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Abstract
We consider computing eigenspaces of an elliptic self-adjoint operator depending on
a countable number of parameters in an affine fashion. The eigenspaces of interest are
assumed to be isolated in the sense that the corresponding eigenvalues are separated
from the rest of the spectrum for all values of the parameters. We show that such
eigenspaces can in fact be extended to complex-analytic functions of the parameters
and quantify this analytic dependence in a way that leads to convergence of sparse
polynomial approximations.A stochastic collocationmethodon an anisoptropic sparse
grid in the parameter domain is proposed for computing a basis for the eigenspace of
interest. The convergence of this method is verified in a series of numerical examples
based on the eigenvalue problem of a stochastic diffusion operator.

Mathematics Subject Classification 65C20 · 65N12 · 65N15 · 65N25 · 65N30

1 Introduction

Multiparametric eigenvalue problems, i.e., eigenvalue problems of operators that
depend on a large number of input parameters, arise in a variety of contexts. One
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may think of optimization of the spectrum of structures which depend on a number
of design parameters, but also uncertainty quantification of engineering systems with
data uncertainty. Recent literature has considered examples of mechanical vibration
problems, where a parametrization of the uncertainties in either the physical coeffi-
cients or the geometry of the system results in a multiparametric eigenvalue problem,
see e.g. [12, 13, 15, 19, 25, 26].

It is to be noted that multiparametric eigenvalue problems present some additional
difficulties when compared to corresponding source problems. First of all, the eigen-
value problem introduces a product of unknowns and hence non-linearities arise.
Second of all, one needs to pay special attention to the selection of the right eigen-
modes for different parameter values. For these reasons, techniques developed for the
analysis and the numerical solution of the source problems are, in general, not directly
applicable in the context of the eigenvalue problems. Moreover, some properties of
classical solution methods for deterministic eigenvalue problems are lost when the
problems are cast into the multiparametric setting. For instance, while a deterministic
conforming Galerkin approximation leads to monotonic convergence of the approxi-
mate eigenvalues from above, in the multiparametric setting the eigenvalue is in fact
a function over the parameter space and such monotonic convergence need not hold
except at the chosen sampling points.

Despite the aforementioned difficulties, in recent years several numerical methods
have been suggested for solving multiparametric eigenvalue problems. The focus has
been on spectral methods, which are based on polynomial approximations of the
solution in the parameter domain and which have been shown to exhibit superior
convergence rates compared to traditional Monte Carlo methods [3, 5, 23, 27]. These
typically rely on either stochastic collocation or stochastic Galerkin approximation of
the solution. From an implementational point of view stochastic collocation methods
can be viewed as a form of statistical sampling, where a polynomial approximation of
the solution is formed based on its values at specific points in the parameter space. The
obvious advantage of such strategies is that they are non-intrusive by nature, hence, any
existing deterministic solver can be used directly to solve for the individual samples
and parallelization is also trivial. On the other hand, stochastic Galerkin methods are
intrusive and in the context of eigenvalue problems they lead to a decoupled system
of nonlinear equations that is usually solved by an iterative algorithm. A benefit of the
stochasticGalerkinmethods is that a-posteriori analysis ismore natural and can be used
to define adaptive strategies for building the respective approximation space, see e.g.
[9]. A benchmark for stochastic collocation methods for multiparametric eigenvalue
problems is the sparse anisotropic collocation algorithm analyzed by Andreev and
Schwab in [1]. In the class of stochastic Galerkin methods, on the other hand, many
different variants of the have been proposed over the years [11, 14, 19, 26]. Quite
recently, low-rank methods have also been introduced [2, 7, 24].

By their very nature, the spectral methods considered above rely on the assump-
tion that the solution is smooth with respect to the input parameters. More precisely,
these methods exhibit optimal rates of convergence only if the eigenpair of interest
depends complex-analytically on the vector of parameters. This analytic dependence
has been established for nondegenerate eigenvalues and associated eigenvectors in [1].

123



Stochastic collocation method for computing eigenspaces of... 87

For such eigenpairs we therefore have optimal rates of convergence for stochastic col-
location algorithms, see [1] for details, and optimal asymptotic rates of convergence
for the iterative Galerkin based algorithms considered in [14]. However, these results
do not apply to cases where the eigenvalues are of higher multiplicity or where they
are allowed to cross within the parameter space. As noted in e.g. [15], many interest-
ing engineering applications admit eigenvalues that are clustered close together and
therefore the aforementioned eigenvalue crossings may not be avoided when these
problems are cast into the parameter-dependent setting.

In some special cases it is possible to identify the eigenmodes by some characteristic
features such as Fourier indices. Then it may be possible to track eigenpairs through
the parameter space by searching for the modes with the given indices even though
the ordering of such modes becomes mixed over the parameter space. In other words,
one well-defined basis for a given subspace is readily available. An example of such
a problem can be constructed by extending the Dirichlet Laplacian on the unit square
(Example 1).

Example 1 (Model problem) Let us consider the Dirichlet Laplacian eigenproblem
on the unit square. Note that this can also be seen as an example of the diffusion
eigenproblem with a constant diffusion coefficient. It is well-known that the first four
eigenpairs are

(λ1, u1) = (λ(1,1), u(1,1)) = (2π2, sin(πx1) sin(πx2)),

(λ2, u2) = (λ(2,1), u(2,1)) = (5π2, sin(2πx1) sin(πx2)),

(λ3, u3) = (λ(1,2), u(1,2)) = (5π2, sin(πx1) sin(2πx2)),

(λ4, u4) = (λ(2,2), u(2,2)) = (8π2, sin(2πx1) sin(2πx2)),

where the eigenpairs are indexed also by the Fourier indices. The double eigenvalue
is due to symmetry as shown in Fig. 1 . Here we are interested in the case where
the diffusion coefficient is no longer constant but depends on a countable number of
parameters. For example, we could think of a stochastic coefficient given in the form
of a Karhunen-Loève expansion. If the variation in the diffusion is restricted to x1-
direction, say, it is intuitively clear that it follows within the cluster (u(2,1), u(1,2)) that
λ(2,1) �= λ(1,2). Indeed, the relative order of the eigenvalues λ(2,1) and λ(1,2) ultimately
depends on the realisations of the diffusion parameters. This is the mechanism that
induces the crossing of eigenvalues in this context. Moreover, in the general setting

Fig. 1 Dirichlet Laplacian in the unit square: First four eigenfunctions
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it has to be established under what assumptions the cluster itself, i.e., the eigenspace
associated to λ(2,1) and λ(1,2) remains isolated.

