
Numerische Mathematik (2022) 151:1–48
https://doi.org/10.1007/s00211-022-01280-5

Numerische
Mathematik

Stability and error estimates for non-linear
Cahn–Hilliard-type equations on evolving surfaces

Cedric Aaron Beschle1 · Balázs Kovács2

Received: 3 June 2020 / Revised: 21 October 2021 / Accepted: 17 February 2022 /
Published online: 5 April 2022
© The Author(s) 2022

Abstract
In this paper, we consider a non-linear fourth-order evolution equation of Cahn–
Hilliard-type on evolving surfaces with prescribed velocity, where the non-linear
terms are only assumed to have locally Lipschitz derivatives. High-order evolving
surface finite elements are used to discretise the weak equation system in space, and
a modified matrix–vector formulation for the semi-discrete problem is derived. The
anti-symmetric structure of the equation system is preserved by the spatial discretisa-
tion. A new stability proof, based on this structure, combined with consistency bounds
proves optimal-order and uniform-in-time error estimates. The paper is concluded by
a variety of numerical experiments.

Mathematics Subject Classification 65M60 · 35R01 · 35K55 · 65M12 · 65M15

1 Introduction

This paper studies non-linear fourth-order evolution equations of Cahn–Hilliard-type
on evolving surfaces with prescribed surface velocity. The nonlinearities and their
derivatives are only assumed to satisfy locally Lipschitz-type assumptions. The Cahn–
Hilliard-type equation is formulated as a system of second-order equations, exhibiting
an anti-symmetric structure:
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2 C. A. Beschle, B. Kovács

∂•u − ��(t)w = f (u,∇�(t)u) − u(∇�(t) · v),

w + ��(t)u = g(u,∇�(t)u)
on �(t). (1.1)

The semi-discretisation of the system by high-order evolving surface finite ele-
ments, cf. [15, 27], preserves this anti-symmetric structure, which is utilised to prove
a convergence result, via a new stability proof exploiting this structure. Optimal-order
uniform-in-time error estimates in the L2 and H1 norms (depending on the ∇�(t)u-
dependence of the nonlinearities) for both solution variables are proved.

Cahn and Hilliard first described an equation modelling phase separation processes
in [9]. Since then it found many applications in an evolving surface setting as well:
[40] investigates the asymptotic limit, and the effect of a mobility term leading to
a degenerate Cahn–Hilliard equation. In [5] a discretisation of a coupled Cahn–
Hilliard/Navier–Stokes system for lipid bilayer membranes is studied. In [41] the
authors simulated lateral phase separation and coarsening in biological membranes
by comparing surface Cahn–Hilliard and surface Allen–Cahn equations using unfitted
finite elements. In [42] amodel of lateral phase separation in a two component material
surface is presented. In [43] amodel for phase transitions on deforming surfaces is stud-
iedusing isogeometricfinite elements. For singular non-linearities,well-posedness and
global-in-time existence results are established in the recent preprint [8]. A review of
the planar case is found, e.g. in [21].

The Cahn–Hilliard equation on a stationary surface with boundary was first inves-
tigated by Du et al. [13]. They study a full discretisation of the Cahn–Hilliard equation
with homogeneous Dirichlet boundary conditions, and prove optimal-order error esti-
mates in the L2 norm for u, using linear finite elements.

Elliott and Ranner were the first to consider the Cahn–Hilliard equation on a
closed evolving surface with a prescribed velocity in [22]. They proved optimal-order
uniform-in-time error estimates in the L2 and H1 norms for the concentration differ-
ence and optimal-order L2-in-time error estimates in the L2 and H1 norms for the
chemical potential using a discretisation by linear evolving surface finite elements.
Using a new stability proof, the results of this paper improve the error estimates for
the chemical potential from optimal-order L2-in-time to optimal-order uniform-in-
time estimates.

In [41, 42] phase separation on dynamic membranes was approximated by a mixed
finite difference–finite element discretisation of the Cahn–Hilliard equation on evolv-
ing surfaces.

The main results of this paper are stability and optimal-order uniform-in-time
semi-discrete error estimates for the evolving surface non-linear Cahn–Hilliard-type
equations: (a) in the H1 norm if the nonlinearities depend on u and ∇�u, requiring at
least quadratic finite elements, and (b) both in the L2 and H1 norms if both nonlin-
earities are independent of the surface gradient, using finite elements of degree k ≥ 1.
Convergence is proved via a new stability estimate and showing consistency of the
semi-discretisation.

The rather general model (1.1) includes the Cahn–Hilliard equation with prolif-
eration terms [37, equation (3.1)], with advection terms on the surface cf. [34], the
generalised Cahn–Hilliard-type equation of Cherfils et al. [10, equation (1.7)], see
also [14, 38] and the reference therein for theoretical results, and the generalised

123



Stability and error estimates for non-linear Cahn–Hilliard-type equations... 3

Cahn–Hilliard equation from [26], etc. To correct mesh deformations of the evolving
discrete surface arbitrary Lagrangian–Eulerian (ALE) methods have been proposed
and analysed, see, e.g. [20, 33], the correcting advection-like term with the tangential
ALE velocity also fit into the framework of (1.1).

Another main contribution of the paper is a new stability proof based on multiple
energy estimates (summarised in Fig. 1). Themain idea is to exploit the anti-symmetric
structure of the second-order system corresponding to the Cahn–Hilliard(-type) equa-
tion. The generality of the stability proof can also be seen through the related results
in [25, 29]. A further advantage of this stability proof, is that we strongly expect it
to translate to proving stability and convergence of full discretisations using linearly
implicit backward difference formulae. This is, however, beyond the scope of this
paper.

In the presented stability analysis, the difference between the Ritz map of the
exact solution and the numerical solution is estimated in terms of defects and their
time derivatives. To account for initial errors in the chemical potential, a modification
of the semi-discrete system is required. The stability proof uses energy estimates,
performed in the matrix–vector formulation, and utilises the anti-symmetric structure
of the error equations, testing the error equations with the errors and also with their
time derivatives. The stability analysis was first developed for Willmore flow in [29].
A uniform-in-time L∞ bound for the numerical solution is key to estimate the non-
linear term. It is obtained from the time-uniform H1 norm error bounds using an
inverse estimate and exists for a small time due to a continuous initial function. The
stability proof is independent of geometric errors.

In the consistency analysis the L2 norms of the defects and their time derivatives are
estimated. The bounds use geometric error estimates, including interpolation and Ritz
map error estimates, bounds on the discrete surface velocity, and geometric approxi-
mation errors for high-order evolving surface finite elements, see [27].

The paper is structured as follows. In Sect. 2, based on the papers [15, 22], the
weak formulation for the Cahn–Hilliard equation on evolving surfaces is derived as
a system of equations. In Sect. 3 the evolving surface finite element method is used
to discretise this system of equations in space. The obtained semi-discrete problem
is written as a matrix–vector formulation. In Sect. 4 the novel error estimates proved
in this work are stated and discussed in comparison to the existing results by Elliott
and Ranner [22]. Section 5 contains the stability part of the proof. Section 6 treats the
consistency part of the proof. In Sect. 7 the two parts are combined to prove the main
result. In Sect. 8 a full discretisation to the problem is given, cf. [1, 2]. In Sect. 9 the
theoretical results are complemented by numerical experiments.

2 Cahn–Hilliard equation on evolving surfaces

In the following we consider a smoothly evolving closed surface �(t) ⊂ R
d+1,

with d = 1, 2, for 0 ≤ t ≤ T . The initial surface �(0) = �0 is given (and at
least C2), and it evolves with the given and sufficiently smooth velocity v. The sur-
face �(t) is given as the image of a smooth mapping X : �0 × [0, T ] → R

d+1, by
�(t) = {X(p, t) | p ∈ �0}. The embedding X and the velocity v satisfy the ordinary
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4 C. A. Beschle, B. Kovács

differential equation (ODE):

∂t X(p, t) = v(X(p, t), t) p ∈ �0, 0 ≤ t ≤ T . (2.1)

Let ν denote the unit outward normal vector to �(t). Then the surface (or tangential)
gradient on �(t), of a function u : �(t) → R, is denoted by ∇�(t)u, and is given
by ∇�(t)u = ∇ū − (∇ū · ν)ν (the surface gradient is independent of the extension ū
into a small neighbourhood of �(t)), while the Laplace–Beltrami operator on �(t) is
given by ��(t)u = ∇�(t) · ∇�(t)u. Moreover, ∂•u denotes the material derivative of u,
i.e. ∂•u(·, t) = d/dt(u(X(·, t), t)) = ∂t ū(·, t)+v ·∇ū(·, t). The space–timemanifold
will be denoted by GT = ∪t∈[0,T ]�(t) × {t}. For more details on these notions we
refer to [12, 15, 16, 27].

In this paper we consider the general non-linear Cahn–Hilliard-type equation on
evolving surfaces. It is a second-order system of partial differential equations for scalar
functions u, w : GT → R given by

∂•u − ��(t)w = f (u,∇�(t)u) − u(∇�(t) · v) on �(t), (2.2a)

w + ��(t)u = g(u,∇�(t)u) on �(t), (2.2b)

with continuous (and sufficiently regular) initial condition u(·, 0) = u0 on the initial
surface �0. The scalar functions f , g : R×R

d → R and their derivatives ∂i f , ∂i g are
only assumed to be locally Lipschitz continuous. A typical example is a double-well
potential, i.e. for the Cahn–Hilliard equation sets f (u) = 0 and g(u) = 1

4 ((u
2−1)2)′.

In this case, the solution u ∈ [−1, 1] models the concentration of surfactant fluids,
with u = ±1 indicating the pure occurrences of each, cf. [9].

The classical Cahn–Hilliard equation on a stationary surface � can be derived as
the H−1(�) gradient flow of the Ginzburg–Landau energy

E(u) =
∫

�

( 1

2
|∇�u|2 + F(u)

)
, (2.3)

cf. [22, Remark 2.1]. In [22] it is stated, that to obtain a gradient flow on an evolving
surface, a model for the surface velocity v is needed, leading to a coupled system for
u and v. In the evolving surface case, w = −��(t)u + f (u) (with f = F ′) is the
variation of the evolving surface Ginzburg–Landau energy, see [40].

2.1 Weak formulation

On the evolving surface �(t) we recall the definition of standard Sobolev spaces
L2(�(t)), and H1(�(t)) and its high-order variants, endowed with their usual norms,
see [15, 17]. We also refer to [3, 4] for the definition of space–time function spaces.

The weak formulation of the Cahn–Hilliard system (2.2) reads: Find u(·, t) ∈
H1(�(t)) with a continuous-in-time material derivative ∂•u(·, t) ∈ L2(�(t)) and
w(·, t) ∈ H1(�(t)) such that for all test functions ϕu(·, t) ∈ H1(�(t)) and ϕw(·, t) ∈
H1(�(t))
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∫
�(t)

∂•uϕu +
∫

�(t)
∇�(t)w · ∇�(t)ϕ

u =
∫

�(t)
f (u,∇�(t)u) ϕu

−
∫

�(t)
u ϕu(∇�(t) · v), (2.4a)

∫
�(t)

wϕw −
∫

�(t)
∇�(t)u · ∇�(t)ϕ

w =
∫

�(t)
g(u,∇�(t)u) ϕw, (2.4b)

with initial data u(·, 0) = u0 on �0.
It is important to note here that the anti-symmetric structure of the above systems

(2.2) and (2.4) will serve as a key property which will be heavily used in the stability
analysis.

Using the Leibniz formula [15], an equivalent weak form reads as: Find u(·, t) ∈
H1(�(t)) with a continuous-in-time material derivative ∂•u(·, t) ∈ L2(�(t)) and
w(·, t) ∈ H1(�(t)) such that for all test functions ϕu(·, t) ∈ H1(�(t)), with
∂•ϕu(·, t) = 0, and ϕw(·, t) ∈ H1(�(t))

d

dt

( ∫
�(t)

uϕu
)

+
∫

�(t)
∇�(t)w · ∇�(t)ϕ

u =
∫

�(t)
f (u,∇�(t)u) ϕw, (2.5a)

∫
�(t)

wϕw −
∫

�(t)
∇�(t)u · ∇�(t)ϕ

w =
∫

�(t)
g(u,∇�(t)u) ϕw. (2.5b)

We note that as solution spaces for the weak problems one can equivalently use
space–time Hilbert spaces, as it was done in [22, Definition 2.1] (denoted, e.g. by L∞

H1

and L2
H1 therein). For more details on these spaces we refer to [3, 4, 23].

2.2 Abstract formulation

We will use the time-dependent bilinear forms, cf. [16, 17], for any u, ϕ ∈ H1(�(t)):

m(t; u, ϕ) =
∫

�(t)
u ϕ, a(t; u, ϕ) =

∫
�(t)

∇�(t)u · ∇�(t)ϕ,

r(t; v; u, ϕ) =
∫

�(t)
u ϕ (∇�(t) · v),

(2.6)

We further define a∗(t; ·, ·) := a(t; ·, ·) + m(t; ·, ·). All bilinear forms are symmetric
in u and ϕ, m and a∗ are positive definite, while a is positive semi-definite. Whenever
it is possible, without confusion, we will omit the omnipresent time-dependence of
the bilinear forms and write m(·, ·) instead of m(t; ·, ·).

We note here that the bilinear forms directly generate the (semi-)norms, for any
u ∈ H1(�(t)):

‖u‖2L2(�(t)) = m(u, u),

‖∇�(t)u‖2L2(�(t)) = a(u, u),
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6 C. A. Beschle, B. Kovács

‖u‖2H1(�(t)) = a∗(u, u).

The weak formulation (2.4) is rewritten, using the bilinear forms from above, as

m(∂•u, ϕu) + a(w, ϕu) = m( f (u,∇�(t)u), ϕw) − r(v; u, ϕu),

m(w, ϕw) − a(u, ϕw) = m(g(u,∇�(t)u), ϕw),

and (2.5) is rewritten as

d

dt
m(u, ϕu) + a(w, ϕu) = m( f (u,∇�(t)u), ϕw),

m(w, ϕw) − a(u, ϕw) = m(g(u,∇�(t)u), ϕw).

