the so-called spectral radius conjecture.

This conjecture, in the explicit 1994 formulation of Kenig [34], is as follows, where
L2
0(�) := {φ ∈ L2(�) : ∫

�
φ ds = 0}.

Conjecture 1.1 If � is the boundary of a bounded Lipschitz domain �− and is con-
nected, the spectral radius of D′

� on L2
0(�) is < 1

2 , i.e. ρ(D′
�; L2

0(�)) < 1
2 .

In Sect. 2 we will discuss the following alternative formulation of the conjecture
which makes sense regardless of the connectivity of �, and show its equivalence with
Conjecture 1.1.

Conjecture 1.2 If � is the boundary of a bounded Lipschitz domain �−, the essential
spectral radius of D� on L2(�) is < 1

2 , i.e. ρess(D�; L2(�)) < 1
2 .

3 Given a Banach space Y and a bounded linear operator T : Y → Y we denote the spectrum of T , the set
of λ ∈ C for which T − λI is not invertible, by σ(T ; Y ), and the essential spectrum, the set of λ for which
T − λT is not Fredholm, by σess(T ; Y ), abbreviating these by σ(T ) and σess(T ) where the Banach space
Y is clear from the context.
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638 S. N. Chandler-Wilde et al.

Fig. 1 Examples of bounded Lipschitz domains �− with boundaries � ∈ DA ⊂ D that are piecewise
analytic locally dilation invariant

The spectral radius conjecture is very well studied, owing to its intrinsic interest
in harmonic analysis, its possible relevance for computation,4 and its immediate role
within electrostatics, as well as in interpretations of electrodynamical problems [26]. It
originated in the setting of continuous functions in�−, dating all the way back to Neu-
mann in the late 1800s, who treated convex domains, and to Radon [55], who famously
analyzed curves of bounded rotation. In a tour de force, Král [38, 39] completely char-
acterizedwhen the essential norm of D� is< 1/2. This result was extended into higher
dimensions byBurago andMaz’ya [8] andNetuka [51]. For polyhedra in 3D, the essen-
tial norm can be > 1/2. Nevertheless, Rathsfeld [56] (and see [57]) and Grachev and
Maz’ya [20] independently proved the spectral radius conjecture in the continuous
setting holds for general polyhedra. These results were extended to locally conformal
deformations of polyhedra byMedková [45]. Even when specialised to the continuous
setting, the history is vast, and we refer to Wendland [65] for an in-depth survey.

As modern harmonic analysis developed, the natural setting for the double-layer
potential shifted toward L2(�). We make particular mention of the demonstrations of
L2-boundedness of the Cauchy integral due to Calderón [9] and Coifman, Mcintosh,
andMeyer [13], andVerchota’s [64] application of these results to study invertibility of
D′

� ± 1
2 I on L2(�) and L2

0(�)when� is connected. Since then, a flurry of activity and
findings in this area have provided support for Kenig’s conjecture, though a complete
proof has proved elusive.

Indeed, to the best of our knowledge, Conjecture 1.1 has been established (only)
in the following cases: (a) �− is convex [18] (and see [12] for extensions to locally
convex domains); (b) �− has small Lipschitz character5 [48], a case which includes
all C1 domains [19]; (c) ε-regular Semmes–Kenig–Toro domains �− for sufficiently
small ε > 0 [30], including in particular all domains whose gradient has vanishing
mean oscillation [28]; (d) �− is a polygon or curvilinear polygon in 2D [60, 61], or a
Lipschitz polyhedron in 3D [16].

Note that polygonal and polyhedral boundaries � are locally invariant under all
dilations: at every point x ∈ �, � locally coincides with a graph �x such that (in

4 Notably, if the spectral radius conjecture holds then theNeumann series for (D′
�± 1

2 I )φ = g, equivalently

the Neumann iteration ± 1
2φ(n) = g − D′

�φ(n−1), n ∈ N, converges in L2
0(�).

5 See, e.g., [11, Definition 3.1] for the definition of the Lipschitz character of a Lipschitz domain.
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The double-layer operator on locally-dilation-invariant domains 639

some local coordinate system centred at x) �x = α�x for all α > 0. In this paper we
will investigate domains where, locally, the dilation invariance �x = αx�x only holds
for one αx ∈ (0, 1) (in which case we say that � is locally dilation invariant at x).
Precisely our focus will be on the following class of boundaries.

Definition 1.3 (Locally dilation invariant) Given �, the boundary of a Lipschitz
domain �−, we say that � ∈ D , the set of locally-dilation-invariant boundaries
if, at every x ∈ �, � is either locally C1 or locally coincides (in some coordinate
system centred at x) with a Lipschitz graph �x which is dilation invariant with respect
to some αx ∈ (0, 1), i.e. �x = αx�x .

Note that, already in 2D, D is a hugely larger class of domains than that of the
curvilinear polygons. Indeed, for a Jordan curve � ⊂ R

2 and x ∈ �, let

v�(x) =
∫ 2π

0
|{x + reiθ ∈ � : r > 0}| dθ

2π
,

where |·| in this equation denotes the countingmeasure of a set. Then D�φ is uniformly
continuous on �− for every φ ∈ C(�) if and only if

sup
x∈�

v�(x) < ∞, (1.7)

see [7, 36, 37]. If � is Lipschitz and locally dilation invariant at x , then it is clear
that v�(x) = ∞, unless � coincides with two line segments around x . It follows that
the only curves � ∈ D satisfying (1.7) are curvilinear polygons. That is, except for
curvilinear polygons, our curves exhibit such wild boundary behaviour that it is not
possible to consider D� in the setting of continuous boundary data.

In the context of studying the double-layer and related operators, the class of
domainsD seems to have been first considered in [11], where the essential numerical
range6 of D� was studied and, in 2D and 3D, examples of boundaries� ∈ D with large
Lipschitz character were constructed such that D� : L2(�) → L2(�) has arbitrarily
large essential numerical radius,

wess(D�) := sup
z∈Wess(D�)

|z|,

and so also arbitrarily large essential norm,

‖D�‖ess := inf
Kcompact

‖D� − K‖,

since, for any bounded operator T on a Hilbert space [22, Sect. 1.3],

1
2‖T ‖ess ≤ wess(T ) ≤ ‖T ‖ess. (1.8)

6 Recall that, for a bounded linear operator T : H → H on a Hilbert space H , the numerical range of T is
W (T ) := {〈T φ, φ〉 : ‖φ‖ = 1} and its essential numerical range is Wess(T ) := ⋂

K compact W (T + K ).
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640 S. N. Chandler-Wilde et al.

The 2D examples in [11] (see, e.g., [11, Fig. 3] and cf. Fig. 1) with arbitrarily large
wess(D�) are necessarily examples for which (1.7) fails to hold, since for curvilinear
polygons on L2(�) it is well-known that

‖D�‖ess = wess(D�) = ρ(D�; L2(�)) < 1
2

(see [10, 49, 60, 61] for ‖D�‖ess and ρ(D�; L2(�)); equality for wess(D�) follows
by (1.8) and since Wess(D�) ⊃ σess(D�; L2(�)) [6]).

A natural question, prompted by the examples from Chandler-Wilde and Spence
[11]withwess(D�) arbitrarily large and the spectral radius conjecture, is the following:

Given that there exist� ∈ D withwess(D�)  1
2 , in particular such examples in

2D, is there a� ∈ D , in particular an example in 2D,with ρess(D�; L2(�)) ≥ 1
2 ?

Of course, a positive answer would provide a counterexample to Conjecture 1.2 and
hence to the original spectral radius conjecture, Conjecture 1.1. The aim of this paper
is to address this question, through mathematical analysis and computational methods
supported by numerical analysis error estimates where constants are made explicit.
Thesewill enable us to estimateρess(D�; L2(�)) for a large class of� ∈ D sufficiently
accurately to determine whether or not ρess(D�; L2(�)) ≥ 1

2 .

1.2 Our main results and their significance

The first step in our analysis is Theorem 5.2 in Sect. 5.1, the localisation result (cf.
[11, 15, 16, 48]) that, for � ∈ D (and for any dimension d ≥ 2), there exists a finite
set F ⊂ � such that

σess(D�; L2(�)) =
⋃
x∈F

σess(D�x ; L2(�x )). (1.9)

In the above formula �x is defined as above if � is locally dilation invariant at x , while
if � is locally C1 at x then �x is the graph of a C1 compactly supported function so
that [19] D�x is compact and σess(D�x ; L2(�x )) = {0}.

The localisation (1.9) reduces the computation of σess(D�; L2(�)) to that of
σess(D�x ; L2(�x )) for finitely many x for which αx�x = �x , for some αx ∈ (0, 1).
Computation of σess(D�x ; L2(�x )) for such x is our focus in Sect. 4 where we study
and compute spectral properties of D� in the case that � ⊂ R

d is a dilation invariant
Lipschitz graph, meaning that there exists an α ∈ (0, 1) such that α� = � (an exam-
ple is Fig. 3). If �0 ⊂ � \ {0} is a particular relatively closed and bounded Lipschitz
subgraph of � such that

� =
⋃
j∈Z

α j�0, (1.10)

and such that (α j�0)∩�0 has zero surface measure for j �= 0, we show that D� can be
written as a discrete �1 convolution operatorwhose entries are bounded linear operators
on L2(�0) related to the discretization (1.10) of �. This allows us to decompose D� ,
by a Floquet–Bloch transform, into a continuous family (Kt )t∈[−π,π ] of operators
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The double-layer operator on locally-dilation-invariant domains 641

Kt : L2(�0) → L2(�0), and, by standard results for such convolutions (see [54,
Theorem 2.3.25]), to characterise the essential spectrum of D� as (Theorem 4.4)

σess(D�; L2(�)) = σ(D�; L2(�)) =
⋃

t∈[−π,π ]
σ(Kt ; L2(�0)). (1.11)

This characterisation is particularly useful when, apart from a singularity at 0, �

is C1 (see, e.g., Fig. 3), for then (Corollary 4.6) each Kt is compact, and so has a
more easily computed discrete spectrum. The characterisation (1.11) holds for every
Lipschitz dilation invariant graph in any dimension; in Sect. 4.3 we specialise to the
2D case where �, except at 0, is the graph of a real analytic function (see, e.g., Fig. 3);
we denote by A this subset of the 2D dilation invariant graphs. We show, for each
t ∈ [−π, π ], that Kt is unitarily equivalent to K̃t , a 2× 2 matrix of integral operators
on L2(0, 1) that have real analytic kernels. Further, the range of each of these integral
operators is a space of 1-quasi-periodic real analytic functions. As a consequence,

σ(Kt ; L2(�0)) = σ(K̃t ; (C[0, 1])2),

and this latter spectrum can be computed by approximating K̃t by a 2N × 2N matrix
Ãt,N obtained by a simple midpoint-rule based Nyström discretization. As is well-
known (see [41, 63], Theorem 4.11), the midpoint rule is exponentially convergent for
periodic analytic functions, so that it follows fromNyström-method spectral estimates
for integral operators with continuous kernels [3] that, for each t , the eigenvalues of
At,N converge at an exponential rate to those of K̃t as N → ∞.

This leads (see Theorem 4.19) to a Nyström approximation, σ N (D�), for σ(D�) =
σess(D�), which is {0} plus the union of the eigenvalues of finitely many 2N × 2N
matrices. Our first main result is to show, as Theorem 4.19, that σ N (D�) → σ(D�)

in the Hausdorff metric as N → ∞; that this convergence is achievable is somewhat
surprising given that D� is neither compact nor self-adjoint. Our second, and more
substantial result (Theorem 4.21) is that we develop a fully discrete algorithm to
test whether, as an operator on L2(�), ρess(D�) < 1

2 . Precisely, we construct (see
Remark 4.22), for each c > 0, a nonlinear functional Sc : A × N × N × N → R

with the properties that: a) the functional can be computed in finitely many arithmetic
operations and finitely many evaluations of elementary functions, given finitely many
sampled values of f and its first and second derivatives for real arguments, plus bounds
on the analytic continuation of f to a neighbourhood of the real line that depends on
c; b) ρess(D�) < 1

2 if, for some c > 0 and m, M, N ∈ N, it holds that:

(i) ρ(AM
tk ,N ) < 1

2 , for k = 1, . . . , m, where tk := (k − 1/2)π/m and AM
tk ,N is a

specific approximation to Atk ,N depending on the parameter M ;
(ii) Sc(�, m, M, N ) < 0.

Conversely, if ρess(D�) < 1
2 , then, for all sufficiently small c > 0, (i) and (ii) hold for

all sufficiently large N , M, m ∈ N.
In Sect. 6 we bring these results together to address our question at the end of

Sect. 1.1. We restrict attention to the following 2D class of domains; this class
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642 S. N. Chandler-Wilde et al.

includes polygons and piecewise-analytic curvilinear polygons, but alsowilder bound-
ary behaviour as illustrated in Fig. 1.

Definition 1.4 (Piecewise analytic locally dilation invariant) In the case d = 2 we
say that � ∈ DA, the set of piecewise-analytic locally-dilation-invariant boundaries,
if � ∈ D and � is locally analytic (i.e., is locally the graph of a real-analytic function)
at all but finitely many x ∈ �.

Given � ∈ DA, if F ⊂ � is the finite set of points at which � is not locally analytic
and is locally dilation invariant, it is easy to see that �x ∈ A for x ∈ F and that (1.9)
holds for this set F . Thus (see Theorem 6.1)

�N (D�) :=
⋃
x∈F

σ N (D�x ) → σess(D�) (1.12)

in the Hausdorff metric as N → ∞, and note that �N (D�) is the union of the
eigenvalues of finitely many 2N × 2N matrices. Further, as we discuss in Sect. 6, it
follows that ρess(D�) < 1

2 if these eigenvalues lie within the disc of radius 1
2 , i.e. if

RN (D�) := max{|z| : z ∈ �N (D�)} < 1
2 , (1.13)

and if also, for some c > 0,

Sc(�, N ) := max
x∈F

Sc(�x , N , N , N ) < 0, (1.14)

whereSc(�, N ) can be computed in finitely many arithmetic operations plus finitely
many evaluations of elementary functions, given inputs describing each �x as dis-
cussed above. Conversely, if ρess(D�) < 1

2 then, for all sufficiently small c > 0
and all sufficiently large N , RN (D�) < 1

2 and Sc(�, N ) < 0. Thus, given inputs
describing �, our fully discrete algorithms enable us to test, for individual � ∈ DA,
the validity of Conjecture 1.2, i.e. whether or not ρess(D�) < 1

2 , through computa-
tion of the eigenvalues of finitely many finite matrices, plus finitely many additional
arithmetic operations.

In Sect. 5 we prove the localisation result (1.9). We also, in the spirit of Medková’s
study in the continuous setting [43, 45], consider the stability of Conjecture 1.2 under
locally conformal deformations. We prove that the spectral radius conjecture is inde-
pendent of such deformations, under the assumption that the absolute value of the
kernel of the double-layer potential also defines a bounded operator on L2(�). While
this additional hypothesis may fail to include the wildest of boundaries, it applies to
many domains from D . For example, as we discuss in Sect. 5.2, it is satisfied by any
dilation invariant Lipschitz graph � whose generating set �0 is polygonal or poly-
hedral, in particular it holds if � is a polyhedron and, in 2D, if � ∈ DA. As one
consequence (Corollary 5.7), Conjecture 1.2 holds for Lipschitz curvilinear polyhe-
dra, because [16] it holds for polyhedra; as another (Corollary 5.11), if it holds for
� ∈ DA, then it holds for any locally conformal deformation of �.
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The double-layer operator on locally-dilation-invariant domains 643

To illustrate the above results, and use them to test Conjecture 1.2 and address our
main question from Sect. 1.1, we include a range of numerical examples in Sect. 6,
for piecewise-analytic Lipschitz graphs � ∈ A, and for piecewise-analytic locally-
dilation-invariant � ∈ DA that are the boundaries of bounded Lipschitz domains.
For each example we plot an approximation (σ N (D�) or �N (D�), as appropriate) to
σess(D�). Moreover, we employ the algorithms described above to provide convincing
numerical evidence that ρess(D�; L2(�)) < 1

2 in every case we examine, including
cases wherewess(D�) is significantly> 1

2 . These results are evidence that the spectral
radius conjecture holds for the class of 2D domainsDA; we emphasise again that this
conjecture has not been studied previously for boundaries in this class, except for the
special case of curvilinear polygons.

Let us briefly summarise the remainder of the paper. In Sect. 2 we prove the equiv-
alence of Conjectures 1.1 and 1.2. In Sect. 3, as a key step to our main results, we
derive bounds for the spectral radii of general compact operators in Sect. 3.1 (e.g.,
Corollary 3.5), specialising to the case of integral operators approximated by the Nys-
tröm method in Sect. 3.2 (e.g., Theorem 3.8). In Sect. 4 we prove the results noted
above on the essential spectrum and essential spectral radius of D� in the case when
� is a dilation-invariant Lipschitz graph, with particular focus (Sects. 4.2–4.4) on the
2D piecewise-analytic case. In Sect. 5 we prove our localisation results. In Sect. 6 we
bring the earlier results together, in particular to study the spectral radius conjecture
for � ∈ DA, and we illustrate our theory by numerical examples.

2 Formulations of the spectral radius conjecture

Our results are related to the spectral radius conjecture of Kenig [34, Problem 3.2.12],
that ρ(D′

�; L2
0(�)) < 1

2 if � is the boundary of a bounded Lipschitz domain. Conjec-
ture 1.1, stated in the introduction, is a version of this conjecture that avoids difficulties
when � is not connected7. In this section we show the equivalence between Conjec-
ture 1.1 and Conjecture 1.2, also stated in the introduction. Conjecture 1.2 concerns
the essential spectrum rather than the spectrum and makes sense whatever the con-
nectedness of �, �−, and �+.

Of course, because D′
� is the adjoint of D� (as an operator on L2(�)), and so

shares the same essential spectrum, a statement equivalent to Conjecture 1.2 is that
ρess(D′

�; L2(�)) < 1
2 . Further, as bounded Lipschitz domains have only finitely many

boundary components, it is clear that Conjecture 1.2 is true if it is true whenever � is
connected.8 Thus the equivalence of Conjectures 1.1 and 1.2, i.e. that Conjecture 1.1
holds (as claimed, whenever � is connected) if and only if Conjecture 1.2 holds (as
claimed, whatever the topology of �), is implied by the following lemma.

7 By results of Mitrea [47, Theorem 4.1] if �− or �+ are not connected, { 12 ,− 1
2 } ∩ σ(D′

�; L2
0(�)) �= ∅.

Indeed, D′
� ± 1

2 I are Fredholm of index zero on L2(�) by part (2) of [47, Theorem 4.1], but by (4) of the

same theorem, and since D�(1) = − 1
2 so that D′

�(L2
0(�)) ⊂ L2

0(�) [see (2.1) below], the codimension

of D′
� − 1

2 I on L2
0(�) is ≥ 1 if �+ is not connected; that of D′

� + 1
2 I is ≥ 1 if �− is not connected.

8 Note that if �1 and �2 are separate components of �, so that there is a positive distance between �1 and
�2, the double-layer operator from L2(�1) to L2(�2) has a kernel that is bounded, so is a Hilbert-Schmidt
operator and hence compact.
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Lemma 2.1 Assume that � is the boundary of a bounded Lipschitz domain �− and is
connected. Then ρ(D′

�; L2
0(�)) < 1

2 if and only if ρess(D′
�; L2(�)) < 1

2 .

The main step in the proof of this lemma is the following theorem stated in [18].9

As noted in [18], the proof of this result is that in Kellogg’s classical book for the
case of smooth boundaries (see [33, Chapter IX, Sect. 11]), which carries over to the
Lipschitz case.

Theorem 2.2 [Theorem 1.1 in [18]] If � is the boundary of a bounded Lipschitz
domain �−, the eigenvalues of D′

� , as an operator on L2(�), are real and lie in
[− 1

2 ,
1
2 ].

Proof of Lemma 2.1 Let φ ∈ L2(�) and let 〈·, ·〉 denote the inner product on L2(�).
We first observe that, since D�(1) = − 1

2 , we have

〈D′
�φ, 1〉 = 〈φ, D�(1)〉 = − 1

2 〈φ, 1〉, (2.1)

so D′
�(L2

0(�)) ⊆ L2
0(�).

Now assume that λ ∈ C and D′
� − λI is invertible as an operator on L2

0(�). Let
P be orthogonal projection from L2(�) onto the constants, so that Q := I − P is
projection onto L2

0(�). Then (D′
� − λ)Q + P is invertible as an operator on L2(�).

It follows that

D′
� − λI = ((D′

� − λ)Q + P) + ((D′
� − λ)P − P) (2.2)

is Fredholm as an operator on L2(�). This implies that σess(D′
�; L2(�)) ⊂

σ(D′
�; L2

0(�)), which settles one direction.
Conversely, assume that ρess(D′

�; L2(�)) < 1
2 . Let λ ∈ C with |λ| ≥ 1

2 . Then
D′

� −λI is Fredholm of index 0 on L2(�), so [see (2.2)] (D′
� −λ)Q + P is Fredholm

of index zero on L2(�), so that D′
� − λI is Fredholm of index zero on L2

0(�). Thus
λ ∈ σ(D′

�; L2
0(�)) if and only if λ is an eigenvalue of D′

� . Hence, if λ /∈ [− 1
2 ,

1
2 ],

D′
� − λI is invertible on both L2(�) and L2

0(�) by Theorem 2.2 (as L2
0(�) ⊆ L2(�),

every eigenvalue on L2
0(�) is also an eigenvalue on L2(�)). But also, if λ = ± 1

2 , since
� is connected, Verchota’s results [64] show that D′

� ± 1
2 I is invertible on L2

0(�). Thus
D′

� − λI is invertible on L2
0(�) for |λ| ≥ 1

2 , so that, since the spectrum is closed,
ρ(D′

�; L2
0(�)) < 1

2 .

