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Abstract
In this paper, we consider a drift-diffusion system with cross-coupling through the
chemical potentials comprising a model for the motion of finite size ions in liquid
electrolytes. The drift term is due to the self-consistent electric field maintained by
the ions and described by a Poisson equation. We design two finite volume schemes
based on different formulations of the fluxes. We also provide a stability analysis
of these schemes and an existence result for the corresponding discrete solutions. A
convergence proof is proposed for non-degenerate solutions. Numerical experiments
show the behavior of these schemes.
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1 Introduction

Proper modeling of the motion of ions in electrolytes—mixtures of a solvent and N
ionic species which can be described by their concentrations ci—and associated simu-
lations are crucial for the development of efficient batteries, fuel cells, and many other
applications commonly considered as key technologies for the twenty first century as
well as for the understanding of ion channels and other features of biological systems.
The classical Nernst–Planck equation is a linear system which for given electrostatic
potential �, charge number zi and diffusion coefficient Di describes the evolution of
the ion concentration ci via

∂t ci − div(Di Ni ) = 0, Ni = ∇ci + zi ci∇� = ci∇ (log(ci ) + zi�) .

The self-consistent electrostatic potential is described by the Poisson equation

−∇ · λ2∇� =
N∑

i=1

zi ci .

This model assumes that ions are infinitely small and that the ions of a given species
i interact neither with the solvent nor with other ionic species. However, in reality,
ion sizes are finite, and ion motion is only possible with a simultaneous displacement
of solvent molecules. Moreover, the effective size of ions is increased by the fact that
in a polar solvent like water, they are surrounded by a solvation shell consisting of a
certain number of solvent molecules. The inclusion of these effects into the model is
particularly important for concentrated electrolytes and in electrode boundary layers
with high ion concentrations.
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Finite volumes for Nernst–Planck–Poisson with ion… 101

Historically, there have been many, often independent attempts to fix this situation,
see e.g. the review in [3], the discussion in [30] or [40]. A comprehensive model
of ideal mixtures of solvated ions has been derived in [21, 22]. In [30, 31], a two
point flux finite volume discretization approach for these problems has been derived.
Various variants of ionic flux approximations have been investigated for the unipolar
case, where only one ionic species is considered, in [9], with the result that the flux
approximation approach introduced in [30] has several more accurate alternatives. For
two of them,we have been able to find appropriate generalizations to the case of several
ionic species. One of these generalizations has been independently introduced in [41].
They are analyzed in the present paper using a similar analysis framework. Focus will
be set on the cross-diffusion effects arising in the multi-species case, relying on [9]
for the coupling with the potential and partial treatment the non-linearity.

In the sequel of Sect. 1, the continuous problem is formulated, and several key
properties of the continuous system are discussed. Among these is the decay of an
entropy functional for positive solutions.

1.1 The Nernst–Planck–Poisson systemwith finite ionic volumes

Consider a bounded connected polytopal domain � ⊂ R
d , and finite simulation

horizon T > 0. We model the evolution of the concentration c0 of a solvent and N
dissolved species: ci , i ∈ [[1, N ]]. The mixture satisfies a volume filling constraint

N∑

i=0

vi ci = 1,

where vi are the molar volumes of the species. We will use this constraint using ratios
of molar volumes ki = vi

v0
:

N∑

i=0

ki ci = 1

v0
. (1.1)

The coefficients (k1, . . . , kN ) are parameters of the problem and k0 is by definition
equal to 1. As the molar volumes are not the same, the total concentration

c :=
N∑

i=0

ci (1.2)

is not uniform. The set of positive concentrations ci , i ∈ [[1, N ]] such that c0 is positive
is denoted by

A =
{

(c1, ..., cN ) ∈ (0,+∞)N |c0 := 1

v0
−

N∑

i=1

ki ci > 0

}
.
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We also introduce the topological adherence of A:

Ā =
{

(c1, ..., cN ) ∈ [0,+∞)N |c0 := 1

v0
−

N∑

i=1

ki ci ≥ 0

}
.

For the sake of clarity, we will let C = (c1, ..., cN ) ∈ A and often consider c0 and c
as functions of C thanks to (1.1) and (1.2) without clearly expressing the dependency.
The dissolved species follow a conservation equation:

∂t ci − div DiNi = 0, Ni = ci∇ (hi (C) + z̃i�) ∀i ∈ [[1, N ]]. (1.3)

where z̃i = zi − ki z0 the reduced charge number and Di > 0 the diffusion coefficient
are parameters of the problem, while hi (C) the chemical potential depends on all the
concentrations through:

hi (C) = log
ci

c
− ki log

c0
c

∀i ∈ [[1, N ]]. (1.4)

This system is supplemented with Poisson equation for the potential:

− λ2 1� = cdop +
N∑

i=0

zi ci , (1.5)

where cdop : � → R is a constant in time doping profile. To simplify the computations,
we let cdop = z0

v0
+ c̃dop. Using z̃0 = 0, we have:

cdop +
N∑

i=0

zi ci = c̃dop +
N∑

i=1

z̃i ci .

To avoid unnecessary complications of the notations, we will drop the tildas for the
reduced molar charges as the real molar charges do not appear anymore. Moreover, to
simplify the proofs, we will assume that the solvent carries no charge, hence z0 = 0
and c̃dop = 0. Treatment of nonzero c̃dop can be found in [9].

As in [9], we consider a Dirichlet boundary condition for the potential on a non-
negligible part of the boundary �D ⊂ ∂� and homogeneous Neumann boundary
condition on �N = ∂� \ �D:

� = �D on (0, T ) × �D, ∇� · n = 0 on (0, T ) × �N, (1.6)

where �D is assumed to be constant in time and in H1(�) ∩ L∞(�).
The system is supplemented with the following no flux boundary conditions for the

concentrations:

ci∇ (hi (C) + zi�) · n = 0 on (0, T ) × ∂�, for all i ∈ [[1, N ]], (1.7)
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Finite volumes for Nernst–Planck–Poisson with ion… 103

and with an initial condition C0 satisfying:

C0 ∈ L∞(�, Ā) and
∫

�

c0i (x)dx > 0 ∀i ∈ [[0, N ]]. (1.8)

1.2 Key properties of the continuous system

In this section, we attempt to exhibit the properties of a smooth enough solution
(C,�) to the system (1.3)–(1.8) so that calculations are justified. The first property is
the conservation of mass. In other words, thanks to (1.3) and (1.7), C satisfies for any
t ∈ [0, T ], i ∈ [[1, N ]]:

∫

�

ci (0, x)dx =
∫

�

ci (t, x)dx .

Moreover, we need the concentrations to be positive for (1.4) to have a sense. In the
discrete setting, we will show that the concentrations belong to A. In the continuous
setting, it will be assumed. We hint that it might be possible to do it using the entropy
method [38], the flux formulation proposed in [30] and [35, Annex A]. Indeed, another
key property of the system is the dissipation of a free energy. In this case, the chemical
free energy density H(C) is defined as follows:

H(C) :=
N∑

i=0

ci log
(ci

c

)
=

N∑

i=0

ci log ci − c log c.

This function is convex, however, the addition of the term −c log c makes the proof
quite intricate. This point is detailed in “Appendix A” along with the proof of the
following equations:

∂ci H(c1, ..., cN ) = hi (C), ∀i ∈ [[1, N ]], C = (c1, ..., cN ) ∈ A, (1.9)
− log(N + 1)

v0 min ki
≤ H(C) ≤ 0 ∀C ∈ A. (1.10)

The total free energy is formed by the integral of the chemical free energy density
and electrical terms:

E(C,�) =
∫

�

H(C) + λ2
|∇�|2

2
dx − λ2

∫

�D

�D∇� · ndγ.