The transport formula for the above bilinear forms, [17, Remark 3.3], is used later
on, and reads, for any u(·, t), ϕ(·, t) ∈ L2(�(t)) with ∂•u(·, t), ∂•ϕ(·, t) ∈ L2(�(t))
for all 0 ≤ t ≤ T :

d

dt
m(u, ϕ) = m(∂•u, ϕ) + m(u, ∂•ϕ) + r(v; u, ϕ). (2.9)

3 Semi-discretisation on evolving surfaces

For the numerical solution of the above examples we consider a high-order evolving
surface finite element method. In the following, from [12, 15, 16, 27], we briefly recall
the construction of the discrete evolving surface, the high-order evolving surface finite
element space, the lift operation, and the discrete bilinear forms, etc., which are used
to discretise the Cahn–Hilliard equation of Sect. 2.

3.1 Evolving surface finite elements

The smooth initial surface �(0) is approximated by a k-order interpolating discrete
surface, (a continuous, piecewise polynomial interpolation of �(0) of degree k over
a reference element), denoted by �h(0) := �k

h(0), with vertices p j ∈ �(0), j =
1, . . . , N , and is given by the (high-order) triangulation, with maximal mesh width h.
In the following, we refer to �h as a triangulation, and to the Lagrange points p j as
nodes. More details and the properties of such a discrete high-order initial surface are
found in [12, Section 2] and [27, Section 3].

The triangulation of the surface �(t), denoted by �h(t) := �k
h(t), is obtained by

integrating the ODE (2.1) (with the known velocity v) from time 0 to t for all the nodes
p j of the initial (high-order) triangulation. The nodes x j (t) are on the exact surface
�(t) for all times. The discrete surface �h(t) remains to be an interpolation of �(t)
for all times. We always assume that the evolving (high-order) triangles are forming
an admissible triangulation of the surface �(t), which includes quasi-uniformity, and
that the discrete surface is not a global double covering, cf. Section 5.1 of [15]. For
more details (e.g. on time-uniformity of geometric bounds) we refer to [27, Section 3].
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The discrete tangential gradient on the discrete surface �h(t), of a function ϕh :
�h(t) → R, is given by ∇�h(t)ϕh = ∇ϕ̄h − (∇ϕ̄h · νh)νh , understood in an element-
wise sense, with νh denoting the normal to �h(t). (The discrete tangential gradient
is independent of the arbitrary smooth extension ϕ̄h onto a small neighbourhood of
�h(t).)

The high-order evolving surface finite element space Sh(t) � H1(�(t)) on �h(t)
is spanned by continuous, piecewise linear nodal basis functions on �h(t) satisfying
for each node (x j (t))N

j=1

φi (x j (t), t) = δi j , for i, j = 1, . . . , N and 0 ≤ t ≤ T .

The finite element space is given as

Sh(t) = span{φ1(·, t), . . . , φN (·, t)} for 0 ≤ t ≤ T .

The discrete velocity Vh of the surface �h(t) is the evolving surface finite element
interpolation of the surface velocity v of �(t), i.e.

Vh(·, t) =
N∑

j=1

v(x j (t), t)φ j (·, t) for 0 ≤ t ≤ T . (3.1)

The discrete material derivative is, for 0 ≤ t ≤ T , given by

∂•
hϕh(·, t) = ∂t ϕ̄h(·, t) + Vh · ∇ϕ̄h(·, t), for all ϕh(·, t) ∈ Sh(t), (3.2)

independent of ϕ̄h as an arbitrary smooth extension of ϕh onto a small neighbourhood
of �h(t). The key transport property of basis functions derived in Proposition 5.4 in
[15], is

∂•
hφ j (·, t) = 0, for j = 1, . . . , N and 0 ≤ t ≤ T . (3.3)

3.2 Lift

Following [12, 15], we define the lift operator ·	 to compare functions on �h(t), with
a sufficiently small h ≤ h0 (such that �h(t) is in a sufficiently small neighbourhood
of �(t)), with functions on �(t). For functions ϕh : �h(t) → R, we define the lift as

ϕ	
h : �(t) → R with ϕ	

h(y) = ϕh(x), ∀x ∈ �h(t) for 0 ≤ t ≤ T , (3.4)

where y = y(x, t) ∈ �(t) is the unique point on �(t) with x − y orthogonal to the
tangent space Ty�(t). The inverse lift ϕ−	 : �h(t) → R denotes a function whose lift
is ϕ : �(t) → R. Finally, the lifted finite element space is denoted by S	

h(t), and is
given as

S	
h(t) = {

ϕ	
h | ϕh ∈ Sh(t)

}
, for 0 ≤ t ≤ T .
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8 C. A. Beschle, B. Kovács

3.3 Discrete bilinear forms

The time-dependent discrete bilinear forms on Sh(t), i.e. the discrete counterparts of
m, a and g, are given, for any uh, ϕh ∈ Sh(t), by

mh(t; uh, ϕh) =
∫

�h(t)
uh ϕh, ah(t; uh, ϕh) =

∫
�h(t)

∇�h(t)uh · ∇�h(t)ϕh,

rh(t; Vh; uh, ϕh) =
∫

�h(t)
uh ϕh (∇�h(t) · Vh).

(3.5)

As in the continuous case we let a∗
h(t; ·, ·) := ah(t; ·, ·) + mh(t; ·, ·). The discrete

bilinear forms, clearly inherit the properties of their continuous counterparts, such as
the transport formula (2.9), see, e.g. [17, 27].

As in the continuous case, the discrete bilinear forms directly generate the discrete
(semi-)norms, for any uh ∈ Sh(t),

‖uh‖2L2(�h(t)) = mh(uh, uh),

‖∇�h(t)uh‖2L2(�h(t)) = ah(uh, uh),

‖uh‖2H1(�h(t)) = a∗
h(uh, uh).

According to [12, 15], the discrete norms and their continuous counterparts are
h-uniformly equivalent, for any ϕh ∈ Sh(t) and 1 ≤ q ≤ ∞,

c‖ϕ	
h‖Lq (�(t)) ≤ ‖ϕh‖Lq (�h(t)) ≤ C‖ϕ	

h‖Lq (�(t)),

c‖∇�(t)ϕ
	
h‖Lq (�(t)) ≤ ‖∇�h(t)ϕh‖Lq (�h(t) ≤ C‖∇�(t)ϕ

	
h‖Lq (�(t)).

(3.6)

3.4 Semi-discrete problem

The semi-discrete problem corresponding to the Cahn–Hilliard equation (2.4) reads:
Find a solution uh(·, t) ∈ Sh(t) with continuous-in-time discrete material derivative
∂•

h uh(·, t) ∈ Sh(t) and wh(·, t) ∈ Sh(t) such that for all test functions ϕu
h (·, t) ∈ Sh(t)

and ϕw
h (·, t) ∈ Sh(t)

mh(∂•
h uh, ϕu

h ) + ah(wh, ϕu
h ) = mh( f (uh,∇�h(t)uh), ϕu

h )

−rh(Vh; uh, ϕu
h ), (3.7a)

mh(wh, ϕw
h ) − ah(uh, ϕw

h ) = mh(g(uh,∇�h(t)uh), ϕw
h ), (3.7b)

with given initial data uh(·, 0) = u0
h on �0

h .
Equivalently, the semi-discrete problemcorresponding to theweak form (2.5), using

the discrete version of the transport formula (2.9) for (3.7a), reads: Find a solution
uh(·, t) ∈ Sh(t) with continuous-in-time discrete material derivative ∂•

h uh(·, t) ∈
Sh(t) and wh(·, t) ∈ Sh(t) such that for all test functions ϕu

h (·, t) ∈ Sh(t) with

123
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∂•
hϕu

h = 0 and ϕw
h (·, t) ∈ Sh(t)

d

dt
mh(uh, ϕu

h ) + ah(wh, ϕu
h ) = mh( f (uh,∇�h(t)uh), ϕu

h ), (3.8a)

mh(wh, ϕw
h ) − ah(uh, ϕw

h ) = mh(g(uh,∇�h(t)uh), ϕw
h ), (3.8b)

again, with given initial data uh(·, 0) = u0
h on �0

h .
By a direct modification of the proof of Theorem 3.1 in [22] (based on standard

ODE theory), we obtain that the above semi-discrete problem is well-posed, and the
discrete material derivatives of both solution components are continuous in time,
i.e. the nodal values of the semi-discrete solution are both C1 in time. Therefore, for a
given uh(·, 0) = u0

h , the initial value wh(·, 0) = w0
h is obtained by solving the elliptic

problem (3.7b) (or (3.8b)) at time t = 0.

3.5 Matrix–vector formulation

We collect the nodal values of uh(·, t) = ∑N
j=1 u j (t)φ j (·, t) ∈ Sh(t) and wh(·, t) =∑N

j=1 w j (t)φ j (·, t) ∈ Sh(t), the solution pair of the semi-discrete problem (3.7), into

the vectors u(t) = (u1(t), . . . , uN (t)) ∈ R
N and w(t) = (w1(t), . . . , wN (t)) ∈ R

N .
We define the time-dependent matrices, the mass and stiffness matrix, corresponding
to the bilinear forms mh and ah , respectively, and the non-linear terms involving f
and g:

M(t)|k j = mh
(
φ j (·, t), φk(·, t)

)
,

A(t)|k j = ah
(
φ j (·, t), φk(·, t)

)
,

f(u(t))|k = mh
(

f (uh(·, t),∇�h(t)uh(·, t)), φk(·, t)
)
,

g(u(t))|k = mh
(
g(uh(·, t),∇�h(t)uh(·, t)), φk(·, t)

)
,

j, k = 1, . . . , N .

(3.9)

We further define the matrix corresponding to the bilinear form a∗
h :

K(t) = M(t) + A(t).

We also note that, via the transport property (3.3), the time derivative of the mass
matrix is given by

Ṁ(t)|k j = rh(Vh(·, t);φ j (·, t), φk(·, t)).

The discrete material derivative of any surface finite element function uh(·, t) ∈
Sh(t), with nodal values u(t), again by using the transport property (3.3) of the basis
functions and the product rule, is given by
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10 C. A. Beschle, B. Kovács

∂•
h uh(·, t) = ∂•

h

( N∑
j=1

u j (t)φ j (·, t)

)
=

N∑
j=1

u̇ j (t)φ j (·, t). (3.10)

Thus, the nodal values of ∂•
h uh are given by the vector u̇(t).

The finite element semi-discretisation of the Cahn–Hilliard equation (3.7) then
reads:

M(t)u̇(t) + A(t)w(t) = f(u(t)) − Ṁ(t)u(t), (3.11a)

M(t)w(t) − A(t)u(t) = g(u(t)). (3.11b)

The anti-symmetric structure of (3.11), which is shared with (2.2) and (3.7), is recog-
nised best in the rewritten form:

[
M(t)

d

dt
A(t)

−A(t) M(t)

] [
u(t)
w(t)

]
=

[
f(u(t)) − Ṁ(t)u(t)

g(u(t))

]
.

In order to exploit this favourable structure, the stability analysiswill use thematrix–
vector system (3.11).

For computations, it is however more advantageous to use the equivalent matrix–
vector formulation

d

dt

(
M(t)u(t)

)
+ A(t)w(t) = f(u(t)), (3.12a)

M(t)w(t) − A(t)u(t) = g(u(t)), (3.12b)

where the surface velocity Vh does not appear directly, as compared to the term with
Ṁ(t) in (3.11).

The C1-regularity results stated after (3.8) translate to the modified system as well:
the solutions u(t) and w(t) are both in C1(0, T ; R

N ).

3.6 Amodified problem

The initial value u(0) is chosen suitably, on the other hand the initial value w(0) is
obtained, from the second equation of the system (3.11), or equivalently (3.12). Our
error analysis requires the errors in both initial values to be O(hk+1) in the H1(�h)

norm. For u this is achieved using the Ritz map of u0 (in which case the initial error
in u will vanish), however, such an error estimate is still not feasible for w. Instead
we transform the second equation such that the initial error in w also vanishes, in
exchange for a time-independent (and small) inhomogeneity.

To obtain optimal-order error estimates wemodify the equation (3.11b) (and equiv-
alently (3.12b) as well) using a time-independent correction term. Let w̄(0) ∈ R

N

denote the solution obtained from (3.11b) at time t = 0, and let w∗(0) ∈ R
N contain

the nodal values of the Ritz map of w(0), and set

ϑ = M(0)
(
w∗(0) − w̄(0)

) ∈ R
N . (3.13)
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Stability and error estimates for non-linear Cahn–Hilliard-type equations... 11

The second equation is then modified, such that the system (3.11) reads:

M(t)u̇(t) + A(t)w(t) = f(u(t)) − Ṁ(t)u(t), (3.14a)

M(t)w(t) − A(t)u(t) = g(u(t)) + ϑ . (3.14b)

Similarly, the equivalent system (3.12) is modified to:

d

dt

(
M(t)u(t)

)
+ A(t)w(t) = f(u(t)), (3.15a)

M(t)w(t) − A(t)u(t) = g(u(t)) + ϑ . (3.15b)

The semi-discrete finite element formulations (3.7) and (3.8) aremodified accordingly.
We recall that the solutions of themodified semi-discrete problems (3.14) and (3.15)

are both C1 in time.
The initial value w(0) is obtained by solving the elliptic problem (3.14b) at t = 0,

which, via (3.13) and (3.11b), yields

M(0)w(0) = A(0)u(0) + g(u(0)) + ϑ

= M(0)w̄(0) + ϑ

= M(0)w∗(0).
(3.16)

The advantage of the modified system is, that the errors in the initial data for w
are included into the problem similarly to a residual term, which allows for a feasible
weaker norm estimate of this term (in fact we will show later, that it is a defect term).
Note that for the linear case, this is nothing else but shifting the solutions to a particular
initial value using a constant inhomogeneity.

4 Error estimates

We next state a new convergence result for the evolving surface finite element semi-
discretisation of polynomial degree k ≥ 1 if the nonlinearities only depend on u, and
of degree k ≥ 2 if they also depend on∇�u. In the theorem below, and in the remainder
of this work, these two cases will be referred to as (a) and (b), respectively.

Theorem 4.1 Let u and w be the weak solutions of the Cahn–Hilliard equation on an
evolving surface (2.2), and assume that they satisfy the regularity conditions (4.1).