3 Approximation of the spectral radius for compact operators

In this section we recall in Sect. 3.1 results from operator approximation theory in
Banach spaces related to the spectra of compact operators, and derive what appear to

9 In [18, Theorem 1.1] slightly more is claimed, that the eigenvalues of D′
� lie in [− 1

2 , 1
2 ). This is more

than is claimed in [33, Chapter IX, Sect. 11], and in fact 12 is an eigenvalue if �+ is not connected; see [47,
Theorem 4.1].
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be new general criteria for ρ(T ) < ρ0 when T is compact and ρ0 > 0 (Lemma 3.2,
Corollary 3.5). This leads, in Sect. 3.2, to results relating to the approximation of
integral operators with continuous kernels by the Nyström method that will be key for
the arguments in Sect. 4.2 and Sect. 4.3. Notably, Theorem 3.8 provides criteria for
ρ(T ) < ρ0 when T is an integral operator with a continuous kernel that requires the
computation only of the spectral radius of a finite matrix plus the norms of finitely
many finite matrix resolvents.

3.1 Operator approximation results

We recall first two standard results on the approximation of operators in L(Y ), the
space of bounded linear operators on a Banach space Y . The first is the basic per-
turbation estimate that, if S, T ∈ L(Y ) and S is invertible, then T is invertible if
‖S − T ‖ ∥∥S−1

∥∥ < 1, with

∥∥∥T −1
∥∥∥−1 ≥

∥∥∥S−1
∥∥∥−1 − ‖S − T ‖ . (3.1)

If S ∈ L(Y ) is invertible, then ‖S−1‖−1 = inf‖φ‖=1 ‖Sφ‖, this sometimes called the
lower norm of S (see, e.g., [42, Lemma 2.35]). The second estimate is as follows:

Lemma 3.1 (Theorem 4.7.7 of [23]) Let Y be a Banach space, S ∈ L(Y ) and λ /∈
σ(S) ∪ {0}. If T ∈ L(Y ) is a compact operator that satisfies

‖(T − S)T ‖ < |λ|
∥∥∥(S − λI )−1

∥∥∥−1
,

then T − λI is invertible.

The following result is a consequence of the above estimates and the maximum
principle applied to the resolvent. Here T = {z : |z| = 1} is the unit circle in the
complex plane, so that ρ0T is the circle of radius ρ0.

Lemma 3.2 Let Y be a Banach space, S, Ŝ, T ∈ L(Y ), ρ0 > 0, F ⊂ ρ0T, and suppose
that: T is compact; ρ(Ŝ) < ρ0; for every λ ∈ ρ0T there exists μ ∈ F such that

‖(T − S)T ‖ < ρ0

(∥∥∥(Ŝ − μI )−1
∥∥∥−1 − ∥∥S − Ŝ

∥∥− |λ − μ|
)

. (3.2)

Then ρ(T ) < ρ0.

The idea is to choose F to be a finite set,10 S a finite rank approximation to T , and Ŝ a
numerical approximation to S, in which case one can show ρ(T ) < ρ0 by computing
ρ(Ŝ) and ‖(Ŝ − μI )−1‖ for finitely many μ. Taking F = ρ0Tn , where Tn is the nth
roots of unity, we obtain:

10 We will also apply this lemma later in the case that F = ρ0T, when (3.2) reduces to the condition that,
for every λ ∈ ρ0T, ‖(T − S)T ‖ < ρ0(‖(Ŝ − λI )−1‖−1 − ‖S − Ŝ‖).
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Corollary 3.3 Let Y be a Banach space, S, Ŝ, T ∈ L(Y ), ρ0 > 0, n ∈ N, and suppose
that T is compact, ρ(Ŝ) < ρ0, and

‖(T − S)T ‖ < ρ0

(
‖(Ŝ − μI )−1‖−1 − ‖S − Ŝ‖ − 2ρ0 sin

( π

2n

))
, μ ∈ ρ0Tn .

(3.3)
Then ρ(T ) < ρ0.

Proof of Lemma 3.2 Suppose that the conditions of the lemma are satisfied. Then
ρ(Ŝ) < ρ0 and, for every λ ∈ ρ0T, there exists μ ∈ F such that (3.2) holds. It
follows from (3.1) that

‖(T − S)T ‖ < ρ0

(
‖(Ŝ − λI )−1‖−1 − ‖S − Ŝ‖

)
, λ ∈ ρ0T. (3.4)

The resolvent map λ �→ (Ŝ − λI )−1 is analytic on |λ| > ρ(Ŝ), which set contains all
λ with |λ| ≥ ρ0. Thus, by the maximum principle, ‖(Ŝ −λI )−1‖ attains its maximum
in |λ| ≥ ρ0 on ρ0T. Thus (3.4) in fact holds for all λ with |λ| ≥ ρ0, so that S − λI is
invertible for all such λ and, by (3.1),

‖(T − S)T ‖ < ρ0

∥∥∥(S − λI )−1
∥∥∥−1

, if |λ| ≥ ρ0. (3.5)

Since T is compact, the result follows from Lemma 3.1.

When Lemma 3.2 is used for computation with F finite, it is desirable to minimise
the cardinality of F since ‖(Ŝ −μI )−1‖ has to be computed for everyμ ∈ F . One can
choose F = ρ0Tn , with points uniformly distributed on ρ0T, as in Corollary 3.3, but n
needs to be at least large enough so that ‖(Ŝ−μI )−1‖−1 > 2ρ0 sin(π/(2n)), for every
μ ∈ F . In many applications, including in Sects. 4.2 and 4.3, ‖(Ŝ − μI )−1‖ varies
significantly as μ moves around ρ0T and it is more efficient to vary the spacing of the
points in F approximately in proportion to ‖(Ŝ − μI )−1‖−1. The adaptive algorithm
described in the following lemma, which we will see implemented in Fig. 4b below,
approximately achieves this.

Lemma 3.4 Let Y be a Banach space, Ŝ ∈ L(Y ), and ρ0 > 0. Suppose that ρ(Ŝ) < ρ0,
and recursively define μ�, for � ∈ N, by μ1 := ρ0, and by

ν� :=
∥∥∥(Ŝ − μ� I )−1

∥∥∥−1
and μ�+1 := μ�e

i
ν�
2ρ0 , for � ∈ N. (3.6)

Further, set n∗ ∈ N to be the smallest integer such that
∑n∗

�=1 ν� ≥ 4πρ0, and set
F := {μ1, μ2, . . . , μn∗+1}. Then, for every λ ∈ ρ0T there exists μ ∈ F such that

∥∥∥(Ŝ − λI )−1
∥∥∥−1 ≥

∥∥∥(Ŝ − μI )−1
∥∥∥−1 − |λ − μ| ≥ R∗ := min

�=1,...,n∗

(ν�

4
+ ν�+1

2

)
.

(3.7)
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Proof Arguing as in the proof of Lemma 3.2, ‖(Ŝ − λI )−1‖−1 is bounded below
by some c > 0 on ρ0T, so that n∗ is well-defined with n∗ < 1 + 4πρ0/c. For
� = 1, . . . , n∗ +1, μ� = ρ0eiθ� , with θ1 = 0, θn∗+1 ≥ 2π , and θ�+1 − θ� = ν�/(2ρ0).
Thus, if λ ∈ ρ0T, then

λ = μ� exp(isν�/(2ρ0)) = μ�+1 exp(i(s − 1)ν�/(2ρ0)),

for some � ∈ {1, . . . , n∗} and some s ∈ [0, 1]. Since |eit − 1| = | ∫ t
0 eiu du| ≤ |t |, for

t ∈ R, it follows, using (3.1), that

‖(Ŝ − λI )−1‖−1 ≥ ν� − |λ − μ�| ≥ ν� − s

2
ν� =

(
1 − s

2

)
ν� and

‖(Ŝ − λI )−1‖−1 ≥ ν�+1 − |λ − μ�+1| ≥ ν�+1 − 1 − s

2
ν�.

In particular, ν�+1 ≥ ν�/2 and ν� ≥ ν�+1−ν�/2, so that s∗ := 3/2−ν�+1/ν� ∈ [0, 1].
But, for 0 ≤ s ≤ s∗, (1 − s/2)ν� ≥ (1 − s∗/2)ν� = ν�/4 + ν�+1/2, while, for
s∗ ≤ s ≤ 1, ν�+1 − (1 − s)ν�/2 ≥ ν�+1 − (1 − s∗)ν�/2 = ν�/4 + ν�+1/2, and the
bound (3.7) follows.

The following corollary is immediate from the above lemma and Lemma 3.2.

Corollary 3.5 Let Y be a Banach space, S, Ŝ, T ∈ L(Y ), ρ0 > 0, and suppose that T
is compact, ρ(Ŝ) < ρ0, and

‖(T − S)T ‖ < ρ0
(
R∗ − ‖S − Ŝ‖) , (3.8)

where R∗ is as defined in Lemma 3.4. Then ρ(T ) < ρ0.

We will apply the above results in the case when S = TN , where (TN )N∈N is
a collectively compact11 sequence of operators converging strongly to T (we write
TN → T for strong convergence). A standard, simple but important result (e.g., [2,
Cor. 1.9], [41, Theorem 10.10]) is that

(TN )N∈N collectively compact, TN → T ⇒ ‖(T − TN )T ‖ → 0. (3.9)

Aconsequence of (3.9) is Theorem3.6 below,which follows from [2, Theorem4.8] and
[2, Theorem 4.16] (or see [3]). This gives conditions on operators TN and T that ensure
convergence of σ(TN ) to σ(T ) in the standard Hausdorff metric dH (·, ·) (see, e.g., [24,
Sect. 3.1.2]) on the setCC of compact subsets ofC. Given a sequence (AN )N∈N ⊂ C

C

and A ∈ C
C we will write AN

H→ A if dH (A, B) → 0, i.e. if AN converges to A in the
Hausdorff metric. We recall (e.g., [24, Proposition 3.6]) that AN

H→ A if and only if
(AN )N∈N is uniformly bounded and lim inf AN = lim sup AN = A, where lim inf AN

is the set of limits of sequences (zN ) such that zN ∈ AN for each N , while lim sup AN

is the set of partial limits of such sequences.

11 Recall, e.g., [2], [41, Sect. 10.3] that a set S ⊂ L(Y ) is said to be collectively compact if {T φ : T ∈
S, φ ∈ Y , ‖φ‖ ≤ 1} is relatively compact.
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Theorem 3.6 [2] Let Y be a Banach space and T ∈ L(Y ) a compact operator. Further,
assume that (TN )N∈N ⊂ L(Y ) is collectively compact and converging strongly to T .
Then σ(TN )

H→σ(T ).

3.2 The Nyströmmethod

In this section, with a view to applications in Sects. 4.2 and 4.3, we apply the results
of Sect. 3.1 to the case where Y = C(X), for some compact X ⊂ R

d−1, and where
the operators are integral operators that we approximate by the Nyström method. So
suppose d ≥ 2, let X ⊂ R

d−1 be a compact set of positive ((d − 1)-dimensional)
Lebesgue measure, and K ∈ L(C(X)) an integral operator with continuous kernel
K (·, ·), so that K is compact. Thus, for φ ∈ C(X) and x ∈ X ,

Kφ(x) =
∫

X
K (x, y)φ(y) dy = J (K (x, ·)φ), where

J (ψ) :=
∫

X
ψ(y) dy, for ψ ∈ C(X). (3.10)

In the Nyström method we approximate K by replacing the integration functional
J : C(X) → C by a sequence of numerical quadrature rules. For each N ∈ N we
choose points xq,N ∈ X and weights12 ωq,N ≥ 0, for q = 1, . . . , N , and define
JN : C(X) → C by

JN (ψ) :=
N∑

q=1

ωq,N ψ(xq,N ), ψ ∈ C(X), (3.11)

and a Nyström approximation KN ∈ L(C(X)) to K by

KN φ(x) := JN (K (x, ·)φ)) =
N∑

q=1

ωq,N K (x, xq,N )φ(xq,N ), x ∈ X , φ ∈ C(X).

(3.12)
Wewill assume that the sequence of quadrature rules is convergent, by which wemean
that

JN → J , i.e. JN ψ → Jψ, for all ψ ∈ C(X). (3.13)

This implies (e.g., [2, Proposition 2.1, 2.2]) that KN → K and that the sequence
(KN )N∈N ⊂ L(C(X)) is collectively compact, so that (3.9) holds and Theorem 3.6 is
applicable. We will also assume that, for each N , JN φ = Jφ if φ ∈ C(X) is constant,
i.e. that

N∑
q=1

ωq,N = |X |, (3.14)

12 We assume, for simplicity, that the weights ωq,N are positive, but the theory below applies, with minor
changes, to the case of general real or complex weights.
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The double-layer operator on locally-dilation-invariant domains 649

where |X | denotes the Lebesgue measure of X .
Define K̂N : CN → C(X) by

K̂N v(x) :=
N∑

q=1

ωq,N K (x, xq,N )vq ,

for x ∈ X and v = (v1, ..., vN ) ∈ C
N . Moreover, let PN : C(X) → C

N be defined
by PN φ(q) := φ(xq,N ), for q = 1, ..., N , φ ∈ C(X), and define AN : CN → C

N by
AN := PN K̂N , so that the matrix entries of AN are given by

AN (p, q) = ωq,N K (x p,N , xq,N ), p, q = 1, . . . , N . (3.15)

In the following we will use ‖ · ‖∞ to denote all of: i) the standard supremum norm
on C(X); ii) the standard infinity norm on C

N ; iii) the induced operator norm of an
operator on C(X); iv) the infinity norm of a square matrix.

Lemma 3.7 The following inequalities and equalities hold for all N ∈ N:

(i)

max
1≤p≤N

N∑
q=1

ωq,N |K (x p,N , xq,N )| = ‖AN ‖∞ ≤ ‖KN ‖∞

= max
x∈X

N∑
q=1

ωq,N |K (x, xq,N )|;

(ii) σ(KN ) = {0} ∪ σ(AN );
(iii) for λ ∈ C \ σ(KN ),

max
(
|λ|−1,

∥∥∥(AN − λI )−1
∥∥∥∞

)
≤
∥∥∥(KN − λI )−1

∥∥∥∞
≤ |λ|−1

(
1 + ‖KN ‖∞

∥∥∥(AN − λI )−1
∥∥∥∞

)
.

Proof The first equality in (i) is the standard explicit formula for the infinity norm
of a matrix. The last equality is proved similarly, and then (i) is clear (or see [23,
Lemma 4.7.17]). That the spectra of KN and AN coincide on C \ {0} is standard
(e.g., [23, Lemma 4.7.18]), and 0 ∈ σ(KN ) since KN is compact and C(X) is infinite-
dimensional, so (ii) holds. Part (iii) is a combination of Hackbusch [23, Lemma 4.7.18]
and Anselone [2, Proposition 2.3], plus the facts that 0 ∈ σ(KN ) and (e.g., [14,
Th. 1.2.10]) ‖(KN − λI )−1‖ ≥ (dist(λ, σ (KN )))−1.

Note that, by Lemma 3.7(i) and (3.14),

‖AN ‖∞ ≤ ‖KN ‖∞ ≤ Kmax|X |, where Kmax := max
x,y∈X

|K (x, y)|. (3.16)
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Commonly, for computational efficiency or otherwise, and this is the case in
Sects. 4.2 and 4.3, we approximate K (·, ·) by another continuous kernel K †(·, ·) in
(3.12) and (3.15). Let K †

N ∈ L(C(X)) denote the operator defined by the right hand

side of (3.12) with K replaced by K †, and similarly A†
N denote the matrix (3.15) with

K replaced by K †. Lemma 3.7(i) and (3.14) imply that

‖AN −A†
N ‖∞ ≤ ‖KN −K †

N ‖∞ ≤ e†|X |, where e† := max
x,y∈X

|K (x, y)−K †(x, y)|.
(3.17)

The following theorem (cf. Corollary 3.5) follows in large part from Lemmas 3.2, 3.4,
and 3.7.

Theorem 3.8 Suppose that ρ0 > 0, N ∈ N, and ρ(A†
N ) < ρ0, and recursively define

μ�, for � ∈ N, by μ1 := ρ0, and by

ν� :=
∥∥∥(A†

N − μ� I )−1
∥∥∥−1

∞ and μ�+1 := μ�e
i

ν�
2ρ0 , for � ∈ N. (3.18)

Further, let nN ∈ N be the smallest integer such that
∑nN

�=1 ν� ≥ 4πρ0, and let

RN := min
�=1,...,nN

(ν�

4
+ ν�+1

2

)
. (3.19)

If

‖(K − KN )K‖∞ < ρ0

(
ρ0

(
1 + ‖K †

N ‖∞ R−1
N

)−1 − ‖KN − K †
N ‖∞

)
, (3.20)

or ‖AN − A†
N ‖∞ < RN and

‖(K − KN )K‖∞ < ρ2
0

(
1 + ‖KN ‖∞(RN − ‖AN − A†

N ‖∞)−1
)−1

, (3.21)

then ρ(K ) < ρ0. Conversely, if ρ(K ) < ρ0, provided e† defined by (3.17) is sufficiently
small, (3.20), (3.21), and ρ(A†

N ) < ρ0 hold for all sufficiently large N.

Proof If ρ0 > 0 and ρ(A†
N ) < ρ0 then, by Lemma 3.4, ‖(A†

N − λI )−1‖∞ ≤ R−1
N for

λ ∈ ρ0T, so that ‖(K †
N −λI )−1‖∞ ≤ r−1

0 (1+‖K †
N ‖∞ R−1

N ), by Lemma 3.7(iii). Thus
ρ(K ) < ρ0 if (3.20) holds, by Lemma 3.2 applied with Y = C(X), T = K , S = KN ,
Ŝ = K †

N , and F = ρ0T. Further, for λ ∈ ρ0T, the first of the above bounds and (3.1)

implies that RN − ‖AN − A†
N ‖∞ ≤ ‖(AN − λI )−1‖−1∞ , so that, by Lemma 3.7(iii),

‖(KN − λI )−1‖∞ ≤ r−1
0 (1 + ‖KN ‖∞(RN − ‖AN − A†

N ‖∞)−1). Thus ρ(K ) < ρ0

if (3.21) holds, by Lemma 3.2 applied with Y = C(X), T = K , Ŝ = S = KN , and
F = ρ0T.

To see the converse, note that, by Theorem 3.6, σ(KN )
H→σ(K ). Indeed [2, The-

orem 4.7], there exists N0 ∈ N such that ‖(KN − λI )−1‖∞ is bounded uniformly in
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λ and N for N ≥ N0 and |λ| ≥ ρ0, which implies, by (3.1) and (3.17), that the same
holds for ‖(K †

N −λI )−1‖∞ if e† is sufficiently small. This implies, by Lemma 3.7(iii),

that the same holds for ‖(A†
N − λI )−1‖∞. Noting Lemma 3.7(ii), it follows that there

exists c > 0 such that, for all sufficiently large N , ρ(A†
N ) = ρ(K †

N ) < ρ0 and RN ≥ c.
Thus, and applying (3.16) and (3.17), we see that, for some c∗ > 0, the right hand
sides of (3.20) and (3.21) are≥ c∗ for all sufficiently large N if e† is sufficiently small.
But also ‖(K − KN )K‖ → 0 by (3.9), so that (3.20) holds for all sufficiently large
N .

Remark 3.9 (Computational cost as N increases) The argument in the above proof
makes clear that, if ρ(K ) < ρ0 and e† is sufficiently small, then, for some N0 ∈ N,
‖(A†

N −λI )−1‖∞ is bounded uniformly in λ and N for λ ∈ ρ0T and N ≥ N0. This in
turn implies that, for some nmax ∈ N, nN ≤ nmax for N ≥ N0. Thus the computational
cost of evaluation of RN given by (3.19) is O(N 3), the cost of inverting nN ≤ nmax
order N matrices by classical direct methods.

Remark 3.10 (Comparison of (3.20) and (3.21)) Let RHS1 and RHS2 denote the
right hand sides of (3.20) and (3.21), respectively. If K †

N = KN (so A†
N = AN ),

then RHS2 = RHS1. If K †
N �= KN with ‖AN − A†

N ‖∞ < RN , then, where D :=
ρ−2
0 (RN + ‖KN ‖∞ − ‖AN − A†

N ‖∞)(RHS2 − RHS1),

D = ρ−1
0 ‖KN − K †

N ‖∞(‖KN ‖∞ − ρ0 + RN − ‖AN − A†
N ‖∞)

+ ‖K †
N ‖∞(‖KN − K †

N ‖∞ − ‖AN − A†
N ‖∞) + RN (‖KN − K †

N ‖∞ + ‖K †
N ‖∞ − ‖KN ‖∞)

RN + ‖K †
N ‖∞

,

so that RHS2 −RHS1 > ρ0‖KN − K †
N ‖∞(‖KN ‖∞ − ρ0)/(RN + ‖KN ‖∞ − ‖AN −

A†
N ‖∞), recalling (3.17). Thus (3.20) implies (3.21) if ‖AN − A†

N ‖∞ < RN and
ρ0 ≤ ‖KN ‖∞. Note that [2, Theorem 2.13] ‖KN ‖∞ → ‖K‖ as N → ∞ and it is
ρ0 < ‖K‖∞ for which Theorem 3.8 is arguably of most interest, as ρ(K ) ≤ ‖K‖∞,
and we may be able to estimate ‖K‖∞ sharply by other methods.