Proposition 1.1 Let (C,�) be smooth solutions of (1.3)–(1.8) such that C(t, x) ∈ A.
For such solutions, E is a convex Lyapunov functional. Moreover, we have:

∂t E +
∫

�

n∑

i=1

Di ci |∇hi (C) + zi�|2dx = 0. (1.11)
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Proof We have using chain rules and (1.9):

∂t

∫

�

H(c1, ..., cN )dx =
∫

�

N∑

i=1

hi (C)∂t cidx . (1.12)

We also have using chain rules and integrating by part:

∂t

∫

�

|∇�|2
2

dx =
∫

∂�

�∂t (∇� · n) dγ −
∫

�

�∂t 1�dx .

Notice that we have ∇� ·n = 0 on �N and � = �D on �D. Using Eq. (1.5), we have:

∂tλ
2
(∫

�

|∇�|2
2

dx −
∫

�D

�D∇� · ndγ

)
=
∫

�

�

N∑

i=1

zi∂t cidx .

Using this equation and (1.12), we have:

∂t E =
N∑

i=1

∫

�

(hi (C) + zi�)∂t cidx .

Using now Eq. (1.3) and integration by parts, we have the desired Eq. (1.11). Due to
the non-negativity of Di ci , E is a Lyapunov functional. Its convexity follows from the
assumption C ∈ A (see Lemma A.1). ��

Finally, we introduce a notion of weak solution that relies on a reformulation of the
fluxes:

Ni = ∇ci − ki ci∇ log c0 + (ki − 1)ci∇ log c + zi ci∇�,

and the space of H1 functions satisfying the Dirichlet boundary conditions for the
potential:

H�D = { f ∈ H1(�), f|�D = 0} and QT = (0, T ) × �.

More precisely:

Definition 1 A couple (C,�) is a weak solution of (1.3)–(1.8) if

• C ∈ L∞(QT ,A) with log(c0) ∈ L2((0, T ), H1(�)),
• � such that � − �D ∈ L∞((0, T ),H�D);
• for all ϕ ∈ C∞

c ([0, T ) × �)N , i ∈ [[1, N ]]
∫∫

QT

ci∂tϕidxdt +
∫

�

c0i ϕi (0, x)dx

−Di

∫∫

QT

(∇ci + ci∇
(−ki log c0 + (ki − 1) log c + zi�

)) · ∇ϕidxdt = 0;
(1.13)
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• for all ψ ∈ H�D and almost all t ∈ (0, T ),

λ2
∫

�

∇�(t, x) · ∇ψ(x)dx =
∫

�

ψ(x)

N∑

i=1

zi ci (t, x)dx . (1.14)

1.3 Positioning and outline

The structure of cross-diffusion systems challenges the maximum principle-based
methods. In this paper we aim to discretize the system (1.3)–(1.8). For N = 1 this
system is a nonlinear drift-diffusion problem and several discretizations have been
proposed in [9]. We focus on the extension of these schemes to the more general
setting with N > 1 while adapting the proofs to tackle the challenges introduced by
cross-diffusion.

More precisely, in Sect. 2, the two point flux based finite volume discretization
with two variants of the flux approximation is introduced. The main theorems about
the existence of discrete solutions and the convergence of approximate solutions are
stated. Existence, free energy decay, and positivity of concentrations are proven in
Sect. 3, whereas the convergence is proven in Sect. 4. Several 1D and 2D numerical
examples showcasing the proven properties of the discretization scheme are discussed
in Sect. 5.

2 Discretization andmain theorems

In this section, we propose two discretizations of (1.3)–(1.8) and discrete counterparts
of the continuous properties. First, in Sect. 2.1, we state the requirements on the mesh
and fix some notations. Then in Sect. 2.2, we describe the common setting for the
two schemes to be studied in this paper. These schemes, presented in Sect. 2.3, rely
on so-called two-point flux approximations of different formulations of Ni . Then in
Sect. 2.4, we state our twomain results. The first one, namely Theorem 2.1, focuses on
the existence of a solution to the nonlinear system corresponding to the schemes for a
given mesh, and the dissipation of the energy at the discrete level. More precisely, one
establishes that all the studied schemes satisfy a discrete counterpart to Proposition 1.1.
Our second main result, namely Theorem 2.2, is devoted to the convergence of the
schemes as the time step and the mesh size tend to 0.

2.1 Discretization of (0, T) × Ä

In this paper, we perform a parallel study of two numerical schemes based on two-
point flux approximation (TPFA) finite volume schemes. As explained in [23, 28],
this approach appears to be very efficient for isotropic continuous problems when
one has the freedom to choose a suitable mesh fulfilling the so-called orthogonality
condition [29, 37]. We recall here the definition of such a mesh, which is illustrated
in Fig. 1.
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106 B. Gaudeul, J. Fuhrmann

Fig. 1 Illustration of an
admissible mesh as in
Definition 2

Definition 2 An admissible mesh of � is a triplet
(
T , E, (xK )K∈T

)
such that the

following conditions are fulfilled.

(i) The set T is finite and each control volume (or cell) K ∈ T is non-empty, open,
polyhedral, and convex. We assume that

K ∩ L = ∅ if K , L ∈ T with K �= L, while
⋃

K∈T
K = �.

(ii) Each face σ ∈ E is closed and is contained in a hyperplane of R
d , with

positive (d − 1)-dimensional Hausdorff (or Lebesgue) measure denoted by
mσ = Hd−1(σ ) > 0. We assume that Hd−1(σ ∩ σ ′) = 0 for σ, σ ′ ∈ E unless
σ ′ = σ . For all K ∈ T , we assume that there exists a subset EK of E such that
∂K = ⋃

σ∈EK
σ . Moreover, we suppose that

⋃
K∈T EK = E . Given two distinct

control volumes K , L ∈ T , the intersection K ∩ L either reduces to a single face
σ ∈ E denoted by K |L , or its (d − 1)-dimensional Hausdorff measure is 0.

(iii) The cell centers (xK )K∈T belong to their cell: xK ∈ K , and are such that, if
K , L ∈ T share a face K |L , then the vector xL − xK is orthogonal to K |L .

(iv) For the boundary faces σ ⊂ ∂�, we assume that either σ ⊂ �D or σ ⊂ �N. For
σ ⊂ ∂� with σ ∈ EK for some K ∈ T , we assume additionally that there exists
xσ ∈ σ such that xσ − xK is orthogonal to σ .

We denote by mK the d-dimensional Lebesgue measure of the control volume K .
The set of the faces is partitioned into two subsets: the set Eint of the interior faces
defined by Eint = {σ ∈ E | σ = K |L for some K , L ∈ T } , and the set Eext of the
exterior faces defined by Eext = {σ ∈ E | σ ⊂ ∂�} , which can also be partitioned
into ED = {σ ⊂ �D} and EN = {σ ⊂ �N}.

Notice that for any σ ∈ Eext, the edge center xσ satisfying (2) is unique. Given
σ ∈ E , we let

dσ =
{

|xK − xL | if σ = K |L ∈ Eint,
|xK − xσ | if σ ∈ Eext.

and τσ = mσ

dσ

.
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Thanks to (2) and (2), we have dσ > 0, thus τσ is well defined. We finally introduce
the size hT and the regularity ζT (which is assumed to be positive) of a discretization
(T , E, (xK )K∈T ) of � by setting

hT = max
K∈T

diam(K ), ζT = min
K∈T

min
σ∈EK

d(xK , σ )

dσ

.

Concerning the time discretization of (0, T ), we consider an increasing finite family
of times 0 = t0 < t1 < . . . ,< tNT = T . We denote by �tn = tn − tn−1 for
1 ≤ n ≤ NT , by �t = (�tn)1≤n≤NT

, and by h�t = max1≤n≤NT �tn . We will use
boldface notations for vectors whose number of components is dependent on the mesh
while keeping the uppercase notation C when we also consider different species.