Then, there exists an h0 > 0 such that for all h ≤ h0 the errors between the solutions
u and w and the evolving surface finite element solutions uh and wh of degree k, with
nodal vectors solving the modified system (3.15), and choosing the Ritz map of u0 for
the initial value uh(·, 0), satisfy the optimal-order uniform-in-time error estimates in
both variables, for 0 ≤ t ≤ T :

(a) For general nonlinearities f and g depending on (u,∇�u), for at least quadratic
finite elements k ≥ 2:

‖u	
h(·, t) − u(·, t)‖H1(�(t)) ≤ Chk, and ‖w	

h(·, t) − w(·, t)‖H1(�(t)) ≤ Chk,
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12 C. A. Beschle, B. Kovács

whereas the material derivative of the error in u satisfies

(∫ t

0
‖∂•(u	

h(·, s) − u(·, s))‖2H1(�(s))ds

)1/2

≤ Chk .

(b) If the nonlinearities are both independent of ∇�u, then for any k ≥ 1:

‖u	
h(·, t) − u(·, t)‖L2(�(t)) + h‖u	

h(·, t) − u(·, t)‖H1(�(t)) ≤ Chk+1,

‖w	
h(·, t) − w(·, t)‖L2(�(t)) + h‖w	

h(·, t) − w(·, t)‖H1(�(t)) ≤ Chk+1,

whereas the material derivative of the error in u satisfies

( ∫ t

0
‖∂•(u	

h(·, s) − u(·, s))‖2L2(�(s))

+ h‖∂•(u	
h(·, s) − u(·, s))‖2H1(�(s))ds

)1/2

≤ Chk+1.

The constant C > 0 is independent of h and t, but depends on the bounds of the
Sobolev norms of the solution u and w, on the surface evolution, and on the length of
the time interval T .

Sufficient regularity conditions on u = u(·, t) and w = w(·, t) required by Theo-
rem 4.1 are:

u, ∂•u, (∂•)(2)u ∈ Hk+1(�(t)), w, ∂•w ∈ Hk+1(�(t)) L2-in-time,

u ∈ W 2,∞(�(t)) ∩ Hk+1(�(t)), w ∈ Hk+1(�(t)) uniformly in time,

and for the surface velocity:

v, ∂•v ∈ W k+1,∞(�(t)) uniformly in time. (4.1)

Our result proves uniform -in-time error estimates in the H1 and L2 norms (in both
cases (a) and (b)) for the error in u and w and for the errors in the material derivatives
of u (only sub-optimal in (a)).

The classical Cahn–Hilliard equation (with a double-well potential) is naturally
recovered in case (b), and slightly improves the result of [22, Theorem 5.1], proving
a new time uniform estimate for the chemical potential.

Comparingour regularity assumptions to [22,Theorem5.1]:The spatial Hk+1(�(t))
regularity assumptions (4.1) are required since we are using isoparametric evolving
surface finite elements of degree k, whereas the assumptions on (further) material
derivatives and the L∞-type and regularity assumptions on u and w, and ∂•v (4.1)
are required to obtain the uniform-in-time error estimates, via the new stability proof
presented below.

Theorem 4.1 is proved by studying the questions of stability and consistency. The
consistency of the algorithm is shown by proving high-order estimates for the defects
(the error obtained by inserting the Ritz map of the exact solutions into the method),
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which are obtained by using geometric and approximation error estimates for high-
order evolving surface finite elements from [27], which combines techniques of [12,
15, 17].

The main issue in the proof is stability, i.e. a mesh independent, uniform-in-time
bound of the errors in terms of the defects. The main idea of the stability proof was
originally developed for Willmore flow [29], and it relies on energy estimates that
exploit the anti-symmetric structure of the Cahn–Hilliard equation, see (2.2), (3.7),
and (3.14). The basic idea of the stability proof is concisely sketched in Fig. 1. In
order to estimate the non-linear terms, a key issue in the stability proof is to ensure
that the W 1,∞ norm of the error in u remains bounded. The uniform-in-time H1 norm
error bounds together with an inverse estimate provide a bound in the W 1,∞ norm.
Similarly, it is also possible to show such a W 1,∞ norm bound for the error in w,
provided by our uniform-in-time H1 norm bounds in both u and w.

5 Stability

5.1 Preliminaries

This section is dedicated to the definition of a few concepts, such as the comparison
of various quantities on different discrete surfaces and a generalised Ritz map, which
are all used throughout the stability analysis.

The finite element matricesM(t), A(t), and K(t) induce (semi-)norms which cor-
respond to discrete Sobolev (semi-)norms:

‖w‖2M(t) = wTM(t)w = ‖wh‖2L2(�h(t)),

‖w‖2A(t) = wTA(t)w = ‖∇�h(t)wh‖2L2(�h(t)), and

‖w‖2K(t) = ‖w‖2M(t) + ‖w‖2A(t) = ‖wh‖2H1(�h(t)),

(5.1)

for any vector w ∈ R
N corresponding to the finite element function wh ∈ Sh(t).

From [30, Lemma 4.6] we recall the following estimates for the time derivatives of
the mass and stiffness matrix, and, additionally, we prove that they also hold for the
second order time derivatives.

Lemma 5.1 For all vectors w, z ∈ R
N we have

wT Ṁ(t)z ≤ c ‖w‖M(t) ‖z‖M(t), (5.2a)

wT Ȧ(t)z ≤ c ‖w‖A(t) ‖z‖A(t), (5.2b)

wT M̈(t)z ≤ c ‖w‖M(t) ‖z‖M(t), (5.2c)

wT Ä(t)z ≤ c ‖w‖A(t) ‖z‖A(t), (5.2d)

where the constant c > 0 is independent of h, but depends on the surface velocity v.

Proof The first two estimates were shown in Lemma 4.6 of [30].
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14 C. A. Beschle, B. Kovács

We prove the estimate (5.2c) for the second derivative of the mass matrix. For fixed
vectors w, z ∈ R

N corresponding to discrete functions wh(·, t), zh(·, t) ∈ Sh(t) (for
0 ≤ t ≤ T ), we have ∂•

hwh(·, t) = ∂•
h zh(·, t) = 0 by the transport property (3.3),

see (3.10). Using the discrete version of the Leibniz formula [15, Lemma 2.2] or [17,
Lemma 4.2] twice, we obtain

wT M̈(t)z = d2

dt2

∫
�h(t)

wh zh = d

dt

∫
�h(t)

wh zh(∇�h · Vh)

=
∫

�h(t)
wh zh ∂•

h (∇�h · Vh) +
∫

�h(t)
wh zh (∇�h · Vh)2.

We remind here that the discrete spatial differential operators, and hence the integrals,
are understood in an element-wise sense.

To estimate the first integral we recall how to interchange surface differential oper-
ators with the material derivative [18, Lemma 2.6]. For discrete differential operators
they read:

∂•
h (∇�h wh) = ∇�h (∂

•
hwh) − (I − νhνT

h )∇�h Vh · ∇�h wh,

∂•
h (∇�h · wh) = ∇�h · ∂•

hwh − (I − νhνT
h )∇�h Vh : ∇�h wh,

(5.3)

understood element-wise, for wh : �h(t) → R and wh : �h(t) → R
3, respectively.

Then, the second formula from (5.3) is used to estimate the first integral, together
with the bounds on the discrete velocity Vh . The boundedness of Vh is implied by the
sufficient regularity of the velocity v, and recalling that Vh is the interpolation of v,
cf. (3.1), see Lemma 6.2 or [6, Lemma 3.1.6]. We altogether obtain

∫
�h(t)

wh zh ∂•
h (∇�h · Vh) ≤ ‖wh‖L2(�h(t) ‖zh‖L2(�h(t)) ‖∂•

h (∇�h · Vh)‖L∞(�h(t))

≤ c ‖w‖M(t) ‖z‖M(t).

The second integral is directly bounded by

∫
�h(t)

wh zh (∇�h · Vh)2 ≤ ‖wh‖L2(�h(t) ‖zh‖L2(�h(t)) ‖∇�h · Vh‖2L∞(�h(t))

≤ c ‖w‖M(t) ‖z‖M(t).

The estimate for the stiffness matrix is shown by analogous arguments, now using
the interchange formula [28, Equation (7.27)], and the analogous version of (5.3) for
the first order differential operator appearing in the transport formula for the stiffness
matrix [17, Lemma 4.2, (4.18)]. ��
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5.2 Error equations and defects

Before turning to the stability analysis, let us define a Ritz map of the exact solution
onto the evolving surface finite element space, from [27, 35] we recall the definition
of a time-dependent Ritz map on evolving surfaces: Rh : H1(�(t)) → S	

h(t), (here
we do not include the velocity term of [35]).

Let u(·, t) ∈ H1(�(t)) for 0 ≤ t ≤ T be arbitrary. Then, the Ritz map is defined
through R̃h(t)u ∈ Sh(t) which satisfies, for all ϕh ∈ Sh(t),

a∗
h(R̃h(t)u, ϕh) = a∗(u, ϕ	

h). (5.4)

The Ritz map is then defined as the lift of R̃h(t), i.e. Rh(t)u = (R̃h(t)u)	 ∈ S	
h(t).

We will often suppress the omnipresent time-dependency of the Ritz map. In [35] it
was shown that the above Ritz map is well-defined, error estimates for the high-order
evolving surface FEM were shown in [27], and are recalled in Lemma 6.4. We note,
that the Ritz map used here differs from the one used by Elliott and Ranner in [22],
and the references therein, as it involves the bilinear form a∗ instead of a together
with the average condition.

Let us consider now the (unlifted) Ritz map of the exact solutions u and w of (2.2),
which are denoted by

u∗
h(·, t) = R̃h(t)u(·, t) ∈ Sh(t) and w∗

h(·, t) = R̃h(t)w(·, t) ∈ Sh(t),

whose nodal values are collected into the vectors

u∗(t) ∈ R
N and w∗(t) ∈ R

N .

The nodal vectors of the Ritz maps of the exact solutions satisfy the system (3.11)
only up to some defects du(t) and dw(t) in R

N , corresponding to the finite element
functions du

h (·, t) and dw
h (·, t) in Sh(t):

M(t)u̇∗(t) + A(t)w∗(t) = f(u∗(t)) − Ṁ(t)u∗(t) + M(t)du(t), (5.5a)

M(t)w∗(t) − A(t)u∗(t) = g(u∗(t)) + M(t)dw(t). (5.5b)

The errors between the nodal values of the semi-discrete solutions and of the Ritz
maps of the exact solutions are denoted by eu(t) = u(t) − u∗(t) and ew(t) = w(t) −
w∗(t) in R

N . By subtracting (5.5) from (3.14) we obtain that the errors eu and ew
(corresponding to the functions euh and ewh ∈ Sh(t)) satisfy the following error
equations:

M(t)ėu(t) + A(t)ew(t) =
(
f(u(t)) − f(u∗(t))

)

− Ṁ(t)eu(t) − M(t)du(t), (5.6a)

M(t)ew(t) − A(t)eu(t) =
(
g(u(t)) − g(u∗(t))

)

− M(t)dw(t) + ϑ, (5.6b)
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16 C. A. Beschle, B. Kovács

with zero initial values eu(0) = 0 and ew(0) = 0. Both initial values indeed vanish by
construction: for eu(0) recall that we choose u(0) to be the nodal values of the Ritz
map of u0 and u∗(t) contains the nodal values of the Ritz map of u for all t , while for
ew(0) we have w(0) = w∗(0) by the construction (3.16).

Since the initial values also satisfy (5.6b) at t = 0, we obtain the useful expression

ϑ = M(0)dw(0). (5.7)

5.3 Stability bounds

Proposition 5.2 Suppose there exists a constant c > 0 independent of h and t such
that the defects are bounded for a κ ≥ 2 by

‖du(t)‖M(t) ≤ chκ , ‖ḋu(t)‖M(t) ≤ chκ ,

‖dw(t)‖M(t) ≤ chκ , ‖ḋw(t)‖M(t) ≤ chκ ,
t ∈ [0, T ]. (5.8)

Furthermore, suppose that for all 0 ≤ t ≤ T the Ritz maps u∗
h = R̃hu and w∗

h = R̃hw

satisfy the bounds ‖u∗
h(·, t)‖W 1,∞(�h(t)) ≤ M and ‖w∗

h(·, t)‖W 1,∞(�h(t)) ≤ M.
Then, there exists h0 > 0 such that the following error bound holds for h ≤ h0 and

0 ≤ t ≤ T :

‖eu(t)‖2K(t) + ‖ew(t)‖2K(t) +
∫ t

0
‖ėu(s)‖2K(s)ds

≤ C
∫ t

0
‖du(s)‖2M(s) + ‖ḋu(s)‖2M(s) + ‖dw(s)‖2M(s) + ‖ḋw(s)‖2M(s)ds

+C ‖du(t)‖2M(t) + Ct‖dw(0)‖2M(0). (5.9)

The constant C > 0 is independent of t and h, but depends exponentially on the final
time T .

In Sect. 6, Proposition 6.7, we show that the defects are in fact bounded as O(hk+1).

Proof The proof is based on energy estimates, and its basic idea is very similar to that
of [29]. Proving uniform-in-time H1 norm error estimates is essential for handling the
non-linear term, which is done by deriving a W 1,∞ norm bound for the errors using
an inverse estimate.

In order to achieve a uniform-in-time stability bound, two sets of energy estimates
are required. These energy estimates strongly exploit the anti-symmetric structure of
(2.2). (i) In the first one, an energy estimate is proved for eu, but comes with a critical
term involving ėu. (ii) The second estimate uses the time derivative of (5.6b), leads to a
bound of this critical term and also to a uniform-in-time bound for ew. The combination
of these two energy estimates gives the above stability bound. The structure and basic
idea of the proof is sketched in Fig. 1.

In order to handle the non-linear terms we first prove the stability bound on a time
interval where the W 1,∞ norm of euh is small enough, and then show that this time
interval can be enlarged up to T .
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Fig. 1 Sketch of the structure of the energy estimates for the stability proof. In the diagram r1 and r2 denote
the right-hand sides of (5.6a) and (5.6b). (Note that, after time differentiation, the termR2 not only contains
the time derivative of r2, but other terms involving derivatives of matrices as well.)