Remark 3.11 (The matrix case) In Sect. 4.3 we will apply the above results, in particu-
lar Theorem 3.8, in a case where K is a 2×2matrix of integral operators onC(X)with
continuous kernels, and KN is its Nyström method approximation defined by approx-
imating each integral operator in the 2×2 matrix as in (3.12). The matrix AN is then a
2N ×2N matrix consisting of four N ×N blocks each defined as in (3.15). Parts (ii) and
(iii) of Lemma 3.7 apply in this case, as does (i) in a straightforwardly modified form,
in particular we still have that ‖AN ‖∞ ≤ ‖KN ‖∞. (Here ‖AN ‖∞ is the usual infinity
norm of the matrix AN and ‖KN ‖∞ is the norm of KN as an operator on (C(X))2,
which we equip with the norm defined by ‖(φ1, φ2)‖∞ := max{‖φ1‖∞, ‖φ2‖∞}, for
(φ1, φ2) ∈ C(X)2). Thus Theorem 3.8, which depends on Lemma 3.7(ii) and (iii) and
the general Banach space results of Sect. 3.1, still applies. One way to see the validity
of Lemma 3.7(ii) and (iii) in this matrix case is to argue as follows. Choose x∗ ∈ R

d−1

such that X ′ := X + x∗ does not intersect X . K is equivalent, through an obvious
isometric isomorphism, to a matrix operator K ′ on C(X) × C(X ′), which is in turn
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equivalent, through another obvious isometric isomorphism, to a single integral opera-
tor K̃ on C(X ∪ X ′). Lemma 3.7 applies to K̃ and its Nyströmmethod approximation,
so that (ii) and (iii) of this lemma [and (i) in modified form] apply to K .

4 The double-layer operator on dilation invariant graphs

Let A ⊆ R
d−1 be an open cone, f : A → R a Lipschitz continuous function, and

consider the graph � = {(x, f (x)) : x ∈ A} ⊂ R
d in the case that α� = �, for some

α ∈ (0, 1); that is, in the case that

f (αx) = α f (x), x ∈ A. (4.1)

We will term such graphs dilation invariant.
In this section, the largest of the paper, we study the spectrum and essential spec-

trum of the double-layer (DL) operator D� : L2(�) → L2(�) given by (1.2) on
such graphs. (The case A = R

d−1 is of particular interest for later applications.)
In Sect. 4.1 we show, for general dimension d ≥ 2, that (as operators on L2(�))
σ(D�) = σess(D�) (and, similarly, that W (D�) = Wess(D�)) and, by Floquet–Bloch-
transform arguments, that σ(D�) is the union of the spectra of a family of operators
Kt : L2(�0) → L2(�0), for t ∈ [−π, π ], where �0 is a particular relatively closed
and bounded subset of �. Moreover, helpful for the later computation of σ(Kt ), each
Kt is compact, and so has a discrete spectrum, if f ∈ C1(A \ {0}) (Corollary 4.6).

In the remaining subsections, Sects. 4.2–4.4, we focus on the 2D case, considering
the Nyström approximation of spectral properties of Kt , combining the general results
of Sect. 3.2 with explicit estimates for the particular operators Kt . The case A = R,
with f real-analytic on R \ {0}, is treated in Sect. 4.3. It is this case that is relevant,
via, e.g., (1.12), to the computation of σ(D�) and the spectral radius conjecture when
� is the boundary of a bounded Lipschitz domain. But this case is rather complex;
the operator Kt is studied by reducing it to a 2 × 2 operator matrix, corresponding to
the split of R \ {0} into the two half-axes (−∞, 0) and (0,∞). To get the main ideas
across, and prove many of the results we need in a simpler setting, we first study, in
Sect. 4.2, the easier case A = (0,∞) with f real-analytic. Sections4.2 and 4.3 are
concerned with computation of the spectrum and spectral radius of D� . In Sect. 4.4,
related to the question at the end of Sect. 1.1, we also compute lower bounds for
Wess(D�), under the same assumptions on � as in Sects. 4.2 and 4.3.

4.1 Floquet–Bloch transform results

Let Vα : L2(�) → L2(�) be dilation by α, that is,

Vαφ(x) = α(d−1)/2φ(αx), x ∈ �. (4.2)

Vα is unitary and commutes with D�: noting that n(y) = n(αy), for y ∈ �, we see
that, for all φ ∈ L2(�) and almost every x ∈ �,
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D�Vαφ(x) = 1

cd

∫
�

(x − y) · n(y)

|x − y|d α(d−1)/2φ(αy) ds(y)

= α(d−1)/2

cd

∫
�

(x − α−1y) · n(α−1y)

|x − α−1y|d φ(y) α−(d−1)ds(y)

= α(d−1)/2

cd

∫
�

(αx − y) · n(y)

|αx − y|d φ(y) ds(y)

= Vα D�φ(x).

This already implies that the spectrum and the essential spectrum of D� coincide,
as implied by the following simple proposition (cf. [11, Lemma 2.7]).

Proposition 4.1 Let H be a Hilbert space and T ∈ L(H). If T commutes with a
sequence of unitary operators (U j ) j∈N that converges weakly to 0, then σ(T ) =
σess(T ).

Proof Assume there exists φ ∈ H \{0} such that T φ = 0. As T andU j commute, also
T U jφ = 0 for all j ∈ N. In particular,

{
U jφ : j ∈ N

} ⊆ ker(T ). As the operators
U j are unitary and U j → 0 weakly, the sequence (U jφ) j∈N cannot have a conver-
gent subsequence. Hence, ker(T ) is either trivial or infinite-dimensional. Similarly,
ker(T ′) is either trivial or infinite-dimensional. Thus, if T is Fredholm, it is invertible.
Considering T − λI instead of T yields the result.

Corollary 4.2 Let � ⊂ R
d be a dilation invariant graph. Then σ(D�) = σess(D�),

W (D�) = Wess(D�), and ‖D�‖ess = ‖D�‖.

Proof Assume that φ,ψ ∈ L2(�) have compact support and 0 /∈ suppφ ∪ suppψ .
Then

〈
V j

α φ,ψ
〉
=
∫

�

α j(d−1)/2φ(α j x)ψ(x) ds(x).

If | j | is sufficiently large, the integrand vanishes. Because compactly supported func-
tions are dense in L2(�), it follows that V j

α → 0 weakly as | j | → ∞. The equality
of spectrum and essential spectrum follows from Proposition 4.1. The results for the
numerical range and norm follow from Chandler-Wilde and Spence [11, Lemma 2.7].

To make use of standard Floquet–Bloch/Fourier transform results, it is con-
venient to view D� as a discrete convolution operator. For j ∈ Z let � j :={
(x̃, f (x̃)) ∈ � : |x̃ | ∈ [α j+1, α j ]}. We can identify L2(� j ) with a closed subspace
of L2(�) by extending by 0. Let Pj : L2(�) → L2(� j ) denote orthogonal projection.
Clearly,

Pjφ(x) =
{

φ(x) if x ∈ � j ,

0 otherwise,
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and we note that Pj Vα = Vα Pj+1, so that also Pj V k
α = V k

α Pj+k , k ∈ Z. Let

D j := V j
α Pj D�|L2(�0)

: L2(�0) → L2(�0),

so that
D jφ(x) = α j(d−1)/2D�φ(α j x), x ∈ �0, φ ∈ L2(�0). (4.3)

Let G : L2(�) → �2(Z, L2(�0)) be the unitary operator.13 φ �→ (V j
α Pjφ) j∈Z, and let

D̃� := GD�G−1. It is a straightforward calculation to see that the action of D̃� is that
of a discrete convolution: forψ = (ψn)n∈Z ∈ �2(Z, L2(�0)), D̃�ψ = ((D̃�ψ)m)m∈Z
where

(D̃�ψ)m =
∑
n∈Z

Dm−nψn, m ∈ Z. (4.4)

The series in the above definition converges absolutely; indeed D̃� is an operator in
the so-called Wiener algebra, i.e.

∑
j∈Z ‖D j‖ < ∞ (e.g., [42, Defintion 1.43]), by

the following estimate.

Proposition 4.3 The operators D j are Hilbert-Schmidt for | j | ≥ 2 and satisfy the
Hilbert-Schmidt norm estimate

∥∥D j
∥∥
HS ≤ 1

cd

|�0|
(α − α| j |)d−1 α| j |(d−1)/2, | j | ≥ 2, (4.5)

where |�0| denotes the surface measure of �0.

Proof For j ≥ 2 we have

∫
� j

∫
�0

∣∣∣∣ (x − y) · n(y)

|x − y|d
∣∣∣∣
2

ds(y) ds(x) ≤
∫

� j

∫
�0

1

|x − y|2d−2 ds(y) ds(x)

and |x − y| ≥ α − α j . Hence

∫
� j

∫
�0

∣∣∣∣ (x − y) · n(y)

|x − y|d
∣∣∣∣
2

ds(y) ds(x) ≤ |� j ||�0|
(α − α j )2d−2 = |�0|2α j(d−1)

(α − α j )2d−2 .

Similarly, for j ≤ −2,

∫
� j

∫
�0

∣∣∣∣ (x − y) · n(y)

|x − y|d
∣∣∣∣
2

ds(y) ds(x) ≤ |�0|2α j(d−1)

(α j+1 − 1)2d−2 = |�0|2α− j(d−1)

(α − α− j )2d−2 .

Thus, recalling the standard characterisation of the Hilbert-Schmidt norm of integral
operators (e.g., [32, Ex. 11.11]), Pj D�|L2(�0)

is Hilbert-Schmidt, with Hilbert-
Schmidt norm bounded by the right hand side of (4.5). As unitary operators preserve
Hilbert-Schmidt norms, it follows that D j is Hilbert-Schmidt and that (4.5) holds.

13 This is a discretization operator in the sense, e.g., of Lindner [42, Sect. 1.2.3].
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Given a Hilbert space H letF : �2(Z, H) → L2([−π, π ], H) denote the operator,
often termed in the general Hilbert space case, e.g., [5], a Floquet–Bloch transform,
that constructs a Fourier series from coefficients, given by

(Fψ)(t) = (2π)−1/2
∑
j∈Z

ei j tψn, t ∈ [−π, π ],

for ψ = (ψ j ) j∈Z ∈ �2(Z, H). It is standard that this is a unitary operator (e.g.,
[14, Proof of Theorem 4.4.9]) that diagonalises discrete convolutions (see, e.g., [14,
Theorem 4.49] for the case when H is finite-dimensional, [54, Theorem 2.3.25]
for the general case). In the case H = L2(�0), defining D̂ : L2([−π, π ], H) →
L2([−π, π ], H) by D̂ := F D̃�F−1, straightforward calculations yield that

〈D̂φ,ψ〉L2([−π,π ],L2(�0))
=
∫ π

−π

〈Ktφ(t), ψ(t)〉 dt, φ, ψ ∈ L2([−π, π ], L2(�0)),

(4.6)
where

Kt :=
∞∑

j=−∞
ei j t D j , t ∈ R. (4.7)

(The bounds of Proposition 4.10 imply that Kt is well-defined by (4.7) and depends
continuously on t ; indeed themapping t �→ Kt isC∞.) The following characterisation
follows immediately from (4.6), the continuity of t �→ Kt , and Corollary 4.2; note
that conv denotes the closed convex hull.

Theorem 4.4 We have

‖D�‖ess = ‖D�‖ = max
t∈[−π,π ] ‖Kt‖ ,

Wess(D�) = W (D�) = conv

⎛
⎝ ⋃

t∈[−π,π ]
W (Kt )

⎞
⎠ ,

σess(D�) = σ(D�) =
⋃

t∈[−π,π ]
σ(Kt ).

Proof That the essential spectrum, numerical range, and norm coincide with their
non-essential counterparts is Corollary 4.2. Since D� and D̂ are unitarily equivalent,
they have the same spectrum, numerical range, and norm. The result thus follows from
(4.6); see [54, Theorem 2.3.25] for the case of the spectrum; the argument for the norm
and numerical range are similar.

Remark 4.5 (Symmetry of Kt ) Where Kt (·, ·) denotes the kernel of Kt , K−t (·, ·) =
Kt (·, ·), for t ∈ [−π, π ]. Thus ‖K−t‖ = ‖Kt‖, W (K−t ) = {z̄ : z ∈ W (Kt )}, and
σ(K−t ) = {z̄ : z ∈ σ(Kt )}, for t ∈ [−π, π ], so that, where w(Kt ) := supz∈W (Kt )

|z|
is the numerical radius of Kt ,

‖D�‖ess = max
t∈[0,π ] ‖Kt‖, wess(D�) = max

t∈[0,π ] w(Kt ), ρess(D�) = max
t∈[0,π ] ρ(Kt ).
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Our focus in the next subsections will be 2D cases where f is analytic on A \ {0}.
In such cases, indeed whenever � is locally C1 away from 0, Kt is compact for all t
as a consequence of standard results on the double-layer operator on C1 domains [19]
and Proposition 4.10.

Corollary 4.6 Suppose that f ∈ C1(A\{0}) so that � is locally C1 at each x ∈ �\{0}.
Then Kt is compact for every t ∈ R.

Proof Let Q = P−1 + P0 + P1. Then Q D�|L2(�−1∪�0∪�1)
is the DL operator on

�−1 ∪ �0 ∪ �1. It thus follows from [19, Theorem 1.2] that Q D�|L2(�−1∪�0∪�1)
is

compact. As, for j = −1, 0, 1,

D j = V j
α Pj D�|L2(�0)

= V j
α Pj Q D�|L2(�0)

,

D j is compact for j = −1, 0, 1. The compactness of Kt thus follows from Proposi-
tion 4.3.

4.2 The 2D case: one-sided infinite graphs

We continue to assume that � is a dilation invariant graph, as defined at the start of
Sect. 4, but specialise now to the case where d = 2 and the cone is the half-axis
A = R+ := (0,∞). Thus � = {(x, f (x)) : x ∈ R+} and, for some α ∈ (0, 1),
f (αx) = α f (x), x ∈ R+. Our starting point is Corollary 4.4 which expresses σ(D�)

as the union of the spectra of the operators Kt , t ∈ [−π, π ]. Recall that these operators
are compact if f ∈ C1(R+). Our goal is to apply the Nyström method and the results
of Sect. 3.2 to compute spectral properties of Kt and hence of D� in the case that
f ∈ A(R+), the space of functions R+ → R that are real analytic (a prototypical
example is Fig. 2). Our standing assumption through this subsection is that

� = {(x, f (x)) : x ∈ R+} where f ∈ A(R+) and, for some

α ∈ (0, 1), f (αx) = α f (x), x ∈ R+. (4.8)

Notably, via approximations of the spectrum of Kt for each t , we will obtain (see
Theorem 4.13) a Nyström approximation σ N (D�), for σ(D�) = σess(D�), which is
{0}plus the unionover finitelymany t ∈ [−π, π ]of the spectra of N×N matrices AM

t,N ,

where each AM
t,N is obtained via Nyström discretisation of a unitary transformation,

K̃t , of Kt . Our first main result, Theorem 4.13, is to show that σ N (D�)
H→σ(D�)

as N → ∞. Our other, more substantial result (Theorem 4.15) is to develop a fully
discrete algorithm to test whether the spectral radius conjecture holds for �, i.e. to test
whether σess(D�) = σ(D�) < 1

2 . This algorithm, which derives from Theorem 3.8,
requires the computation only of the spectral radii of finitely many finite matrices plus
the norms of finitely many finite matrix resolvents.

Before we begin our analysis we note the following equivalences to (4.8) that will
play a key role in our calculations. Here, and throughout, the notations

�c := {z ∈ C : Im z ∈ (−c, c)} , �0 := R, (4.9)
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The double-layer operator on locally-dilation-invariant domains 657

Fig. 2 Graph of f : R+ → R,
f (x) := x sin2(π logα(x)), for
α = 3

4

for c > 0 will be convenient.

Lemma 4.7 Given f : R+ → R and α ∈ (0, 1), define g : R → R by

g(x) := α−x f (αx ), x ∈ R, so that f (x) = xg(logα x), x ∈ R+. (4.10)

Then the following are equivalent:

(i) f is real analytic on R+ and f (αx) = α f (x), x > 0;
(ii) g : R → R is real analytic and g(x + 1) = g(x), x ∈ R;
(iii) for some c > 0, g has an analytic extension to �c that satisfies g(z +1) = g(z),

for z ∈ �c, and g and its derivatives g′ and g′′ are bounded in �c.

Note that if f satisfies our standing assumption (4.8), then, defining g by (4.10),

f ′(x) = g(logα x) + g′(logα x)

logα
, f ′′(x) = g′(logα x)

x logα
+ g′′(logα x)

x log2 α
, x > 0.

(4.11)
It follows from (4.10), the first of (4.11), and the equivalence of i) and iii), that f is
Lipschitz continuous on [0,∞) if we set f (0) := 0.

To make use of the results from Sect. 3.2 it is convenient to make a change of
variables so that we work with integral operators on [0, 1] rather than �0. Introducing
the unitary transformation U : L2(�0) → L2(0, 1) given by

Uφ(s) := φ(αs, f (αs))(1 + f ′(αs)2)1/4αs/2 |logα|1/2 , s ∈ [0, 1], φ ∈ L2(�0),

(4.12)
define

K̃t := U KtU
−1 =

∞∑
j=−∞

ei j tU D jU
−1, t ∈ R. (4.13)
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Straightforward computations, starting from (4.13), (4.3), and (1.4), give that

K̃tφ(x) =
∫ 1

0
K̃t (x, y)φ(y) dy, x ∈ [0, 1], t ∈ R, (4.14)

where, for t ∈ R, and x, y ∈ R with x − y /∈ Z,

K̃t (x, y) = 1

2π

∞∑
j=−∞

ei j t p j (x, y)

1 + q j (x, y)2

(
1 + f ′(αx )2

1 + f ′(αy)2

)1/4

α
x+y+ j

2 |logα| , (4.15)

with

p j (x, y) := (αy − αx+ j ) f ′(αy) + f (αx+ j ) − f (αy)

(αx+ j − αy)2
,

q j (x, y) := f (αx+ j ) − f (αy)

αx+ j − αy
. (4.16)

By Taylor’s theorem applied to F(t) := f ((1 − t)αy + tαx+ j ), we see that, for the
same range of x and y,

q j (x, y) =
∫ 1

0
f ′((1 − t)αy + tαx+ j ) dt, (4.17)

p j (x, y) =
∫ 1

0
f ′′((1 − t)αy + tαx+ j )(1 − t) dt . (4.18)

Using (4.17) and (4.18) to extend the definitions of q j (x, y) and p j (x, y) to {(x, y) ∈
R
2 : x−y ∈ Z},14 we see that, for each t ∈ R, each term in the sum (4.15) is continuous

on R
2. Further, using (4.11) and the equivalence of (i) and (iii) in Lemma 4.7, it is

easy to see that p j (x, y) = O(1) as j → ∞, = O(α− j ) as j → −∞, uniformly for
x and y in compact subsets of R, so that the series (4.15) converges absolutely and
uniformly on compact subsets, so that K̃t (·, ·) ∈ C(R2). Further, f (αx) = α f (x)

implies that K̃t (x + 1, y) = e−i t K̃t (x, y) and K̃t (x, y + 1) = eit K̃t (x, y), x, y ∈ R.
Note that K̃t (·, ·) ∈ C(R2) implies that K̃t : L2(0, 1) → C[0, 1], that K̃t is compact
as an operator on both C[0, 1] and L2(0, 1), and that the spectrum of K̃t is the same
on C[0, 1] as on L2(0, 1), so that

σ(Kt ; L2(�0)) = σ(K̃t ; L2(0, 1)) = σ(K̃t ; C[0, 1]), t ∈ R. (4.19)

Wewill use the above equivalence, and theNyströmmethod results fromSect. 3.2, to
compute the spectrum and spectral radius of Kt , in particular by applying Theorem3.8.
As a step towards estimating the left hand side of (3.20) in the case when K = K̃t

and KN is its Nyström method approximation, we first show that, under our standing

14 Precisely, for j ∈ Z, p j (x, y) and q j (x, y) are given explicitly by (4.16) for y − x �= j , while (4.17)

and (4.18) imply that p j (x, y) = 1
2 f ′′(αy), q j (x, y) = f ′(αy), for y − x = j .
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assumption (4.8), K̃t (x, ·) and K̃t (·, y) can be extended to bounded analytic functions
on �c for some c > 0. We will use the notation ‖·‖c for the sup norm on �c and, for
functions h : �c × �d → C, the notation

‖h‖c,d := sup
x∈�c
y∈�d

|h(x, y)| .

In an extension of these notations, for h : �c × �c → C we define

‖h‖c,0 := sup
x∈�c
y∈R

|h(x, y)| and ‖h‖0,c := sup
x∈R
y∈�c

|h(x, y)| ,

and, for functions h : �c → C, we set ‖h‖0 := ‖h‖∞ := supx∈R |h(x)|, the ordinary
sup norm on R.

Let us now estimate the norms ‖K̃t‖c,0 and ‖K̃t‖0,c under our standing assumption
(4.8). Since g is real-valued on R, it follows, using Lemma 2.1, that (4.21) holds for
all sufficiently small c > 0.

Proposition 4.8 Given (4.8), define g by (4.10) so that, by Lemma 4.7, g has an analytic
continuation to �c, for some c > 0, such that g, g′, and g′′ are bounded on �c and
g(z + 1) = g(z), z ∈ �c. Let Ic := ‖ Im g‖c + ‖ Im g′‖c/| logα|, and set

Fd := ‖g‖d + ‖g′‖d/| logα| and Gd := ‖g′‖d + ‖g′′‖d/| logα|, for d = 0, c.
(4.20)

If
c ≤ arccos(α)/ |logα| and Ic < 1, (4.21)

then K̃t (x, ·) and K̃t (·, y) extend to bounded analytic functions on �c for all x, y, t ∈
R, and

‖K̃t‖c,0 ≤
(
1 + F2

c

)1/4
π
(
1 − I2c

)
[
Gc

1 + α1/2 + α−1/2

4α2 + | logα|(Fc + F0)

∞∑
j=2

α j/2

α − α j

]
,

(4.22)

‖K̃t‖0,c ≤
(
1 + F2

0

)1/4
π
(
1 − I2c

)5/4
[
Gc

1 + α1/2 + α−1/2

4α2 + 2| logα|Fc

∞∑
j=2

α j/2

α − α j

]
.