In this paper we consider eigenspaces of an elliptic self-adjoint operator that
depends affinely on a countable number of parameters. Our main theoretical contribu-
tion is that we extend the results in [1] on analyticity to cover eigenspaces associated
to possibly clustered eigenvalues. The underlying assumption is that the eigenspace
of interest is isolated in the sense that the corresponding eigenvalues are separated
from the rest of the spectrum for all values of the input parameters. We show that
the spectral projection operator associated to such an isolated eigenspace can in fact
be extended to a complex-analytic function of the input parameters. This allows us
to construct a well-defined and smooth basis for the eigenspace of interest and show
that optimal convergence rates hold when the basis vectors are approximated using a
conveniently chosen set of orthogonal polynomials. We consider the stochastic collo-
cation method defined on an anisotropic sparse grid in the parameter domain, earlier
introduced in [1], for computing a basis for the eigenspace of interest. Our numerical
experiments show that, even in the presence of eigenvalue crossings, optimal rates of
convergence can be achieved for the subspace as a whole, while the convergence order
would actually break down if one tried to naively approximate individual eigenpairs.
In fact, in our examples we observe fast rates of convergence even if the terms in the
Karhunen- Loève series decay too slowly for the current theory to hold.

Our method constructs a basis for the eigenspace. This can be useful for at least two
reasons. First of all, once the basis has been computed, we may project our original
eigenproblem on this basis. It then becomes easier to track the individual eigenpairs as
we no longer need to deal with the original full eigenvalue problem. Instead, the actual
eigeninformation, values and modes, could be recovered, for instance, by sampling
realisations of the eigenmodes of the projected problem. Second of all, in important
applications such as frequency response analysis, finding a representation for the
eigenspace may be of independent interest, and here it is obtained directly.

The rest of this paper is structured as follows: In Sect. 2 the model problem is
defined in its multiparametric form, themain result, analyticity of isolated eigenspaces
is established in Sect. 3, the collocation scheme is defined in Sect. 4, and the numerical
experiments in Sect. 5, before concluding remarks in Sect. 6.

2 Problem formulation

We consider a class of self-adjoint operators that depend affinely on a countable
number of real parameters. This affine dependence is often of independent interest but
may also result from first order approximation of more general smooth dependence.
In particular, the commonly used model problem for a stochastic diffusion operator
falls within our framework.

123



Stochastic collocation method for computing eigenspaces of... 89

2.1 Multiparametric variational eigenvalue problems

Let V and H be separable Hilbert spaces over R and denote the associated inner
products by (·, ·)V and (·, ·)H and norms by ‖ · ‖V and ‖ · ‖H . Assume that V and H
form the so-called Gel’fand triple V ⊂ H ⊂ V ∗ with dense and compact embeddings.
We denote by L(V , V ∗) the space of bounded linear operators from V to its dual V ∗.
Furthermore, we denote by 〈·, ·〉V×V ∗ the duality pairing on V and V ∗, which may be
interpreted as an extension of the inner product (·, ·)H .

For each m ∈ N0 let bm : V × V → R be a symmetric and continuous bilinear
form, which we can associate with an operator Bm ∈ L(V , V ∗) using

bm(u, v) = 〈v, Bmu〉V×V ∗ ∀u, v ∈ V .

Suppose that there exists α0 > 0 such that

b0(v, v) ≥ α0 ‖v‖2V ∀v ∈ V (1)

and a sequence κ = (κ1, κ2, . . .) of positive real numbers such that ‖κ‖�1(N) < 1 and

|bm(u, v)| ≤ κmα0 ‖u‖V ‖v‖V ∀u, v ∈ V . (2)

We define a multiparametric bilinear form

b(y; u, v) := b0(u, v) +
∞∑

m=1

ymbm(u, v), u, v ∈ V , (3)

where y = (y1, y2, . . .) is a vector of parameters, each ofwhich takes values in a closed
interval of R. Equivalently, we can call (3) a multiparametric family of bilinear forms.
Without loss of generality we may assume a scaling such that y ∈ Γ := [−1, 1]∞. We
associate the form (3) with a multiparametric family of operators B : Γ → L(V , V ∗)
given by

B(y) := B0 +
∞∑

m=1

ym Bm . (4)

Remark 1 The ellipticity condition (1) could be weakened by assuming Gårding’s
inequality

b0(v, v) + w ‖v‖2H ≥ α0 ‖v‖2V ∀v ∈ V

for some w > 0 and α0 > 0. This can be reduced to the elliptic case using a standard
shift procedure.

The assumptions above imply that b(y; ·, ·) is uniformly bounded and uniformly
elliptic, i.e.,

sup
y∈Γ

|b(y; u, v)| ≤ C ‖u‖V ‖v‖V ∀u, v ∈ V
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and

inf
y∈Γ

b(y; v, v) ≥ α ‖v‖2V ∀v ∈ V

for some C > 0 and α > 0. Consider the following multiparametric eigenvalue
problem: find μ : Γ → R and u : Γ → V \{0} such that

B(y)u(y) = μ(y)u(y), (5)

or in variational form

b(y; u(y), v) = μ(y)(u(y), v)H ∀v ∈ V . (6)

TheLax-Milgram lemmaguarantees that for any y ∈ Γ the operator B(y) is boundedly
invertible and its inverse B−1(y) : H → V is compact due to the compact embedding
V ⊂ H . Therefore, the problem admits a countable number of real eigenvalues of
finite multiplicity and associated eigenfunctions that form an orthogonal basis of H .

Remark 2 A commonly used model problem is the stochastic diffusion eigenvalue
problem on D ⊂ R

n

{−∇ · (a(·, y)∇u(·, y)) = μ(y)u(·, y) in D
u(·, y) = 0 on ∂D,

(7)

where the diffusion coefficient is a random field expressed in its Karhunen-Loève
expansion

a(x, y) = a0(x) +
∞∑

m=1

am(x)ym, x ∈ D, y ∈ Γ . (8)

Indeed, if D is a bounded domain with a Lipschitz-smooth boundary, the variational
formulation of (7) is given by (6) with the choice V = H1

0 (D), H = L2(D) and

bm(u, v) =
∫

D
am∇u · ∇v dx ∀u, v ∈ V , m ∈ N0.