In the following c and C are generic constants that take different values on different
occurrences. Whenever it is possible, without confusion, we omit the argument t of
time-dependent vectors but not of time-dependent matrices. By � j > 0 we will denote
small numbers, used in Young’s inequalities for different absorptions, and hence we
will often incorporate h independent multiplicative constants into those, yet unchosen,
factors.

We start by stating that there exists a maximal time 0 < t∗ ≤ T such that, for all
t ≤ t∗,

‖euh (·, t)‖W 1,∞(�h(t)) ≤ h
κ−d/2

2 , for all 0 ≤ t ≤ t∗. (5.10)

Since euh (·, 0) = 0 and since uh and u∗
h , respectively their spatial derivatives ∇�h uh

and ∇�h u∗
h are continuous in time, we directly infer that t∗ > 0.

Thus, by the assumption that the Ritz maps of the exact solutions satisfy
‖u∗

h(t)‖W 1,∞(�h(t)), ‖w∗
h(t)‖W 1,∞(�h(t)) ≤ M , with a finite constant M > 0, we obtain

the following bound for the numerical solution:

‖uh(·, t)‖W 1,∞(�h(t)) = ‖u∗
h(·, t) − euh (·, t)‖W 1,∞(�h(t))

≤ ‖u∗
h(·, t)‖W 1,∞(�h(t)) + ‖euh (·, t)‖W 1,∞(�h(t)) ≤ 2M,

(5.11)

for all 0 ≤ t ≤ t∗ and for h ≤ h0 sufficiently small, and similarly for wh . Thus, for
f ∈ C(R × R

d)

‖ f
(
uh(·, t),∇�h(t)uh(·, t)

)‖L∞(�h(t)) ≤ C, (5.12)

for all 0 ≤ t ≤ t∗ and h ≤ h0 sufficiently small. We first prove the stated stability
bound for 0 ≤ t ≤ t∗, and then show that indeed t∗ coincides with T .
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18 C. A. Beschle, B. Kovács

Energy estimate (i): We take the first error equation (5.6a) and test it with eu, while
the second one (5.6b) is tested by ew, to obtain

eT
uM(t)ėu + eT

u A(t)ew = eT
u
(
f(u(t)) − f(u∗(t))

)
− eT

u Ṁ(t)eu − eT
uM(t)du,

eT
wM(t)ew − eT

wA(t)eu = eT
w
(
g(u(t)) − g(u∗(t))

)
− eT

wM(t)dw + eT
wϑ .

By adding the two equations, and by the symmetry of A, we eliminate the mixed term
eT
u A(t)ew, and obtain

eT
uM(t)ėu + eT

wM(t)ew = − eT
u Ṁ(t)eu

+ eT
u
(
f(u(t)) − f(u∗(t))

)
+ eT

w
(
g(u(t)) − g(u∗(t))

)
− eT

uM(t)du − eT
wM(t)dw + eT

wϑ .

Using the product rule and symmetry of M we rewrite the first term as

eT
uM(t)ėu = 1

2

d

dt

(
eT
uM(t)eu

) − 1

2
eT
u Ṁ(t)eu,

which altogether yields

1

2

d

dt
‖eu‖2M(t) + ‖ew‖2M(t) = − 1

2
eT
u Ṁ(t)eu

+ eT
u
(
f(u(t)) − f(u∗(t))

)
+ eT

w
(
g(u(t)) − g(u∗(t))

)
− eT

uM(t)du − eT
wM(t)dw + eT

wϑ .

Similarly, we test (5.6a) by ew and (5.6b) by ėu, now a subtraction leads to cancelling
the mixed term eT

wM(t)ėu, and again by the product rule and the symmetry of A, we
obtain

1

2

d

dt
‖eu‖2A(t) + ‖ew‖2A(t) = − eT

wṀ(t)eu + 1

2
eT
u Ȧ(t)eu

+ eT
w
(
f(u(t)) − f(u∗(t))

)
− ėT

u
(
g(u(t)) − g(u∗(t))

)
− eT

wM(t)du + ėT
uM(t)dw − ėT

u ϑ .

Taking the linear combination of the above equalities yields

1

2

d

dt
‖eu‖2K(t) + ‖ew‖2K(t) = −eT

wṀ(t)eu − 1

2
eT
u Ṁ(t)eu + 1

2
eT
u Ȧ(t)eu
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+eT
u
(
f(u(t)) − f(u∗(t))

)
+eT

w
(
f(u(t)) − f(u∗(t))

)
+eT

w
(
g(u(t)) − g(u∗(t))

)
−ėT

u
(
g(u(t)) − g(u∗(t))

)
−eT

uM(t)du − eT
wM(t)dw

−eT
wM(t)du + ėT

uM(t)dw
+eT

wϑ − ėT
u ϑ . (5.13)

The terms on the right-hand side are now estimated separately.
The terms involving time derivatives of matrices are estimated using Lemma 5.1,

by

− eT
wṀ(t)eu − 1

2
eT
u Ṁ(t)eu + 1

2
eT
u Ȧ(t)eu ≤ ‖ew‖M(t)‖eu‖M(t) + c‖eu‖2K(t).

(5.14)

For the non-linear terms, using (5.11) and the local-Lipschitz property of f , we obtain

eT
u
(
f(u(t)) − f(u∗(t))

)

=
∫

�h(t)
euh (·, t)

(
f (uh(·, t),∇�h(t)uh(·, t)) − f (u∗

h(·, t),∇�h(t)u
∗
h(·, t))

)

≤ L ‖euh (·, t)‖L2(�h(t))‖uh(·, t) − u∗
h(·, t)‖H1(�h(t))

= c ‖eu‖M(t)‖eu‖K(t), (5.15)

where L is the local Lipschitz constant of f , and we similarly obtain

eT
w
(
f(u(t)) − f(u∗(t))

) ≤ c ‖ew‖M(t)‖eu‖K(t), (5.16a)

eT
w
(
g(u(t)) − g(u∗(t))

) ≤ c ‖ew‖M(t)‖eu‖K(t), (5.16b)

ėT
u
(
g(u(t)) − g(u∗(t))

) ≤ c ‖ėu‖M(t)‖eu‖K(t). (5.16c)

The defect terms are estimated by the Cauchy–Schwarz inequality, as

−eT
uM(t)du − eT

wM(t)dw − eT
wM(t)du + ėT

uM(t)dw
≤ ‖eu‖M(t)‖du‖M(t) + ‖ew‖M(t)‖dw‖M(t)

+‖ew‖M(t)‖du‖M(t) + ‖ėu‖M(t)‖dw‖M(t). (5.17)

The terms involving the correction term ϑ are bounded similarly as the defect terms.
Using equality (5.7) and the norm equivalence in time [19, Lemma 4.1] (to change the
time from 0 to t), we obtain
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eT
wϑ − ėT

u ϑ ≤ ‖ew‖M(0)‖dw(0)‖M(0) + ‖ėu‖M(0)‖dw(0)‖M(0)

≤ c−1‖ew‖M(t)‖dw(0)‖M(0) + c−1‖ėu‖M(t)‖dw(0)‖M(0). (5.18)

Altogether, by the combination of the estimates (5.14)–(5.17) with (5.13), by multiple
Young’s inequalities (with �0 > 0 chosen later on) and by absorptions to the left-hand
side, we obtain

1

2

d

dt
‖eu‖2K(t) + ‖ew‖2K(t) ≤ �0

1

2
‖ėu‖2K(t) + c‖eu‖2K(t)

+c‖du‖2M(t) + c‖dw‖2M(t) + c‖dw(0)‖2M(0).

(5.19)

Integrating from 0 to t ∈ (0, t∗], and using that eu(0) = 0, we obtain the first energy
estimate:

‖eu(t)‖2K(t) +
∫ t

0
‖ew(s)‖2K(s)ds ≤ �0

∫ t

0
‖ėu(s)‖2K(s)ds + c

∫ t

0
‖eu(s)‖2K(s)ds

+c
∫ t

0

(‖du(s)‖2M(s) + ‖dw(s)‖2M(s)

)
ds

+ct‖dw(0)‖2M(0). (5.20)

Note that if we do not use the Ritzmap for the initial value for uh , the error ‖eu(0)‖2K(0)

would not vanish on the right-hand side. This H1 norm error however cannot be
boundedwith the sufficient order. Furthermore, note the critical term,with ‖ėu(s)‖K(s),
on the right-hand side, which cannot be bounded or absorbed in any direct way.

Energy estimates (ii) To control the critical term on the right-hand side of (5.20) we
will now derive an energy estimate, which includes this term on the left-hand side. To
this end, we first differentiate the second equation of (5.6) with respect to time (note
that the time-independent ϑ vanishes), and, after rearranging the terms, we obtain the
following system:

M(t)ėu + A(t)ew = f(u(t)) − f(u∗(t))
− Ṁ(t)eu − M(t)du, (5.21a)

M(t)ėw − A(t)ėu = − Ṁ(t)ew + Ȧ(t)eu

+ d

dt

(
g(u(t)) − g(u∗(t))

)

− Ṁ(t)dw − M(t)ḋw. (5.21b)

Testing the error equation system (5.21) twice, similarly as before in Part (i), would
not lead to a feasible energy estimate, but to a boundwhich includes a new critical term
ėu. The issue is avoided by separating the two estimates for the error equations, (ii.a)
and (ii.b), and then taking their weighted combination in (ii.c), (ii.a). We test (5.21a)
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by ėu and (5.21b) by ew, adding the two equations together to cancel the mixed term
ėT
u A(t)ew, and using the product rule as before, we obtain

‖ėu‖2M(t) + 1

2

d

dt
‖ew‖2M(t) = −ėT

u Ṁ(t)eu − 1

2
eT
wṀ(t)ew + eT

wȦ(t)eu

+ėT
u
(
f(u(t)) − f(u∗(t))

)

+eT
w
d

dt

(
g(u(t)) − g(u∗(t))

)

−ėT
uM(t)du − eT

wṀ(t)dw − eT
wM(t)ḋw(t). (5.22)

The right-hand side terms are again estimated separately. The ones in the first line are
bounded, using Lemma 5.1, by

−ėT
u Ṁ(t)eu − 1

2
eT
wṀ(t)ew + eT

wȦ(t)eu

≤ c‖ėu‖M(t)‖eu‖M(t) + c ‖ew‖2M(t) + c‖ew‖A(t)‖eu‖A(t). (5.23)

The first non-linear term is estimated as in (5.15)–(5.16c) whereas the second non-
linear term occurs differentiated with respect to time. Therefore, with the help of the
transport formula (2.9) we compute, omitting the omnipresent argument t ,

eT
w
d

dt

(
g(u) − g(u∗)

)

=
∫

�h(t)
∂1g

(
uh,∇�h(t)uh

)
∂•

h uh ewh −
∫

�h(t)
∂1g

(
u∗

h,∇�h(t)u
∗
h

)
∂•

h u∗
h ewh

+
∫

�h(t)
∂2g

(
uh,∇�h(t)uh

)
∂•

h (∇�h(t)uh) ewh

−
∫

�h(t)
∂2g

(
u∗

h,∇�h(t)u
∗
h

)
∂•

h (∇�h(t)u
∗
h) ewh

+
∫

�h(t)
(∇�h · Vh) g

(
uh,∇�h(t)uh

)
ewh −

∫
�h(t)

(∇�h · Vh) g
(
u∗

h,∇�h(t)u
∗
h

)
ewh

=: I + I I + I I I .

Let us first estimate the most challenging second term. Inserting
∓ ∫

�h(t) ∂2g
(
uh,∇�h(t)uh

)
∂•

h ∇�h(t)u∗
h ewh we bound I I by

I I =
∫

�h(t)
∂2g

(
uh,∇�h(t)uh

) (
∂•

h (∇�h(t)uh) − ∂•
h (∇�h(t)u

∗
h)

)
ewh

−
∫

�h(t)

(
∂2g

(
u∗

h,∇�h(t)u
∗
h

) − ∂2g
(
uh,∇�h(t)uh

))
∂•

h (∇�h(t)u
∗
h) ewh

≤ c ‖ew‖M(t)
(‖eu‖K(t) + ‖ėu‖K(t)

)
,
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using the first interchange formula from (5.3), the local Lipschitz property of ∂2g
together with (5.12), and the bounds on Vh obtained by interpolation error estimates
(for details, see [6, Lemma 3.1.6]).

The second term is now estimated analogously, by adding and subtracting, but not
requiring the interchange steps, these yield

I ≤ c ‖ew‖M(t)
(‖eu‖M(t) + ‖ėu‖M(t)

)
,

using the local Lipschitz property of ∂1g together with (5.12). Furthermore, for the
third term we directly obtain

I I I =
∫

�h(t)
(∇�h · Vh) g

(
uh,∇�h(t)uh

)
ewh −

∫
�h(t)

(∇�h · Vh) g
(
u∗

h,∇�h(t)u
∗
h

)
ewh

≤ c ‖ew‖M(t)‖eu‖K(t),

using the local Lipschitz property of g together with (5.12). Altogether, the estimates
for I–I I I yield

eT
w
d

dt

(
g(u) − g(u∗)

) ≤ c ‖ew‖M(t)
(‖eu‖K(t) + ‖ėu‖K(t)

)
. (5.24)

The defect terms are bounded, similarly as before, by

− ėT
uM(t)du − eT

wṀ(t)dw − eT
wM(t)ḋw(t)

≤ c‖ėu‖M(t)‖du‖M(t) + c ‖ew‖M(t)‖dw‖M(t) + c ‖ew‖M(t)‖ḋw‖M(t).
(5.25)

Altogether, by plugging in (5.23)–(5.25) into (5.22), then using Young’s inequalities
(with a small number �1 > 0), we obtain the first energy estimate of this part:

‖ėu‖2M(t) + 1

2

d

dt
‖ew‖2M(t) ≤ c‖eu‖2K(t) + c�1‖ėu‖2K(t) + c ‖ew‖2K(t)

+ c
(‖du‖2M(t) + ‖dw‖2M(t) + ‖ḋw‖2M(t)

)
.