(4.23)

Moreover, R → C([0, 1] × [0, 1]), t �→ K̃t (·, ·) is continuous.

Remark 4.9 [Bound on the sum in (4.22) and (4.23)] For fixed α ∈ (0, 1), let F(x) :=
αx/2/(α −αx ), for x > 0, so that the j th term in the sum in (4.22) and (4.23) is F( j).
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Since F is decreasing on (1,∞) we have that, for n = 2, 3, . . . and 0 < α < 1,

∞∑
j=n+1

α j/2

α − α j
≤ Bn(α) so that (4.24)

∞∑
j=2

α j/2

α − α j
≤ B∗

n(α) :=
n∑

j=2

F( j) + Bn(α), (4.25)

where

Bn(α) :=
∫ ∞

n
F(x) dx = 1

2α1/2

∫ ∞

n

dx

sinh (| logα|(x − 1)/2)

= log(tanh((n − 1)| logα|/4))
α1/2 logα

.

We note, for later reference, that

Bn(α) ∼ 2αn/2−1/| logα|, as n → ∞. (4.26)

Proof of Proposition 4.8 Using (4.11) it follows that

f (αx ) = αx g(x), f ′(αx ) = g(x) + g′(x)

logα
,

f ′′(αx ) = g′(x)

αx logα
+ g′′(x)

αx log2 α
, x ∈ R. (4.27)

Note that the first of the bounds (4.21) implies that c| logα| < π/2, so that the
assumptions we have made on g mean that (4.10) provides an analytic extension of f
from R+ to the sector of the complex plane

Gc := {reiθ : r > 0, |θ | < c| logα|} = {αz : z ∈ �c},

and the Eqs. (4.11) hold for all x in this sector. Further, with this extension, (4.27)
holds for all x ∈ �c. Since (4.11) holds for all x ∈ Gc, and noting that Gc is convex,
we see that the integrals (4.17) and (4.18) are well-defined for all x, y ∈ �c, j ∈ Z,
and provide analytic continuations of p j and q j to�c ×�c. Further, by the uniqueness
of analytic continuation, the equations (4.16) hold for all x, y ∈ �c, with x + j �= y.

To complete the proof we will demonstrate that (4.15) provides, for each x, y ∈
R, analytic continuations of K̃t (·, y) and K̃t (x, ·) from R to �c which satisfy the
bounds (4.22) and (4.23), by showing that each term in (4.15) is well-defined (i.e., that
f ′(αy)2 �= −1, for y ∈ �c, and 1+(q j (x, y))2 �= 0 for x, y ∈ �c), and that the series
(4.15) converges absolutely and uniformly for (x, y) ∈ R× �c and (x, y) ∈ �c ×R.

Using (4.27) we see that

sup
z∈Gc

| Im f ′(z)| = sup
y∈�c

| Im f ′(αy)| ≤ Ic,
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so that

inf
y∈�c

∣∣∣1 + f ′(αy)2
∣∣∣ ≥ 1 − sup

y∈�c

∣∣Im f ′(αy)
∣∣2 ≥ 1 − I2c, (4.28)

and, using (4.17),

inf
x,y∈�c

∣∣∣1 + q j (x, y)2
∣∣∣ ≥ 1 − sup

z∈Gc

| Im f ′(z)|2 ≥ 1 − I2c . (4.29)

Thus, where Tj (x, y) denotes the j-th term in the sum (4.15), we see that Tj (x, y) is
well-defined and analytic for x, y ∈ �c, j ∈ Z. Moreover, we have Tj (x + 1, y) =
e−i t Tj+1(x, y) and it follows from f (αx) = α f (x) that Tj (x, y+1) = eit Tj−1(x, y),
for x, y ∈ �c, j ∈ Z. Thus, to prove absolute and uniform convergence of (4.15) and
the bounds (4.22) and (4.23), it suffices to restrict consideration to x, y ∈ �c := {z ∈
C : Re z ∈ [0, 1], Im z ∈ (−c, c)}.

We see that supx∈�c
|αx/2| ≤ 1 and, using (4.27), that

sup
x∈[0,1]

∣∣∣1 + f ′(αx )2
∣∣∣ ≤ 1 + F2

0, sup
x∈�c

∣∣∣1 + f ′(αx )2
∣∣∣ ≤ 1 + F2

c .

To obtain a bound on |Tj (x, y)| for (x, y) ∈ [0, 1]×�c, and for (x, y) ∈ �c ×[0, 1],
it remains to bound p j (x, y). Let

G∗
c := {reiθ :α2≤r ≤α−1, |θ | < c| logα|} = {αz :Re z ∈ [−1, 2], Im z ∈(−c, c)}.

It is clear that (1 − t)αy + tαx+ j ∈ G∗
c for every t ∈ [0, 1], | j | ≤ 1, x ∈ �c, and

y ∈ [0, 1] if and only if G∗
c is star-shaped with respect to every point in [α, 1], which

holds if and only if c satisfies the first of the bounds (4.21). Likewise, (1 − t)αy +
tαx+ j ∈ G∗

c for every t ∈ [0, 1], | j | ≤ 1, x ∈ [0, 1], and y ∈ �c if and only if the
first of (4.21) holds. Thus, if (4.21) holds, | j | ≤ 1, and either (x, y) ∈ [0, 1] × �c or
(x, y) ∈ �c × [0, 1], it follows from (4.11) and (4.18) that

|p j (x, y)| ≤ 1

2
sup

z∈G∗
c

| f ′′(z)| ≤ Gc

2α2| logα| .

On the other hand, if | j | ≥ 2 and x, y ∈ �c, then it follows from (4.16) (which we
have observed above holds for all x, y ∈ �c with x + j �= y) that

|p j (x, y)| ≤ | f ′(αy)| + |q j (x, y)|
|αx+ j − αy | .

Further, for j ∈ Z,

|q j (x, y)| ≤ sup
z∈Gc

| f ′(z)| ≤ Fc, x, y ∈ �c,
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while | f ′(αy)| ≤ F0, for y ∈ [0, 1], ≤ Fc, for y ∈ �c. Moreover, for | j | ≥ 2,
x, y ∈ �c,

|αx− j − αy | ≥
∣∣∣αRe x− j − αRe y

∣∣∣ ≥
{

α − α j , j ≥ 2,
α j+1 − 1, j ≤ −2.

Putting these bounds together we see that, for | j | ≤ 1,

sup
x∈�c,y∈[0,1]

|Tj (x, y)| ≤ Gc
(
1 + F2

c

)1/4
α j/2

2α2
(
1 − I2c

) ,

sup
x∈[0,1],y∈�c

|Tj (x, y)| ≤ Gc
(
1 + F2

0

)1/4
α j/2

2α2
(
1 − I2c

)5/4 ,

while, for | j | ≥ 2,

sup
x∈�c,y∈[0,1]

|Tj (x, y)| ≤ | logα|(F0 + Fc)
(
1 + F2

c

)1/4
α| j |/2(

1 − I2c
)
(α − α| j |)

,

sup
x∈[0,1],y∈�c

|Tj (x, y)| ≤ 2| logα|Fc
(
1 + F2

c

)1/4
α| j |/2

(
1 − I2c

)5/4
(α − α| j |)

.

From these bounds on |Tj (x, y)| it is clear that the series (4.15), with p j and q j given
by (4.17) and (4.18), converges absolutely and uniformly for (x, y) ∈ [0, 1]×�c and
(x, y) ∈ �c × [0, 1], so that K̃t (x, ·) and K̃t (·, y) are analytic in �c, for x, y ∈ R,
as required. The convergence of the series is also uniform in t , which implies the
continuity of t �→ K̃t (·, ·). Further, the above bounds on |Tj (x, y)| imply the bounds
(4.22) and (4.23).

Recalling (4.19) and that the kernel of K̃t is continuous, we will approximate the
spectrum and spectral radius of Kt , for t ∈ R, by approximating the spectrum and
spectral radius of K̃t , considered as an operator on C[0, 1], using the Nyströmmethod
results of Sect. 3.2. Define K̃t,N : C[0, 1] → C[0, 1], for N ∈ N and t ∈ R, by
[cf. (3.12)]

K̃t,N φ(x) := JN (K̃t (x, ·)φ)

= 1

N

N∑
q=1

K̃t (x, xq,N )φ(xq,N ), x ∈ [0, 1], φ ∈ C[0, 1], (4.30)

where

JN ψ(x) :=
N∑

q=1

ωq,N φ(xq,N ), ψ ∈ C[0, 1], N ∈ N,
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with xq,N := 1
N (q − 1

2 ), ωq,N := N−1, for q = 1, . . . , N , N ∈ N. Note that JN ψ

is just the N -point midpoint rule approximation to Jψ := ∫ 1
0 ψ(x) dx , and that this

numerical quadrature rule sequence satisfies (3.13) and (3.14), so that, for each t ∈ R,
K̃t,N → K̃t as N → ∞ and (K̃t,N )N∈N is collectively compact. This implies, from
the general result (3.9), that ‖(K̃t − K̃t,N )K̃t‖∞ → 0 as N → ∞. In our case this
convergence is exponential (cf. [41, Example 12.11], [63, Sect. 19]).

Proposition 4.10 Let f and c be as in Proposition 4.8. Then, for every t ∈ R and
N ∈ N,

∥∥∥(K̃t − K̃t,N )K̃t

∥∥∥∞ ≤ 2e2πc‖K̃t‖0,c‖K̃t‖c,0

e2π Nc − 1
.

To prove this proposition we will use the following classical result.

Theorem 4.11 (Theorem 9.28 in [40]) Let ψ : R → C be a 1-periodic function that
can be extended to a bounded analytic function on �c for some c > 0. Then

|Jψ − JN ψ | =
∣∣∣∣∣∣
∫ 1

0
ψ(x) dx − 1

N

N∑
q=1

ψ(xq,N )

∣∣∣∣∣∣ ≤ 2 ‖ψ‖c

e2π Nc − 1
, N ∈ N.

Proof. It is clear from the definitions of K̃t and K̃t,N that it is enough to consider
the case t ∈ [−π, π ]. Assuming t ∈ [−π, π ], let Mgt : C[0, 1] → C[0, 1] be mul-
tiplication by gt (x) := eixt . Then Mgt is a surjective isometry with M−1

gt
= Mg−t .

Let L̃ t := Mgt K̃t M−1
gt

and L̃ t,N := Mgt K̃t,N M−1
gt

. Then L̃ t is an integral opera-

tor with kernel L̃ t (x, y) = ei(x−y)t K̃t (x, y). As K̃t (x + 1, y) = e−i t K̃t (x, y) and
K̃t (x, y + 1) = eit K̃t (x, y), we get L̃ t (x + 1, y) = L̃ t (x, y) = L̃ t (x, y + 1) for
all x, y ∈ R. Moreover, ‖L̃ t‖0,c ≤ eπc‖K̃t‖0,c and ‖L̃ t‖c,0 ≤ eπc‖K̃t‖c,0. For
φ ∈ C[0, 1],

ψ(x) :=
∫ 1

0
L̃ t (x, y)φ(y) dy, x ∈ �c,

is an analytic and 1-periodic extension of L̃ tφ from [0, 1] to �c. Thus also y �→
L̃ t (x, y)ψ(y) is analytic and 1-periodic for every x ∈ R. By Theorem 4.11 we obtain
that, for x ∈ R,

|(L̃ t − L̃ t,N )L̃ tφ(x)| = |L̃ tψ(x) − L̃ t,N ψ(x)|
= |J (L̃ t (x, ·)ψ)) − JN (L̃ t (x, ·)ψ))|
≤ 2Ct (x)

e2π Nc − 1
,
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664 S. N. Chandler-Wilde et al.

where Ct (x) := supy∈�c
|L̃ t (x, y)ψ(y)|. As |ψ(y)| ≤ supz∈[0,1] |L̃ t (y, z)| ‖φ‖∞, for

y ∈ �c, we get

Ct (x) ≤ ‖L̃ t‖0,c‖L̃ t‖c,0 ‖φ‖∞ ≤ e2πc‖K̃t‖0,c‖K̃t‖c,0 ‖φ‖∞ ,

for all x ∈ [0, 1] and φ ∈ C[0, 1]. Therefore,
∥∥∥(K̃t − K̃t,N )K̃t

∥∥∥∞ =
∥∥∥(L̃ t − L̃ t,N )L̃ t

∥∥∥∞ ≤ 2e2πc‖K̃t‖0,c‖K̃t‖c,0

e2π Nc − 1
.

Let At,N be the N × N -matrix defined by [cf. (3.15)]

At,N (p, q) := ωq,N K̃t (x p,N , xq,N ) = 1

N
K̃t (x p,N , xq,N ), p, q = 1, . . . , N .

(4.31)
K̃t (·, ·) is defined by the series (4.15) which we truncate to evaluate numerically. For
M ∈ N let

K̃ M
t (x, y) := 1

2π

M∑
j=−M

ei jt p j (x, y)

1 + q j (x, y)2

(
1 + f ′(αx )2

1 + f ′(αy)2

)1/4

α
x+y+ j

2 |logα| , x, y ∈ [0, 1],

(4.32)
where p j and q j are defined by (4.16), and consider the matrices AM

t,N given by

AM
t,N (p, q) := 1

N K̃ M
t (x p,N , xq,N ), p, q = 1, . . . , N , so that AM

t,N is an approxi-

mation to At,N obtained by using finitely many terms in the series defining K̃t (·, ·).
Similarly, define K̃ M

t,N by (4.30) with K̃t,N and K̃t (·, ·) replaced by K̃ M
t,N and K̃ M

t (·, ·),
respectively. For M, N ∈ N, with M ≥ 2, and t ∈ R, by (3.17),

∥∥∥At,N − AM
t,N

∥∥∥∞ ≤ ‖K̃t,N − K̃ M
t,N ‖∞ ≤ sup

x,y∈[0,1]
|K̃t (x, y) − K̃ M

t (x, y)| ≤ C1(M),

(4.33)
where, using the notations of (4.20) and Remark 4.9,

C1(M) := 2| logα|F0

π

(
1 + F2

0

)1/4
BM (α); (4.34)

this bound (4.33)–(4.34) [cf. (4.22)] is obtained as in Proposition 4.8 (set c = 0, only
take the terms with | j | ≥ M + 1, and note that I0 = 0), and by using (4.24). Notice
that, by (4.26), C1(M) = O(αM/2) as M → ∞.

Our aim now is to estimate ρ(D�; L2(�)) and σ(D�; L2(�)) by computing
ρ(AM

t,N ) and σ(AM
t,N ) for only finitely many t . For this purpose bounds on the Lip-

schitz constants of AM
t,N and K̃t,N as functions of t will be helpful. It follows from

(4.32) that, for M, N ∈ N, t ∈ R, and p, q = 1, . . . , N ,
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∣∣∣∣ ∂

∂t
AM

t,N (p, q)

∣∣∣∣ ≤ B M
N (p, q)

:= 1

2π N

M∑
j=−M

| j | ∣∣p j (x p,N , xq,N )
∣∣

1 + q j (x p,N , xq,N )2

(
1 + f ′(αx p,N )2

1 + f ′(αxq,N )2

)1/4

α
x p,N +xq,N + j

2 |logα| , (4.35)

so that, for s, t ∈ R, M, N ∈ N,
∥∥∥AM

t,N − AM
s,N

∥∥∥∞ ≤ |s − t |
∥∥∥B M

N

∥∥∥∞ . (4.36)

Note that, for all M and N ,

‖B M
N ‖∞ ≤ C2 := 1

2π
sup

x,y∈[0,1]

∞∑
j=−∞

| j | ∣∣p j (x, y)
∣∣ (1 + ‖ f ′‖2∞

)1/4
α

x+y+ j
2 |logα| ,

(4.37)
which is finite by the bounds on p j in the proof of Proposition 4.8. Similarly, from
(4.15), for t ∈ R, N ∈ N, x, y ∈ [0, 1],

∣∣∣∣ ∂

∂t
K̃t,N (x, y)

∣∣∣∣ ≤ C2 so that ‖K̃t,N − K̃s,N ‖∞ ≤ |s − t |C2, (4.38)

for s, t ∈ R and N ∈ N, by (3.17). Further, by (3.16), (4.23) with c = 0, and (4.25)
with15 n = 10,

‖K̃t,N ‖∞ ≤ C3 :=
(
1 + F2

0

)1/4
π

[
G0

1 + α1/2 + α−1/2

4α2 + 2| logα|F0 B∗
10(α)

]
,

(4.39)
for t ∈ R and N ∈ N. Provided c is such that the conditions of Lemma 4.7(iii) and
(4.21) hold, we have also, by Propositions 4.8 and 4.10 and (4.25), that,

∥∥∥(K̃t − K̃t,N )K̃t

∥∥∥∞ ≤ C4

e2π Nc − 1
, t ∈ R, N ∈ N, (4.40)

where C4 := 2e2πcC5C6, and C5 and C6 denote the right hand sides of (4.22) and
(4.23), respectively, with the sum replaced by its upper bound B∗

10(α).
As noted above Proposition 4.10, {K̃t,N : N ∈ N} is collectively compact for each

t ∈ R. We will need, in the proof of Theorem 4.13, the following stronger statement.

Lemma 4.12 The sets {K̃t,N : t ∈ R, N ∈ N} and {K̃ M
t,N : t ∈ R, M, N ∈ N} are

collectively compact.

15 Computations indicate that B∗
10(α) exceeds the left hand side of (4.25) by not more than 1.4% for

α ∈ (0, 1).
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Proof Where c is such that the conditions of Lemma 4.7(iii) and (4.21) hold, Proposi-
tion 4.8 implies that, for t ∈ R, N ∈ N, and φ ∈ C[0, 1] with ‖φ‖∞ ≤ 1, K̃t,N φ has
an analytic continuation from [0, 1] to �c. Where F denotes this set of analytic con-
tinuations, it follows from (4.22) thatF is uniformly bounded on�c, so that (e.g., [58,
Theorem 14.6]) F is normal, so that {K̃t,N φ : t ∈ R, N ∈ N, ‖φ‖∞ ≤ 1} is relatively
compact, i.e., {K̃t,N : t ∈ R, N ∈ N} is collectively compact. The same argument
applies to the family K̃ M

t,N , on noting, by inspection of the proof of Proposition 4.8,

that, under the same conditions on c, K̃ M
t (·, y) extends to an analytic function on �c

bounded by the right hand side of (4.22), for all t, y ∈ R, M ∈ N.

In the following result, which holds for every � that satisfies our standing assump-
tion (4.8), we propose an approximation for the spectrum of D� as the union of
the spectra of finitely many finite matrices, and show that this approximation con-
verges in the Hausdorff metric. In this theorem σ(K̃ M

t,N ) denotes the spectrum of K̃ M
t,N

either on L2(0, 1) or on C[0, 1] [cf. (4.19)], which coincides with {0} ∪ σ(AM
t,N ) by

Lemma 3.7(ii), and σ(D�) denotes the spectrum of D� on L2(�), which coincides
with the essential spectrum by Corollary 4.2.

Theorem 4.13 Choose sequences (m N )N∈N, (MN )N∈N ⊂ N such that m N , MN →
∞ as N → ∞, and for each N, let TN := {±(k − 1/2)π/m N : k = 1, . . . , m N }.
Then

σ N (D�) :=
⋃

t∈TN

σ(K̃ MN
t,N ) = {0} ∪

⋃
t∈TN

σ(AMN
t,N )

H→ σ(D�) = σess(D�) (4.41)

as N → ∞.

Proof Set � := σ(D�), so that � = ⋃
t∈[−π,π ] σ(K̃t ) by Theorem 4.4 and (4.19),

and set �N := σ N (D�). We first observe that (�N )N∈N is uniformly bounded as
{‖K̃ MN

t,N ‖∞ : N ∈ N, t ∈ TN } is bounded, by (4.33) and (4.39). Thus, as noted
above Theorem 3.6, to prove that �N

H→� it is enough to show that lim inf �N =
lim sup�N = �.

Next, we note that if the sequences (Mk)k∈N ⊂ N, (Nk)k∈N ⊂ N, and (tk)k∈N ⊂
[−π, π ] satisfy Nk → ∞, Mk → ∞, tk → t ∈ [−π, π ], as k → ∞, then the
sequence (K̃Mk

tk ,Nk
)k∈N is collectively compact by Lemma 4.12, and converges strongly

to K̃t by (4.38) and (4.33), and since K̃t,Nk → K̃t , as noted above Proposition 4.10.

Thus also σ(K̃Mk
tk ,Nk

)
H→σ(K̃t ), by Theorem 3.6.

For every t ∈ [−π, π ] we can choose a sequence (tN )N∈N such that tN ∈ TN for
each N and tN → t . Then, by the observation just made, �N ⊃ σ(K̃ MN

tN ,N )
H→σ(K̃t )

as N → ∞, so that lim inf �N ⊃ lim inf σ(K̃ MN
tN ,N ) = σ(K̃t ). Thus lim inf �N ⊃ �.

If λ ∈ lim sup�N then there exists a sequence (Nk)k∈N ⊂ N and a sequence
(λk)k∈N such that λk → λ and, for each k, λk ∈ �Nk , so that λk ∈ σ(K̃Mk

tk ,Nk
),

for some tk ∈ TNk , where Mk := MNk . By passing to a subsequence if necessary,

we may assume that tk → t ∈ [−π, π ], so that σ(K̃Mk
tk ,Nk

)
H→σ(K̃t ), in particular
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lim inf σ(K̃Mk
tk ,Nk

) = σ(K̃t ), so that λ ∈ σ(K̃t ) ⊂ �. Thus lim sup�N ⊂ � ⊂
lim inf �N . But also lim inf �N ⊂ lim sup�N , so the proof is complete.

Remark 4.14 (Reduced computation expression for σ N (D�)) Note that, byRemark4.5
and Lemma 3.7(ii), σ N (D�), given by (4.41), can be written as

σ N (D�) = {0} ∪ {λ, λ : λ ∈ σ(AMN
t,N ), t ∈ TN , t > 0}.