2.2 A common setting for the Finite Volume schemes

The initial data C0 which belongs to L∞(�, Ā) thanks to (1.8) is discretized into(
C0

K

)
K∈T ∈ ĀT by setting

c0K ,i = 1

|K |
∫

K
c0i (x)dx ∀K ∈ T , i ∈ [[1, N ]]. (2.1)

Notice that previous equation also holds for i = 0 and that this discretization satisfies:

∑

K∈T
mK c0K ,i =

∫

�

c0i (x)dx > 0, ∀i ∈ [[0, N ]] and C0
K ∈ Ā, ∀K ∈ T .

(2.2)

Assume that Cn−1 =
(

cn−1
K ,i

)

K∈T ,i∈[[0,N ]] is given for some n > 0, then we have

to define how to compute (Cn,�n) = (
Cn

K ,�n
K

)
K∈T . First, we introduce some

notations. For all K ∈ T and all σ ∈ EK , we define the mirror values Cn
Kσ and �n

Kσ

of Cn
K and �n

K respectively across σ by setting

Cn
Kσ =

{
Cn

L if σ = K |L ∈ Eint,
Cn

K if σ ∈ Eext,
�n

Kσ =

⎧
⎪⎨

⎪⎩

�n
L if σ = K |L ∈ Eint,

�n
K if σ ∈ EN ,

�D
σ = 1

|σ |
∫
σ

�Ddγ if σ ∈ ED .

(2.3)
Given u = (uK )K∈T ∈ R

T , we define the oriented and absolute jumps of u across
any edge by

DKσ u = uKσ − uK , Dσ u = |DKσ u|, ∀K ∈ T , ∀σ ∈ EK .

Wemay nowuse these operators to describe our scheme. The potential is approximated
using the classic TPFA scheme for the Poisson equation:
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− λ2
∑

σ∈EK

τσ DKσ �n = mK

N∑

i=1

zi c
n
K ,i , ∀K ∈ T . (2.4a)

The conservation equation is approximated using a backward-Euler scheme in time:

mK
cn

K ,i − cn−1
K ,i

�tn
+

∑

σ∈EK

Fn
Kσ,i = 0, ∀K ∈ T , i ∈ [[1, N ]], (2.4b)

where Fn
Kσ,i should be a conservative and consistent approximation of − Di

�tn

∫ tn
tn−1

∫
σ

Ni · nKσ (nKσ denotes the normal to σ outward K ). Finally, the concentration of the
solvent is computed using a discrete version of the volume filling constraint:

cn
K ,0 = 1

v0
−

N∑

i=1

ki c
n
K ,i , ∀K ∈ T . (2.4c)

It remains to define the numerical fluxes Fn
Kσ,i . Two possible choices are given in

the next section.

2.3 Numerical fluxes for the conservation equations

To close the system (2.4), we have to define the numerical fluxes Fn
Kσ,i . As we intend

to use two point flux approximations, they should be of the form:

Fn
Kσ,i =

{
0 if σ ∈ Eext
τσ DiFi (CK , CL ,�K ,�L) if σ = K |L ∈ Eint

(2.5)

For the sake of readability, we have chosen to define the flux functions Fi for unitary
Di . Thus this constant should rarely appear in the functional inequalities of the follow-
ing sections. To preserve the conservation of mass, all the flux functions Fi defined
afterward satisfy an anti-symmetry property:

Fi (CK , CL ,�K , �L ) = −Fi (CL , CK ,�L ,�K ) ∀CK , CL ∈ A, �K , �L ∈ R, (2.6)

so that the fluxes are locally conservative, i.e.:

FK ,σ + FL,σ = 0 ∀σ = K |L ∈ Eint.

2.3.1 The centered flux

The first numerical flux we consider is based on the original expression of the flux
(1.3):

Ni = Di ci∇
(

hi (c) + zi�
)
.
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The gradient and edge concentration are independently discretized:

Fi (CK , CL ,�K ,�L) = cK ,i + cL,i

2
(hi (CK ) − hi (CL)) + zi (�K − �L)) . (C)

This flux is a straightforward generalization of the eponymous flux presented in [9].
As such it is also similar to the fluxes introduced in [7, 11, 12, 15, 16].

2.3.2 The “Sedan” flux

The other flux under study is also a generalization of the Sedan flux presented in [9].
It originates from and is named after the SEDAN III semiconductor device simulation
code [47] and is used to handle the case of degenerated semiconductors in semiconduc-
tor device simulators, see [45, 46]. In [41], this approach was applied to ion transport
in electrolytes, resulting in a scheme almost identical with the one presented here. The
scheme relies on the introduction of the excess chemical potential

νi (C) := hi (C) − log(ci ) = − log(c̄) − ki log
c0
c̄

.

This excess potential characterizes the non-ideality of the electrolyte leading to the
following equivalent continuous flux formulation:

Ni = Di

[
∇ci + ci∇ (zi� + νi (C))

]
.

The Scharfetter–Gummel-inspired discretization [44] of this expression of the flux
leads to the so-called Sedan flux:

Fi (CK , CL ,�K ,�L) = B
(
zi�L + νi (CL) − zi�K − νi (CK )

)
cK ,i (S)

− B
(
zi�K + νi (CK ) − zi�L − νi (CL)

)
cL,i ,

where B(x) = x
ex −1 for all x �= 0 is the Bernoulli function. Notice that B can be

extended by B(0) = 1 and is in C∞(R).

Remark In [9] we studied two other schemes. Onewas based on the diffusion enhance-
ment and discretization ideas originating from [4]. The extension of this so-called
Bessemoulin–Chatard scheme to the multi-species case appears to be not feasible due
to the intrinsic use of one-dimensional chain rules. The other scheme based on activ-
ity variables and the averaging of the inverse activity coefficient was introduced for
the multi-species case in [30]. Numerical analysis of such a scheme is more intricate
and would likely not be satisfactory as we were not able to prove convergence in [9].
Moreover, unless more sophisticated inverse activity coefficient averaging strategies
are available, this scheme is considerably less accurate compared to all the others
discussed in [9].
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2.4 Main theorems

We have proposed two schemes (2.4), (2.5) supplemented with either (C) or (S).
Both schemes are nonlinear systems. Solutions to this nonlinear system should satisfy
discrete equivalents of the properties listed in Sect. 1.2, namely conservation of mass
and energy-dissipation. For the latter, we introduce the discrete energy functional ET
as a discrete counterpart of the continuous energy functional E . It is defined by:

ET (Cn,�n) =
∑

K∈T
mK H(Cn

K )+λ2

2

∑

σ∈E
τσ

(
Dσ �n)2−λ2

∑

K∈T

∑

σ∈ED∩EK

τσ �D
σ DKσ �n .

(2.7)
The first theorem proven in this paper focuses on the existence of discrete solutions

for a given mesh, and the preservation of the physical bounds: positive concentrations,
and the properties of Sect. 1.2.

Theorem 2.1 Let (T , E, (xK )K∈T ) be an admissible mesh and let C0 be defined
by (2.1). Then, for all 1 ≤ n ≤ NT , the nonlinear system of equations (2.4), (2.5)
supplemented with either (C) or (S) has a solution

(Cn,�n) ∈ AT × R
T .

Moreover, the solution to the scheme satisfies, for all 1 ≤ n ≤ NT ,

ET (Cn,�n)− ET (Cn−1,�n−1) ≤ �tn

N∑

i=1

∑

σ∈E
Fn

Kσ,i DKσ (hi (Cn)+ zi�
n), (2.8)

and ∑

K∈T
cK ,i mK =

∫

�

c0i (x)dx ∀i ∈ [[0, N ]]. (2.9)

The proof of this theorem is the purpose of Sect. 3. Knowing a discrete solution to
the scheme, (Cn,�n)1≤n≤N , we can define an approximate solution (CT ,�t ,�T ,�t).
It is the piecewise constant function defined almost everywhere by

CT ,�t(t, x) = Cn
K , �T ,�t(t, x) = �n

K if (t, x) ∈ (tn−1, tn] × K .