(5.26)

(ii.b) We now test (5.21a) by ėT
w and (5.21b) by ėT

u , then subtracting the second from
the first equation to cancel the mixed term ėT

wM(t)ėu and using the product rule again
we obtain

‖ėu‖2A(t) + 1

2

d

dt
‖ew‖2A(t) = −ėT

wṀ(t)eu − ėT
wM(t)du

− ėT
u Ȧ(t)eu + ėT

u Ṁ(t)ew + 1

2
eT
wȦ(t)ew

+ ėT
w
(
f(u(t)) − f(u∗(t))

)

− ėT
u
d

dt

(
g(u(t)) − g(u∗(t))

)

+ ėT
u Ṁ(t)dw + ėT

uM(t)ḋw. (5.27)
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The terms are again estimated separately. The terms with time derivatives of matrices
on the right-hand sides of (5.27) are bounded, using Lemma 5.1, by

− ėT
u Ȧ(t)eu + ėT

u Ṁ(t)ew + 1

2
eT
wȦ(t)ew

≤ c‖ėu‖A(t)‖eu‖A(t) + c ‖ėu‖M(t)‖ew‖M(t) + c ‖ew‖2A(t).

(5.28)

The differentiated non-linear term is bounded, similarly to (5.24), by

ėT
u
d

dt

(
g(u(t)) − g(u∗(t))

) ≤ c ‖ėu‖M(t)
(‖eu‖K(t) + ‖ėu‖K(t)

)

≤ c�2‖ėu‖2M(t) + c ‖eu‖2K(t)

+ c0
4�3

‖ėu‖2M(t) + c0�3‖ėu‖2K(t), (5.29)

with a particular constant c0 > 0 (independent of h, but depending on F ′′, viz. on the
constant in (5.24)). The defect terms are bounded, similarly as before, by

−ėT
uM(t)du − eT

wṀ(t)dw − eT
wM(t)ḋw(t)

≤ c‖ėu‖M(t)‖du‖M(t) + c ‖ew‖M(t)‖dw‖M(t) + c ‖ew‖M(t)‖ḋw‖M(t). (5.30)

Let us highlight that it is not possible to directly estimate the terms containing ėw(t) in
their current form, because there is no term on the left-hand side to absorb them. There-
fore, we first rewrite them using the product rule, and estimate them using Lemma 5.1,
to obtain

ėT
w
(
f(u(t)) − f(u∗(t))

) = d

dt

(
eT
w
(
f(u(t)) − f(u∗(t))

))

−eT
w
d

dt

(
f(u(t)) − f(u∗(t))

)

≤ d

dt

(
eT
w
(
f(u(t)) − f(u∗(t))

))

+c‖ew‖M(t)
(‖eu‖K(t) + ‖ėu‖K(t)

)
,

ėT
wṀ(t)eu = d

dt

(
eT
wṀ(t)eu

) − eT
wM̈(t)eu − eT

wṀ(t)ėu

≤ d

dt

(
eT
wṀ(t)eu

) + c‖ew‖M(t)
(‖eu‖M(t) + ‖ėu‖M(t)

)
,

ėT
wM(t)du = d

dt

(
eT
wM(t)du

) − eT
wṀ(t)du − eT

wM(t)ḋu

≤ d

dt

(
eT
wM(t)du

) + c‖ew‖M(t)
(‖du‖M(t) + ‖ḋu‖M(t)

)
.

(5.31)
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Altogether, by plugging in (5.31)–(5.30) into (5.27), then using Young’s inequalities
(with a small number �2 > 0), we obtain the second energy estimate of this part:

‖ėu‖2A(t) + 1

2

d

dt
‖ew‖2A(t) ≤ c0

4�3
‖ėu‖2M(t) + (c�2 + c0�3)‖ėu‖2K(t)

+c‖eu‖2K(t) + c ‖ew‖2K(t)

+c
(‖du‖2M(t) + ‖ḋu‖2M(t) + ‖dw‖2M(t) + ‖ḋw‖2M(t)

)

+ d

dt

(
eT
w
(
f(u(t)) − f(u∗(t))

))

− d

dt
eT
wṀ(t)eu − d

dt
eT
wM(t)du. (5.32)

(ii.c) We now take the weighted combination of the energy estimates from (ii.a) and
(ii.b): multiplying the estimate (5.26) by 3c0

4�3
and adding it to the estimate (5.32).

Collecting the terms and directly absorbing the term c0‖ėu‖2M(t) on the right-hand
side of (5.32) to the left-hand side, (and choosing �1, �2, �3 > 0 small enough for
absorption of the ‖ėu‖2K(t) terms from the left-hand side to the right-hand side), we
obtain

min

{
c0
2�3

,
1

2

}
‖ėu‖2K(t) + 3c0

2�3

d

dt
‖ew‖2M(t) + 1

2

d

dt
‖ew‖2A(t)

≤ c‖eu‖2K(t) + c ‖ew‖2K(t)

+c
(‖du‖2M(t) + ‖ḋu‖2M(t) + ‖dw‖2M(t) + ‖ḋw‖2M(t)

)

+ d

dt

(
eT
w
(
f(u(t)) − f(u∗(t))

)) − d

dt
eT
wṀ(t)eu − d

dt
eT
wM(t)du. (5.33)

Integrating the above inequality (5.33) from 0 to t ≤ t∗, and then dividing by
min

{ c0
2�3

, 1
2

}
, yields

‖ew(t)‖2K(t) +
∫ t

0
‖ėu(s)‖2K(s)ds

≤ c
∫ t

0
‖eu(s)‖2K(s)ds + c

∫ t

0
‖ew(s)‖2K(s)ds

+ c
∫ t

0

(‖du(s)‖2M(s) + ‖ḋu(s)‖2M(s) + ‖dw(s)‖2M(s) + ‖ḋw(s)‖2M(s)

)
ds

+ eT
w
(
f(u(t)) − f(u∗(t))

) − ew(0)
(
f(u(0)) − f(u∗(0))

)
− c eT

w(t)Ṁ(t)eu(t) + c eT
w(0)Ṁ(0)eu(0)

− c eT
w(t)M(t)du(t) + c eT

w(0)M(0)du(0)

+ ‖ew(0)‖2K(0).

We estimate the newly obtained non-integrated terms on the right-hand side using
Lemma 5.1, Cauchy–Schwarz and Young’s inequalities, the estimate for the non-
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linear term (5.16a), a further absorption, and using that eu(0) and ew(0) are zero, we
then obtain

‖ew(t)‖2K(t) +
∫ t

0
‖ėu(s)‖2K(s)ds

≤ c
∫ t

0
‖eu(s)‖2K(s)ds + c

∫ t

0
‖ew(s)‖2K(s)ds

+c
∫ t

0

(‖du(s)‖2M(s) + ‖ḋu(s)‖2M(s) + ‖dw(s)‖2M(s) + ‖ḋw(s)‖2M(s)

)
ds

+c1‖eu(t)‖2K(t) + c‖du(t)‖2M(t), (5.34)

with a c1 > 0. This energy estimate now contains the (previously) critical term ėu on
the left-hand side. Without the construction in Sect. 3.6 the initial values for w would
not vanish and a term ‖ew(0)‖2K(0) would remain on the right-hand side. This H1 norm
error however cannot be bounded with the sufficient order.

Combining the energy estimates: We now take again a c1-weighted linear combi-
nation (in order to absorb the term c1‖eu‖2K(t)) of the two energy estimates (5.20) and
(5.34), to obtain

‖eu(t)‖2K(t) + ‖ew(t)‖2K(t) +
∫ t

0
‖ėu(s)‖2K(s)ds +

∫ t

0
‖ew(s)‖2K(s)ds

≤ �0

∫ t

0
‖ėu(s)‖2M(s)ds

+c
∫ t

0
‖eu(s)‖2K(s)ds + c

∫ t

0
‖ew(s)‖2K(s)ds

+c
∫ t

0

(‖du(s)‖2M(s) + ‖ḋu(s)‖2M(s) + ‖dw(s)‖2M(s) + ‖ḋw(s)‖2M(s)

)
ds

+c ‖du(t)‖2M(t). (5.35)

By choosing �0 small enough, the first term (previously the critical term) on the left-
hand side is now absorbed. This enables us to use Gronwall’s inequality, which then
yields the stated stability estimate on [0, t∗].

Now, it only remains to show that, in fact, t∗ = T , for h sufficiently small. The
proved stability bound (for 0 ≤ t ≤ t∗) together with the assumed defect bounds (5.8)
imply

‖eu(t)‖2K(t) + ‖ew(t)‖2K(t) ≤ chκ , with κ ≥ 2.

By an inverse estimate, see, e.g. [7, Theorem 4.5.11], we have, for 0 ≤ t ≤ t∗,

‖euh (·, t)‖W 1,∞(�h(t)) ≤ ch−d/2‖euh (·, t)‖H1(�h(t))

≤ ch−d/2‖eu(t)‖K(t) ≤ c Chκ−d/2 ≤ 1

2
h

κ−d/2
2 ,

(5.36)
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for sufficiently small h. Therefore, the bound (5.10) is extended beyond t∗, which
contradicts the maximality of t∗ unless we already have t∗ = T . We hence proved the
stability bound (5.9) over [0, T ], and completed the proof. ��
Remark 5.3 The dimensional assumptions �(t) ⊂ R

d+1 for d = 1, 2 are not entirely
restrictive. For a higher dimensional surface, the argument (5.36) can be repeated for
a κ sufficiently large, that is requiring a finite element basis of sufficiently high order,
depending on the dimension d.

6 Consistency

Before we turn to proving consistency of the spatial semi-discretisation and to the
proof of Theorem 4.1, we collect some preparatory results: error estimates of the
nodal interpolations on the surface, for the Ritz map, and some results which estimate
various geometric errors. Most of these results were shown in [12, 17, 27].

Let us briefly recall our assumptions on the evolving surface and on its discrete
counterpart, fromSects. 2 and 3.1:�(t) is a closed smooth (at leastC2) surface inR

d+1

with d ≤ 3, evolving with the surface velocity v, with regularity v(·, t), ∂•v(·, t) ∈
W k+1,∞(�(t)) uniformly in time. The discrete surface �h(t) is a k-order interpolation
of �(t) at each time, and therefore its velocity Vh is the nodal interpolation of v on
�h(t), see (3.1) and Sect. 3.1.

6.1 Geometric errors

6.1.1 Interpolation error estimates

The following result gives estimates for the error in the interpolation. Our setting
follows that of Section 2.5 of [12].

Let us assume that the surface �(t) is approximated by the interpolation surface
�h(t) of order k. Then for any u ∈ Hk+1(�(t)), there is a unique k-order surface finite
element interpolation Ĩhu ∈ Sh(t), furthermore we set ( Ĩhu)	 = Ihu.

Lemma 6.1 For any u(·, t) ∈ Hk+1(�(t)) for all 0 ≤ t ≤ T . The surface interpolation
operator Ih of order k satisfies the following error estimates, for u = u(·, t) and for
0 ≤ t ≤ T ,

‖u − Ihu‖L2(�(t)) + h‖∇�(u − Ihu)‖L2(�(t)) ≤ chk+1‖u‖Hk+1(�(t)),

‖u − Ihu‖L∞(�(t)) + h‖∇�(u − Ihu)‖L∞(�(t)) ≤ chk+1‖u‖W k+1,∞(�(t)),

with a constant c > 0 independent of h and t, but depending on v and GT .

6.1.2 Discrete surface velocities

This section gives a definition of a discrete velocity on the exact surface�(t) associated
to Vh , and explores approximation results for the discrete velocities. The following
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result, recalled from [6, Lemma 3.1.6], shows boundedness of the discrete velocity Vh ,
using the fact that it is the interpolation of v. The proof is based on the interpolation
error estimate Lemma 6.1 and the interchange formulas (5.3).

Lemma 6.2 Assume that v and ∂•v are in W k+1,∞(�(t)). Then, for h ≤ h0 sufficiently
small, the following bounds hold:

‖Vh‖W 1,∞(�h(t)) ≤ c‖v‖W k+1,∞(�(t)),

‖∂•
h Vh‖W 1,∞(�h(t)) ≤ c‖∂•v‖W k+1,∞(�(t)),

‖∂•
h (∇�h(t) · Vh)‖L∞(�h(t)) ≤ c

(‖∂•v‖W k+1,∞(�(t)) + ‖v‖2W k+1,∞(�(t))

)
,

where the constant c > 0 is independent of h and t, but depends on GT .

To Vh we associate a discrete surface (or material) velocity of �(t), denoted by vh . It
is the surface velocity of the lifted material points y(t) = (x(t))	 ∈ �(t). The edges
of a lifted element evolve with this velocity vh , which is not the interpolation of v in
S	

h(t). For more details we refer to [17, Definition 4.3] and [16, Section 5.4].
Here we recall an explicit formula for vh : for x(t) ∈ �h(t) with y(t) = x	(t),

vh(y(t), t) = ∂t y(x(t), t) + Vh(x(t), t) · ∇ y(x(t), t), (6.1)

with y(t) = y(x(t), t) ∈ �(t) denoting the lift of x(t) ∈ �h(t), cf. Section 3.2,
i.e. the unique solution to x(t) = y(x(t), t)+d(x(t), t) ν(y(x(t), t), t). For an explicit
formula using Vh and a distance function we refer to [17, equation (4.7)].

Apart from the original material derivative ∂• on�(t), a discrete material derivative
associated to the velocity vh is also defined on �(t), see [17, equation (4.9)], for
ϕ(·, t) : �(t) → R (element-wise) by

∂•
hϕ(·, t) = ∂t ϕ̄(·, t) + vh(·, t) · ∇ϕ̄(·, t) for 0 ≤ t ≤ T , (6.2)

where ϕ̄(·, t) is an extension into a small neighbourhood of �(t). That is we have the
following three different material derivatives:

for ϕ = ϕ(·, t) : �(t) → R : ∂•ϕ = ∂t ϕ̄ + v · ∇ϕ̄,

∂•
hϕ = ∂t ϕ̄ + vh · ∇ϕ̄,

for ϕh = ϕh(·, t) : �h(t) → R : ∂•
hϕh = ∂t ϕ̄h + Vh · ∇ϕ̄h .

We note here that it will be always clear from the context whether the discrete material
derivative ∂•

h is meant on �(t) associated to vh , or on �h(t) associated to Vh .
From [27, Lemma 5.4] we recall high-order error bounds between the velocity vh

of the lifted material points and the surface velocity v (for the case k = 1, and without
material derivative, l = 0, we refer to [17]).