Our second main result, obtained by applying Theorem 3.8,16 provides a criterion,
given ρ0 > 0, for ρ(D�; L2(�)) < ρ0. Note that this criterion requires computation
of spectral quantities only for the N × N matrices AM

t,N for finitely many t ∈ [0, π ].
Theorem 4.15 Under our standing assumption (4.8), define g by (4.10) so that, by
Lemma 4.7, g has an analytic continuation to �c, for some c > 0, such that g,
g′, and g′′ are bounded on �c, and, without loss of generality, assume that (4.21)
holds. Suppose that ρ0 > 0, m, M, N ∈ N, with M ≥ 2. For k = 1, . . . , m, set
tk := (k − 1/2)π/m, suppose that ρ(AM

tk ,N ) < ρ0 for k = 1, . . . , m, and recursively
define μk,�, for � = 1, 2, . . ., by μk,1 := ρ0, and by

νk,� :=
∥∥∥(AM

tk ,N − μk,� I )−1
∥∥∥−1

∞ and μk,�+1 := μk,�e
i

νk,�
2ρ0 , for � ∈ N. (4.42)

Further, for k = 1, . . . , m, let nk denote the smallest integer such that
∑nk

�=1 νk,� ≥
4πρ0, and let

Rm,M,N := min
k=1,...,m

�=1,...,nk

(νk,�

4
+ νk,�+1

2

)
.

If

Lc( f , N ) := C4

e2π Nc − 1
< Rc( f , m, M, N )

:= r20

(
1 + C3

(
Rm,M,N − C1(M) − π

2m
‖B M

N ‖∞
)−1

)−1

, (4.43)

then ρ(D�; L2(�)) < ρ0. Conversely, if ρ(D�; L2(�)) < ρ0, then, provided m and
M are sufficiently large, there exists N0 ∈ N such that (4.43) holds and ρ(AM

t,N ) < ρ0
for t ∈ [0, π ] and all N ≥ N0.

Proof By Theorem 4.4, Remark 4.5, and (4.19), to show that ρ(D�; L2(�)) < ρ0, it
is enough to check that ρ(K̃t ; C[0, 1]) < ρ0 for every t ∈ [0, π ]. So pick t ∈ [0, π ].
Then |t − tk | ≤ π/(2m), for some k ∈ {1, . . . , m}. To conclude that ρ(K̃t ; C[0, 1]) <

16 To obtain (4.43), motivated by Remark 3.10 our starting point is (3.21) rather than (3.20), since our
interest will be to apply Theorem 4.15 in cases where ρ0 < ‖D�‖.
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ρ0 we apply Theorem 3.8 with K = K̃t , KN = K̃t,N , AN = At,N , and A†
N = AM

tk ,N ,

noting that, with these definitions, ‖KN ‖∞ = ‖K̃t,N ‖∞ ≤ C3,

‖AN − A†
N ‖∞ ≤ ‖At,N − AM

t,N ‖∞ + ‖AM
t,N − AM

tk ,N ‖∞ ≤ C1(M) + π

2m
‖B M

N ‖∞,

by (4.33) and (4.36), and ‖(K − KN )K‖∞ ≤ C4/(e2π Nc − 1), by (4.40).
Conversely, ifρ(D�; L2(�)) < ρ0 then, byTheorem4.4 and (4.19),ρ(K̃t ; C[0, 1]) <

ρ0 for t ∈ [0, π ]. Arguing as in the proof of Theorem 3.8, this implies that for every
t ∈ [0, π ] there exists N0(t) such that ‖(K̃t,N − λI )−1‖ is bounded uniformly in
λ and N for N ≥ N0(t) and |λ| ≥ ρ0. This, combined with the estimate (4.38)
and a standard compactness argument, implies that, for some N∗ ∈ N, and c∗ > 0,
‖(K̃t,N − λI )−1‖−1 ≥ c∗ for all N ≥ N∗, |λ| ≥ ρ0, and t ∈ [0, π ]. It follows, by
(4.33) and (3.1), and recalling Lemma 3.7(ii), that, for all t ∈ [0, π ] and all sufficiently
large M and N , ρ(AM

t,N ) = ρ(K̃ M
t,N ; C[0, 1]) < ρ0 and ‖(K̃ M

t,N − λI )−1‖−1 ≥ c∗/2,
for |λ| ≥ ρ0. Thus, and by Lemma 3.7(iii), Rm,N ,M ≥ 3c∗/8, for all m ∈ N and all
sufficiently large M and N . It follows that (4.43) holds, for all sufficiently large m,
M , and N , since (4.34) and (4.26), and that ‖B M

N ‖∞ is bounded independently of M
and N by (4.37), imply that the right hand side of (4.43) is positive and bounded away
from zero.

4.3 The 2D case: two-sided infinite graphs

We now extend the results of the previous subsection, for the case when d = 2 and
A = R+, to themore involved case17 where d = 2 and A = R. Our goals andmethods
are those of Sect. 4.2, but, where Ṙ := R\{0}, we assume now that f ∈ A(Ṙ), the
space of functions R → R that are real analytic on Ṙ with f (0) = 0 (a prototypical
example is Fig. 3). Thus our standing assumption through this subsection is that

� = {(x, f (x)) : x ∈ R} where f ∈ A(Ṙ) and, for some

α ∈ (0, 1), f (αx) = α f (x), x ∈ R. (4.44)

Define f± : R+ → R by f±(x) := f (±x), x ∈ R+, and g± : R → R [cf. (4.10)]
by

g±(x) := α−x f±(αx ), x ∈ R, so that f±(x) = xg±(logα x), x ∈ R+.

(4.45)
Note that the assumption f ∈ A(Ṙ) is equivalent to the assumption that f± ∈ A(R+)

and f (0) = 0. Note also that Lemma 4.7 applies with f and g replaced by f± and
g±. One simple consequence of these observations [see the discussion below (4.11)]
is that (4.44) implies f ∈ C0,1(R).

As in the one-sided case, our starting point is the formula for σ(D�) in Corollary 4.4
in terms of σ(Kt ), for t ∈ [−π, π ]. Again, Kt is compact for every t ∈ R by Corol-

17 As discussed in the introduction and at the beginning of Sect. 4, it is this case which is relevant to the
spectral radius conjecture.
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Fig. 3 Graph of f : R → R, f (x) := |x | sin2(π logα |x |), in the case α = 2
3

lary 4.6, and, following the pattern of Sect. 4.2, our goal is to computeσ(Kt ) andρ(Kt )

by the results of Sect. 3.2. As in Sect. 4.2, to make use of these results it is convenient
to work with integral operators on [0, 1] rather than �0. Reflecting that �0 has two
components, �+

0 := {(x, f (x)) ∈ �0 : x > 0} and �−
0 := {(x, f (x)) ∈ �0 : x < 0},

it is natural to work in this case with a unitary operator U : L2(�0) → (L2(0, 1))2,
defined by Uψ := (U+ P+ψ, U− P−ψ)T , ψ ∈ L2(�0), where P± is restriction to
�±
0 , i.e. P±ψ := ψ |�±

0
, ψ ∈ L2(�0), and U± : L2(�±

0 ) → L2(0, 1) is the unitary
operator defined by [cf. (4.12)]

U±φ(x) := φ(±αx , f±(αx ))(1 + f ′±(αx )2)1/4αx/2| logα|1/2,
x ∈ [0, 1], φ ∈ L2(�±

0 ).

With U as given above we define an operator K̃t on (L2(0, 1))2, which is unitarily
equivalent to Kt , by (4.13). It is easy to see [cf. (4.14)] that

K̃t =
(

K̃ −
t L̃−

t

L̃+
t K̃ +

t

)
, t ∈ R, (4.46)

where the entries of K̃t are integral operators on L2(0, 1) with continuous kernels.
The kernels of K̃ ±

t are K̃ ±
t (·, ·), where [cf. (4.15)]

K̃ ±
t (x, y) := 1

2π

∞∑
j=−∞

ei j t
p±

j (x, y)

1 + q±
j (x, y)2

(
1 + f ′±(αx )2

1 + f ′±(αy)2

)1/4

α
x+y+ j

2 |logα| , x, y ∈ R,

(4.47)
and p±

j and q±
j are defined by (4.16), (4.17), and (4.18), but with f replaced by f±.

The kernels of L̃±
t are L̃±

t (·, ·), where, for x, y ∈ R,

L̃±
t (x, y) := 1

2π

∞∑
j=−∞

ei j t
p̃±

j (x, y)

1 + q̃±
j (x, y)2

(
1 + f ′±(αx )2

1 + f ′∓(αy)2

)1/4

α
x+y+ j

2 |logα|
(4.48)
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and

p̃±
j (x, y) := (αy + αx+ j ) f ′∓(αy) + f±(αx+ j ) − f∓(αy)

(αx+ j + αy)2
,

q̃±
j (x, y) := f±(αx+ j ) − f∓(αy)

αx+ j + αy
. (4.49)

Analogously to (4.19), we have that

σ(Kt ; L2(�0)) = σ(K̃t ; (L2(0, 1))2) = σ(K̃t ; (C[0, 1])2), t ∈ R. (4.50)

As in the one-sided case [see the discussion around (4.30)], to estimate spectral prop-
erties of K̃t as an operator on (C[0, 1])2 we approximate K̃ ±

t by finite rank operators
K̃ ±

t,N given by

K̃ ±
t,N φ(x) := 1

N

N∑
n=1

K̃ ±
t (x, xn,N )φ(xn,N ), φ ∈ C[0, 1], x ∈ [0, 1], N ∈ N.

Similarly, we approximate L̃±
t by L̃±

t,N , leading to finite rank approximations K̃t,N ,

N ∈ N, to K̃t , given by (4.46) with K̃ ±
t and L̃±

t replaced by K̃ ±
t,N and L̃±

t,N . Arguing

as below (4.30), we have that K̃t,N → K̃t and (K̃t,N )N∈N is collectively compact,
so that ‖(K̃t − K̃t,N )K̃t‖∞ → 0 as N → ∞, where ‖ · ‖∞ here denotes the oper-
ator norm of an operator on (C[0, 1])2 equipped with the norm ‖ · ‖∞ defined by
‖φ‖∞ := max(‖φ+‖∞, ‖φ−‖∞), for φ = (φ+, φ−)T ∈ (C[0, 1])2 Indeed, we have
the following analogue of Proposition 4.10, in which our other norm notations are as
defined above Proposition 4.8.

Proposition 4.16 Let t ∈ R and c > 0 and assume that, for every x, y ∈ R, K̃ ±
t (x, ·),

L̃±
t (x, ·), K̃ ±

t (·, y) and L̃±
t (·, y) have analytic continuations from R to �c that are

bounded in �c. Then ‖(K̃t − K̃t,N )K̃t‖∞ ≤ 2e2πcC∗/(e2π Nc − 1), where

C∗ := max

{
‖K̃ −

t ‖0,c‖K̃ −
t ‖c,0 + ‖L̃−

t ‖0,c‖L̃+
t ‖c,0 + ‖K̃ −

t ‖0,c‖L̃−
t ‖c,0 + ‖L̃−

t ‖0,c‖K̃ +
t ‖c,0,

‖L̃+
t ‖0,c‖K̃ −

t ‖c,0 + ‖K̃ +
t ‖0,c‖L̃+

t ‖c,0 + ‖L̃+
t ‖0,c‖L̃−

t ‖c,0 + ‖K̃ +
t ‖0,c‖K̃ +

t ‖c,0

}
. (4.51)

Proof Notice first that

(K̃t − K N
t )K̃t =

(
(K̃ −

t − K −
t,N )K̃ −

t + (L̃−
t − L−

t,N )L̃+
t (K̃ −

t − K −
t,N )L̃−

t + (L̃−
t − L−

t,N )K̃ +
t

(L̃+
t − L+

t,N )K̃ −
t + (K̃ +

t − K +
t,N )L̃+

t (L̃+
t − L+

t,N )L̃−
t + (K̃ +

t − K +
t,N )K̃ +

t

)
,

and denote the entries of this matrix by A j,k , j, k = 1, 2. For each of these terms we
obtain an estimate similar to that in Proposition 4.10, by arguing as in the proof of that
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The double-layer operator on locally-dilation-invariant domains 671

proposition. Since also

‖(K̃t − K N
t )K̃t‖∞ = max

j=1,2

2∑
k=1

‖A j,k‖∞,

the result follows.

Let us now estimate, under our standing assumption (4.44), the norms of the kernels
that appear in Proposition 4.16 [cf. Proposition 4.8].

Proposition 4.17 Given (4.44), define g± by (4.45) so that, by Lemma 4.7, g± have
analytic continuations to �c, for some c > 0, such that g±, g′±, and g

′′
± are bounded

on �c and g±(z + 1) = g±(z), z ∈ �c. Let

Ic,± := ‖ Im g±‖c + ‖ Im g′±‖c/| logα| and

Kc,± := α−1| logα|max(‖g±‖c, ‖g∓‖0), (4.52)

and set

Fd,± := ‖g±‖d + ‖g′±‖d/| logα| and

Gd,± := ‖g′±‖d + ‖g′′±‖d/| logα|, for d = 0, c. (4.53)

If

c ≤ arccos(α)/ |logα| , Ic,± < 1, and ‖ Im g±‖c + αcKc,± < α2, (4.54)

then K̃ ±
t (x, ·), L̃±

t (x, ·), K̃ ±
t (·, y), and L̃±

t (·, y) extend to bounded analytic functions
on �c for all x, y, t ∈ R, and

‖K̃ ±
t ‖c,0 ≤

(
1 + F2

c,±
)1/4

π
(
1 − I2c,±

)
[
Gc,±

1 + α1/2 + α−1/2

4α2 + | logα|(Fc,± + F0,±)

∞∑
j=2

α j/2

α − α j

]
,

‖K̃ ±
t ‖0,c ≤

(
1 + F2

0,±
)1/4

π
(
1 − I2c,±

)5/4
[
Gc,±

1 + α1/2 + α−1/2

4α2 + 2| logα|Fc,±
∞∑
j=2

α j/2

α − α j

]
,

‖L̃±
t ‖c,0 ≤ 1

2π

|logα|F0,∓ + Kc,±
1 − α−4

(‖Im g±‖c + αcKc,±
)2
(
1 + F2

c,±
)1/4 ∞∑

j=−∞

α j/2

α j+2 + α2 , (4.55)

‖L̃±
t ‖0,c ≤ 1

2π

|logα|Fc,∓ + Kc,∓
1 − α−4

(‖Im g∓‖c + αcKc,∓
)2
(
1 + F2

0,±
1 − I2c,∓

)1/4 ∞∑
j=−∞

α j/2

α j+2 + α2 . (4.56)

Moreover, the mappings R → C([0, 1]× [0, 1]), t �→ K̃ ±
t (·, ·) and t �→ L̃±

t (·, ·), are
continuous.
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Remark 4.18 [Bound on the sum in (4.55) and (4.56)] For fixedα ∈ (0, 1), let F(x) :=
(αx/2 + α−x/2)−1, for x ∈ R, so that the j th term in the sum in (4.55) and (4.56) is
α−2F( j), and note that F is even. Arguing as in Remark 4.9, since F is decreasing
on [0,∞),

∞∑
j=n+1

α j/2

α j+2 + α2 = α−2
∞∑

j=n+1

F( j) ≤ Cn(α) := α−2
∫ ∞

n
F(x) dx = 2 arctan(αn/2)

α2 |logα| ,

(4.57)
for 0 < α < 1 and n ∈ N0 := N ∪ {0}. Thus, for 0 < α < 1 and n ∈ N0,

∞∑
j=−∞

α j/2

α j+2 + α2 ≤ C∗
n (α) := 1

2α2 + 2α−2
n∑

j=1

F( j) + 2Cn(α) and (4.58)

∣∣∣∣∣∣
∞∑

j=−∞

α j/2

α j+2 + α2 −
n∑

j=−n

α j/2

α j+2 + α2

∣∣∣∣∣∣ ≤ 2Cn(α). (4.59)

Proof of Proposition 4.17 The results for K̃ ±
t (·, ·) follow immediately from Proposi-

tion 4.8, applied with f replaced by f±. It remains to consider the off-diagonal entries
L̃±

t . We give the detail for L̃+
t ; the results for L̃−

t follow by the same argument with
the roles of f+ and f− reversed.

We extend the definition of L̃+
t via (4.48) to all x, y ∈ �c. The upcoming com-

putations will show that this is well-defined and the estimates (4.55) and (4.56) hold.
Denote by Tj (x, y) the j th term in the sum (4.48), that is,

Tj (x, y) := ei j t
p̃+

j (x, y)

1 + q̃+
j (x, y)2

(
1 + f ′+(αx )2

1 + f ′−(αy)2

)1/4

α
x+y+ j

2 |logα| , x, y ∈ �c.

(4.60)
We clearly have Tj (x + 1, y) = e−i t Tj+1(x, y) and the dilation invariance, f (αx) =
α f (x), implies that Tj (x, y+1) = eit Tj−1(x, y) for x, y ∈ �c, j ∈ Z. Thus, to prove
the uniformconvergence of the series (4.48) and the bounds (4.55) and (4.56), it suffices
to restrict consideration to x, y ∈ �c = {z ∈ C : Re z ∈ [0, 1], Im z ∈ (−c, c)}. First
notice that, for x, y ∈ �c,

∣∣∣αx+ j + αy
∣∣∣ ≥ αRe x+ j cos(logα Im x) + αRe y cos(logα Im y)

≥ αRe x+ j+1 + αRe y+1 ≥ α j+2 + α2, (4.61)

by the first of (4.54), which implies that cos(t logα) ≥ α, for −c ≤ t ≤ c. Hence, for
x, y ∈ �c and j ∈ Z, recalling (4.45),

∣∣∣q̃+
j (x, y)

∣∣∣ =
∣∣∣∣α

x+ j g+(x) − αy g−(y)

αx+ j + αy

∣∣∣∣ ≤ αRe x+ j |g+(x)| + αRe y |g−(y)|
αRe x+ j+1 + αRe y+1 .
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Using the estimate
(a + b)/(c + d) ≤ max {a/c, b/d} , (4.62)

which holds for all a, b ≥ 0, c, d > 0, it follows that

sup
x∈�c,y∈[0,1]

∣∣∣q̃+
j (x, y)

∣∣∣ ≤ Kc,+/| logα| and

sup
x∈[0,1],y∈�c

∣∣∣q̃+
j (x, y)

∣∣∣ ≤ Kc,−/| logα|, j ∈ Z.

Noting that (4.27) holds with f and g replaced with f± and g±, we have also that
| f ′±(αy)| ≤ F0,±, for y ∈ [0, 1], while | f ′±(αy)| ≤ Fc,±, for y ∈ �c. Thus

sup
x∈�c,y∈[0,1]

∣∣∣ p̃+
j (x, y)

∣∣∣ ≤ sup
x∈�c,y∈[0,1]

| f ′−(αy)| +
∣∣∣q̃+

j (x, y)

∣∣∣∣∣αx+ j + αy
∣∣ ≤ F0,− + Kc,+/| logα|

α j+2 + α2 and

sup
x∈[0,1],y∈�c

∣∣∣ p̃+
j (x, y)

∣∣∣ ≤ Fc,− + Kc,−/| logα|
α j+2 + α2 .

Moreover, for x, y ∈ �c,

∣∣∣Im q̃+
j (x, y)

∣∣∣ =
∣∣∣∣Im

(
αx+ j g+(x) − αy g−(y)

αx+ j + αy

)∣∣∣∣
= 1∣∣αx+ j + αy

∣∣2
∣∣∣Im

(
α2(Re x+ j)g+(x) − α x̄+ j+y g−(y) + αx+ j+ȳ g+(x) − α2Re y g−(y)

)∣∣∣ .

Thus, using (4.61), noting that | Im(αi t z)| ≤ | Im(z)| + | sin(t logα)||z| ≤ | Im(z)| +
|t logα||z|, for t ∈ R and z ∈ C, and using (4.62) again to obtain the last two
inequalities, we see that for x, y ∈ �c, where r = αRe x+ j and s = αRe y ,

∣∣∣Im q̃+
j (x, y)

∣∣∣ ≤ 1

α2(r + s)2

(
r2| Im g+(x)| + s2| Im g−(y)|

+ rs
(| Im g−(y)| + | Im g+(x)| + c| logα|(|g−(y)| + |g+(x)|)))

≤ r | Im g+(x)| + s| Im g−(y)| + c| logα|max{s|g−(y)|, r |g+(x)|}
α2(r + s)

≤ α−2 (max{| Im g+(x)|, | Im g−(y)|} + c| logα|max{|g−(y)|, |g+(x)|}) .

Thus

sup
x∈�c,y∈[0,1]

∣∣∣Im q̃+
j (x, y)

∣∣∣ ≤ α−2 (‖ Im g+‖c + αcKc,+
)

and

sup
x∈[0,1],y∈�c

∣∣∣Im q̃+
j (x, y)

∣∣∣ ≤ α−2 (‖ Im g−‖c + αcKc,−
)

so that

inf
x∈�c,y∈[0,1]

∣∣∣1 + q̃+
j (x, y)2

∣∣∣ ≥ 1 − sup
x∈�c,y∈[0,1]

∣∣∣Im q̃+
j (x, y)

∣∣∣2
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≥ 1 − α−4 (‖ Im g+‖c + αcKc,+
)2 and

inf
x∈[0,1],y∈�c

∣∣∣1 + q̃+
j (x, y)2

∣∣∣ ≥ 1 − α−4 (‖ Im g−‖c + αcKc,−
)2

.

Combining these estimates, and using (4.28) with f replaced by f−, we get

sup
x∈�c,y∈[0,1]

∣∣Tj (x, y)
∣∣ ≤ | logα|F0,− + Kc,+

1 − α−4
(‖Im g+‖c + αcKc,+

)2
(
1 + F2

c,+
)1/4 α j/2

α j+2 + α2 and

sup
x∈[0,1],y∈�c

∣∣Tj (x, y)
∣∣ ≤ | logα|Fc,− + Kc,−

1 − α−4
(‖Im g−‖c + αcKc,−

)2
(
1 + F2

0,+
1 − I2c,−

)1/4
α j/2

α j+2 + α2 .