Assume that

∞∑

m=1

‖am‖L∞(D) <
ess infx∈D a0(x)

1 + CD
,

where CD denotes the Poincaré constant for D. Then it is easy to see that the assump-
tions (1) and (2) are satisfied with the choice α0 := (1 + CD)−1 ess infx∈D a0(x) and
κm := α−1

0 ‖am‖L∞(D).
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Stochastic collocation method for computing eigenspaces of... 91

We will assume an increasing enumeration of the eigenvalues so that

0 < μ1(y) ≤ μ2(y) ≤ . . . ∀y ∈ Γ ,

where each eigenvalue may be listed several times according to its multiplicity. We
denote by {ui (y)}∞i=1 a set of associated eigenfunctionswhich are orthonormal in H for
every y ∈ Γ . Ultimately we would like to compute any given subset of the eigenpairs
{(μi , ui )}∞i=1 of problem (5). However, due to possible eigenvalue crossings, this may
sometimes be an extremely difficult task to perform computationally, see e.g. [15],
[14]. Therefore, we will work under the assumption that the eigenspace of interest
is isolated, i.e., the associated eigenvalues are strictly separated from the rest of the
spectrum.

2.2 Isolated eigenspaces

Let J ⊂ N and S = #J denote its cardinality. For y ∈ Γ let σJ (y) := {μi (y)}i∈J

denote a set of eigenvalues of the problem (5) and UJ (y) := span{ui (y)}i∈J denote
the associated eigenspace. We use a shorthand notationUS for the eigenspaceUJ with
J = {1, 2, . . . , S}. We call an eigenspaceUJ isolated with parameter δ > 0 (or simply
just isolated) if

dist(σJ (y), σN\J (y)) ≥ δmax σJ (y) ∀y ∈ Γ .

A set of functions {gi }Si=1 ⊂ V Γ is called a basis of UJ if

UJ (y) = span{gi (y)}Si=1 ∀y ∈ Γ .

Moreover, this basis is called orthonormal if {gi (y)}Si=1 is orthonormal in H for every
y ∈ Γ . In the context of this paper we are interested in computing a basis for a given
isolated eigenspace UJ . We aim to demonstrate that, though the set of eigenvectors
{ui } j∈J clearly is an orthonormal basis of UJ , it may not always be computationally
the most accessible one.

Remark 3 Note that even if the eigenspaceUJ is isolated, double eigenvalues or eigen-
value crossings may still exist within the set {μi }i∈J . In other words, we might have
μi (y) = μ j (y) and i �= j for some i, j ∈ J and y ∈ Γ .

The following is an adaptation of the classical theorem by Weyl.

Proposition 1 Underassumptions (1)and (2) the eigenvalues of the problem (5) satisfy

(
1 − ‖κ‖�1(N)

)
μi (0) ≤ μi (y) ≤ (

1 + ‖κ‖�1(N)

)
μi (0), i ∈ N, y ∈ Γ .

Proof Recall the min-max characterization of eigenvalues. For i ∈ N let V (i) denote
the set of all subspaces of V with dimension equal to i . Given a subspace U ⊂ V we
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set Û = {v ∈ U | ‖v‖H = 1}. For some u ∈ Ûi (y) we now have

μi (0) = min
U∈V (i)

max
v∈Û

b0(v, v) ≤ max
v∈Ûi (y)

b0(v, v) = b0(u, u)

and

μi (y) = min
U∈V (i)

max
v∈Û

b(y; v, v) = max
v∈Ûi (y)

b(y; v, v) ≥ b(y; u, u).

It follows that

μi (y) ≥ b(y; u, u) ≥ (
1 − ‖κ‖�1(N)

)
b0(u, u) ≥ (

1 − ‖κ‖�1(N)

)
μi (0).

Similarly for some u ∈ Ui (0) we have

μi (y) = min
U∈V (i)

max
v∈Û

b(y; v, v) ≤ max
v∈Ûi (0)

b(y; v, v) = b(y; u, u)

and

μi (0) = min
U∈V (i)

max
v∈Û

b0(v, v) = max
v∈Ûi (0)

b0(v, v) ≥ b0(u, u)

so that

μi (y) ≤ b(y; u, u) ≤ (
1 + ‖κ‖�1(N)

)
b0(u, u) ≤ (

1 + ‖κ‖�1(N)

)
μi (0). ��

As a corollary we obtain sufficient criteria for an eigenspace to be isolated. For
simplicity we state these only in the case of an eigenspace US with S ∈ N.

Corollary 1 Assume (1) and (2). Given S ∈ N let

δ0 := μS+1(0) − μS(0)
μS(0)

>
2

‖κ‖−1
�1(N)

− 1
. (9)

Then the eigenspace US of the problem (5) is isolated with parameter

δ = δ(δ0, κ) := δ0 − (δ0 + 2) ‖κ‖�1(N)

1 + ‖κ‖�1(N)

> 0.

Proof Clearly δ > 0. By Proposition 1 we have

μS+1(y) − μS(y) ≥ (
1 − ‖κ‖�1(N)

)
μS+1(0) − (

1 + ‖κ‖�1(N)

)
μS(0)

= δ
(
1 + ‖κ‖�1(N)

)
μS(0)

≥ δμS(y)

for all y ∈ Γ . ��
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2.3 Canonical bases

Given a set J ⊂ N with cardinality S, we define a canonical basis {ûi }Si=1 for the
eigenspace UJ by setting

ûi (y) =
∑

j∈J

(uJ (i)(0), u j (y))H u j (y) ∀y ∈ Γ .

Here J (i) denotes the i th element in any fixed permutation of J . Observe that
the canonical basis vectors {ûi }Si=1 now only depend on the eigenspace UJ and
not on the choice of the individual eigenvectors {ui }i∈J . Moreover, if the matrix
{(uJ (i)(0), uJ ( j)(y))H }Si, j=1 is nonsingular, then {ûi }Si=1 is in fact a basis forUJ . Note
that ûi (y) need not be orthonormal for y �= 0 and that the inverse of the lowermost
singular value of the Gram matrix {(uJ (i)(0), uJ ( j)(y))H }Si, j=1 denotes the condition
number of the basis and is uniformly bounded away from infinity due to the spectral
separation assumption as given by the standard results for the convergence radii for
the perturbation expansions of spectral projections from [18].

3 Analyticity of isolated eigenspaces

Next we will prove that any isolated eigenspace is in fact analytic with respect to the
parameter vector y ∈ Γ in a suitable sense. To this end we extend our analysis for
complex valued arguments: In this section we assume that V and H are separable
Hilbert spaces over C and extend the inner products (·, ·)V and (·, ·)H as well as the
duality pairing 〈·, ·〉V×V ∗ for complex-valued arguments sesquilinearly. Now (4) can
be treated as the restriction to Γ of the operator-valued function

B(z) = B0 +
∞∑

m=1

zm Bm, z ∈ C
∞.

We equip Γ ⊂ C
∞ with the Hausdorff topology so that this fits the framework of

[16].