Lemma 6.3 The difference between the continuous velocity v and the discrete velocity
vh on �(t) is estimated by

‖(∂•
h )(l)(v − vh)‖L∞(�(t)) + h‖∇�(t)(∂

•
h )(l)(v − vh)‖L∞(�(t)) ≤ cl h

k+1,
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for l ≥ 0, with a constant cl > 0 independent of h and t, but depending on the surface
velocity v.

Since we need to establish a bound for the discrete material derivatives of both defects
du and dw, we recall some transport formulas from [17, Lemma 4.2] (for any suffi-
ciently regular functions):

d

dt
m(u, ϕ) = m(∂•

h u, ϕ) + m(u, ∂•
hϕ) + r(vh; u, ϕ), (6.3a)

d

dt
mh(uh, ϕh) = mh(∂•

h uh, ϕh) + m(uh, ∂•
hϕh) + rh(Vh; uh, ϕh). (6.3b)

These formulas will help us to derive equations for ∂•
h du and ∂•

h dw and are often used
in the proofs in Sect. 6.1.4. The two transport formulae on �(t), (2.9) and (6.3a), arise
by interpreting�(t) as a continuous surface with velocity v, and as the union of curved
elements (the lifted elements of �h(t)) with velocity vh , see (6.1), respectively. We
will use them analogously to [17, Section 7].

6.1.3 Error estimates for the generalised Ritz map

From [27, Theorem 6.3 and 6.4] we recall that the generalised Ritz map (5.4) satisfies
the following optimal high-order error estimates.

Lemma 6.4 Let u : GT → R such that u(·, t) and (∂•)( j)u(·, t) ∈ Hk+1(�(t)) for all
0 ≤ t ≤ T and j = 1, . . . , l, for some l ∈ N. Then, the error in the generalised Ritz
map (5.4) satisfies the bounds, for 0 ≤ t ≤ T and for h ≤ h0 with sufficiently small
h0,

‖u − Rh(t)u‖L2(�(t)) + h‖u − Rh(t)u‖H1(�(t)) ≤ chk+1‖u‖Hk+1(�(t))

‖(∂•
h )(l)(u − Rh(t)u)‖L2(�(t)) + h‖(∂•

h )(l)(u − Rh(t)u)‖H1(�(t))

≤ chk+1
l∑

j=0

‖(∂•)( j)u‖Hk+1(�(t)),

where the constant c > 0 is independent of h and t, but depends on GT .

6.1.4 Geometric approximation errors

The time dependent bilinear forms m, r and their discrete counterparts mh, rh , from
(2.6) and (3.5), respectively, satisfy the following high-order geometric approximation
estimates, see [27, Lemma 5.6].

Lemma 6.5 Let zh, ϕh ∈ Sh(t) arbitrary with lifts z	
h, ϕ	

h ∈ S	
h(t). Then, for all h ≤ h0

with h0 sufficiently small, the following estimates hold

|m(z	
h, ϕ	

h) − mh(zh, ϕh)| ≤ chk+1‖z	
h‖L2(�(t))‖ϕ	

h‖L2(�(t)),
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|r(vh; z	
h, ϕ	

h) − rh(Vh; zh, ϕh)| ≤ chk+1‖z	
h‖L2(�(t))‖ϕ	

h‖L2(�(t)),

where the constant c > 0 is independent of h and t, but depends on GT .

Similar results hold for the errors in the bilinear form a, cf. [27, Lemma 5.6], but these
are not used herein. The previous estimates also hold for any functions in L2(�h(t)).
Therefore, the proof of the previous lemma implies

|m( f (z	
h,∇�z	

h), ϕ	
h) − mh( f (zh,∇�h zh), ϕh)|

≤ chk+1‖ f (z	
h,∇�z	

h)‖L2(�(t))‖ϕ	
h‖L2(�(t)),

|m(∂•
h f (z	

h,∇�z	
h), ϕ	

h) − mh(∂•
h f (zh,∇�h zh), ϕh)|

≤ chk+1‖∂•
h f (z	

h,∇�z	
h)‖L2(�(t))‖ϕ	

h‖L2(�(t)),

(6.4)

respectively for g. Let μh denote the quotient of the measures on �(t) and �h(t). In
[27, Lemma 5.2] it is shown that the following estimates hold:

‖1 − μh‖L∞(�h(t)) ≤ chk+1, (6.5)

‖∂•
hμh‖L∞(�h(t)) ≤ chk+1, (6.6)

‖(∂•
h )(2)μh‖L∞(�h(t)) ≤ chk+1. (6.7)

Below we present and prove a new geometric approximation estimate which relates
time derivatives of r and rh .

Lemma 6.6 Let zh, ϕh ∈ Sh(t) be arbitrary with ∂•
h zh, ∂•

hϕh ∈ Sh(t), with their cor-
responding lifts in S	

h(t). Then, for all h ≤ h0 with h0 sufficiently small, the following
estimate holds

∣∣∣m((∇�(t) · vh)2 z	
h, ϕ	

h) + m(∂•
h (∇�(t) · vh) z	

h, ϕ	
h)

− mh((∇�h(t) · Vh)2 zh, ϕh) − mh(∂•
h (∇�h(t) · Vh) zh, ϕh)

∣∣∣
≤ chk+1

(
‖z	

h‖L2(�(t)) ‖ϕ	
h‖L2(�(t)) + ‖z	

h‖L2(�(t)) ‖∂•
hϕ	

h‖L2(�(t))

+ ‖∂•
h z	

h‖L2(�(t)) ‖ϕ	
h‖L2(�(t))

)
,

where the constant c > 0 is independent of h and t, but depends on the surface velocity
v.

Proof Although, this lemmawas first proved in [6, Lemma3.1.8], due to its importance
we present it here in full detail.

We start by differentiating the integral transformation

m(z	
h, ϕ	

h) = mh(zh, ϕhμh),
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with respect to time using the transport formulae (6.3), to obtain

d

dt
m(z	

h, ϕ	
h) = m(∂•

h z	
h, ϕ	

h) + m(z	
h, ∂•

hϕ	
h) + r(vh; z	

h, ϕ	
h)

= d

dt
mh(zh, ϕhμh) = mh(∂•

h zh, ϕhμh) + mh(zh, (∂•
hϕh)μh)

+ rh(Vh; zh, ϕhμh) + mh(zh, (∂•
hμh)ϕh).

Using ∂•
h (z	

h) = (∂•
h zh)	, see [17, Lemma 4.1], we obtain

r(vh; z	
h, ϕ	

h) − rh(Vh; zh, ϕhμh) = mh(∂•
h zh, ϕhμh) − m((∂•

h zh)	, ϕ	
h)

+ mh(zh, (∂•
hϕh)μh) − m(z	

h, (∂•
hϕh)	)

+ mh(zh, (∂•
hμh)ϕh)

= mh(zh, (∂•
hμh)ϕh). (6.8)

In particular, for ∂•
h zh in the role of zh , and with the use of the geometric estimate for

the surface measure ‖∂•
hμh‖L∞ ≤ chk+1 (6.6) we obtain the estimate

r(vh; ∂•
h z	

h, ϕ	
h) − rh(Vh; ∂•

h zh, ϕhμh) = mh(∂•
h zh, (∂•

hμh)ϕh)

≤ chk+1‖∂•
h zh‖L2(�h(t))‖ϕh‖L2(�h(t)),

and with ∂•
hϕh in the role of ϕh ,

r(vh; z	
h, ∂•

hϕ	
h) − rh(Vh; zh, (∂•

hϕh)μh) = mh(zh, ∂•
hμh ∂•

hϕh)

≤ chk+1‖zh‖L2(�h(t))‖∂•
hϕh‖L2(�h(t)).

Differentiating equation (6.8) with respect to time, using (6.3), yields

d

dt
m((∇� · vh)z	

h, ϕ	
h) − d

dt
mh((∇�h · Vh)zh, ϕh μh) = d

dt
mh(zh, (∂•

hμh) ϕh).

Computing the derivatives on the left-hand side then leads to

m((∇� · vh)2z	
h, ϕ	

h) − mh((∇�h · Vh)2zh, ϕh μh)

+ m(∂•
h (∇� · vh)z	

h, ϕ	
h) − mh(∂•

h (∇�h · Vh)zh, ϕh μh)

= rh(Vh; (∂•
h zh, ϕh) μh) − r(vh; ∂•

h z	
h, ϕ	

h)

+ rh(Vh; zh, ∂•
hϕh μh) − r(vh; z	

h, ∂•
hϕ	

h)

+ d

dt
mh(zh, (∂•

hμh) ϕh) + rh(Vh; zh, ϕh(∂•
hμh)).

The pairs in the first two lines on the right-hand side are already estimated above,
while the last term is estimated by the geometric estimate ‖∂•

hμh‖L∞ ≤ chk+1 (6.6).
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To estimate the remaining derivative term, we first compute the time derivative by
(6.3b) and then estimate each term to obtain

d

dt
mh(zh, (∂•

hμh) ϕh) = mh(∂•
h zh, (∂•

hμh) ϕh) + mh(zh, (∂•
h∂•

hμh) ϕh)

+ mh(zh, (∂•
hμh) ∂•

hϕh) + rh(Vh; zh, (∂•
hμh) ϕh)

≤ chk+1
(
‖zh‖L2(�h(t))‖ϕh‖L2(�h(t))

+ ‖zh‖L2(�h(t))‖∂•
hϕh‖L2(�h(t))

+ ‖∂•
h zh‖L2(�h(t))‖ϕh‖L2(�h(t))

)
,

using the geometric error estimate ‖(∂•
h )(2)μh‖L∞ ≤ chk+1 (6.7).

Altogether, by triangle inequalities and by combining the above estimates, we
obtain

|m((∇� · vh)2z	
h, ϕ	

h) − mh((∇�h · Vh)2zh, ϕh)

+ m(∂•
h (∇� · vh)z	

h, ϕ	
h) − mh(∂•

h (∇�h · Vh)zh, ϕh)|
= |m((∇� · vh)2z	

h, ϕ	
h) − mh((∇�h · Vh)2zh, ϕhμh)

+ mh((∇�h · Vh)2zh, ϕhμh) − mh((∇�h · Vh)2zh, ϕh)

+ m(∂•
h (∇� · vh)z	

h, ϕ	
h) − mh(∂•

h (∇�h · Vh)zh, ϕhμh)

+ mh(∂•
h (∇�h · Vh)zh, ϕhμh) − mh(∂•

h (∇�h · Vh)zh, ϕh)|
≤ |m((∇� · vh)2z	

h, ϕ	
h) − mh((∇�h · Vh)2zh, ϕhμh)

+ m(∂•
h (∇� · vh)z	

h, ϕ	
h) − mh(∂•

h (∇�h · Vh)zh, ϕhμh)|
+ |mh((∇�h · Vh)2zh, ϕh(μh − 1))|
+ |mh(∂•

h (∇�h · Vh)zh, ϕh(μh − 1))|
≤ chk+1

(
‖zh‖L2(�h(t))‖ϕh‖L2(�h(t)) + ‖zh‖L2(�h(t))‖∂•

hϕh‖L2(�h(t))

+ ‖∂•
h zh‖L2(�h(t))‖ϕh‖L2(�h(t))

)

+ c‖(μh − 1)‖L∞(�h(t))‖zh‖L2(�h(t))‖ϕh‖L2(�h(t))

≤ chk+1
(
‖zh‖L2(�h(t))‖ϕh‖L2(�h(t)) + ‖zh‖L2(�h(t))‖∂•

hϕh‖L2(�h(t))

+ ‖∂•
h zh‖L2(�h(t))‖ϕh‖L2(�h(t))

)
,

where we have used the bounds on the discrete velocity from Lemma 6.2, and the
geometric estimate ‖1 − μh‖L∞ ≤ chk+1 (6.5). ��

6.2 Defect bounds

In this section we prove bounds for the defects and for their time derivatives, i.e. we
prove that condition (5.8) of Proposition 5.2 is indeed satisfied.
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Proposition 6.7 Let u, w solve the Cahn–Hilliard equation on an evolving surface
(2.2). Furthermore, let u, w and the continuous surface velocity v be sufficiently
smooth, e.g. satisfying (4.1). Then, for all h ≤ h0 sufficiently small, and for all
t ∈ [0, T ]:

(a) For general nonlinearities f and g the defects are bounded as

‖du(t)‖M(t) = ‖du‖L2(�h(t)) ≤ chk,

‖ḋu(t)‖M(t) = ‖∂•
h du‖L2(�h(t)) ≤ chk,

‖dw(t)‖M(t) = ‖dw‖L2(�h(t)) ≤ chk,

‖ḋw(t)‖M(t) = ‖∂•
h dw‖L2(�h(t)) ≤ chk .

(6.9)

(b) If f and g are both independent of ∇�u, then the above estimates in (6.9) are
improved to O(hk+1).

The constant c > 0 is independent of h and t, but depends on the bounds on Sobolev
norms of u, w and the surface velocity v.

Proof The Ritz map (5.4) of the exact solutions u and w satisfies the discrete problem
only up to some defects, du(·, t) ∈ Sh(t) and dw(·, t) ∈ Sh(t), defined in (5.5).
Rewriting these equations using the bilinear form notation from (2.6), we thus have,
for an arbitrary ϕh ∈ Sh(t),

mh(du, ϕh) = mh(∂•
h R̃hu, ϕh) + ah(R̃hw, ϕh)

− mh( f (R̃hu,∇�h R̃hu), ϕh) + rh(Vh; R̃hu, ϕh),

mh(dw, ϕh) = ah(R̃hu, ϕh) + mh(g(R̃hu,∇�h R̃hu), ϕh) − mh(R̃hw, ϕh).