The estimates (4.55) and (4.56) and the other results for L̃+
t follow.

Let B̃±
t,N and C̃±

t,N be the N × N matrices defined by the right hand side of (4.31)

with K̃t (·, ·) replaced by K̃ ±
t (·, ·) and L̃±

t (·, ·), respectively, and define the 2N × 2N
matrix At,N by

At,N :=
(

B−
t,N C−

t,N
C+

t,N B+
t,N

)
, t ∈ R, N ∈ N.

Recalling Remark 3.11, the matrix At,N and the operator Kt,N are related by
Lemma 3.7(ii) and (iii). As in Sect. 4.2, our goal is to estimate the spectrum and
spectral radius of Kt,N via computing the spectra of approximations to At,N for some
fixed N and finitely many t ∈ [−π, π ].

To define these approximations, proceeding analogously to Sect. 4.2, for M ∈ N

let K̃ ±,M
t (·, ·) and L̃±,M

t (·, ·) be approximations to K̃ ±
t (·, ·) and L̃±

t (·, ·), respectively,
given by (4.47) and (4.48) but with the infinite series replaced by finite sums from
j = −M to M [cf. (4.32)]. Let B±,M

t,N and C±,M
t,N be the corresponding approximations

to the matrices B±
t,N and C±

t,N , so that

B±,M
t,N (p, q) = 1

N
K̃ ±,M

t (x p,N , xq,N ),

C±,M
t,N (p, q) = 1

N
L̃±,M

t (x p,N , xq,N ), p, q = 1, . . . , N ,

and let

AM
t,N :=

⎛
⎝B−,M

t,N C−,M
t,N

C+,M
t,N B+,M

t,N

⎞
⎠ , t ∈ R, M, N ∈ N. (4.63)

Similarly, define the operators K̃ ±,M
t,N and L̃±,M

t,N as we defined K̃ ±
t,N and L̃±

t,N above

Proposition 4.16, but replacing the kernels K̃ ±
t (·, ·) and L̃±

t (·, ·) in their definitions
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by the respective approximations K̃ ±,M
t (·, ·) and L̃±,M

t (·, ·), and let

K̃ M
t,N =

⎛
⎝K̃ −,M

t,N L̃−,M
t,N

L̃+,M
t,N K̃ +,M

t,N

⎞
⎠ , t ∈ R, M, N ∈ N. (4.64)

Then, similarly to (4.33), we have that, for t ∈ R and M, N ∈ N with M ≥ 2,

‖At,N − AM
t,N ‖∞ ≤ ‖K̃t,N − K̃ M

t,N ‖∞ ≤ C1(M), (4.65)

where, using the notations of Remarks 4.9 and 4.18 and Proposition 4.17, and setting
K0 := K0,+ = K0,−,

C1(M) := 1

π
max

{ (
1 + F2

0,+
)1/4 (

2| logα|F0,+BM (α) + (| logα|F0,− + K0)CM (α)
)
,

(
1 + F2

0,−
)1/4 (

2| logα|F0,−BM (α) + (| logα|F0,+ + K0)CM (α)
)}

. (4.66)

Note that by (4.26) and (4.57), C1(M) = O(αM/2) as M → ∞.
Arguing as in (4.35), we have also that, for M, N ∈ N, t ∈ R, p, q = 1, . . . , N ,

∣∣∣∣ ∂

∂t
B±,M

t,N (p, q)

∣∣∣∣ ≤ B±,M
N (p, q) and

∣∣∣∣ ∂

∂t
C±,M

t,N (p, q)

∣∣∣∣ ≤ C±,M
N (p, q), (4.67)

where B±,M
N (p, q) is defined by (4.35) but with p j , q j , and f replaced by p±

j , q±
j

and f±, respectively [compare (4.15) and (4.47)]. Similarly, C±,M
N (p, q) is defined by

the right hand side of (4.35) with p j and q j replaced by p̃±
j and q̃±

j , respectively, and
with f replaced by f± in the numerator, by f∓ in the denominator [compare (4.15)
and (4.48)]. Thus, where

B M
N :=

(
B−,M

N C−,M
N

C+,M
N B+,M

N

)
, M, N ∈ N, (4.68)

Eq. (4.36) holds (with the above definitions of At,N , AM
t,N and B M

N ) for all s, t ∈ R,

M, N ∈ N. Note also, arguing as in (4.37) and (4.38), that ‖B M
N ‖∞ is bounded

uniformly for M, N ∈ N, and that ‖K̃t,N − K̃s,N ‖∞ = O(|s − t |) as |s − t | → 0,
uniformly for s, t ∈ R, N ∈ N. Further, similarly to (4.39) and (4.66), ‖K̃t,N ‖∞ ≤ C3
for t ∈ R and N ∈ N, where18

C3 := 1

2π
max

{ (
1 + F2

0,+
)1/4 (

G0,+R(α) + 4| logα|F0,+B∗
10(α) + (| logα|F0,− + K0)C∗

10(α)
)
,

(
1 + F2

0,−
)1/4 (

G0,−R(α) + 4| logα|F0,−B∗
10(α) + (| logα|F0,+ + K0)C∗

10(α)
)}

, (4.69)

18 Computations indicate that C∗
10(α) exceeds the left hand side of (4.58) by not more than 2.1% for

α ∈ (0, 1).
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R(α) := (1 + α1/2 + α−1/2)/(2α2), B∗
10 and C∗

10 are defined by (4.25) and (4.58),
and the other notations are defined in Proposition 4.17. Provided c is such that the
conditions of Proposition 4.17 hold, we have also [cf. (4.40)], by Propositions 4.16
and 4.17, that (4.40) holds with

C4 := 2e2πcC̃∗, (4.70)

where C̃∗ is defined by the right hand side of (4.51), but with the norms on that right
hand side replaced by the upper bounds in Proposition 4.17. Additionally, we replace
the infinite sums in these upper bounds by the bounds B∗

10(α) and C∗
10(α).

The following result, which holds for every� that satisfies our standing assumption
(4.44), is identical to Theorem 4.13, except that K̃ MN

t,N and AMN
t,N are defined here by

(4.64) and (4.63), respectively. In this theorem σ(K̃ M
t,N ) denotes the spectrum of K̃ M

t,N

either on (L2(0, 1))2 or on (C[0, 1])2 (cf. (4.19)), which coincides with {0}∪σ(AM
t,N )

by Lemma 3.7(ii) and Remark 3.11, and σ(D�) denotes the spectrum of D� on L2(�),
which coincides with the essential spectrum by Corollary 4.2. The proof of this result
follows that of Theorem 4.13, noting that the argument of Lemma 4.12 applies to each
of the operator families K̃ ±,M

t,N and L̃±,M
t,N so that [where K̃ M

t,N is defined by (4.64)]

{K̃ M
t,N : t ∈ [−π, π ], M, N ∈ N} is collectively compact.

Theorem 4.19 Choose sequences (m N )N∈N, (MN )N∈N ⊂ N such that m N , MN →
∞ as N → ∞, and for each N, let TN := {±(k − 1/2)π/m N : k = 1, . . . , m N }.
Then, as N → ∞,

σ N (D�) :=
⋃

t∈TN

σ(K̃ MN
t,N ) = {0} ∪

⋃
t∈TN

σ(AMN
t,N )

H→ σ(D�) = σess(D�). (4.71)

Remark 4.20 Using Remark 3.11, we see that Remark 4.14 applies also to σ N (D�)

given by (4.71).

Our secondmain result of this subsection, obtained by applyingTheorem3.8, noting
Remark 3.11, is proved in the same way as the analogous result, Theorem 4.15, in the
one-sided case. In this theorem AM

t,N , B M
N , C1(M), C3, and C4, are defined by (4.63),

(4.68), (4.66), (4.69), and (4.70), respectively.

Theorem 4.21 Under our standing assumption (4.44), define g± by (4.45) so that, by
Lemma 4.7, g± have analytic continuations to �c, for some c > 0, such that g±,
g′±, and g′′± are bounded on �c, and, without loss of generality, assume that (4.54)
holds. Suppose that ρ0 > 0, m, M, N ∈ N, with M ≥ 2. For k = 1, . . . , m, set
tk := (k − 1/2)π/m, suppose that ρ(AM

tk ,N ) < ρ0 for k = 1, . . . , m, and recursively
define μk,�, for � = 1, 2, . . ., by μk,1 := ρ0, and by (4.42). Further, for k = 1, . . . , m,
let nk denote the smallest integer such that

∑nk
�=1 νk,� ≥ 4πρ0, and let

Rm,M,N := min
k=1,...,m

�=1,...,nk

(νk,�

4
+ νk,�+1

2

)
.
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The double-layer operator on locally-dilation-invariant domains 677

If

Lc( f , N ) := C4

e2π Nc − 1
< Rc( f , m, M, N )

:= r20

(
1 + C3

(
Rm,M,N − C1(M) − π

2m
‖B M

N ‖∞
)−1

)−1

, (4.72)

then ρ(D�; L2(�)) < ρ0. Conversely, if ρ(D�; L2(�)) < ρ0, then, provided m and
M are sufficiently large, there exists N0 ∈ N such that (4.72) holds and ρ(AM

t,N ) < ρ0
for t ∈ [0, π ] and all N ≥ N0.

Remark 4.22 The condition (4.72) can be written as

Sc(�, m, M, N ) < 0,

where Sc(�, m, M, N ) := Lc( f , N ) −Rc( f , m, M, N ). For any c > 0 such that the
conditions of the first sentence of the above theorem are satisfied (and these conditions
are necessarily satisfied for all sufficiently small c > 0), we note that:

(i) The proof of the above theorem, which follows that of Theorem 4.15, shows
that, provided ρ(D�; L2(�)) < ρ0, Rm,M,N is positive and bounded away
from zero for all sufficiently large m, M, N ∈ N, so that the same holds for
Rc( f , m, M, N ). Since also Lc( f , N ) → 0 as N → ∞, Sc(�, m, M, N ) < 0
for all sufficiently large m, M , and N , if ρ(D�; L2(�)) < ρ0.

(ii) For fixed m, M, N ∈ N, evaluation of the functionals L( f , N ) and Rc( f , m,

M, N ) requires inputs relating to the functions f± defined by (4.45), namely:
the constant α ∈ (0, 1) and the bounds ‖g±‖0, ‖g′±‖0, and ‖g′′±‖0 on g defined
by (4.45) (to evaluate C1(M) and C3); the bounds ‖g±‖c, ‖g′±‖c, and ‖g′′±‖c

(to evaluate C4); the values f±(αx p,N + j ), f ′±(αx p,N ), and f ′′±(αx p,N ), for p =
1, . . . , N and j = −M, . . . , M (to compute the entries of the matrices AM

tk ,N ,
for k = 1, . . . , m).

(iii) If exact values of ‖g±‖0, ‖g′±‖0, ‖g′′±‖0, ‖g±‖c, ‖g′±‖c, and ‖g′′±‖c are not
available, it is enough to replace them with upper bounds which leads to
upper bounds Ĉ1(M), Ĉ3 and Ĉ4 for C1(M), C3 and C4, respectively (with
Ĉ1(M) → 0 as M → ∞ at the same rate as C1(M)). Let L̂c( f , N )

and R̂c( f , m, M, N ) be defined by (4.43) with C1(M), C3, C4, replaced by
their upper bounds, so that Lc( f , N ) ≤ L̂c( f , N ) and R̂c( f , m, M, N ) ≤
Rc( f , m, M, N ). Then the conclusions of Theorem 4.21 hold with Lc( f , N )

andRc( f , m, M, N ) replaced by L̂c( f , N ) and R̂c( f , m, M, N ), respectively;
in particular Sc(�, m, M, N ) < 0 if L̂c( f , N ) < R̂c( f , m, M, N ) and, pro-
vided ρ(D�; L2(�)) < ρ0, L̂c( f , N ) < R̂c( f , m, M, N ) for all sufficiently
large m, M , and N .

123



678 S. N. Chandler-Wilde et al.

4.4 The 2D case: lower bounds for the numerical range

This paper is motivated by the question at the end of Sect. 1.1 which notes that there
exist (e.g., [11, Fig. 3]) 2D examples of � ∈ D with wess(D�)  1

2 and asks: is
ρL2(�),ess ≥ 1

2 for any of these examples? We will explore this in Sect. 6 where we
will see that ρL2(�),ess) < 1

2 for each example we treat, supporting Conjecture 1.2.
We will also see that wess(D�) > 1

2 for at least some of these examples, indeed that
Wess(D�) ⊃ BR := {z ∈ C : |z| < R} for R substantially larger than 1

2 .
As the route to obtain these estimates for Wess(D�), in this subsection we obtain

lower bounds19 for W (D�) = Wess(D�) in the case when � is a dilation invariant
graph, precisely in the 2D case when either (4.8) or (4.44) applies. It is enough to
restrict attention to the one-sided case (4.8) as one easily sees (e.g., [11, Sect. 2.3])
that if � satisfies (4.44) and �̃ := {(x, f (x)) : x > 0}, then �̃ satisfies (4.8) and

W (D�̃) ⊂ W (D�). (4.73)

We obtain lower bounds for W (D�) in the case that (4.8) applies via the Nyström
method that we used in Sect. 4.2 to approximate σ(D�). Firstly, by Corollary 4.4,
and since, for t ∈ [−π, π ], L̃ t , defined in the proof of Proposition 4.10, is unitarily
equivalent to K̃t defined by (4.13), which is unitarily equivalent to Kt , we have that
W (L̃ t ) ⊂ W (D�). For p ∈ N0, letTp ⊂ L2(0, 1) denote the set of trigonometric poly-
nomials of degree at most p. An orthonormal basis of Tp is given by

{
e−p, . . . , ep

}
,

where e j (x) := e2π i j x . Consider the restricted numerical range

Wp(L̃ t ) :=
{
〈L̃ tφ, φ〉 : φ ∈ Tp, ‖φ‖L2(0,1) = 1

}
.

It is clear that Wp(L̃ t ) ⊂ W (L̃ t ) for t ∈ [−π, π ], and that (e.g., [11, Sect. 2.3])
Wp(L̃ t ) = W (T p,t ), where T p,t = (T p,t

jk )
p
j,k=−p is the (2p+1)×(2p+1)matrixwith

T p,t
jk := 〈L̃ t ek, e j 〉, j, k = −p, . . . , p. Recalling from the proof of Proposition 4.10

that L̃ t has kernel L̃ t (x, y) = ei(x−y)t K̃t (x, y), we will approximate T p,t by T p,t,N ,
where

T p,t,N
jk := 1

N 2

N∑
m,n=1

ei(xm,N −xn,N )t K̃t (xm,N , xn,N )ek(xn,N )e j (xm,N ), j, k = −p, . . . , p,

(4.74)
recalling that xm,N := 1

N

(
m − 1

2

)
, m = 1, . . . , N , and then approximate T p,t,N

further by T p,t,N ,M , defined by (4.74) but with K̃t , given by the infinite sum (4.15),
replaced by K̃ M

t , given by the finite sum (4.32). The following result, which uses the
notation (4.34), will enable us to estimate the difference between Wp(L̃ t ) = W (T p,t )

and W (T p,t,N ,M ).

19 By a lower bound for W (D�) we mean, simply, a set S ⊂ C such that S ⊂ W (D�).
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The double-layer operator on locally-dilation-invariant domains 679

Proposition 4.23 Let f and c > 0 be as in Proposition 4.8, in particular satisfying
(4.21), so that L̃t (x, ·) and L̃t (·, y) are analytic and bounded in �c for all x, y, t ∈ R,
let L̃ M

t (x, y) := ei(x−y) K̃ M (x, y), for x, y ∈ R and M ∈ N, and suppose that g is a
bounded, analytic, 1-periodic function on �c. Then, for M, N ∈ N and t ∈ [−π, π ],

∣∣∣∣∣∣〈L̃ t g, g〉 − 1

N 2

N∑
m,n=1

L̃ M
t (xm,N , xn,N )g(xn,N )g(xm,N )

∣∣∣∣∣∣
≤ 2 ‖g‖0 ‖g‖c eπc ‖K̃t‖0,c + ‖K̃t‖c,0

e2π Nc − 1
+ C1(M).

Proof
∣∣∣∣∣∣〈L̃ t g, g〉 − 1

N 2

N∑
m,n=1

L̃ t (xm,N , xn,N )g(xn,N )g(xm,N )

∣∣∣∣∣∣

≤
∫ 1

0
|g(x)|

∣∣∣∣∣
∫ 1

0
L̃ t (x, y)g(y) dy − 1

N

N∑
n=1

L̃ t (x, xn,N )g(xn,N )

∣∣∣∣∣ dx

+ 1

N

N∑
n=1

∣∣∣∣∣
∫ 1

0
g(x)L̃ t (x, xn,N ) dx − 1

N

N∑
m=1

g(xm,N )L̃ t (xm,N , xn,N )

∣∣∣∣∣
∣∣g(xn,N )

∣∣

≤ ‖g‖0
2‖L̃ t‖0,c ‖g‖c

e2π Nc − 1
+ 2 ‖g‖c ‖L̃ t‖c,0

e2π Nc − 1
‖g‖0 ,

by Theorem 4.11, noting that g and, from the proof of Proposition 4.10, L̃ t (x, ·),
for x ∈ R, and L̃ t (·, y), for y ∈ R, are all 1-periodic. The claimed result now fol-
lows immediately from (4.33) and by noting that, from the proof of Proposition 4.10,
‖L̃ t‖0,c ≤ eπc‖K̃t‖0,c and ‖L̃ t‖c,0 ≤ eπc‖K̃t‖c,0.

Clearly, g ∈ T p with ‖g‖L2(0,1) = 1 if and only if

g =
p∑

j=−p

c j e j with
p∑

j=−p

∣∣c j
∣∣2 = 1, (4.75)

in which case

‖g‖c ≤
p∑

j=−p

∣∣c j
∣∣ ∥∥e j

∥∥
c ≤

p∑
j=−p

∣∣c j
∣∣ ∥∥e j

∥∥
c ≤

p∑
j=−p

∣∣c j
∣∣ e2π pc ≤ √

2p + 1 e2π pc.

The following corollary follows immediately from this observation and Proposi-
tion 4.23, noting that, if g and c−p, . . . , cp are related by (4.75), then the summation

in Proposition 4.23 coincides with
∑p

j,k=−p T p,t,N ,M
j,k ckc j ∈ W (T p,t,N ,M ).
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Corollary 4.24 For p ∈ N0, M, N ∈ N, t ∈ [−π, π ], where c > 0 is as in Proposi-
tion 4.23,

dH (Wp(L̃ t ), W (T p,t,N ,M )) ≤ C7(p, N , M)

:= 2(2p + 1)eπc(2p+1) ‖K̃t‖0,c + ‖K̃t‖c,0

e2π Nc − 1
+ C1(M).

We can approximate W (T p,t,N ,M ) by a standard method that dates back to Johnson
[31]. Choose n ∈ N and, for � = 0, . . . , n, let θ� := 2π�/n, let λ� denote the
largest eigenvalue of Re(e−iθ� T p,t,N ,M ) and x� an associated unit eigenvector, and
let z� := 〈T p,t,N ,M x�, x�〉, for � = 0, 1, . . . , n − 1, and zn := z0. Then Wn :=
conv({z0, . . . , zn}) ⊂ W (T p,t,N ,M ) and (Johnson [31]) Wn

H→ W (T p,t,N ,M ) as n →
∞. The following simple corollary of the above results, in which we use the notations
just introduced, will enable us to show that BR ⊂ W (L̃ t ) ⊂ W (D�) for concrete
values of R > 0 in the examples we treat in Sect. 6.

Corollary 4.25 Suppose that p ∈ N0, M, N , n ∈ N, t ∈ [−π, π ], that c > 0 is
as in Proposition 4.23, and that 0 is an interior point of Wn, in which case z� =
exp(iγ�)|z�|, � = 0, . . . , n, with γ0 ≤ γ1 ≤ . . . ≤ γn = γ0 + 2π . Then, where
θmax := max�=1,...,n(γ� − γ�−1) ∈ (0, 2π ] and Rmin := min�=0,...,n |z�| > 0, if
R∗ := Rmin cos(θmax/2) − C7(p, t, N , M) > 0, then BR∗ ⊂ W (D�).

Proof Under the above assumptions, BR ⊂ Wn , where R := Rmin cos(θmax/2). Since
Wn ⊂ W (T p,t,N ,M ) and Wp(L̃ t ) ⊂ W (L̃ t ) ⊂ W (D�), it follows that BR∗ ⊂ W (D�)

by Corollary 4.24.

5 Localization and deformation

Let �− ⊂ R
d , d ≥ 2, be a Lipschitz domain with boundary � = ∂�− and outward-

pointing unit normal vector ny = n�
y at almost every y ∈ �. If ψ : Rd → R

d is
a C1-diffeomorphism, then ψ(�−) is a Lipschitz domain with boundary ψ(�) by
Hofmann et al. [29, Theorem 4.1]. Note that this is no longer true ifψ is only assumed
to be a bi-Lipschitz map (see [21, Lemma 1.2.1.4], and the discussion in [29]). As
before, D� will be the double-layer operator on �. To simplify notation we will use ∼
to denote equality up to compact operators, and abbreviate D� − λI as D� − λ. For
x ∈ R

d and r > 0, B(x, r) := {y ∈ R
d : |y − x | < r}.