3.1 Riesz spectral projection

For z ∈ C
∞ let Ω(z) be a closed curve in the complex plane, which encloses a set of

eigenvalues of B(z), denoted by σJ (z), but no other elements in the spectrum of B(z).
We define the spectral projection

PJ (z) = 1

2π i

∫

Ω(z)
(ω − B(z))−1dω.
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We call the mapping z �→ UJ (z) analytic if z �→ PJ (z) is analytic, i.e., the mapping
z �→ (PJ (z)v, u)H is analytic for all v, u ∈ V . Note that z �→ (PJ (z)v, u)H is a
standard complex function of a complex variable.

The canonical basis from Sect. 2.3 can now be expressed as

ûi (y) = PJ (y)uJ (i)(0).

3.2 Analyticity in one parameter

We first restrict our analysis to operators depending on a single parameter. In other
words we consider the eigenvalues of (5) when y ∈ Γ is replaced by t ∈ [−1, 1] and
our operator thus takes the form

B(t) = B0 + t B1, t ∈ [−1, 1]. (10)

Here (10) will be understood as the restriction to [−1, 1] of the operator-valued
function

B(z) = B0 + zB1, z ∈ C.

The assumptions (1) and (2) now imply

〈v, B0v〉V×V ∗ ≥ α0 ‖v‖2V , ∀v ∈ V (11)

and
‖B1‖L(V ,V ∗) ≤ κ1α0 (12)

for some α0 > 0 and 0 < κ1 < 1. We obtain the following result.

Proposition 2 Consider the problem (5) with Bm = 0 for m ≥ 2, i.e., B : [−1, 1] →
L(V , V ∗) is of the form (10) and satisifies (11) and (12). Given a finite J ⊂ N assume
that the eigenspace t → UJ (t) is isolated with parameter δ > 0 for t ∈ [−1, 1]. Then
it admits a complex-analytic extension z → UJ (z) to the region

E(r) := {z ∈ C | ∃t ∈ [−1, 1] s.t. |z − t | < r(t)},

where

r(t) := κ−1
1 − |t |

2(1 + δ−1)
.

Moreover, for every z ∈ E(r) the spectrum of B(z) is separated into two parts σJ (z)
and σN\J (z) such that dist(σJ (z), σN\J (z)) > 0.
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Proof Assume first that J is a set of consecutive natural numbers. Let t ∈ [− 1, 1] and
denote γ (t) := dist(σJ (t), σN\J (t)) > 0. Let Ω(t) be the positively oriented circle of
radius

ρ(t) = 1

2
(max σJ (t) − min σJ (t)) + γ (t)

2

centered at

c(t) = 1

2
(max σJ (t) + min σJ (t)).

Then Ω(t) encloses σJ (t) but no elements of σN\J (t). Moreover, for every ω ∈ Ω(t)
we have

∥∥∥B(t)(B(t) − ω)−1
∥∥∥L(V ,V ∗)

=
∥∥∥id + ω(B(t) − ω)−1

∥∥∥L(V ,V ∗)

≤ 1 + |ω|
∥∥∥(B(t) − ω)−1

∥∥∥L(V ,V ∗)

≤ 1 +
(
max σJ (t) + γ (t)

2

) (
γ (t)

2

)−1

= 2

(
1 + max σJ (t)

γ (t)

)

≤ 2(1 + δ−1).

Due to (11) and (12) we have

‖B(t)v‖V ∗ ≥ ‖B0v‖V ∗ − |t | ‖B1v‖V ∗ ≥ α0(1 − κ1|t |) ‖v‖V
so that

‖B1v‖V ∗ ≤ κ1α0 ‖v‖V ≤ κ1

1 − κ1|t | ‖B(t)v‖V ∗

for all v ∈ V . By Remark VII.2.9 in [18] there exists r0(t) > 0 such that whenever
|z − t | < r0(t) the spectrum of B(z) is separated into two parts σJ (z) and σN\J (z) by
the curve Ω(t). Moreover, for such values of z the spectral projection valued function
z �→ PJ (z) is complex-analytic. In fact wemay set a = c = 0 and b = κ1(1−κ1|t |)−1

in the definition of r0(t) and obtain

r0(t) ≥
(
2(1 + δ−1)κ1

1 − κ1|t |
)−1

= κ−1
1 − |t |

2(1 + δ−1)
.

Since t ∈ [−1, 1] was arbitrary we conclude that z → PJ (z) is complex-analytic in
E(r).

An arbitrary J ⊂ N may always be partitioned in such a way that each partition
is a set of consecutive natural numbers. The previous proof applies for all partitions
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separately and thus the spectrum of B(z) is separated for all z ∈ E(r) and the total
projection z �→ PJ (z) is complex-analytic in E(r).

3.3 Analyticity in a countable number of parameters

We start with a simple Lemma that can be deduced from standard perturbation theory
for analytic operators, see Chapter VII in [18].

Lemma 1 Let z ∈ C
∞ and J ⊂ N be such that the spectrum of B(z) can be separated

into two parts σJ (z) and σJ\N(z) with dist(σJ (z), σJ\N(z)) > 0. Let m ∈ N and em
denote the m:th unit vector inR

∞. Then there exists ε(z) > 0 such that the eigenspace
ζ → UJ (z + emζ ) is complex-analytic for all ζ ∈ C such that |ζ | < ε(z).

Suppose now that κ ∈ �p(N) for some p ∈ (0, 1]. Then we have the following
result.

Theorem 1 Consider the problem (5) with assumptions (1) and (2). Assume that κ ∈
�p(N) for some p ∈ (0, 1]. Given a finite J ⊂ N assume that the eigenspace y →
UJ (y) is isolated with parameter δ > 0 for y ∈ Γ . Then it admits a complex-analytic
extension z → UJ (z) in the region

E(τ ) := {z ∈ C
∞ | dist(zm, [−1, 1]) < τm},

where τ = (τ1, τ2, . . .) is given by

τm := (1 − ε)(1 − ‖κ‖�1(N))κ
p−1
m

2 ‖κ‖�p(N) (1 + δ−1)
, m ∈ N

and ε ∈ (0, 1) is arbitrary.

Proof Let z ∈ E(τ ) and take y ∈ Γ such that |zm − ym | < τm for all m ≥ 1. Denote
ζ := z − y. We now have

〈v, B(y)v〉V×V ∗ ≥ α0(1 − ‖κ‖�1(N)) ‖v‖2V ∀v ∈ V

and

∥∥∥∥∥

∞∑

m=1

ζmBm

∥∥∥∥∥
L(V ,V ∗)

≤
∞∑

m=1

τm ‖Bm‖L(V ,V ∗) ≤ α0

∞∑

m=1

τmκm ≤ α0(1 − ‖κ‖�1(N))κ̃,

where

κ̃ :=
∞∑

m=1

τmκm

1 − ‖κ‖�1(N)

= 1 − ε

2(1 + δ−1)
< 1.
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Proposition 2 now applies for the shifted operator

t �→ B(y + tζ ) = B(y) + t
∞∑

m=1

ζmBm

and therefore the associated eigenspace t �→ UJ (y+ tζ ) can be extended to a function
z̃ �→ UJ (y + z̃ζ ) which is complex-analytic for all z̃ ∈ C such that

|z̃| <
κ̃−1

2(1 + δ−1)
= (1 − ε)−1 > 1.