(6.10)

Upon subtracting the corresponding equations for the exact solution (2.5) with
ϕ = ϕ	

h and applying the transport formula (6.3a) (with ∂•
hϕ	

h = 0), from the equations
in (6.10), and then adding and subtracting some terms in order to apply the definition
of the Ritz map R̃h (5.4), we obtain the following two equations satisfied by the defects
du and dw:

mh(du, ϕh) =
(

mh(∂•
h R̃hu, ϕh) − m(∂•

h u, ϕ	
h)

)

−
(

mh(R̃hw, ϕh) − m(w, ϕ	
h)

)

+
(

rh(Vh; R̃hu, ϕh) − r(vh; u, ϕ	
h)

)

−
(

mh( f (R̃hu,∇�h R̃hu), ϕh) − m( f (u,∇�u), ϕ	
h)

)

= Iu + I Iu + I I Iu + I Vu, (6.11a)

mh(dw, ϕh) = −
(

mh(R̃hu, ϕh) − m(u, ϕ	
h)

)
−

(
mh(R̃hw, ϕh) − m(w, ϕ	

h)
)

+
(

mh(g(R̃hu,∇�h R̃hu), ϕh) − m(g(u,∇�u), ϕ	
h)

)

= Iw + I Iw + I I Iw. (6.11b)
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We now estimate the defects and their material derivatives in the L2(�(t)) norm by
bounding each pair on the right-hand sides of the above equations separately, using
the geometric estimates from the previous subsection and using similar techniques as
in [17, 27]. Since throughout the proofs most norms are on �(t), we will omit these
below and write L2, Hk+1 instead of L2(�(t)), Hk+1(�(t)), etc.

Bound for du : For the pair in the first line, we add and subtract terms to obtain

Iu =
(

mh(∂•
h R̃hu, ϕh) − m(∂•

h Rhu, ϕ	
h)

)
+ m(∂•

h (Rhu − u), ϕ	
h)

≤ chk+1‖∂•
h Rhu‖L2‖ϕ	

h‖L2 + chk+1
(
‖u‖Hk+1 + ‖∂•u‖Hk+1

)
‖ϕ	

h‖L2

≤ chk+1
(
‖u‖Hk+1 + ‖∂•u‖Hk+1

)
‖ϕ	

h‖L2 ,

(6.12)

where we have used Lemma 6.5 together with the fact that ∂•
h (z	

h) = (∂•
h zh)	 ( [17,

Lemma 4.1]) and the Ritz map error bound Lemma 6.4. The Ritz map error estimate
is again used to show the bound ‖∂•

h Rhu‖L2 ≤ c(‖u‖Hk+1 + ‖∂•u‖Hk+1).
By the same techniques, we prove the following bound for I Iu :

I Iu ≤ −
(

mh(R̃hw, ϕh) − m(Rhw, ϕ	
h)

)
− m(Rhw − w, ϕ	

h)

≤ chk+1‖w‖Hk+1‖ϕ	
h‖L2 .

(6.13)

The third term I I Iu is estimated using similar arguments as before, by Lemma 6.5,
Lemma 6.4, and the boundedness of vh (proved using Lemma 6.3),

I I Iu = rh(Vh; R̃hu, ϕh) − r(vh; u, ϕ	
h)

=
(

rh(Vh; R̃hu, ϕh) − r(vh; Rhu, ϕ	
h)

)
+ r(vh; Rhu − u, ϕ	

h)

≤ chk+1‖u‖Hk+1‖ϕ	
h‖L2 . (6.14)

The fourth term I Vu including the non-linearity is estimated using the above tech-
niques, and in addition, due to the (locally Lipschitz continuous) non-linear terms f
and g, requires a W 1,∞ bound on the Ritz map, which we obtain by

‖Rhu‖W 1,∞ ≤ ‖Rhu − Ihu‖W 1,∞ + ‖Ihu‖W 1,∞

≤ ch−d/2‖Rhu − Ihu‖H1 + ‖Ihu‖W 1,∞

≤ ch−d/2(‖Rhu − u‖H1 + ‖u − Ihu‖H1
)+ ‖Ihu − u‖W 1,∞ + ‖u‖W 1,∞

≤ chk−d/2‖u‖Hk+1 + (ch + 1)‖u‖W 2,∞ , (6.15)

with k − d/2 ≥ 0, using an inverse estimate [7, Theorem 4.5.11], interpolation error
bounds Lemma 6.1, and for the last term the (sub-optimal) interpolation error estimate
of [12, Proposition 2.7] (with p = ∞). We then estimate, using
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I Vu ≤ mh( f (R̃hu,∇�h R̃hu), ϕh) − m( f (Rhu,∇� Rhu), ϕ	
h)

+m( f (Rhu,∇� Rhu) − f (u,∇�u), ϕ	
h)

≤ chk+1‖ f (Rhu,∇� Rhu)‖L2‖ϕ	
h‖L2 + c‖Rhu − u‖H1‖ϕ	

h‖L2

≤
(

chk+1‖ f (Rhu,∇� Rhu)‖L2 + chk‖u‖Hk+1

)
‖ϕ	

h‖L2

≤
(

chk+1(c‖u‖Hk+1 + ‖ f (u,∇�u)‖L2
) + chk‖u‖Hk+1

)
‖ϕ	

h‖L2 . (6.16)

Note in particular that the only term in all of the above consistency estimates which
is of order O(hk) is the last term in (6.16), which is due to the presence of ∇�u in the
nonlinearity.

The estimates (6.12)–(6.16) together, using the norm equivalence (3.6), and the
definition of the L2 norm, in general for f (u,∇�u), yields

‖du‖L2 = sup
0 �=ϕh∈Sh

mh(du, ϕh)

‖ϕh‖L2

≤ chk
(
‖u‖Hk+1 + ‖∂•u‖Hk+1 + ‖w‖Hk+1

)
. (6.17a)

If f is independent of ∇�u, then by the note after (6.16), the defect estimate
improves to

‖du‖L2 ≤ chk+1
(
‖u‖Hk+1 + ‖∂•u‖Hk+1 + ‖w‖Hk+1

)
. (6.17b)

Bound for ∂•
h du : We start by differentiating the defect equation for du (6.11a) with

respect to time. Using that ∂•
hϕh = ∂•

h (ϕ	
h) = 0, we obtain

mh(∂•
h du, ϕh) = −rh(Vh; du, ϕh) + d

dt

(
Iu + I Iu + I I Iu + I Vu

)
.

The first term is immediately bounded, using Lemma 6.2, the Cauchy–Schwarz
inequality and (6.17), by

rh(Vh; du, ϕh) ≤ chk+1
(
‖u‖Hk+1 + ‖∂•u‖Hk+1 + ‖w‖Hk+1

)
‖ϕ	

h‖L2 . (6.18)

The terms differentiated in time are estimated separately, using analogous techniques
as before.

For the first term, by the transport formulas (6.3a) and (6.3b), we obtain

d

dt
Iu =

(
mh((∂•

h )(2) R̃hu, ϕh) − m((∂•
h )(2)u, ϕ	

h)
)

+
(

rh(Vh; ∂•
h R̃hu, ϕh) − r(vh; ∂•

h u, ϕ	
h)

)

≤ chk+1
2∑

j=0

‖(∂•)( j)u‖Hk+1‖ϕ	
h‖L2 + chk+1

1∑
j=0

‖(∂•)( j)u‖Hk+1‖ϕ	
h‖L2 ,

(6.19)
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where for the inequality we used the arguments used to show (6.12) and (6.14).
By the same arguments, for the second term we obtain the bound

d

dt
I Iu = −

(
mh(∂•

h R̃hw, ϕh) − m(∂•
hw, ϕ	

h)
)

−
(

rh(Vh; R̃hw, ϕh) − r(vh;w, ϕ	
h)

)

≤ chk+1
(
‖w‖Hk+1 + ‖∂•w‖Hk+1

)
‖ϕ	

h‖L2 . (6.20)

By the time differentiation of the third term, using the transport formulas (6.3a) and
(6.3b), we obtain

d

dt
I I Iu = d

dt

(
rh(Vh; R̃hu, ϕh) − r(vh; u, ϕ	

h)
))

=
[
mh(∂•

h (∇�h · Vh)R̃hu, ϕh) + mh((∇�h · Vh)2 R̃hu, ϕh)

− m(∂•
h (∇� · vh)u, ϕ	

h) − m((∇� · vh)2u, ϕ	
h)

]

+
((

rh(Vh, ∂•
h R̃hu, ϕh) − r(vh, ∂•

h u, ϕ	
h)

)
=: ˙I I I1u + ˙I I I2u .

The pair in the third line is estimated by previous arguments just as before, by

˙I I I2u ≤ chk+1
(
‖u‖Hk+1 + ‖∂•u‖Hk+1

)
‖ϕ	

h‖L2 . (6.21)

The remaining pair in the rectangular brackets is estimated by similar ideas as above,
adding and subtracting intermediate terms, using the geometric approximation esti-
mate fromLemma6.6, Ritzmap error estimates Lemma6.4 and bounds on expressions
with vh (shown using Lemma 6.3 with l = 0 and 1), and Lemma 6.2:

˙I I I1u =
(

mh(∂•
h (∇�h · Vh)R̃hu, ϕh) + mh((∇�h · Vh)2 R̃hu, ϕh)

− m(∂•
h (∇� · vh)Rhu, ϕ	

h) − m((∇� · vh)2Rhu, ϕ	
h)

)

+ m(∂•
h (∇� · vh)(Rhu − u), ϕ	

h) + m((∇� · vh)2(Rhu − u), ϕ	
h)

≤ chk+1
(
‖Rhu‖L2 + ‖∂• Rhu‖L2

)
‖ϕ	

h‖L2 + chk+1‖u‖Hk+1‖ϕ	
h‖L2

≤ chk+1
(
‖u‖Hk+1 + ‖∂•u‖Hk+1

)
‖ϕ	

h‖L2 .

(6.22)

For the time derivative of the fourth term using

∂•
h

(
f (R̃hu,∇�h R̃hu)

) = ∂1 f (R̃hu,∇�h R̃hu)∂•
h (R̃hu)

+ ∂2 f (R̃hu,∇�h R̃hu)∂•
h (∇�h R̃hu),

∂•
h

(
f (u,∇�u)

) = ∂1 f (u,∇�u)∂•
h u + ∂2 f (u,∇�u)∂•

h (∇�u),
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we obtain

d

dt
I Vu = mh(∂1 f (R̃hu,∇�h R̃hu)∂•

h R̃hu, ϕh) − m(∂1 f (u,∇�u)∂•
h u, ϕ	

h)

+mh(∂2 f (R̃hu,∇�h R̃hu)∂•
h (∇�h R̃hu), ϕh)

−m(∂2 f (u,∇�u)∂•
h (∇�u), ϕ	

h)

+rh(Vh; f (R̃hu,∇�h R̃hu), ϕh) − r(vh; f (u,∇�u), ϕ	
h)

=: ˙IV 1
u + ˙IV 2

u + ˙IV 3
u . (6.23)

Similarly to (6.15) we obtain a W 1,∞ bound of the material derivative of the Ritz map,
see also the proof of Proposition 7.1 in [28], which we need for the next two estimates.
The first term is estimated as

˙IV1
u = mh(∂1 f (R̃hu, ∇�h R̃hu)∂•

h R̃hu, ϕh) − m(∂1 f (u,∇�u)∂•
h u, ϕ	

h)

= mh(∂1 f (R̃hu, ∇�h R̃hu)∂•
h R̃hu, ϕh) − m(∂1 f (Rhu,∇�h Rhu)∂•

h Rhu, ϕ	
h)

+m(∂1 f (Rhu, ∇�h Rhu)
(
∂•

h Rhu − ∂•
h u), ϕ	

h)

+m
((

∂1 f (Rhu, ∇�h Rhu) − ∂1 f (u,∇�u)
)
∂•

h u, ϕ	
h
)

≤
(

c hk+1(‖∂1 f (Rhu,∇�h Rhu) ∂•
h Rhu‖L2 + ‖∂•

h u‖Hk+1
) + ‖Rhu − u‖H1

)
‖ϕ	

h‖L2

≤
(

c hk+1(‖∂1 f (Rhu,∇�h Rhu) ∂•
h Rhu‖L2 + ‖∂•

h u‖Hk+1
) + chk‖u‖Hk+1

)
‖ϕ	

h‖L2

≤
(

c hk+1(c‖u‖Hk+1 + ‖∂1g(u, ∇�u)‖L2 + ‖∂•
h u‖Hk+1

) + chk‖u‖Hk+1

)
‖ϕ	

h‖L2

(6.24)

using (6.4). The second one additionally uses the interchange formulas (5.3) to obtain

˙IV 2
u ≤

(
c hk+1‖∂2 f (Rhu, ∇�h Rhu) ∂•

h ∇�h Rhu‖L2 + c hk‖∂•
h u‖Hk+1 + ‖Rhu − u‖H1

)
‖ϕ	

h‖L2

≤
(

c hk+1‖∂2 f (Rhu, ∇�h Rhu) ∂•
h ∇�h Rhu‖L2 + c hk(‖∂•

h u‖Hk+1 + ‖u‖Hk+1

))‖ϕ	
h‖L2

≤
(

c hk+1(c‖u‖Hk+1 + ‖∂2 f (u, ∇�u)‖L2 + c hk(c‖∂•u‖Hk+1 + ‖u‖Hk+1

))‖ϕ	
h‖L2 .

The third one is bounded, similarly to (6.16), by

˙IV 3
u ≤

(
chk+1(c‖u‖Hk+1 + c‖ f (u, ∇�u)‖L2

) + chk‖u‖Hk+1

)
‖ϕ	

h‖L2 .

The combination of the estimates (6.18)–(6.23), using the norm equivalence (3.6),
yields for a general f (u,∇�u):

‖∂•
h du‖L2 ≤ chk

( 2∑
j=0

‖(∂•)( j)u‖Hk+1 +
1∑

j=0

‖(∂•)( j)w‖Hk+1

)
. (6.25a)

If f is independent of ∇�u, then we obtain
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‖∂•
h du‖L2 ≤ chk+1

( 2∑
j=0

‖(∂•)( j)u‖Hk+1 +
1∑

j=0

‖(∂•)( j)w‖Hk+1

)
. (6.25b)

Bound for dw: The L2 norm of the defect dw (6.11b) is estimated by the same
techniques by which the bound (6.13) was shown.