This definition will be developed in Sect. 4 and supplemented by other reconstruction
operators.

Using this existence result, we let
(
Tm, Em, (xK )K∈Tm

)
m≥1, (Cn

m,�n
m) ∈ AT ×

R
T , be a sequence of admissible meshes in the sense of Definition 2 and associated

approximate solution. We assume that hTm , h�tm −→
m→∞ 0 while the mesh regularity

remains bounded, i.e., ζTm ≥ ζ � for some ζ � > 0 not depending on m. A natural
question is the convergence of (CTm ,�tm ,�Tm ,�tm ) towards a weak solution to the
continuous problem. The convergence result is stated in Theorem 2.2 which will be
proved in Sect. 4.
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Theorem 2.2 For the two schemes under study, a sequence of approximate solutions
(CTm ,�tm ,�Tm ,�tm )m≥1 satisfies, up to a subsequence:

CTm ,�tm −→
m→∞ C in L2(QT )N+1, �Tm ,�tm −→

m→∞ � in L2(QT ). (2.10)

Moreover if inf mesh m
n∈[[1,NT ,m ]]

K∈Tm

cn
m,K ,0 > 0, (C,�) is a weak solution of (1.3)–(1.8) in the

sense of Definition 1.

3 FixedMesh analysis

In this section, we intend to prove Theorem 2.1. To this end, we will use a topological
degree argument in Sect. 3.3. This topological degree relies on properties of the fluxes
and a priori estimates detailed respectively in the following section and in Sect. 3.2.
The methodology of this proof is very similar to the one done in [9]. The key changes
and improvements are concentrated in Proposition 3.2, Lemmas 3.2 and 3.5.

3.1 Analysis of numerical flux based functions

In this section, we introduce several functions derived from Fi . As in [9], the first
functions of interest models the free energy dissipation for each species i ∈ [[1, N ]]:

Di (CK , CL ,�K ,�L ) := Fi (CK , CL , �K ,�L ) (hi (CK ) + zi�K − hi (CL ) − zi�L ) .

We also introduce the local free energy dissipation D := ∑N
i=1Di . In addition to this

function, we can define a reconstruction of the concentration at the interfaces. This is
the purpose of the following lemma:

Lemma 3.1 For a flux Fi defined either by (C) or (S), the corresponding face concen-
tration functions defined by

Ci (CK , CL ,�K ,�L) = Fi (CK , CL ,�K ,�L)

hi (CK ) + zi�K − hi (CL) − zi�L
∀i ∈ [[1, N ]] (3.1)

if hi (CK )+zi�K −hi (CL)−zi�L �= 0 can be extended by continuity onA×A×R×R.
Moreover, for all (CK , CL ,�K ,�L) ∈ A × A × R × R, and for all i ∈ [[1, N ]]:

min(cK ,i , cL,i ) ≤ Ci (CK , CL ,�K ,�L) ≤ max(cK ,i , cL,i ). (3.2)

Proof The proof of the extension by continuity and the average property (3.2) is
highly similar to [9, Lemma 3.1]. For the centered scheme defined by (C), we have by
definition:

Ci (CK , CL ,�K ,�L) = cK ,i + cL,i

2
,
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hence the extension by continuity and Eq. (3.2).
For the Sedan scheme, defined by (S), we introduce xi = log(cK ,i/cL,i ) and yi =

zi�L + νi (CL) − zi�K − νi (CK ) and notice that:

hi (CK ) + zi�K − hi (CL) − zi�L = xi − yi ,

Fi (CK , CL ,�K ,�L) = B(yi )cK ,i − B(−yi )cL,i . (3.3)

Using the following property of the Bernoulli function:

B(log(a) − log(b))a − B(log(b) − log(a))b = 0, ∀(a, b) ∈ (0,+∞)2,

we have:

Fi (CK , CL ,�K ,�L) = (B(yi ) − B(xi ))cK ,i − (B(−yi ) − B(−xi ))cL,i . (3.4)

Finally using (3.3) and the differentiability of B, we have the desired extension on
A×A×R×R. We also have Eq. (3.2) thanks to the monotony of B and the relation
B(x) − B(−x) = −x for all x ∈ R. ��
Thanks to this lemma, Di rewrites:

Di (CK , CL ,�K ,�L) = Ci (CK , CL ,�K ,�L)
(

hi (CK )+zi�K −hi (CL)−zi�L

)2
.

(3.5)
This new formulation along with (3.2) grants the non-negativity of Di and D. The
following coercivity lemma gives more detailed information on the behavior of D:

Lemma 3.2 Let for δ, ε, M, c > 0, i ∈ [[1, N ]]:

�δ,ε,M,i (c) := inf
(CK ,CL )∈A2, (�K ,�L )∈[−M,M]2

cK ,0,cL,0>ε, cK ,i ≥min(δ, 0.5
ki v0

), cL,i <c

Di (CK , CL ,�K ,�L),

ϒδ,M (c) := inf
(CK ,CL )∈A2, (�K ,�L )∈[−M,M]2

cK ,0≥min(δ, 0.5
v0

), cL,0<c

D(CK , CL ,�K ,�L).
(3.6)

We have, for all δ, ε, M > 0:

lim
c→0+ ϒδ,M (c) = +∞ and lim

c→0+ �δ,ε,M,i (c) = +∞ ∀i ∈ [[1, N ]].

As the proof of this lemma is purely technical it has been relegated to Appendix B.

3.2 A priori estimates

In this section, we intend to establish uniform a priori estimates on the concentration
and the potential, in order to prove the existence of solutions that satisfies the properties
of Theorem 2.1.
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We assume that we dispose of (Cn,�n)n∈[[0,Nmax]] solution of (2.1), (2.4), (2.5)

supplemented with either (C) or (S) inAT ×R
T . WhereA, the adherence ofA is the

set of non-negative concentrations c0, ...cN satisfying the volume filling constraint.
The first a priori estimate is the conservation of mass (2.9):

Lemma 3.3 For all n in [[0, Nmax]], i in [[0, N ]] we have:

∑

K∈T
mK cn

K ,i =
∫

�

c0i (x)dx .

The proof is straightforward and classical thanks to the local conservativity of the
fluxes, the no flux boundary conditions, and the discretization choice for C0.

We can also build a discrete equivalent to Theorem 1.1 using ET defined in (2.7)
and the dissipation function Di . This is the purpose of the following proposition:

Proposition 3.1 For all n in [[0, Nmax]], we have

ET (Cn,�n)−ET (Cn−1,�n−1) ≤ −�tn

∑

i

Di

∑

σ=K |L∈Eint

τσDi (C
n
K , Cn

L ,�n
K ,�n

L).

(3.7)

Remark 3.1 Thanks to (2.5) and the definition of Di , (3.7) and (2.8) are equivalents.

Proof The proof is fairly classical once noticed that thanks to LemmaA.1, H is convex
(thus ET too). The inequality f (a) − f (b) ≤ f ′(a)(a − b) yields:

ET (Cn, �n) − ET (Cn−1, �n−1) ≤
∑

K∈T

N∑

i=1

mK (cn
K ,i − cn−1

K ,i )hi (C
n
K )

+λ2
∑

σ∈E
τσ DKσ �n DKσ (�n − �n−1) − λ2

∑

K∈T

∑

σ∈ED∩EK

τσ �D
σ DKσ (�n − �n−1).