5.1 Localization without deformation

To start, we will consider domains with locally-dilation-invariant boundaries � ∈ D ;
recall Definition 1.3. Note that being locally dilation invariant at x is equivalent to the
existence of an isometry ψx : Rd → R

d with ψx (x) = 0 and ψx
(
B(x, δ(x)) ∩ �

) =
B(0, δ(x)) ∩ �x , for some δ(x) > 0, where �x is the graph of a Lipschitz continuous
function with α�x = �x . We also assume thatψx preserves the orientation of the outer
normal vector field, that is, the outward-pointing normal vector field on B(x, δ(x))∩�
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The double-layer operator on locally-dilation-invariant domains 681

is mapped to the upwards-pointing normal vector field on B(0, δ(x)) ∩ �x . Similarly,
� is locally C1 at x if there is a δ(x) > 0 and an Euclidean map ψx : Rd → R

d with
ψx (x) = 0 andψx (B(x, δ(x))∩�) = B(0, δ(x))∩�x , where�x is the graph of aC1-
function with compact support. Again, we assume that ψx preserves the orientation
of the outer normal vector field. We will use extensively below the notation δ(x), for
x ∈ �, which will have one of the above meanings, depending on whether � is locally
dilation invariant at x or is C1 at x .

Note that D� is compact for every C1 domain [19], as we recalled in Sect. 1.2;
this implies that also D�̃ is compact if �̃ is the graph of a C1-function with compact
support. Consequently, if � consists of different parts that are separated by C1 areas,
we are able to localize using sharp cut-off functions. In the following we equip � with
the topology induced from R

d and the standard surface measure. In particular, χE

denotes the characteristic function of a subset E ⊂ � that is measurable with respect
to the surface measure on �.

Lemma 5.1 Let E ⊂ � be a measurable subset and assume that � is locally C1 at every
x ∈ ∂ E. Then D� essentially commutes with χE , i.e., the commutator [D�, χE ] :=
D�χE − χE D� is compact.

Proof Since ∂ E is a compact subset of �, there is an ε > 0 such that

(∂ E + B(0, ε)) ∩ � ⊂
⋃

x∈∂ E

(B(x, δ(x)) ∩ �).

Set Eo := (∂ E + B(0, ε
2 )) ∩ �. We know that χA D�χB is compact, even Hilbert–

Schmidt, whenever A and B have positive distance from each other. We have

E = (E ∩ Eo) ∪ (E \ Eo) and Ec = (Ec ∩ Eo) ∪ (Ec \ Eo),

where Ec := � \ E . By inspection, we see that the four sets on the right of these
equalities, if non-empty, have pairwise positive distance from each other except for
E ∩ Eo and Ec ∩ Eo. We thus have

χE D�χEc ∼ χE∩Eo D�χEc∩Eo = χEχEo D�χEoχEc ,

χEc D�χE ∼ χEc∩Eo D�χE∩Eo = χEcχEo D�χEoχE .

The operator χEo D�χEo is compact because Eo is C1 everywhere by construction.
We conclude that [D�, χE ] = χEc D�χE − χE D�χEc is compact as well.

In particular, this shows that if � is locally C1 at some point x ∈ �, then D� is
not Fredholm, since if E = B(x,

δ(x)
2 ), then χE D�χE is compact, and Lemma 5.1

implies that D� ∼ χE D�χE + χEc D�χEc . Hence

0 ∈ σess(χE D�χE ) ⊂ σess(D�). (5.1)

More generally, if E1, . . . , EN are measurable subsets of � such that � = ∪N
j=1E j ,

E j ∩ Ek = ∅ for j �= k and � is locally C1 at every x ∈ ∪N
j=1∂ E j , then D� ∼
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∑N
j=1 χE j D�χE j and thus

σess(D�) =
N⋃

j=1

σess(χE j D�χE j ). (5.2)

Equation (5.2) is a localisation result. We have also the following, more substantial
localisation result (cf. [11, 15, 16, 48]) for the case where � ∈ D .

Theorem 5.2 Let �− ⊂ R
d be a bounded Lipschitz domain such that � = ∂�− ∈ D ,

and pick x1, . . . , xN ∈ � for which � ⊂ ⋃N
j=1 B(x j , δ(x j )). Then

σess(D�) =
⋃
x∈�

σess(D�x ) =
N⋃

j=1

σess(D�x j
).

Proof Let x ∈ �. If � is locally C1 at x , then, by (5.1) and since D�x is compact,
σess(D�x ) = {0} ⊂ σess(D�). So assume that � is locally dilation invariant at x .
Then there is an α ∈ (0, 1) such that α�x = �x . Let η : � → [0, 1] be a Lipschitz
continuous functionwith support in B(x, δ(x))∩� that is equal to 1 in a neighbourhood
of x . Let ψx : Rd → R

d be an isometry with ψx (x) = 0 and ψx (B(x, δ(x)) ∩ �) =
B(0, δ(x)) ∩ �x . Define �x : L2(�x ) → L2(�) by

�xφ(y) =
{

φ(ψx (y)) if y ∈ B(x, δ(x)) ∩ �,

0 otherwise,

which has adjoint � ′
x : L2(�) → L2(�x ) given by

� ′
xφ(y) =

{
φ(ψ−1

x (y)) if y ∈ B(0, δ(x)) ∩ �x ,

0 otherwise.

�x and � ′
x are partial isometries with initial spaces L2

(
B(0, δ(x)) ∩ �x

)
and

L2
(
B(x, δ(x)) ∩ �

)
, respectively. For m ∈ N the composition � ′

xη
m�x : L2(�x ) →

L2(�x ) is the operation of multiplication by (η′)m , where η′(y) := η(ψ−1
x (y)), for

y ∈ B(x, δ(x)) ∩ �x , η′(y) := 0, y ∈ �x\B(x, δ(x)).
Let Vα be the unitary dilation as defined in (4.2) but with � replaced by �x . Then

V n
α η′V −n

α φ(y) =
{

η(ψ−1
x (αn y))φ(y) if αn y ∈ B(0, δ(x)) ∩ �x ,

0 otherwise,

for n ∈ N, y ∈ �x and φ ∈ L2(�x ). By dominated convergence, it follows that
V n

α η′V −n
α φ → φ as n → ∞ for all φ ∈ L2(�x ). (We can see, similarly, that, for

every m ∈ N, V n
α (η′)m V −n

α φ → φ as n → ∞ for all φ ∈ L2(�x ).) Using that ψx is
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an isometry, we further observe that � ′
xηD�η�x = η′D�x η

′. This implies, since also
D�x Vα = Vα D�x , that

V n
α � ′

xηD�η�x V −n
α = V n

α η′ D�x η
′V −n

α = (V n
α η′V −n

α )D�x (V n
α η′V −n

α ) → D�x

(5.3)
in the strong operator topology.

Now assume that D� − λ is Fredholm and let A : L2(�) → L2(�) be a Fredholm
regularizer of D� − λ, so that the products A(D� − λ) and (D� − λ)A are compact
perturbations of the identity. Then, for any φ ∈ L2(�x ),

‖φ‖ ≤ ∥∥V n
α � ′

xηAη(D� − λ)η�x V −n
α φ

∥∥+∥∥V n
α (I − � ′

xηAη(D� − λ)η�x )V −n
α φ

∥∥ .

(5.4)
The first term can be estimated as

∥∥V n
α � ′

xηAη(D� − λ)η�x V −n
α φ

∥∥ ≤ ‖A‖ ∥∥η(D� − λ)η�x V −n
α φ

∥∥
= ‖A‖ ∥∥V n

α � ′
xη(D� − λ)η�x V −n

α φ
∥∥ ,

where we used that Vα is an isometry, � ′
x is an isometry on the range of the multipli-

cation operator η, and ‖η‖ ≤ 1. By (5.3),

∥∥V n
α � ′

xη(D� − λ)η�x V −n
α φ

∥∥ → ∥∥(D�x − λ)φ
∥∥ ,

as n → ∞. The second term in (5.4) can be estimated as

∥∥V n
α (I − � ′

xηAη(D� − λ)η�x )V −n
α φ

∥∥
≤
∥∥∥V n

α (I − � ′
xηA(D� − λ)η2�x )V −n

α φ

∥∥∥+ ∥∥V n
α � ′

xηA[η, D�]η�x V −n
α φ

∥∥
≤
∥∥∥V n

α (I − η′3)V −n
α φ

∥∥∥+
∥∥∥V n

α � ′
xη(A(D� − λ) − I )η2�x V −n

α φ

∥∥∥
+ ∥∥V n

α � ′
xηA[η, D�]η�x V −n

α φ
∥∥ .

Note that both A(D� − λ) − I and [η, D�] are compact. We also observe that for
any compact operator K : L2(�x ) → L2(�x ) we have V n

α K V −n
α → 0 in the strong

operator topology, since V −n
α → 0 in the weak operator topology. Therefore, and

using that V n
α η′3V −n

α → I , we obtain that the second term in (5.4) tends to zero as
n → ∞. We conclude that ‖φ‖ ≤ ‖A‖ ∥∥(D�x − λ)φ

∥∥ for every φ ∈ L2(�x ). The
same argument also shows that ‖φ‖ ≤ ‖A‖ ∥∥(D�x − λ)′φ

∥∥ for every φ ∈ L2(�x ). It
follows that D�x − λ is invertible and thus Fredholm.

Conversely, choose x1, . . . , xN ∈ � such that � ⊂ ∪N
i=1B(xi , δ(xi )), and suppose

that D�x j
− λ is Fredholm for j = 1, . . . , N , and let A j be a Fredholm regularizer

of D�x j
− λ. For every j let ψx j : Rd → R

d be an isometry with ψx j (x j ) = 0 and
ψx j (B(x j , δ(x j )) ∩ �) = B(0, δ(x j )) ∩ �x j . Choose Lipschitz continuous functions

η1, . . . , ηN such that
{
η2j : j = 1, . . . , N

}
is a partition of unity of � subordinate to

the sets B(x j , δ(x j )). Now note that, since D�x j
essentially commutes with η′

j , A j
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essentially commutes with η′
j as well. This implies that

N∑
j=1

�x j η
′
j A j�

′
x j

η j (D� − λ)

∼
N∑

j=1

�x j A jη
′
j�

′
x j

(D� − λ)η j =
N∑

j=1

�x j A j�
′
x j

η j (D� − λ)η j

=
N∑

j=1

�x j A jη
′
j (D�x j

− λ)η′
j�

′
x j

∼
N∑

j=1

�x j η
′
j A j (D�x j

− λ)η′
j�

′
x j

∼
N∑

j=1

�x j η
′2
j � ′

x j
=

N∑
j=1

η2j = I .

Similarly, (D� − λ)
N∑

j=1
η j�x j A jη

′
j�

′
x j

∼ I . Thus D� − λ is Fredholm.

5.2 Deformations

Let β ∈ (0, 1). We will now consider the situation where a Lipschitz domain �− with
boundary � is deformed by a C1,β -diffeomorphism ψ : Rd → R

d that is conformal
or anti-conformal at a point x ∈ �, meaning that the Jacobian Jψ(x) of ψ at x
lies in RO(d), where RO(d) := {

λA ∈ R
d×d : λ ∈ R, A orthogonal

}
. Due to the

invariance of the double-layer potential under transformations from RO(d), we will
for our purposes be able to assume that Jψ(x) = I . Let D�(·, ·) denote the kernel of
D� . Likewise, Vj will be the integral operator with kernel Vj (·, ·), |D�| will be the
integral operator with kernel |D�(·, ·)|, and so on. We write

Dψ(�)(ψ(z), ψ(y)) = D�(z, y)

+ Dψ(�)(ψ(z), ψ(y)) − (z − y) · n�(y)

cd |ψ(z) − ψ(y)|d nψ(�)(ψ(y)) · Jψ(y)n�(y)

︸ ︷︷ ︸
V1(z,y)

+ D�(z, y)(nψ(�)(ψ(y)) · Jψ(y)n�(y) − 1)︸ ︷︷ ︸
V2(z,y)

+ D�(z, y)nψ(�)(ψ(y)) · Jψ(y)n�(y)

[ |z − y|d
|ψ(z) − ψ(y)|d − 1

]

︸ ︷︷ ︸
V3(z,y)

. (5.5)

The term V1 is weakly singular, satisfying an estimate of the form |V1(z, y)| ≤ Cβ |z−
y|1+β−d forβ ∈ (0, 1) and almost every z, y ∈ �, see [44, Lemma6]. (In order to apply
Medková’s results from Medková [44], note that the reduced boundary ∂∗�− ⊂ �
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The double-layer operator on locally-dilation-invariant domains 685

has full surface measure for a Lipschitz domain �−, cf. [17, p. 209].) Therefore the
operator V1 : L2(�) → L2(�) is compact.

We view V2 as the composition of D� with a multiplication operator, noting that
by Medková [44, Lemma 3] we have

lim
ρ→0+ ess sup

y∈�∩B(x,ρ)

|nψ(�)(ψ(y)) · Jψ(y)n�(y) − 1| = 0.

In particular, for every ε > 0, there is ρ > 0 such that the operator norm of

V2 : L2(� ∩ B(x, ρ)) → L2(�)

is smaller than ε.
For a bounded Lipschitz domain with boundary �, let A2 = A2(�) denote the

algebra of integral operators K such that |K | : L2(�) → L2(�) is bounded. We will
work within the class of domains such that D� ∈ A2 in this subsection. The preceding
considerations show that Dψ(�) ∈ A2(ψ(�)) if D� ∈ A2(�). Since the relationship
between � and ψ(�) is symmetric, we see that

Dψ(�) ∈ A2(ψ(�)) if and only if D� ∈ A2(�). (5.6)

Note that D� ∈ A2 for any C1,β -boundary �, since D� has a weakly singular
kernel in this case. It is also known that |D�̃| : L2(�̃) → L2(�̃) is bounded for any of
the following graphs �̃:

(i) a 2D wedge (modelling a polygonal corner) [49];
(ii) a 3D wedge (modelling a polyhedral edge) [52];
(iii) a 3D polyhedral cone [16];
(iv) a 3D smooth cone (such as a circular cone) [53].

Furthermore, this statement may be extended to dilation-invariant domains which are
built from such graphs.

Lemma 5.3 Suppose that �̃ is a dilation-invariant graph, i.e., �̃ = α�̃, for some
α ∈ (0, 1), and suppose that, at every x ∈ �̃\ {0}, �̃ is either locally C1,β for some
β ∈ (0, 1), or coincides locally with a graph of type (i)–(iii), or (iv). Then |D�̃| is
bounded on L2(�̃).

Proof By hypothesis, we know that
∣∣D j

∣∣ : L2(�̃0) → L2(�̃0) is bounded for j =
−1, 0, 1, where D j and �̃0 are as in Sect. 4.1. The lemma therefore follows from
Proposition 4.3 and (4.4).

A simple localization argument now demonstrates that the condition D� ∈ A2 is
quite general.

Theorem 5.4 Suppose that at every x ∈ �, � is locally C1,β , for some β ∈ (0, 1), or
coincides locally with a graph satisfying the hypothesis of Lemma 5.3. Then D� ∈
A2(�).
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Returning to the decomposition of Dψ(�)(ψ(z), ψ(y)), we note, for the third term
V3, the following consequence of the fact that Jψ(x) = I .

Lemma 5.5 Suppose that D� ∈ A2. Then |V3|(z, y) = |D�|(z, y)Q(z, y), where
Q ∈ L∞(� × �) is non-negative and limρ→0+ ess supy,z∈�∩B(x,ρ) Q(z, y) = 0,
where the essential supremum is taken with respect to the product measure on � × �.

Let ηρ : � → [0, 1] be a Lipschitz continuous function with supp ηρ ⊂ B(x, ρ)

such that ηρ is equal to 1 in a neighbourhood of x . Furthermore, denote the operator
of composition with ψ by

Cψ : L2(ψ(�)) → L2(�), Cψφ(z) = φ(ψ(z)),

and let η′
ρ = ηρ ◦ ψ−1. Note also that we have the change of variables formula

∫
ψ(�)

φ(y) dsψ(�)(y) =
∫

�

(1 + T (y))φ(ψ(y)) ds�(y), (5.7)

where T ∈ L∞(�) and limy→x T (y) = 0. The operator

η′
ρ Dψ(�)η

′
ρ : L2(ψ(�)) → L2(ψ(�))

is then similar to

Cψη′
ρ Dψ(�)η

′
ρCψ−1 : L2(�) → L2(�),

which, by (5.7), is an integral operator with kernel (1 + T (y))ηρ(z)Dψ(�)(ψ(z),
ψ(y))ηρ(y). By the previous calculations, if D� ∈ A2, we therefore find that

Cψη′
ρ Dψ(�)η

′
ρCψ−1 ∼ ηρ D�ηρ + ηρ Ṽ ηρ, (5.8)

where Ṽ is an integral operator induced by a kernel of the form Ṽ (z, y) =
D�(z, y)Q̃(z, y) with Q̃ ∈ L∞(� × �) such that

lim
ρ→0+ ess sup

y,z∈�∩B(x,ρ)

|Q̃(z, y)| = 0. (5.9)

For φ1, φ2 ∈ L2(�) with support in B(x, ρ) we have

∣∣∣
〈
Ṽ φ1, φ2

〉∣∣∣ ≤
∫

�

∫
�

∣∣∣φ2(z)Ṽ (z, y)φ1(y)

∣∣∣ ds(y) ds(z)

≤ ess sup
y,z∈�∩B(x,ρ)

|Q̃(z, y)| ‖|D�|‖ ‖φ1‖ ‖φ2‖ .

Since D� ∈ A2, (5.9) implies that

lim
ρ→0+ ‖ηρ Ṽ ηρ‖ = 0. (5.10)
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Taking powers, we conclude that

lim
ρ→0+ ‖(ηρ D�ηρ)n − Cψ(η′

ρ Dψ(�)η
′
ρ)nCψ−1‖ess = 0 (5.11)

for every n ≥ 1.
We now prove the main theorem of this section. When R = 1/2, it says the follow-

ing: if, for every point x , � is locally obtained by deforming a domain that satisfies
the spectral radius conjecture, then � satisfies the spectral radius conjecture as well.

Theorem 5.6 Let R > 0 and β > 0. Suppose that for every x ∈ � there exists a C1,β -
diffeomorphism ψx : Rd → R

d , conformal or anti-conformal at x, and a Lipschitz
cut-off function ηx : Rd → [0, 1] such that ηx is equal to 1 in a neighbourhood of x,
Dψx (�) ∈ A2, and

σess(η
′
x Dψx (�)η

′
x ) ⊂ B(0, R),

where η′
x = ηx ◦ ψ−1

x . Then D� ∈ A2 and σess(D�) ⊂ B(0, R).

Proof As noted previously, the condition on �, even for just one x , implies that D� ∈
A2.

Fix x ∈ �. Since the commutator [Dψx (�), η
′
x ] is compact, we see that

(η′
x Dψx (�)η

′
x )

n −η′n
x Dn

ψx (�)η
′n
x is compact for every n ≥ 1. By the hypothesis, choose

n = n(x) sufficiently large so that

‖(η′
x Dψx (�)η

′
x )

n‖
1
n
ess = ‖η′n

x Dn
ψx (�)η

′n
x ‖

1
n
ess < R‖Cψx ‖− 1

n ‖C
ψ−1

x
‖− 1

n .

If we choose a new cut-off function η̃x : Rd → [0, 1] such that supp η̃x ⊂{
y ∈ R

d : ηx (y) = 1
}
, note that, since (η′

x Dψx (�)η
′
x )

n − η′n
x Dn

ψx (�)η
′n
x is compact,

we have

‖(η̃′
x Dψx (�)η̃

′
x )

n‖
1
n
ess = ‖η̃′n

x Dn
ψx (�)η̃

′n
x ‖

1
n
ess

≤ ‖η′n
x Dn

ψx (�)η
′n
x ‖

1
n
ess < R‖Cψx ‖− 1

n ‖C
ψ−1

x
‖− 1

n ,

so that

‖Cψx (η̃
′
x Dψx (�)η̃

′
x )

nC
ψ−1

x
‖

1
n
ess ≤ ‖η′n

x Dn
ψx (�)η

′n
x ‖

1
n
ess‖Cψx ‖

1
n ‖C

ψ−1
x

‖ 1
n < R.

Hence, by making the support of ηx sufficiently small and applying (5.11), we obtain
that

‖(ηx D�ηx )
n‖

1
n
ess = ‖ηn

x Dn
�ηn

x‖
1
n
ess < R.

Now choose δ(x) sufficiently small so that ηx ≡ 1 in a neighbourhood of B(x, δ(x))∩
�. By compactness, we may pick points x1, . . . , xN so that � ⊂ ∪N

j=1B(x j , δ(x j )).
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Let

r := max
j=1,...,N

‖(ηx j D�ηx j )
n(x j )‖

1
n(x j )

ess < R

and let
{
τ j : j = 1, . . . , N

}
be a Lipschitz partition of unity of � subordinate to the

sets B(x j , δ(x j )). Choose m to be a large integer such that n(x j ) divides m for all j .
Then

Dm
� =

N∑
j=1

τ j Dm
� =

N∑
j=1

τ jη
2m
x j

Dm
�

and therefore, recalling that [D�, ηx j ] is compact,

‖Dm
� ‖ess =

∥∥∥∥
N∑

j=1

τ j (ηx j D�ηx j )
m
∥∥∥∥
ess

≤
N∑

j=1

∥∥(ηx j D�ηx j )
m
∥∥
ess

≤
N∑

j=1

∥∥∥(ηx j D�ηx j )
n(x j )

∥∥∥
m

n(x j )

ess

≤ Nrm < N Rm .

Therefore σess(D�) ⊂ B(0, R).

Referring back to Lemma 5.3, all graphs �̃ of type (i)–(iii) satisfy (the graph version
of) the spectral radius conjecture, results which can also be found in the correspond-
ing references. Graphs of type (iv) that are convex also satisfy the spectral radius
conjecture, by Fabes et al. [18]. If η : R3 → [0, 1] is a compactly supported Lipschitz
function, we thus have that

‖(ηD�̃η)n‖ess = ‖ηn Dn
�̃
ηn‖ess ≤ ‖Dn

�̃
‖ess < 2−n

for n sufficiently large. Applying Theorem 5.6 we obtain the following.