By similar techniques as before, and using (6.4) together with (6.15) the pairs for
dw are estimated analogously. The bounds for Iw and I Iw are straightforward using
the arguments above for du , while I I Iw is bounded, similarly to (6.16), using the local
Lipschitz continuity of g, by

I I Iw ≤
(

chk+1(c‖u‖Hk+1 + ‖g(u,∇�u)‖L2
) + chk‖u‖Hk+1

)
‖ϕ	

h‖L2 . (6.26)

Again, note the only O(hk)-term in (6.26).
We altogether obtain the estimate, for the general case g(u,∇�u):

‖dw‖L2 ≤ chk
(
‖u‖Hk+1 + ‖w‖Hk+1 + ‖u‖W 2,∞

)
. (6.27a)

Similarly as before, if g is independent of ∇�u, the above estimate improves to

‖dw‖L2 ≤ chk+1
(
‖u‖Hk+1 + ‖w‖Hk+1 + ‖u‖W 2,∞

)
. (6.27b)

Bound for ∂•
h dw: Just as for ∂•

h du , we differentiate the expression (6.11b) with
respect to time. Using again ∂•

hϕh = ∂•
h (ϕ	

h) = 0, we obtain

mh(∂•
h dw, ϕh) = −rh(Vh; dw, ϕh) + d

dt

(
Iw + I Iw + I I Iw

)
.

The first term is estimated using (6.27), while the remaining terms are bounded simi-
larly to (6.20) and (6.23) (using (6.15)).

Altogether, we obtain, for a general g(u,∇�u):

‖∂•
h dw‖L2 ≤ chk

( 1∑
j=0

(
‖(∂•)( j)u‖Hk+1 + ‖(∂•)( j)w‖Hk+1

)
+ ‖u‖W 2,∞

)
.

(6.28a)

while, if g is independent of ∇�u we obtain

‖∂•
h dw‖L2 ≤ chk+1

( 1∑
j=0

(
‖(∂•)( j)u‖Hk+1 + ‖(∂•)( j)w‖Hk+1

)
+ ‖u‖W 2,∞

)
.

(6.28b)

��
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Remark 6.8 If the non-linearities are depending only linearly on∇�u, e.g. an advective
term f (u,∇�u) = f̃ (u) + w · ∇�u, then the defects (although do not fall into case
(b)) can still be bounded as O(hk+1). This requires the use of individually modified
Ritz maps, whose definition includes this linear∇�u-depending term. Such Ritz maps
have been already used and analysed in [35, Definition 8.1], and [29].

7 Proof of Theorem 4.1

Proof of Theorem 4.1 We combine the stability bound of Proposition 5.2, and the con-
sistency estimates of Proposition 6.7.

The errors are split as follows

u − u	
h = u − Rhu + (

u∗
h − uh

)	
,

w − w	
h = w − Rhw + (

w∗
h − wh

)	
,

∂•(u − u	
h) = ∂•(u − Rhu) + (

∂•
h (u∗

h − uh)
)	

,

upon recalling that u∗
h = R̃hu and w∗

h = R̃hw.
The first terms in each error are directly and similarly bounded by error estimates

for the Ritz map Lemma 6.4 – uniformly in time – by

‖u − Rhu‖L2(�(t)) + h‖u − Rhu‖H1(�(t)) ≤ chk+1‖u‖Hk+1(�(t)).

The second terms are the errors euh , ewh and ∂•
h euh , therefore bounded by the combi-

nation of the stability estimate (5.9) and the consistency estimates Proposition 6.7 (a)
and (b), for the two respective cases of ∇�u dependency. In Proposition 5.2 the W 1,∞
norm assumption on u∗

h = R̃hu was proved in (6.15). Altogether, we obtain

‖euh ‖2H1(�h(t)) + ‖ewh ‖2H1(�h(t)) +
∫ t

0
‖∂•

h euh ‖2H1(�h(s))ds ≤ ch2 j ,

where j = k in case (a), and j = k + 1 in case (b).
By combining the above estimates we obtain the stated error estimates in parts (a)

and (b) of Theorem 4.1. ��

8 Full discretisation via linearly implicit backward difference
formulae

We recall the matrix–vector formulation from (3.15):

d

dt

(
M(t)u(t)

)
+ A(t)w(t) = f(u(t)),

M(t)w(t) − A(t)u(t) = g(u(t)).
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As a time discretisation, we consider the linearly implicit s-step backward differenti-
ation formulae (BDF). For a step size τ > 0, and with tn = nτ ≤ T , the discretised
time derivative is determined by

u̇n = 1

τ

s∑
j=0

δ jun− j , n ≥ s, (8.2)

while the non-linear term uses an extrapolated value, and reads as:

ũn :=
s−1∑
j=0

γ j un−1− j , n ≥ s.

We determine the approximations to the variables un to u(tn) and wn to w(tn) by the
fully discrete system of linear equations, for n ≥ s,

[
δ0 M(tn) τ A(tn)

−A(tn) M(tn)

] [
un

wn

]
=

[
f (̃un) − ∑s

j=1 δ j M(tn− j )un− j

g(̃un)

]
, (8.3)

which is used for the upcoming numerical experiments. The starting values ui and wi

(i = 0, . . . , s − 1) are assumed to be given. They can be precomputed using either a
lower order method with smaller step sizes, or an implicit Runge–Kutta method.

The method is determined by its coefficients, given by δ(ζ ) = ∑s
j=0 δ jζ

j =∑s
	=1

1
	
(1 − ζ )	 and γ (ζ ) = ∑s−1

j=0 γ jζ
j = (1 − (1 − ζ )s)/ζ . The classical BDF

method is known to be zero-stable for s ≤ 6 and to have order s; see [24, Chapter V].
This order is retained by the linearly implicit variant using the above coefficients γ j ;
cf. [1, 2].

The anti-symmetric structure of the system is preserved, and is observed in (8.3).
Since the idea of energy estimates, using the G-stability theory of Dahlquist [11]
and the multiplier technique of Nevanlinna & Odeh [39], can be transferred to linearly
implicit BDF full discretisations (up to order 5),we strongly expect that Proposition 5.2
translates to the fully discrete case, and so does the convergence result Theorem 4.1.
This is strengthened by the successful application of these techniques to the analogous
linearly implicit backward difference methods applied to evolving surface PDEs: [32,
33, 36] showing optimal-order error bounds for various problems on evolving surfaces.
Themethod was also analysed for various geometric surface flows, for H1-regularised
surface flows [31], and for mean curvature flow [28], both proving optimal-order error
bounds for full discretisations.

9 Numerical experiments

We performed numerical experiments, using (8.3), for the classical non-linear Cahn–
Hilliard equation on an evolving surface, hence our results are easily compared to
those in the literature, in particular [22]. We report on the following experiments:
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– We perform a convergence test for the non-linear Cahn–Hilliard equation with
the linear evolving surface FEM and BDF methods of various order, to illustrate
the convergence rates of Theorem 4.1. We would like to note here that [22] only
presents errors and EOCs for a linear problem (using the linearly implicit Euler
method).

– We perform the same experiment as Elliott and Ranner in [22, Section 6.2], i.e. we
report on the evolution of the Ginzburg–Landau energy along the surface evolution
for the non-linear Cahn–Hilliard equation with ε = 0.1 using the first and second
order BDF methods.

– We perform a numerical experiment that reports on the effects of ϑ and using the
Ritz map as initial value.

In the numerical experiments we use the classical Cahn–Hilliard equation on an
evolving surface (2.2) with the double-well potential, hence the non-linear terms are
f (u) = 0 and g(u) = 1

4 ((u
2 − 1)2)′ = u3 − u. With an arbitrary 0 < ε < 1,

formulated as a system the problem reads:

∂•u − ��(t)w = − u(∇�(t) · v) + b on �(t),

w + ε��(t)u = ε−1g(u) on �(t),
(9.1)

with an extra inhomogeneity b(·, t) : �(t) → R, chosen such that the exact solution is
known to be u(x, t) = e−6t x1x2, while w is also explicitly known through the second
equation of (9.1). The surface �(t) evolves time-periodically from a sphere into an
ellipsoid and back. In particular the surface is given as the zero level set of a distance
function:

�(t) = {
x ∈ R

3 | d(x, t) = a(t)−1x21 + x22 + x23 − 1 = 0
}
, (9.2)

with a(t) = 1 + 0.25 sin(2π t). The initial surface �(0) = �0 is the unit sphere. The
surface evolution is computed using the ODE for the positions (2.1), with

v = V ν, with V = − ∂t d

|∇d| and ν = ∇d

|∇d| .

For the numerical experiments the ODE was solved numerically by the classical 4th
order Runge–Kutta method with the smallest time step size present in the experiment.

Various numerical experiments have been carried out using the same evolving
surface, in particular also for the Cahn–Hilliard equation by Elliott and Ranner [22],
and for other problems as well, see, for instance [15, 36].

The initial value u0
h is the interpolation of the exact initial value u0. For high-order

BDF methods the required additional starting values ui
h (for i = 1, . . . , q − 1) are

taken as the interpolation of the exact values, if they exist, as well or are otherwise
computed using a cascade of steps performed by the preceding lower order method.
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Fig. 2 Spatial convergence of the BDF1/linear ESFEM discretisation for the non-linear Cahn–Hilliard
equation on an evolving ellipsoid

9.1 Convergence experiments

The following convergence experiments are illustrating the convergence rates stated
by Theorem 4.1. In these experiments we have used the parameter ε = 0.5. The final
time is T = 1, the time discretisations use a sequence of time step sizes τ = 0.2×2−i

for i = 1, . . . , 7, and a sequence of initial meshes with (roughly quadrupling) degrees
of freedom as reported in the figures.

In Figs. 2, 3, 4 and 5 we report on the L∞(L2) norm errors (left) and L∞(H1)

norm errors (right) between the numerical and exact solution for both variables u and
w, i.e. the plots show the errors

‖u − u	
h‖L∞(L2) + ‖w − w	

h‖L∞(L2) and ‖u − u	
h‖L∞(H1) + ‖w − w	

h‖L∞(H1),

where the norms are understood as

‖u − u	
h‖L∞(L2) = max

0≤nτ≤T
‖u(·, nτ) − (un

h)	‖L2(�(nτ)).

For the first order BDF method, Fig. 2 shows logarithmic plots of the errors against
the mesh width h, the lines marked with different symbols correspond to different
time step sizes. We also report on temporal convergence in Fig. 3, where the roles are
reversed, the errors are plotted against the time step size τ , and the lines with different
markers correspond to different mesh refinements.

In Fig. 2 we can observe two regions: a region where the spatial discretisation
error dominates, matching to the order of convergence of our theoretical results of
Theorem 4.1 (note the reference lines), and a region, with small mesh widths, where
the temporal discretisation error dominates (the error curves flatten out). For the H1

norm we observe better spatial convergence rates as the predicted O(hk), (probably
due to the smoothness of the exact solution). For Fig. 3, the same description applies,
but with reversed roles. Although, we do not study convergence of full discretisations,
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Fig. 3 Temporal convergence of the BDF1/linear ESFEM discretisation for the non-linear Cahn–Hilliard
equation on an evolving ellipsoid

Fig. 4 Spatial convergence of the BDF3/linear ESFEM discretisation for the non-linear Cahn–Hilliard
equation on an evolving ellipsoid

the classical order of the BDFmethods is observed.We note here, that flat error curves,
which were completely dominated by a discretisation error, were not plotted.

Figures 4 and 5 report on the same plots, but for the third order BDFmethod. Again,
both the spatial and temporal convergence, as shown by the figures, are in agreement
with the theoretical convergence results of Theorem 4.1 and with the classical orders
of the BDF methods (note the reference lines).

The plots for time convergence, Figs. 3 and 5, are supporting our claim that Theo-
rem 4.1 can be extended for full discretisations with linearly implicit BDF methods,
which is left to a subsequent work.
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Fig. 5 Temporal convergence of the BDF3/linear ESFEM discretisation for the non-linear Cahn–Hilliard
equation on an evolving ellipsoid

Fig. 6 The Ginzburg–Landau energy over [0, 0.2] for BDF2/linear ESFEM discretisation with τ = 10−4

and over several spatial refinements

9.2 The Ginzburg–Landau energy

The numerical experiments in [22, Section 6.2] reporting on the Ginzburg–Landau
energy were repeated here for high-order BDF methods.

We again consider the non-linear Cahn–Hilliard equation (9.1), with ε = 0.1 and
with b = 0 on the same evolving surface �(t) as before, but with a(t) = 1 +
0.25 sin(10π t), and with initial value

u0(x) = 0.1 cos(2πx1) cos(2πx2) cos(2πx3).

This setting is the same as in [22, Section 6.2].
In Figs. 6 and 7 we report on the time evolution of the Ginzburg–Landau energy

(until T = 0.2 and T = 1) of the BDF2/linear ESFEM discretisation. In both plots
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Fig. 7 The Ginzburg–Landau energy over [0, 1] for BDF2/linear ESFEM discretisation with τ = 10−4 and
over several spatial refinements

we have used the time step size τ = 10−4 (the same as [22, Section 6.2]), and eight
differentmesh refinement levels (higher numbering denotes finermeshes). Themeshes
are not nested refinements of a single coarse grid. The coarsest mesh has 54 while the
finest has 10,146 nodes.

As it was pointed out by Elliott and Ranner [22] “the energy does not decrease
monotonically along solutions”, see Fig. 6, and as they predicted the solutions converge
to a time-periodic solution, the periodicity in their energies is nicely observed in Fig. 7.

9.3 The effect of#

We report on the effect of ϑ by presenting the computed numerical solution obtained
from the scheme (3.12) and (3.15) with the interpolation and the Ritz map as initial
values, respectively.

We again use the evolving ellipsoid example with a(t) = 1+0.5 sin( 2π t
5 ), cf. (9.2)

and an initial sphere of radius R = 5, while the starting value is u0 = 225
56,693 (x1 +

x21 x22 x3) (such that max |u0| = 1). The discrete initial values are the interpolation of
u0 for (3.12) and the Ritz map (5.4) of u0 for (3.15). The nodal vector ϑ and the Ritz
map are each obtained by solving an elliptic problem.

Figure 8 presents the numerical solutions with the two different discrete initial
values, without (left) and with ϑ (right), for different times t = 0, 1, 2, 3, 5, computed
on a mesh with 4098 nodes and using a time step size τ = 0.0125.
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Fig. 8 Thenumerical solutions obtained from (3.12) and (3.15)—without andwithϑ—with the interpolation
and Ritz map as initial values (on the left- and right-hand columns, respectively)
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