(3.8)

Notice that the left-hand side is the term of interest, we will then focus on the refor-
mulation of the right-hand side. We multiply Eq. (2.4b) by hi (CK ) + zi�K and we
sum over the cells and species in order to get the following three-terms formula:

∑

K∈T

N∑

i=1

mK
cn

K ,i − cn−1
K ,i

�tn
hi (C

n
K )

︸ ︷︷ ︸
Tchem

+
∑

K∈T
�K

N∑

i=1

mK zi
cn

K ,i − cn−1
K ,i

�tn
︸ ︷︷ ︸

Tel

+
∑

K∈T

N∑

i=1

( ∑

σ∈EK

Fn
Kσ,i

)
(hi (CK ) + zi�K )

︸ ︷︷ ︸
Tdiss

= 0. (3.9)
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The term concerning the chemical energy, �tnTchem, appears directly in (3.8), thus
we focus on Tel. Using Eq. (2.4a), we have:

�tn Tel = λ2
∑

σ∈E
τσ DKσ �n DKσ (�n − �n−1) − λ2

∑

K∈T

∑

σ∈ED∩EK

τσ �D
σ DKσ (�n − �n−1),

(3.10)
which is the second line of Eq. (3.8). For Tdiss, a discrete integration by parts (sum-
mation by parts) yields:

Tdiss = −
N∑

i=1

∑

σ∈E
Fn

Kσ,i DKσ (hi (C) + zi�).

Using this equation and equations (3.10), (3.9) in (3.8), we have (2.8):

ET (Cn,�n) − ET (Cn−1,�n−1) ≤ �tn

N∑

i=1

∑

σ∈E
Fn

Kσ,i DKσ (hi (Cn) + zi�
n),

which concludes the proof thanks to the preliminary remark. ��
In the following lemma, we will show several bounds on the potential � and then

take advantage of them to get a bound on the free energy dissipation:

Lemma 3.4 There exist M� depending only on λ,�D,�, 1
v0

, (k1, . . . , kN ), (z1, . . . ,
zN ), and another constant M∗ depending also on ζT such that:

‖�n‖∞ ≤ M�, ∀1 ≤ n ≤ Nmax, (3.11)∑

σ∈E
τσ |Dσ �n|2 ≤ M∗, ∀1 ≤ n ≤ Nmax, (3.12)

∣∣∣∣∣∣

∑

K∈T

∑

σ∈ED∩EK

τσ �D
σ DKσ �n

∣∣∣∣∣∣
≤ M∗, ∀1 ≤ n ≤ Nmax, (3.13)

Nmax∑

n=1

�tn

N∑

i=1

Di

∑

σ=K |L∈Eint

τσDi (C
n
K , Cn

L ,�n
K ,�n

L) ≤ M∗. (3.14)

Proof The proof of (3.11) is a straightforward application of [9, Proposition A.1]. As
the proof of (3.12) is detailed in [9, Lemma 3.6], we focus on the proof of (3.13),
assuming (3.12).

Multiplying Eq. (2.4a) by �n
K and summing over K ∈ T yields, using (2.3):

∑

σ∈E
τσ

(
Dσ �n)2 −

∑

σ∈ED

τσ �D
σ DKσ �n =

∑

K∈T
�n

K mK

N∑

i=1

zi c
n
K ,i .
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Using Eq. (3.12), (3.11), and Cn ∈ AT
, we have the desired result. The last result is

based on (3.7). Summing that equation, we have:

Nmax∑

n=1

�tn

N∑

i=1

Di

∑

σ=K |L∈Eint

τσDi (C
n
K , Cn

L ,�n
K ,�n

L ) ≤ ET (C0,�0) − ET (CNmax ,�Nmax)

(3.15)
We have thanks to Eqs. (1.10), (3.12), and (3.13):

ET (CNmax,�Nmax) ≥ −|�| log(N + 1)

v0 min ki
− λ2M∗ and ET (C0,�0) ≤ 3

2
λ2M∗,

so that (3.15) becomes:

Nmax∑

n=1

�tn

N∑

i=1

Di

∑

σ=K |L∈Eint
−τσDi (C

n
K , Cn

L ,�n
K ,�n

L) ≤ 5

2
λ2M∗ + |�| log(N + 1)

v0 min ki
.

Hence the desired result, up to the choice of a bigger constant M∗. ��
Finally, we use the free energy dissipation result (3.14), and the estimates on the

free energy dissipation functional to improve the assumption Cn ∈ AT
.

Lemma 3.5 There exist ε0, ε1, ..., εN positive, depending on, among other things, C0

and decreasing with min�t and minσ∈E τσ such that:

cn
K ,i ≥ εi ∀K ∈ T , n ∈ [[1, Nmax]], i ∈ [[0, N ]]

Proof The proof follows the idea of [14, Lemma 3.10] (see also [15, Lemma 3.7],
[9, Lemma 3.7]). We start with the proof for i = 0 and a fixed time step n using
ϒδ,M� , then treat the case of i ∈ [[1, N ]] using �δ,ε0,M�,i and finally notice that no
assumptions were made on n.

Thanks to assumption (1.8) on the initial concentrations, andLemma3.3,wedispose
of K ∈ T such that:

cn
K ,0 ≥ 1

|�|
∫

�

c00dx =: δ0 > 0

We let δ1 = ϒ−1
δ0,M�

( M∗
min�t mini∈[[1,N ]] Di minσ∈E τσ

) where M∗ is as in Lemma 3.4. It is
well defined thanks to the monotony of ϒ and Lemma 3.2. Moreover, we have for
every cell L sharing an edge with K :

cn
L,0 ≥ δ1 > 0,

thanks to the positivity of Di and Eq. (3.14). Similarly we recursively define:

δl+1 = ϒ−1
δl ,M�

(
M∗

min�t mini∈[[1,N ]] Di minσ∈E τσ

)
∀l ∈ N

∗, (3.16)
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and notice that thanks to the connectivity of � there exist l ≤ card(T ) such that, for
all L ∈ T :

cn
L,0 ≥ δl .

Hence a possible choice for ε0. As explained above, the proof is exactly the same for
i ∈ [[1, N ]], with the use of �δ,ε0,M�,i instead of ϒδ,M� in Eq. (3.16) and again does
not depend on the time step n ≥ 1. ��

3.3 Existence of solutions

Using the estimates of the previous section we can establish the existence of a solution
to our numerical scheme. Thanks to Proposition 3.1 and Lemmas 3.3 and 3.5, this will
conclude the proof of Theorem 2.1.

Proposition 3.2 Let C0 be defined by (2.1). Then, for all 1 ≤ n ≤ NT , the nonlinear
system of equations (2.4), (2.5) supplemented with either (C) or (S) has a solution
(Cn,�n) ∈ AT × R

T .

Proof As in [9, Proposition 3.8], we use induction and a topological degree argument
to transform continuously the non-linear system (2.4), (2.5) to a linear one. However,
the path presented in [9] is no longer valid as we do not have a monotony property
on hi . The homotopy follows 3 steps. The first one is sketched in “Appendix C”, the
second one changes the discretization while maintaining ki , Di to 1 and the potential
to zero. The last step corresponds to the activation of the potential and the remaining
nonlinearities.