In particular the eigenspace z̃ �→ UJ (y + z̃ζ ) is analytic in the vicinity of z̃ = 1.
By Lemma 1 the eigenspace UJ is now separately complex-analytic in the vicinity of
z. Since z ∈ E(τ ) was arbitrary, we see that the eigenspace is separately complex-
analytic in E(τ ). Therefore, we may take Hartogs’s theorem (Theorem 2.2.8 in [17])
and extend it to infinite dimensions (Definition 2.3.1, Proposition 3.1.2 and Theorem
3.1.5 in [16]) to see that the eigenspace is jointly complex-analytic in E(τ ).

4 Stochastic collocation on sparse grids

For computing the subspace of interest, we employ the anisotropic sparse grid colloca-
tion operator from [1]. There the collocation operator is defined with respect to finite
and monotone multi-index sets and it generalizes some collocation methods intro-
duced earlier in e.g. [20] and [21]. In this section we recapitulate the basic formulation
of the operator as well as the main results on convergence.

4.1 General multi-index collocation

We start by defining standard one-dimensional Lagrange interpolation operators, and
then extend these to multiple dimensions in a sparse fashion. The interpolation points
are chosen to be zeros of orthogonal (Legendre) polynomials.

Let L p denote the univariate Legendre polynomial of degree p ∈ N0, {χ(p)
k }pk=0

denote the abscissae of L p+1 and {w(p)
k }pk=0 denote the associated Gauss-Legendre

quadrature weights. We define one-dimensional interpolation operators I(m)
p which

map a function f ∈ C([−1, 1]) to the unique polynomial of degree p that interpolates
f at the points {χ(p)

k }pk=0. This may be written in Lagrange form as

(
I(m)
p f

)
(ym) =

p∑

k=0

f
(
χ

(p)
k

)
�
(p)
k (ym), (13)

where {�(p)
k }pk=0 are the standard Lagrange basis polynomials of degree p. We also

have an alternative representation
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(
I(m)
p f

)
(ym) =

p∑

k=0

dk( f )Lk(ym), p ∈ N0, (14)

where the coefficients {dk}pk=0 are given by

dk( f ) =
∫ 1

−1

(
I(m)
p f

)
(ym)Lk(ym)

dym
2

=
p∑

j=0

f (χ(p)
j )Lk(χ

(p)
j )w

(p)
j .

This is due to the fact that Gauss-Legendre quadrature of order p integrates any
polynomial of degree 2p + 1 exactly. For more information we refer to [6].

Now let (N∞
0 )c denote the set of all multi-indices with finite support, i.e.,

(N∞
0 )c := {α ∈ N

∞
0 | # supp(α) < ∞},

where supp(α) = {m ∈ N | αm �= 0}. Given a finite set A ⊂ (N∞
0 )c we define the

greatest active dimension MA := max{m ∈ N | ∃α ∈ A s.t. αm �= 0}. For α,β ∈ A
we write α ≤ β if αm ≤ βm for all m ≥ 1. We call the multi-index setA monotone if
whenever β ∈ (N∞

0 )c is such that β ≤ α for some α ∈ A, then β ∈ A.
Given a finite and monotone set A ⊂ (N∞

0 )c we define the sparse collocation
operator

IA :=
∑

α∈A

⊗

m≥1

(
I(m)

αm
− I(m)

αm−1

)
(15)

with the convention I(m)
−1 := 0. Using the so called sparse grid combination technique

originally presented in [10] (see also [4] for generalizations), we can rewrite the
operator (15) in a computationally more convenient form

IA =
∑

α∈A
cα

MA⊗

m=1

I(m)
αm

(16)

with coefficients

cα :=
∑

β∈A
1{β−1≤α≤β}(−1)‖α−β‖

�1(N) .

Note that aggregate quantities of our collocated solutionmay now be computed simply
by applying Gauss-Legendre quadrature rules on the components of (16).

By following Lemma 5 in [1] we may express the collocated solution (16) as an
expansion of multivariate Legendre polynomials. Given β, γ ∈ A we define multi-
dimensional collocation points

χ
(β)
γ :=

(
χ(β1)

γ1
, . . . , χ

(βMA )
γMA , 0, 0, . . .

)
∈ Γ ,
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associated multi-dimensional quadrature weights

w
(β)
γ := w(β1)

γ1
· · ·w(βMA )

γMA

and tensorized Legendre polynomials

�α(y) := Lα1(y1) · · · LaMA (yMA).

Using the relation (14) we obtain

(IAv) =
∑

α∈A
cα

⎛

⎝
MA⊗

m=1

I(m)
αm

⎞

⎠ v =
∑

α∈A
cα

∑

β≤α

�β

∑

γ≤α

w(α)
γ �β(χ(α)

γ )v(χ(α)
γ ) (17)

so that

(IAv) (y) =
∑

α∈A
dα(v)�α(y)

with expansion coefficients given by

dα(v) :=
∑

β∈A
1{β≥α}cβ

∑

γ≤β

w
(β)
γ �α(χ

(β)
γ )v(χ

(β)
γ ).

This expression is particularly convenient for evaluating our numerical solution in
polynomial form. The number of collocation points required to evaluate the solution
from equation (17) is

NA := #{χ(α)
γ ∈ Γ | α ∈ A, γ ≤ α} =

∑

α∈A

∏

m∈suppα

(αm + 1).

4.2 Convergence for a class of monotonemulti-index sets

The convergence rate of our collocation scheme depends on both the regularity of the
solution at hand as well as the selection of the underlying multi-index sets. Here we
follow the framework of [3] and [1] and restrict ourselves to a particular choice of
monotone multi-index sets. We then recapitulate the main convergence results from
[1].

Given a sequence η = (η1, η2, . . .) such that 1 > η1 ≥ η2 ≥ . . . ≥ 0 and ηm → 0
we define the multi-index set

Aε(η) := {α ∈ (N∞
0 )c | ηα ≥ ε}, ε > 0 (18)
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where ηα := ∏
m∈suppα η

αm
m (with the convention 00 := 1). The set Aε(η) is clearly

finite and monotone. In view of Theorem 1 we may set

ηm := sup
n≥m

1

ρn
, m ∈ N, (19)

where
ρm := τm +

√
1 + τ 2m, m ∈ N (20)

is equal to the sum of the semiaxes of a Bernstein ellipse (see [6] p. 19-20 and 312).
We then obtain the following result.