Corollary 5.7 Let d = 3 and let � be the boundary of a Lipschitz domain. Assume that
for every x ∈ � there exists a C1,β -diffeomorphism ψx : R3 → R

3, conformal or anti-
conformal at x, such that ψx (�) is locally a subset of the boundary of a polyhedral
cone or a convex smooth cone. Then D� satisfies the spectral radius conjecture.

The class of domains considered in Corollary 5.7 encompasses all domains in
3D that may reasonably be referred to as a Lipschitz curvilinear polyhedra. From
Theorem 5.6 we of course also obtain the analogous corollary for 2D domains, a
well known result; the corresponding class of curves precisely describes the C1,β -
curvilinear polygons in 2D.
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5.3 Possible extensions and further questions

Theorem 5.6 in particular shows that the spectral radius conjecture only depends
on the local behaviour of �, under the extraneous assumption that D� ∈ A2. To
achieve the same result for a general Lipschitz domain, we need a different tool to
treat the term V3 which does not rely on the introduction of absolute values. Since
V3(z, y) = Q̃(z, y)D�(z, y), for a specific kernel Q̃(z, y), we would like an answer
to the following question.

Question 5.8 Describe suitable classes of kernels B such that the kernel B(z,y)D�(z,y)

defines a bounded operator on L2(�), and estimate the norm of the corresponding
operator.

When B is of the form B(z,y) = a(z)−a(y), for some function a on�, the resulting
operator is the commutator [a, D�]. Commutators of singular integral operators are
very well studied, but we have been unable to identify or correctly apply existing
results to the kernel multiplier of interest to us, namely,

B(z, y) = ηρ(z)

( |z − y|d
|ψ(z) − ψ(y)|d − 1

)
ηρ(y).

Other versions of Question 5.8 also seem interesting. For example, one could ask for
the stronger property that B(z, y) be a kernel multiplier of each of the Riesz transforms
of �. We also note the similarity between the term V3 and the kernel of the Clifford–
Cauchy integral operator, as presented in [4, Consequence 3.6].

Of course, one would like to know that not only the spectral radius conjecture is
local, but that the entire essential spectrum is as well.

Question 5.9 For a domain �− with boundary �, is the essential spectrum local and
invariant under locally conformal deformations?

We can give a positive answer to this question if we, in addition to the hypotheses
of Theorem 5.6, assume that we do not have too many singular points, by which we
mean points where the boundary is not C1. In the statement, we let χx,ρ := χB(x,ρ)

and χ ′
x,ρ := χx,ρ ◦ ψ−1

x for x ∈ � and ρ > 0.

Theorem 5.10 Let β > 0 and assume that � has at most countably many singular
points. Further suppose that for every x ∈ � there exists a C1,β -diffeomorphism
ψx : Rd → R

d , conformal or anti-conformal at x, such that Dψx (�) ∈ A2. Then
D� ∈ A2 and

σess(D�) ⊂
⋃
x∈�

σess(χ
′
x,ρx

Dψx (�)χ
′
x,ρx

)

for arbitrary ρx > 0. Moreover, there exist ρx > 0 such that

σess(D�) =
⋃
x∈�

σess(χ
′
x,ρx

Dψx (�)χ
′
x,ρx

).
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Proof By (5.6), Dψx (�) ∈ A2 for just one x ∈ � already implies D� ∈ A2.
Let x ∈ �, ρx > 0 and λ ∈ C. If λ = 0, then 0 ∈ σess(χ

′
x,ρx

Dψx (�)χ
′
x,ρx

) either by
(5.1) (if χ ′

x,ρx
≡ 1) or by construction (otherwise). So assume that λ �= 0 and suppose

that χ ′
x,ρx

Dψx (�)χ
′
x,ρx

− λ is Fredholm for every x ∈ �.
Fix x for a moment. As � has at most countably many singular points and ψx

is a diffeomorphism, we know that χ ′
x,ρ̃x

Dψx (�)χ
′
x,ρ̃x

− λ is Fredholm for all but at
most countably many ρ̃x ∈ (0, ρx ]. In this case the essential norm of the Fredholm
regularizer Ax,ρ̃x of χ ′

x,ρ̃x
Dψx (�)χ

′
x,ρ̃x

− λ is bounded by

∥∥Ax,ρ̃x

∥∥
ess ≤ max

{∥∥Ax,ρx

∥∥
ess , |λ|−1

}
.

Therefore, by (5.8) and (5.10), for every x ∈ � we can choose ρ̃x sufficiently small
such that χx,ρ̃x D�χx,ρ̃x − λ is also Fredholm, and such that ∂ B(x, ρ̃x ) contains none
of the singularities of �.

By compactness, we may choose finitely many points x j and corresponding radii
ρ̃x j such that the balls B(x j , ρ̃x j ) cover �. Define recursively

E1 := B(x1, ρ̃x1) ∩ �, E j+1 = (
B(x j+1, ρ̃x j+1) ∩ �

) \
j⋃

k=1

Ek .

Now we can apply (5.2) to obtain that D� − λ is Fredholm.
Conversely, assume that D� − λ is Fredholm and fix x ∈ �. By (5.1), we must

have λ �= 0. As we only have countably many singularities, χx,ρ D�χx,ρ − λ is also
Fredholm for all but at most countably many ρ > 0 by (5.2). Now note that the
situation between D� and Dψx (�) is symmetric. Hence, the same argument as above
shows that χ ′

x,ρx
Dψx (�)χ

′
x,ρx

−λ is also Fredholm for a sufficiently small ρx > 0.

In particular, we may extend Theorem 5.2 to domains that are only approximately
locally dilation invariant in the following sense.

Corollary 5.11 Let β > 0 and assume that � has at most countably many singular
points. Denote the set of singular points by S. Suppose that for every x ∈ S there
exists a C1,β -diffeomorphism ψx : Rd → R

d such that

(i) ψx is conformal or anti-conformal at x,
(ii) ψx (�) is locally C1,β or locally dilation invariant at ψx (x),
(iii) Dψx (�) ∈ A2 (e.g., a domain with local behaviour as in Theorem 5.4).

Then there exist ρx > 0 such that σess(D�) = {0} ∪⋃x∈S σess(χ
′
x,ρx

Dψx (�)χ
′
x,ρx

).

6 Synthesis and numerical examples

In this final section we bring earlier results together to study the case where � ∈ DA
(recall Definition 1.4), meaning that � is the boundary of a bounded Lipschitz domain
�− ⊂ R

2 that is locally dilation invariant and is piecewise analytic. We then illustrate
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the various results of the paper by several examples. Regarding our first aim, the
following result is immediate from Theorems 5.2, 4.19, and 4.21.

Theorem 6.1 Suppose that � ∈ DA and let F ⊂ � be the finite set of points at
which � is not locally analytic but is locally dilation invariant, so that � coincides
locally near x ∈ F with �x , a dilation invariant graph (in some rotated coordinate
system centred at x). Then, where σ N is as defined in Theorem 4.19, �N (D�) :=
∪x∈Fσ N (D�x )

H→σess(D�; L2(�)) as N → ∞. Further, suppose that c > 0 is small
enough such that the conditions of the first sentence of Theorem 4.21 are satisfied
for � = �x , x ∈ F. Then, for every ρ0 > 0, where RN (D�) is defined by (1.13),
ρess(D�; L2(�)) < ρ0 if: i) RN (D�) < ρ0; and ii) for some m, M, N ∈ N, with
M ≥ 2,

Sc(�, m, M, N ) := max
x∈F

Sc(�x , m, M, N ) < 0, (6.1)

where Sc(·, ·, ·, ·) is as defined in Remark 4.22. Conversely, if ρess(D�; L2(�)) < ρ0,
then, for all sufficiently large N, RN (D�) < ρ0, and, if m, M ∈ N are also sufficiently
large, then Sc(�, m, M, N ) < 0.

Proof Since� ∈ DA ⊂ D ,� is locallyC1 at x if x ∈ �\F ,while, if x ∈ F ,�x satisfies
(4.44) (in some local coordinate system centred at x). Thus, and by Theorem 5.2,
σess(D�) = ∪x∈�σess(D�x ) = ∪x∈Fσess(D�x ), since σess(D�x ) = {0} if x ∈ �\F ,
and 0 ∈ σess(D�x ) if x ∈ F , by Theorem 4.4 and Corollary 4.6. The result thus follows
from Theorems 4.19 and 4.21.

The following examples illustrate the above result and the results of Sects. 4 and 5.
In each example, whether � is a dilation invariant graph or � ∈ DA, we demonstrate
that ρess(D�; L2(�)) < 1

2 , providing new evidence in support of the spectral radius
conjecture.

Example 1 We first consider an example where � satisfies (4.8), with f : R+ → R

given by
f (x) := x sin2(π logα(x)), x > 0, (6.2)

for some α ∈ (0, 1), so that [recall (4.10)] g(x) = sin2(πx) = (1 − cos(2πx))/2,
for x ∈ R. As α increases in (0, 1) the graph of f (see Fig. 2) becomes increasingly
oscillatory and its Lipschitz character increases; elementary calculations give that
the maximum and minimum of f ′ are f ′

max = cos2(θα/2) + π sin(θα)/| logα| > 1
and f ′

min = 1 − f ′
max < 0, where θα := arctan(2π/| logα|); note that f ′

max =
π/| logα|+1/2+ O(1−α) as α → 1−. To apply Theorem 4.15 we need to compute
C1(M), C3, and C4; see (4.34), (4.39), and the definition below (4.40). This requires
computation of quantities that are defined in Proposition 4.8 in terms of20

‖ Im g( j)‖c = (2π) j

2
sinh(2πc), j = 0, 1, c ≥ 0,

20 In this example, and the other examples below, we are able to compute these norms exactly. We
can, instead, just compute upper bounds; the theory and algorithm apply essentially unchanged—see
Remark 4.22(iii).

123



692 S. N. Chandler-Wilde et al.

Fig. 4 Numerical results for Example 1; f given by (6.2), α = 3
4

‖g‖c = cosh2(πc), ‖g( j)‖c = (2π) j

2
cosh(2πc), j = 1, 2, c ≥ 0.

Theorem 4.15 applies for all c > 0 such that (4.21) applies, i.e. provided

c ≤ arccos(α)

|logα| and c <
1

2π
arsinh

(
2| logα|

2π + | logα|
)

. (6.3)

In Fig. 4 we plot results for the case α = 3
4 (see Fig. 2), when f ′

max ≈ 11.43
and the above conditions reduce to c ≤ arccos(3/4)/ log(4/3) ≈ 2.51 and c <

arsinh (2 log(4/3)/(2π + log(4/3))) /(2π) ≈ 0.0139. Choosing c = 0.013 we plot
in Fig. 4a, for the caseρ0 = 1

2 ,Lc( f , N ) andRc( f , m, M, N ), given by (4.43), against
N , for N = 2 j , j = 3, 4, . . . , 9, choosingm = 16, 000 and M = 100.We see thatwith
these choicesRc( f , m, M, N ) is positive and bounded away from zero for sufficiently
large N , while, as is clear from its definition, Lc( f , N ) decreases exponentially with
N ; note that (4.43) is satisfied for N = 512. To apply Theorem 4.15 to conclude that
ρ(D�) = ρess(D�) < 1

2 we also need to check that ρ(AM
t,N ) < 1

2 , for M = 100, N =
512, and t = tk = (k − 1/2)/m, k = 1, . . . , m, with m = 16, 000; equivalently, that
r N
max := maxz∈σ N (D�) |z| < 1

2 , where σ N (D�) is as defined by (4.41) with N = 512,
m N = 16, 000, MN = 100. For these parameter values σ N (D�), an approximation to
σ(D�) = σess(D�) by Theorem 4.13, is plotted in Fig. 4b, and r N

max ≈ 0.4837 < 1
2 .

Our calculations are in standard double-precision floating-point arithmetic rather than
exact arithmetic,21 but this is convincing evidence, by application of Theorem 4.15,
that ρ(D�) < 1

2 .

21 In all these examples the spectral radii of the matrices AM
t,N as well as the norms of the (AM

t,N −λl I )−1

are computed using standardMatlab routines; our codes are available at https://github.com/Raffael-Hagger/
DLP.
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In Fig. 4b we also plot, for the parameter values p = 10, N = 512, M = 100,
n = 100, and t = π/18, the bounded domain Wn , which22 is contained in and is an
approximation to W (T p,t,N ,M ) (these notations defined in Sect. 4.4). Where R∗ is
as defined in Corollary 4.25, we also plot the circle R∗

T of radius R∗ ≈ 1.163; by
Corollary 4.25 it is guaranteed that BR∗ ⊂ W (D�) = Wess(D�), so that w(D�) =
wess(D�) ≥ R∗ is significantly larger than 1

2 for this example. We note that, for these
parameter values, C7(p, N , M) ≤ 3.964 × 10−5 (see Corollaries 4.24 and 4.25).

In Fig. 4b we additionally plot, to illustrate the application of Theorem 4.15 and the
adaptive definition of the parameters defined by (4.42), the points μk,� at which the
resolvent of AM

tk ,N is calculated when ρ0 = 1
2 , N = 512, M = 100, m = 16, 000, for

the case k = 16, 000 (so that tk ≈ π ) and � = 1, . . . , nk = 67. This value of k is fairly
typical; nk varies in the range [67, 110] as a function of k. It is clear that the adaptive
algorithm of Theorem 4.15 (and see Corollary 3.5) is significantly more efficient than
the uniform grid on ρ0T of Corollary 3.3 (recall the discussion above Lemma 3.4). For
k = 16, 000 we have min� νk,� ≈ 0.0101 and max� νk,� ≈ 0.2216 [see (4.42) for this
notation]. The ratio of these maximum and minimum values, which is approximately
the ratio of the maximum to the minimum spacing of the points μk,�, is about 20.2.

Example 2 We now turn to examples where we can apply the theory of Sect. 4.3. First
we consider the case of a cone, that is � = {(x, f (x)) : x ∈ R} where

f (x) := μ |x | , x ∈ R, (6.4)

for some μ ∈ R. This clearly satisfies (4.44), for any α ∈ (0, 1), and, where f± and
g± are defined by (4.45), f±(x) = μx , g±(x) = μ, for x > 0. For this example the
spectrum and spectral radius are known, viz.

σess(�) = σ(D�) = {0} ∪
{
± sin(arctan(|μ|)(1 − iy))

2 sin(π(1 − iy)/2)
: y ∈ R

}

so that ρ(D�) = |μ|
2
√
1 + μ2

(6.5)

(see, e.g., [49]) and, since D� is diagonalised by the Mellin transform when � is a
2D cone, D� is normal so that Wess(D�) = W (D�) = conv(σ (D�)) and ‖D�‖ =
w(D�) = ρ(D�).

To make comparison of these known results with the methods of Sect. 4.3 we can
choose, in principle, anyα ∈ (0, 1), but the choice ofα affects the choice of c via (4.54),
and thus the rate of decrease with N of Lc( f , N ), defined by (4.72). The operators
L̃±

t , given by (4.48), and thus the matrices AM
tk ,N , given by (4.63), also depend on

α, while the operators K̃ ±
t , given by (4.47), vanish in this case. It is worth noting

that the blocks of AM
tk ,N corresponding to L̃±

t are Toeplitz matrices in this example.

22 In our computations of Wn we neglect the factor ei(xm,N −xn,N )t when using (4.74) with K̃t replaced
by K̃ M

t . The resulting matrix is unitarily equivalent to T p,t,N ,M as defined in Sect. 4.4, so has the same
numerical range.
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Fig. 5 Numerical results for Example 3; f given by (6.4), α = 7
8

The conditions (4.54) reduce to c ≤ arccos(α)/| logα| and |μ|c ≤ α2/| logα|. As
the right hand sides of these inequalities are increasing on (0, 1), it is beneficial to
choose α closer to 1 in order to be able to choose a larger c. We select α = 7

8 , so that
arccos(α)/| logα| ≈ 3.78 and α2/| logα| ≈ 5.73, and then take c = 0.57, so that
(4.54) is satisfied for |μ| ≤ 10. For μ = 10 we see from Fig. 5a that, with M = 200,
m = 2000 and N = 16, the inequality (4.72) is satisfied and maxk=1,...,m ρ(AM

tk ,N ) ≈
0.4975 < 1

2 , so that ρ(D�) < 1
2 by Theorem 4.21, in agreement with (6.5) which gives

ρ(D�) = 5/
√
101 ≈ 0.4975. We see in Fig. 5b that the approximations σ N (D�) to

σ(D�), given by Theorem 4.19, agree closely, for the given parameter values, with
the expected lemniscates given by (6.5) for different values of μ.

Example 3 In this example we take

f (x) := |x | sin2(π logα |x |), x ∈ R, (6.6)

and � satisfies (4.44), but now just for one α ∈ (0, 1). Note that f± and g±, given
by (4.45), are the same as f and g in Example 1, so that g± satisfy the same bounds
as g in Example 1, and � has Lipschitz character f ′

max as defined in that example.
Thus the conditions (4.54) reduce in this example to (6.3) plus the condition that
sinh(2πc)/2 + c| logα| cosh2(πc) < α2. We choose α = 2

3 (see Fig. 3), for which
c = 0.019 satisfies this condition and (4.54), and f ′

max ≈ 8.26. We see from Fig. 6a
that, with M = 60, m = 10, 000 and N = 256, the inequality (4.72) is satisfied
and maxk=1,...,m ρ(AM

tk ,N ) < 1
2 , so that ρ(D�) < 1

2 by Theorem 4.21. Figure6b plots

an approximation σ N (D�) to σ(D�) given by Theorem 4.19, which is contained in
the circle of radius 1

2 (in red). By contrast, by (4.73), and arguing as in Example 1,
the numerical range W (D�) contains at least the closed disc of radius R∗ ≈ 0.8179
(shown in blue in Fig. 6b), where R∗ is as given in Corollary 4.25.

Figure 6 is also, by Theorem 6.1, relevant to the bounded Lipschitz domain �−
shown in Fig. 1b. This has boundary � ∈ DA which is C1 except at the single point
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Fig. 6 Numerical results for Example 3; f given by (6.6), α = 2
3

x = 0 where it coincides locally with the graph of f given by (6.6). It follows by the
above calculations and Theorem 6.1 that ρess(D�) < 1

2 for � = ∂�− and that Fig. 6b
is also a plot of the approximation �N (D�), defined in Theorem 6.1, to the essential
spectrum of D� for � = ∂�−. While ρess(D�) < 1

2 , Wess(D�), for � = ∂�−,
contains the closed disc of radius R∗ ≈ 0.8179 shown in Fig. 6b, by the above result
for the graph� given by (6.6), and a localisation result [11, Theorem 3.2] (and see [11,
Theorem 3.17]) for the essential numerical range, analogous to Theorem 5.2. Thus
also, by (1.8), ‖D�‖ess ≥ wess(D�) ≥ R∗.

Example 4 In this example we define f by (6.2) for x > 0 and set f (x) := 0 for
x ≤ 0, so that � and f satisfy (4.44). Recalling (4.45), we see that f+ and g+ are
the same as f and g in Example 1, while f− = 0 and g− = 0. The graph � has
Lipschitz character L = ( f ′

max − f ′
min)/2 = f ′

max − 1/2, where f ′
max and f ′

min are
as defined in Example 1. The conditions (4.54) reduce in this example to the same
conditions as in Example 3, and again we choose α = 2

3 and c = 0.019, so that � has
Lipschitz character L = f ′

max − 1/2 ≈ 7.76. Similarly to the previous example, we
see from Fig. 7a that, with M = 50, m = 5, 000, and N = 256, the inequality (4.72)
is satisfied and maxk=1,...,m ρ(AM

tk ,N ) < 1
2 , so that ρ(D�) < 1

2 by Theorem 4.21. The

approximation σ N (D�) to σ(D�), given by Theorem 4.19 and plotted in Fig. 7b, is
contained in the circle of radius 1

2 , while the numerical range W (D�) contains at least
the closed disc of radius R∗ ≈ 0.8179 shown in Fig. 7b.

Figure 7 is also, by Theorem 6.1, relevant to the bounded Lipschitz domain �−
shown in Fig. 1a. This has boundary � ∈ DA which is C1 except at the single point
x = 0 where it coincides locally with the graph of the function f described above. It
follows by the above calculations and Theorem 6.1 that ρess(D�) < 1

2 for � = ∂�−
and that Fig. 6b is also a plot of the approximation �N (D�), defined in Theorem 6.1,
to the essential spectrum of D� for � = ∂�−. Arguing as in the previous example,
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Fig. 7 Numerical results for Example 4; f+ = f given by (6.2), f− = 0, α = 2
3

while ρess(D�) < 1
2 , Wess(D�), for � = ∂�−, contains the closed disc of radius

R∗ ≈ 0.8179 plotted in Fig. 7b, and ‖D�‖ess ≥ wess(D�) ≥ R∗.

Remark 6.2 (Symmetry of the spectrum and essential spectrum) For Example 2 it is
immediate from (6.5) that σ(D�) is symmetric with respect to the origin; if z ∈ σ(D�)

then −z ∈ σ(D�). We conjecture, based on the numerical results for Examples 3
and 4 and similar calculations, that this same symmetry holds in 2D whenever �

is a dilation invariant graph satisfying (4.44). If this conjecture is true, then, for all
� ∈ DA, σess(D�) is symmetric with respect to the origin by Theorem 6.1. We note
that symmetry results in the 2D case of this sort are proved for D� : L2(�) → L2(�)

when � is the boundary of a bounded C2 domain �− in [35, Proposition 6], and for
D′

� as an operator on the natural energy space for general Lipschitz �− [25, Theorem
2.1] (in both these cases the relevant spectrum lies in [−1, 1]). In 3D, even when � is
a polyhedron, the spectrum and essential spectrum of D� need not be symmetric with
respect to the origin (see, e.g., [15]).
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