Following these ideas, we follow the zeros of a homotopy Hα for α ∈ [0, 3]:

Hα :
{
AT × R

T → (RN )T × R
T

(C,�) �→ Hα(C,�),

which is a standard finite volume scheme for the heat equation for α = 0, and our
scheme for α = 3. Thanks to (2.4c), for every α, c0 is eliminated, and proving
c0 . . . cN > 0 allows to conclude that uniformly in α, ci < 1

vi
. ��

Step 1: implementation of the solvent effects using an ad hocscheme. For α ∈ [0, 1],
Hα = 0 means that for all K ∈ T , i ∈ [[1, N ]]:

cK ,i − cn−1
K ,i

�tn
mK +

∑

σ=K |L∈Eint

τσ

cK ,i − cL,i

log(cK ,i/cL,i )

(
log(cL,i/cK ,i ) + α

(
log(cK ,0/cL,0)

)) = 0,

−λ2
∑

σ∈EK

τσ DKσ � = 0,

where �D
α is set to zero. As expressed in Lemma C.1 we dispose of ε1 such that the

zeros of Hα have a concentration that is bounded away from zero by ε1.
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Step 2: change of scheme without potential and for identical species. We change the
discretization of ci∇ log(ci/c0). For α ∈ [1, 2], Hα = 0 writes:

cK ,i − cn−1
K ,i

�tn
mK + (2 − α)

∑

σ=K |L∈EK ,int

τσ

cK ,i − cL,i

log(cK ,i/cL,i )

(
log(cL,i ) − log(cK ,i ) + (

log(cK ,0) − log(cL,0)
))

+(α − 1)
∑

σ=K |L∈EK ,int

τσFi (CK , CL , 0, 0) = 0,

−λ2
∑

σ∈EK

τσ DKσ � = 0

where ki,α is set to 1 and �D
α is again set to zero. Here again we dispose of ε2 such

that the zeros of Hα have a concentration that is bounded away from zero by ε2.
Step 3: activation of the potential and the difference between the species.Forα ∈ [2, 3],
Hα = 0 means:

cK ,i − cn−1
K ,i

�tn
mK + (

3 − α + (α − 2)Di
)

∑

σ=K |L∈EK ,int

τσFi (CK , CL , (α − 2)�K , (α − 2)�L) = 0

−λ2
∑

σ∈EK

τσ DKσ � = mK

N∑

i=1

(α − 2)zi ci ,

where �D
α is set to (α − 2)�D and ki,α to 3 − α + (α − 2)ki . Thanks to Lemma 3.5,

we dispose of ε3 such that the zeros ofHα have a concentration that is bounded away
from zero by ε3.
Conclusion.Using a topological degree argument [20, 39], we can derive the existence
of a solution forHα = 0 for α = 3. A detailed development of this argument applied
to a finite volume scheme for a scalar nonlinear convection-diffusion problem can
be found in [26], proof of Lemma 4.1. It is straightforward to state the existence of
a solution for H0 = 0—the classical finite volume scheme for the heat equation.
This leads to a nonzero toplogical degree of H0. We have shown uniform bounds on
the concentrations from below by min(ε1, ε2, ε3) and above by 1

vi
and the potential:

±M�. Continuity ofHα and the homotopy invariance of the topological degree yield
a nonzero topologial degree of H3 and thus the existence of a solution for H3 = 0.

Remark 3.2 Concerning uniqueness of solutions, we think that, given the correspond-
ing results for semiconductors found e.g. in [34, 36], it is worth to investigate
uniqueness for the thermodynamic equilibrium, and for small times/applied voltages
around thermodynamic equilibrium.
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4 Convergence

In this section we prove Theorem 2.2, which states the convergence of our schemes
towards a weak solution. We consider a sequence

(
Tm, Em, (xK )K∈Tm

)
m≥1 of admis-

sible meshes with hTm , h�tm tending to 0 as m tends to +∞, while the regularity ζTm

remains uniformly bounded from below by a positive constant ζ �.
Thanks to Theorem 2.1, we have a family of discrete solutions (Cm,�m)m . We will

first propose different reconstructions of approximate solutions in Sect. 4.1, then we
show several compactness properties in Sect. 4.2 in order to obtain the convergence of a
subsequenceof approximated solutions. Section4.3 is thendevoted to the identification
of the limit as a weak solution.

To enlighten the notations, we will remove the subscript m as soon as it is not
necessary for understanding.

4.1 Reconstruction operators

In order to carry out the analysis of convergence, we introduce some reconstruction
operators following the methodology proposed in [25].

The operators πT : RT → L∞(�) and πT ,�t : RT ×NT → L∞((0, T ) × �) are
defined respectively by

πT u(x) = uK if x ∈ K , ∀u = (uK )K∈T ,

and

πT ,�t u(t, x) = un
K if (t, x) ∈ (tn−1, tn] × K , ∀u = (

un
K

)
K∈T ,1≤n≤NT

.

These operators allow passing from the discrete solution (Cn,�n)1≤n≤NT
to the

approximate solution since

�T ,�t = πT ,�t (�) , ci,T ,�t = πT ,�t (ci ) , ∀i ∈ [[1, N ]].

To carry out the analysis, we further need to introduce an approximate gradient
reconstruction. Since the boundary conditions play a crucial role in the definition of
the gradient, we need to enrich the discrete solution by face values

(
Cn

σ

)
σ∈Eext,1≤n≤N

and
(
�n

σ

)
σ∈Eext,1≤n≤N defined by Cn

σ = Cn
Kσ and �n

σ = �n
Kσ for σ ∈ Eext ∩ EK .

With a slight abuse of notations, we still denote by Cn = (
(Cn

K )K∈T , (Cn
σ )σ∈Eext

)

and �n = (
(�n

K )K∈T , (�n
σ )σ∈Eext

)
the elements of AT ∪Eext and R

T ∪Eext containing
both the cell values and the exterior faces values of the concentration and the potential
respectively.

For σ = K |L ∈ Eint, we denote by �σ the diamond cell corresponding to σ , that
is the interior of the convex hull of σ ∪ {xK , xL}. For σ ∈ Eext, the diamond cell �σ

is defined as the interior of the convex hull of σ ∪ {xK }. The approximate gradient
∇T : RT ∪Eext → L2(�)d is piecewise constant on the diamond cells �σ , and it is
defined as follows:
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∇T u(x) = d
DKσ u

dσ

nKσ if x ∈ �σ , ∀u ∈ R
T ∪Eext .

We also define ∇T ,�t : R(T ∪Eext)×NT → L2(QT )d by setting

∇T ,�t u(t, ·) = ∇T un if t ∈ (tn−1, tn], ∀u = (
un)

1≤n≤NT
∈ R

(T ∪Eext)×NT .

This reconstruction is merely weakly consistent (unless d = 1) and takes its source
in [17, 27]. More consistent reconstruction operators will be introduced in Sect. 4.3.
Let us recall now some key properties to be used in the analysis. First, for all u, v ∈
R
T ∪Eext ,

∑

σ∈E
τσ DKσ uDKσ v = 1

d

∫

�

∇T u · ∇T vdx .

This implies in particular that

∑

σ∈E
τσ |Dσ u|2 = 1

d

∫

�

|∇T u|2dx, ∀u ∈ R
T ∪Eext . (4.1)

With slight abuse of notations, we extend the reconstructions operator presented
above to the vectors of concentrations in AT ,AT ×NT , etc.

4.2 Compactness

In this section we intend to prove a discrete H1 estimate on the concentrations using
the bound on the free-energy dissipation (3.14). To that extend we will introduce a
chemical dissipation Dchem as a discrete equivalent to

∑
ci |∇hi (c)|2 and compare it

both with the usual distance and the total dissipation D.
As the identification of the limit is only possible for

inf
mesh m

n∈[[1,NT ,m ]]
K∈Tm

cn
m,K ,0 > ε > 0,

the results of this section are proved under this assumption and complemented with
remarks indicating whether the hypothesis is necessary or not. In order to apply chain
rules for the convergence, we need to change the face concentration C from the one
defined by the numerical scheme through Lemma 3.1 to the logarithmic average:

C̃i (CK , CL) = cK ,i − cL,i

log(cK ,i ) − log(cL,i )
∀i ∈ [[0, N ]]. (4.2)

This choice of edge concentration will also be used in the definition of Dchem to
avoid a dependency on the potential. The following lemma provides an estimate the
numerical-flux based averages using this logarithmic average.