Proposition 3 Let H be a Hilbert space. Assume that v : Γ → H admits a complex-
analytic extension in the region

E(τ ) := {z ∈ C
∞ | dist(zm, [−1, 1]) < τm}

where τ = (τ1, τ2, . . .) is a sequence of positive numbers such that τm → ∞. Define
A↑(η) ⊂ (N∞

0 )c according to (18), (19) and (20). Assume that ηmmσ → 0 for some
σ > 2(1+ log 4). Then for any 1 > κ > 2(1+ log 4)/σ there exists C > 0 such that

∥∥v − IAε(η)v
∥∥
L2

ν (Γ )⊗H ≤ Cε1−κ ‖v‖L∞(E(τ );H)

for all 0 < ε ≤ η1. Here ν denotes the uniform probability measure on Γ .

Proof Clearly there exists M ≥ 1 such that

ηm ≤ η′
m := (m + 1)−σ ∀m > M .

Lemma 7 and Proposition 3 in [1] now imply that the so-called asymptotic overhead
order of η is

κ
∗(η) ≤ κ

∗(η′) ≤ 2(1 + log 4)/σ.

Hence, the result follows by taking κ > 2(1+ log 4)/σ ≥ κ
∗(η) in Theorem 6 (note

also Remark 10) of [1].

Wemay also estimate the convergence ratewith respect to the number of collocation
points.

Theorem 2 Let the conditions of Proposition 3 hold. Then for any s < σ −2(1+log 4)
there exists C = C(v) > 0 such that

∥∥v − IAε(η)v
∥∥
L2

ν (Γ )⊗H ≤ C(v)N−s/2
Aε(η)

as ε → 0.
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Proof By Lemma 6 in [1] the cardinality of the multi-index sets Aε(η) at the limit
ε → 0 is given by

#Aε(η) = F
(
ε−1/σ

)
, where F(x) = x

e2
√
log x

2
√

π(log x)3/4
(1 + O(1/ log x)).

For any ω > 1 we have the bound

#Aε(η) = F
(
ε−1/σ

)
� ε−ω/σ

and therefore ε � (#Aε(η))−σ̃ whenever σ̃ < σ . Proposition 3 now implies that

∥∥v − IAε(η)v
∥∥
L2

ν (Γ )⊗H � (#Aε(η))−σ̃ (1−κ)

for any 1 > κ > 2(1 + log 4)/σ . Given s < σ − 2(1 + log 4) we may now choose
κ > 2(1 + log 4)/σ and σ̃ < σ so that

s < σ̃(1 − κ)

and therefore

∥∥v − IAε(η)v
∥∥
L2

ν (Γ )⊗H � (#Aε(η))−s .

Finally, Lemma 4 in [1] implies that NAε(η) ≤ (#Aε(η))2 and the claim follows. ��

4.3 Application to eigenspace computation

In the following we briefly illustrate how the previous results can be applied to
eigenspace computation in the particularly interesting case that the coefficients
κ = (κ1, κ2, . . .) in (2) decay at an algebraic rate.

Suppose that the eigenspace y → UJ (y) of the problem (5) is isolated for some
finite J ⊂ N. In addition to (1) and (2) assume that

κm � (m + 1)−ς , m ∈ N,

where ς − 1 > σ > 2(1 + log 4). Note that this implies κ ∈ �p(N) for p > ς−1.
By Theorem 1 the eigenspace y → UJ (y) admits a complex analytic extension in the
region

E(τ ) := {z ∈ C
∞ | dist(zm, [−1, 1]) < τm},

where τm � (m + 1)ς(1−p). The sequence η in (19) now converges at the rate

ηm � τ−1
m � (m + 1)−ς(1−p),
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where ς(1 − p) > σ for sufficiently large p. Therefore ηmmσ → 0 and the con-
ditions of Proposition 3 and Theorem 2 hold. This means that we should expect the
convergence rate

∥∥ûi − IAε(η)(ûi )
∥∥
L2

ν (Γ )⊗V ≤ C(ûi )N
−s/2
Aε(η)

, s > ς − 3 − 2 log 4, (21)

when the sparse stochastic collocation algorithm is used to approximate the canonical
basis vectors {ûi }i∈J of UJ .

Remark 4 Wemay apply the Gram-Schmidt process at every collocation point in order
to obtain an approximately orthonormal basis for UJ .

5 Numerical examples: stochastic diffusion equation

In this section we present numerical examples to verify the convergence rate (21) of
our stochastic collocation algorithm. To this end we consider the model problem from
Remark 2, i.e., the eigenvalue problem of a stochastic diffusion operator, and compute
a canonical basis for one of its isolated eigenspaces. A standard finite element method
is employed to obtain the discretization in physical space: In each of the examples the
deterministic mesh is a grid of second order elements of diameter at most h, and the
finite element space is then obtained by projecting the variational equation (6) onto
the corresponding finite approximation space Vh ⊂ V . In the context of the current
paper, however, we focus on the convergence in the parameter space and disregard the
approximation error related to the spatial discretization.

Our numerical examples cover two different scenarios. First, we consider themodel
problem on the unit square and assume that the diffusion coefficient is constant in the
second coordinate direction (Example 1).By separation of variableswemay then either
reduce this problem to a one-dimensional problem (in physical space), where each
eigenvalue is well separated, or wemay solve the full two-dimensional problem,where
eigenmodes are tangled together. In particular we show that our subspace algorithm
applied to the full two-dimensional problem converges to the same result as when
a simple eigenvalue algorithm is employed to the dimensionally reduced problem.
Second, we apply our algorithm to the model problem in a dumbbell shaped domain
and let the diffusion coefficient depend on both spatial coordinates. In this case the
crossing of eigenvalues is intrinsic by nature and the eigenmodes can not be untangled
by mere separation of variables. We illustrate that similar convergence rates hold as
in the first example.

5.1 Reducible uncertainty model in the unit square

Consider the stochastic diffusion problem from Remark 2 with D := (0, 1)2. We let
a0 := 1 + CD , where CD denotes the Poincaré constant for D, i.e., the inverse of the
smallest eigenvalue of the Laplacian with Dirichlet boundary condition. For m ∈ N
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and ς > 1 we set

am(x) := (m + 1)−ς sin(mπx1), x = (x1, x2) ∈ D.