123



120 B. Gaudeul, J. Fuhrmann

Lemma 4.1 For all ε > 0 there exists αε > 0 depending only on ε, M� such that, for
all (CK , CL ,�K ,�L) ∈ A×A×[−M�, M�]×[−M�, M�], and for all i ∈ [[1, N ]]:

cK ,0, cL,0 > ε �⇒ αε C̃i (CK , CL) ≤ Ci (CK , CL ,�K ,�L). (4.3)

Proof For the centered scheme, this inequality is known with αε = 1 without assump-
tion on c0 [42]. For the Sedan scheme the proof ismore intricate and uses the hypothesis
on c0. Equation (4.3) is equivalent to the boundedness of

Ri (CK , CL ,�K ,�L) := C̃i (CK , CL)

Ci (CK , CL ,�K ,�L)
,

for cK ,0, cL,0 > ε.
Introduce xi = log cK ,i

cL,i
, and yi = zi�L + νi (CL)− zi�K − νi (CK ) as in the proof

of lemma 3.1. By symmetry, one can assume xi ≥ 0 and thanks to our assumption on
the solvent and the potential, yi is bounded by some K . Moreover, we notice that by
definition of xi , (3.4) yields:

Fi (CK , CL ,�K ,�L) = cL,i
(
B(yi )e

xi − B(−yi )
)
,

so that we have:

Ri (CK , CL ,�K ,�L) = exi − 1

xi

xi − yi

B(yi )exi − B(−yi )
.

The right-hand side can be seen as a continuous function of xi , yi . It is bounded on
the boundary of its definition domain [0,+∞) × [−K , K ] and admits a finite limit
1

B(μ)
for xi → ∞, yi → μ, thus Ri is bounded. ��

Remark This result does not hold for ε = 0. In that case, we have to introduce:

Ĉi (CK , CL) = inf
(�K ,�L )∈[−M�,M�]2

Ci (CK , CL ,�K ,�L),

for which this lemma is trivially true with α = 1. That third edge reconstruction should
be used in the following definition.

Then we try to take advantage of Proposition 3.1. As Lemma 3.4 already provides
satisfying estimates on �, we introduce

Dchem,i(CK , CL) : A
2 → R

(CK , CL) �→ C̃i (CK , CL)(hi (CK ) − hi (CL))2,

and

Dchem =
N∑

i=1

Dchem,i.

123



Finite volumes for Nernst–Planck–Poisson with ion… 121

A first interesting result is that Dchem is a semimetric on A. The non-negativity and
symmetry properties are trivially satisfied, the last property is the subject of the fol-
lowing lemma.

Lemma 4.2 We have Dchem(CK , CL) = 0 if and only if CK = CL

Proof IfCK = CL , we obviously haveDchem(CK , CL) = 0, we will then focus on the
other implication.Assume thatwedispose ofCK , CL inA such thatDchem(CK , CL) =
0. We let for i ∈ [[0, N ]]:

aK ,i = log
cK ,i

cK
aL,i = log

cL,i

cL
, (4.4)

such that hi (CK ) = aK ,i − ki aK ,0. We have C̃i (CK , CL) ≥ min(cK ,i , cL,i ) > 0, thus
Dchem is the sum of non-negative terms. As we have Dchem(CK , CL) = 0, we have:

aK ,i − ki aK ,0 = aL,i − ki aL,0 ∀i ∈ [[1, N ]].

Assume that aK ,0 = aL,0, then AK = AL , where A = (a0, ..., aN ). Using∑N
i=0 ki eai = 1

v0c , AK = AL implies CK = CL .
The other case is absurd: using the symmetry of Dchem, one can freely assume that

aK ,0 > aL,0. Using ki > 0, we have aK ,i > aL,i∀i ∈ [[1, N ]] hence:

1 =
N∑

i=0

eaK ,i >

N∑

i=0

eaL,i = 1.

��
The function Dchem cannot be extended by continuity ontoA2

. Some information for
near zero concentrations can be inferred from lemma 3.2. The following sequential
result means that the semi-metric property is preserved near the boundary ∂A2.

Lemma 4.3 Let (Cl
K , Cl

L) be a sequence of A2. If Dchem(Cl
K , Cl

L) → 0 then Cl
K −

Cl
L → 0.

Proof For the sake of simplicity, as this result will only be used with a lower bound on
c0, we keep the proof to this simpler case and assume that inf(cl

K ,0, cl
L,0) > 0. To prove

the limit, we will show that from any sub-sequence, we can extract a sub-sub-sequence
such that Cl

K − Cl
L → 0. Considering any sub-sequence, thanks to the boundedness

ofA we can extract a sub-sub-sequence such that Cl
K and Cl

L converge. If we dispose
of i ∈ [[1, N ]] such that cl

K ,i → c∗ > 0 while cl
L,i → 0 (or the symmetric situation),

then we have:

C̃i (C
l
K , Cl

L) ∼
l→∞

c∗

− log(cl
L,i )

and
(

hi (C
l
K ) − hi (C

l
L)
)2 ∼

l→∞ log(cl
L,i )

2

(4.5)
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so thatDchem,i(Cl
K , Cl

L) ∼l→∞ −c∗ log(cl
L,i ) → ∞, which is absurd. Necessary, we

have cl
L,i → 0 if and only of cl

K ,i → 0. If {i | inf l(cl
L,i ) > 0} is empty we have the

desired result. Else, we use Dchem,i(Cl
K , Cl

L) → 0, to get:

al
K ,i − ki a

l
K ,0 = al

L,i − ki a
l
L,0 + o(1) ∀i ∈ [[1, N ]], inf

l
(cl

L,i ) > 0,

where aK ,i , aL,i are defined by (4.4). As both cl
K ,i and cl

L,i are bounded away from

zero, al
K ,i and al

L,i are convergent up to a subsequence. Using our assumption on c0,

we have the convergence of al
K ,0 and al

L,0 up to yet another subsequence. Then we
conclude using the proof of previous lemma. ��
Remark The main simplification brought by the restriction to the setting c0 > ε is the
use of C̃i in (4.5). The end of the proof can be adapted by considering the behaviour
of al

K ,0 − al
L,0.

This semi-metric is however not commonly used and the following lemma intends to
compare it with the usual distance.

Proposition 4.1 For all i ∈ [[0, N ]], there exist M such that:

(
cK ,i − cL,i

)2

Dchem(CK , CL)
≤ M, ∀ CK , CL ∈ A2. (4.6)

Proof We will prove the result for i ∈ [[1, N ]] using reductio ad absurdum and case
exhaustion.

Let (Cn
K , Cn

L) ∈ (A2)N be such that

(
cn

K ,i −cn
L,i

)2

Dchem(Cn
K ,Cn

L )
→ ∞ . We let εn := Cn

L − Cn
K

and use the boundedness of A to extract a convergent sub-sequence of (Cn
K , εn) and

denote (C∗, ε∗) its limit. As ci is bounded, we have Dchem(Cn
K , Cn

L) → 0. Thanks to
Lemma 4.3, we have ε∗ = 0 so that we will consider first order development in εn .
We notice that the blow-up of the ratio implies that:

Dchem,j(C
n
K , Cn

L) = o(|εn|2) ∀ j ∈ [[1, N ]]. (4.7)

For the sake of readability, we will drop from now on the superscript n . We have to
consider three cases:

(1) c∗
j = 0 implies ε j = o(|ε|);

(2) we dispose of species such that ε j �= o(|ε|) and c∗
j = 0, but for all of them

log
ε j +c j

c j
remains bounded;

(3) we dispose of a specie such that ε j �= o(|ε|), c∗
j = 0, and up to a subsection,

log
ε j +c j

c j
blows-up.