It is easy to see that the assumptions (1) and (2) hold with α0 = 1 and κm = (m+1)−ς .
For ς large enough, in particular for ς ≥ 2, we have ‖κ‖�1(N) < 1. In the following
examples we have used the values ς = 3 and ς = 6. Moreover, we have used
multi-index sets Aε(η) ⊂ (N∞

0 )c as defined in the Eqs. (18)–(20). The sequence
τ = (τ1, τ2, . . .) is set as τm := (m + 1)ς−1 which is in accordance with e.g. the
numerical experiments in [14].

Since the diffusion coefficient a(x) = a(x1) is independent of x2 we may now
reduce the original problem to a one-dimensional problem. By separation of variables
we see that functions of the form u(x, y) = ϕ(x1, y) sin(πkx2), where k ∈ N and
ϕ(x1, y) solves

{−∂x1(a(x1, y)∂x1ϕ(x1, y)) + π2k2a(x1, y)ϕ(x1, y) = λ(y)ϕ(x1, y), x1 ∈ (0, 1)
ϕ(0, y) = ϕ(1, y) = 0

(22)
for all y ∈ Γ , form a complete set of eigenfunctions for our original problem (7).
Classical Sturm-Liouville theory implies that the eigenvalues of (22) are simple and
separated for every fixed y ∈ Γ . This separation of eigenvalues also holds uniformly
with respect to y ∈ U , see Sect. 2.2 in [8]. Hence, we may solve the eigenpairs of this
one-dimensional problem via any simple stochastic eigenvalue algorithm such as the
one presented in [1].

Let us now investigate the subspace US of our model problem for S = 3. In Fig. 2
we have illustrated the first three eigenvalues of the problem as a function of the
first parameter y1 ∈ [−1, 1] when the rest are held constant. We see that there is an
eigenvalue crossing at y1 = 0 as is expected due to symmetry. As a result, there’s
multiple ways to choose the eigenfunction at this point. One example of the first three
eigenfunctions at y = 0 has been shown in Fig. 1.

At y = 0 the model problem reduces to a standard Laplace eigenvalue problem, the
eigenvalues of which are 2π2, 5π2, 5π2, 8π2 . . . Hence, for S = 3 we have δ0 = 0.6

Fig. 2 Model problem in the unit square with ς = 3: First few eigenvalues as a function of y1 ∈ [−1, 1]
when y2 = y3 = · · · = 0
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in equation (9). Moreover, from κm = (m + 1)−ς we compute ‖κ‖�1(N) ≈ 0.20206
when ς = 3 and ‖κ‖�1(N) ≈ 0.01734 when ς = 6. With these values the conditions
of Corrollary 1 hold and the subspaceU3 is in fact isolated with parameters δ ≈ 0.062
and δ ≈ 0.55 for the cases ς = 3 and ς = 6 respectively.

Let us first investigate the case ς = 6 and employ our sparse stochastic collocation
algorithm to compute a canonical basis for the subspace U3. We compute a reference
solution {û∗

i }3i=1 from the one-dimensional equation (22) using a mesh of 800 second
order line elements. When computing this reference solution we set ε > 0 so that
the number of multi-indices is #Aε(η) = 28 and the greatest active dimension is
MAε(η) = 16.This results in NAε(η) = 77 collocation points.Nextwe compute a series
of solutions {ûε

i }3i=1 from the two-dimensional equation (7) using different values of
ε > 0 and a mesh of 147456 second order quadrilateral elements. Convergence of the
approximate basis {ûε

i }3i=1 towards the reference solution {û∗
i }3i=1 with respect to the

error measure

θε :=
(

3∑

i=1

∥∥ûε
i − û∗

i

∥∥2
L2

ν (Γ )⊗H1(D)

)1/2

has been illustrated in Fig. 3. The error behaves like N−3.0
Aε(η)

with respect to the number
of collocation points.

We now repeat the previous exercise for ς = 3. Note that Theorem 2 does not in
fact hold for this value of ς but numerically we observe convergence nevertheless.
The faster rate of convergence of the terms in the Karhunen-Loève expansion (8)
justifies the use of a sparser discretization in physical space. In this case the reference
solution {û∗

i }3i=1 is obtained from the one-dimensional equation (22) using a mesh
of 160 second order line elements. For the reference solution we set ε > 0 so that
the number of multi-indices is #Aε(η) = 302 and the greatest active dimension is
MAε(η) = 129, which gives us NAε(η) = 1053 collocation points. Again we compute
a series of solutions {ûε

i }3i=1 from the two-dimensional equation (7) using different
values of ε > 0 and a mesh of 6724 second order quadrilateral elements. Convergence

Fig. 3 Model problem in the unit square when ς = 6: Convergence of the approximate solution {ûε
i }3i=1

to the reference solution {û∗
i }3i=1. The points represent values of the error measure θε on a log-log scale.

Dashed lines represent algebraic rates ε1.0 and N−3.0
Aε(η)
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Fig. 4 Model problem in the unit square when ς = 3: Convergence of the approximate solution {ûε
i }3i=1

to the reference solution {û∗
i }3i=1. The points represent values of the error measure θε on a log-log scale.

Dashed lines represent algebraic rates ε1.0 and N−1.5
Aε(η)

Fig. 5 Model problem in the unit square when ς = 3: Convergence of the approximate solution {ûε
2} to

the reference solution {û∗
2}. The points represent values of the L2ν(Γ ) ⊗ H1(D) error on a log-log scale.

Dashed lines represent algebraic rates ε1.0 and N−1.5
Aε(η)

that were observed in the previous example of Fig. 4

of the approximate basis {ûε
i }3i=1 towards the reference solution {û∗

i }3i=1 has been
illustrated in Fig. 4 . In this case the error behaves like N−1.5

Aε(η)
with respect to the

number of collocation points.
For comparison, let us naively try to solve the second eigenvector u2 using our

stochastic collocation algorithm. From Fig. 2 it is obvious that μ2(y) is not separated
from the rest of the spectrum for all y ∈ Γ and the subspaceU{2} is thus not isolated.We
compute the reference solution {û∗

2}using the two-dimensional equation (7) and amesh
of 6724 quadrilateral elements. Again we set ε > 0 so that the number of multi-indices
is #Aε(η) = 302 and the greatest active dimension is MAε(η) = 129, which gives us
NAε(η) = 1053 collocation points for the reference solution. Figure5 illustrates the
convergence of the approximate eigenvalue {ûε

2} computed on the same deterministic
mesh for different values of ε > 0 towards the reference solution {û∗

2} when ς = 3.
In this case convergence is virtually nonexistent compared to the one observed in
Fig. 4. Hence, we conclude that the convergence order predicted by Proposition 3 may
indeed break down for eigenvalues that are not separated from the rest of the spectrum
or for subspaces that are not isolated.Moreover, using the canonical basis vectors from
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Sect. 2.3 is essential to the algorithm as the subspace cannot necessarily be constructed
by naively computing the respective individual eigenvectors.

5.2 General uncertainty model in a dumbbell shaped domain

In this section we consider the stochastic diffusion problem (7) in a dumbbell shaped
domain. The geometry of the domain D is illustrated in Fig. 6 . Again we let a0 :=
1 + CD , where CD is the Poincaré constant for D. For m ∈ N and ς > 1 we set

am(x) := (m + 1)−ς sin

(
2πkmx1
2 + wD

)
sin(πlmx2), x = (x1, x2) ∈ D,

where (km, lm) denotes the m:th element of N
2 with respect to increasing graded

lexicographic order. As previously, the assumptions (1) and (2) hold with α0 = 1
and κm = (m + 1)−ς , whereas for ς ≥ 2 we have ‖κ‖�1(N) < 1. In the following
examples we again use the values ς = 3 and ς = 6 and define the multi-index sets
Aε(η) ⊂ (N∞

0 )c according to the Eqs. (18)–(20).
In this example we focus on the subspace UJ for J = {3, 4, 5, 6}. Figure7 illus-

trates the corresponding eigenvalues as a function of the first parameter y1 ∈ [− 1, 1]
when the rest are held constant. Now it seems that all four eigenvalues are tightly

Fig. 6 The dumbbell domain: Two unit squares connected by a small middle part of size hD = wD = 3/10
(height and width)

Fig. 7 Model problem in the dumbbell domain with ς = 3: First few eigenvalues as a function of y1 ∈
[−1, 1] when y2 = y3 = . . . = 0
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Fig. 8 Model problem in the dumbbell domain: Eigenfunctions 3 to 6 at y = 0

clustered and we observe multiple crossing points for the eigenvalues. An example of
the associated eigenfunctions at y = 0 has been shown in Fig. 8.

The approximate eigenvalues of the model problem at y = 0 obtained using a
standard deterministic solver are

μ1(0) = 19.134

μ2(0) = 19.207

μ3(0) = 46.490

μ4(0) = 46.995

μ5(0) = 49.306

μ6(0) = 49.307

μ7(0) = 78.775

...

Hence, for S = 3we have δ0 ≈ 1.4205 and for S = 6we have δ0 ≈ 0.59766 in Eq. (9).
Moreover, κ is as in the previous example. Again with these values the conditions of
Corrollary 1 hold for both S = 2 and for S = 6 and the subspace U{3,4,5,6} is isolated
with parameter δ ≈ 0.061 and δ ≈ 0.54 for the cases ς = 3 and ς = 6 respectively.

We start our convergence analysis from the case ς = 6. We compute a refer-
ence solution {û∗

i }6i=3 using a mesh of 220,756 second order triangular elements. In
computing this reference solution we set ε > 0 so that the number of multi-indices
is #Aε(η) = 28 and the greatest active dimension is MA = 16. This results in
NAε(η) = 77 collocation points. We then compute a series of solutions {ûε

i }6i=3 using
the same deterministic mesh. Convergence of these approximate basis vectors {ûε

i }6i=3
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Fig. 9 Model problem in the dumbbell domain when ς = 6: Convergence of the approximate solution
{ûε

i }3i=1 to the reference solution {û∗
i }3i=1. The points represent values of the error measure θε on a log-log

scale. Dashed lines represent algebraic rates ε1.0 and N−3.0
Aε(η)

Fig. 10 Model problem in the dumbbell domain when ς = 3: Convergence of the approximate solution
{ûε

i }3i=1 to the reference solution {û∗
i }3i=1. The points represent values of the error measure θε on a log-log

scale. Dashed lines represent algebraic rates ε1.0 and N−1.5
Aε(η)

towards the reference solution {û∗
i }6i=3 with respect to the error measure

θε :=
(

6∑

i=3

∥∥ûε
i − û∗

i

∥∥2
L2

ν (Γ )⊗H1(D)

)1/2

has been illustrated in Fig. 9. The error behaves like N−3.0
Aε(η)

with respect to the number
of collocation points.

Finally we repeat the previous exercise for ς = 3. Again, Theorem 2 does not
hold for this value of ς but we still observe convergence numerically. In this case
we use a mesh of 10,074 second order triangular elements. We compute a reference
solution {û∗

i }6i=3 with ε > 0 such that the number of multi-indices is #Aε(η) = 302
and the greatest active dimension is MA = 129, which gives us NAε(η) = 1053
collocation points. We then compute a series of solutions {ûε

i }6i=3 using different
values of ε > 0 and the same deterministic mesh. Convergence of the approximate
basis {ûε

i }6i=3 towards the reference solution {û∗
i }6i=3 has been illustrated in Fig. 10 .

Again the error behaves like N−1.5
Aε(η)

with respect to the number of collocation points.
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6 Conclusions and future prospects

We have studied the eigenvalue problem of an operator that depends affinely on a
countable number of input parameters. We have shown that if a set of eigenvalues
is strictly separated from the rest of the spectrum, then the subspace spanned by the
corresponding eigenvectors exhibits analytic dependence on the input parameters. We
have then defined a set of canonical basis vectors that span this subspace and are smooth
also in the vicinity of eigenvalue crossings. Hence, stochastic collocation methods,
with known rates of convergence, may be applied to compute these canonical basis
vectors.

In our numerical examples we have applied a sparse multi-index stochastic col-
location algorithm to computing subspaces of a stochastic diffusion operator written
in its Karhunen-Loève expansion. Our examples show that optimal rates of conver-
gence hold even in the presence of eigenvalue crossings. In fact, in our examples we
observe fast rates of convergence even if the terms in the Karhunen-Loève series decay
too slowly for the current theory to hold. The validity of our collocated solution has
been verified by comparing the results of our subspace algorithm to the results of a
simple eigenvalue algorithm applied to the same problem in a dimensionally reduced
form. We note, that a computationally more efficient solver for the problem at hand
could be obtained by a sparse composition of the stochastic and spatial approximation
operators, see e.g. [3] and [1].

In the current paper we have introduced an algorithm for computing a basis for the
eigenspace of interest with the drawback that the individual eigenvalues and eigenvec-
tors are lost in this process. In some cases, see for instance [15], we could try to regain
the eigenvalues by tracking smooth branches of the eigenmodes within the parameter
space. However, in the general case with more than one parameter, smooth branches
might not always exist: See the example by Rellich given in [22], page 60. In order to
overcome this problem, we would need to consider non-smooth solution methods, i.e.,
ones that does not rely on the analyticity of the solution. This topic is left for future
research.
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