��
Preliminary remark about the solvent We consider j ∈ [[1, N ]] such that c∗

j > 0 and

let ε j = ∑N
i=0 εi . If such a j cannot be found, then c0 → 1

v0
and the conclusion (4.8)

holds. Else we have, thanks to (4.7):
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log
c j + ε j

c j
= O(|ε|) and log

c j + ε j

c j
= O(|ε|) and

h j (CK ) − h j (CL) = O(|ε|),

so that:

log
c0 + ε0

c0
= O(|ε|),

thus:
ε0

c0
= O(|ε|) and log

c0 + ε0

c0
= ε0

c0
+ o(|ε|). (4.8)

Conclusion of the proof in case 4.2 The proof of this first case is by far the most
intricate of the three. It is done in two step: first we use our hypothesis on Dchem, c,
and ε to obtain a estimate where the species are coupled through an ersatz of ε and c.
Then we show an improved version of the Cauchy-Schwarz inequality to improve the
estimate into decoupled estimates which are incompatible with our hypothesis 4.2.

First order development of h j gives:

h j (CK ) − h j (CL) = ε j

c j
− k j

ε0

c0
+ (k j − 1)

ε

c
+ o(ε),

∀ j ∈ [[1, N ]], c∗
j > 0.

Thanks to (4.7) we have the estimation:

ε j

c j
− k j

ε0

c0
+ (k j − 1)

ε

c
= o(|ε|),

∀ j ∈ [[1, N ]], c∗
j > 0. (4.9)

To correct the effect of the species with negligible concentrations, we let:

ε̃0 = −
∑

c∗
j >0
j �=0

k jε j ε̃ = ε̃0 +
∑

c∗
j >0
j �=0

ε j and c̃ =
∑

c∗
j >0

c j

By construction, we have c̃ = c + o(1). Using the hypothesis (4.2) we have ε̃ =
ε + o(|ε|) and ε̃0 = ε0 + o(|ε|). These three results and Eq. (4.9) yield:

ε j

c j
− k j

ε̃0

c0
+ (k j − 1)

ε̃

c̃
= o(|ε|), ∀ j ∈ [[1, N ]], c∗

j > 0.

We let ξ j = ε j
c j

− ε̃
c̃ for j �= 0 and ξ0 = ε̃0

c0
− ε̃

c̃ . Previous equation yields:

ξ j = k jξ0 + o(|ε|), ∀ j ∈ [[1, N ]], c∗
j > 0.
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Considering
∑

c∗
j >0 c jξ j , we have:

0 = ε̃ − ε̃ =
∑

c∗
j >0

c jξ j =
∑

c∗
j >0

c j k jξ0 + o(|ε|) = ξ0

(
1

v0
+ o(1)

)
+ o(|ε|),

so that:

ξ0 = o(|ε|).

We conclude the first part of the proof with the following estimate that follows from
(4.7): ∑

c∗
j >0∪{0}

c jξ
2
j = o(|ε|2). (4.10)

For the sake of readability, we will drop the ˜ over ε0 in the second part of the
proof, introduce S = { j ∈ [[1, N ]]|c∗

j > 0}∪{0}, and assume by symmetry that ε̃ ≥ 0.
We have:

∑

j∈S

c jξ
2
j =

∑

j∈S

ε2j

c j
− ε̃2

c̃
. (4.11)

Let x j = √
c j , y j = ε j√

c j
, X = (x j ) j∈S and Y = (y j ) j∈S . We have:

ε̃ =
∑

j∈S

x j y j = 〈X , Y 〉, |X |2 = c̃, |Y |2 =
∑

j∈S

ε2j

c j
,

so that (4.10) becomes:

|X |2|Y |2 − 〈X , Y 〉2 = o(|ε|2).

The Cauchy-Schwarz inequality yields

ε̃2 ≤ c̃
∑

c∗
j >0

ε2j

c j
.

We intend to use ideas presented in [2] to improve the estimation of ε̃. More precisely,
the stability version of the Cauchy–Schwarz presented in [1] gives:

ε̃ = |X ||Y |
(
1 − 1

2

∣∣∣∣
X

|X | − Y

|Y |
∣∣∣∣
2
)

.

We intend to show that
∣∣∣ X
|X | − Y

|Y |
∣∣∣ is bounded away from zero. To show this bound

we let:
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K : R
S × R

S → R

(C, ε) �→
∣∣∣ X
|X | − Y

|Y |
∣∣∣

and consider a minimizing sequence of K under the conditions

c j > 0, ε0 = −
∑

j∈S
j �=0

k jε j .

As K is invariant by scaling, we can assume that we have a convergent minimizing
sequenceCl

inf, ε
l
inf of limitC∗

inf, ε
∗
inf and of norm equal to 1. Note that we do not assume

C ∈ A, nor C∗
inf > 0 thus we consider broader options than necessary for use in (4.11)

to ensure existence of the minimum. Finally, we notice that K is non-negative, thus
its infimum is either zero or positive. We will prove the positivity by contradiction.

Assume that the limit of K (Cl
inf, ε

l
inf) is zero, we show that |Y l

inf| is convergent up
to a subsequence. We consider j such that, up to a subsequence,

|yl
inf, j |

|Y l
inf|

is bounded

away from zero. If c∗
inf, j �= 0, |yl

inf, j | is bounded thus |Y l
inf| is too, and up to another

subsequence, the latter is convergent. If c∗
inf, j = 0 we notice that xl

inf, j → 0 and |Xl
inf|

is bounded away from zero, so that
|yl
inf, j |

|Y l
inf|

→ 0, which is absurd. We let γ be the limit

of |Y l
inf|2.

As we have assumed the infimum to be zero, we have:

ε∗
inf, j = c∗

inf, j
γ

c̃∗
inf

, ∀ j ∈ S.

This would imply that ε∗
inf is non-negative, however, we have ε∗

inf,0 = −∑
j∈S\{0}

k jε
∗
inf, j and ε∗

inf is of norm 1. This is absurd, hence the infimum cannot be zero. Thus
we dispose of 0 < α depending only on k1, . . . kN and S such that:

ε̃ ≤ |X ||Y | (1 − α) .

As we have assumed (using symmetry) ε̃ ≥ 0, we also have α ≤ 1. So that we
have:

∑

j∈S

ε2j

c j
− ε̃2

c̃
= |Y |2 − ε̃2

|X |2 ≥ |Y |2(1 − (1 − α)2) =
∑

j∈S

ε2j

c j
(1 − (1 − α)2).

Thanks to Eqs. (4.10) and (4.11), we have:

∑

j∈S

ε2j

c j
= o(|ε|2),

thus, thanks to (4.2), ε j = o(|ε|) for all j ∈ [[1, N ]], which is absurd.
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Conclusion of the proof in case 4.2 We dispose of j such that c j → 0 and ε j �= o(|ε|),
thus have up to a sub-sequence:

|ε| = O(ε j ) and Dchem,j = C̃ j

(
log

c j + ε j

c j
+ O(|ε|)

)2

.

The assumed boundedness of log
c j +ε j

c j
implies that ε j = O(c j ) thus, c j �= o(|ε|).

Moreover, we also dispose of α = min(1, infn
cn

j +εn
j

cn
j

) > 0 such that:

C̃ j ≥ αc j

Necessary, we have log
c j +ε j

c j
→ 0 thus:

Dchem,j ≥ α
ε2j

c j
+ o(

ε2j

c j
),

which is bigger than |ε|2 and thus contradicts (4.7).

Conclusion of the proof in case 4.2 Let j be such that ε j �= o(|ε|), c∗
j = 0, and

log
ε j +c j

c j
blows-up.

We have:

h j (C + ε) − h j (C) = log
ε j + c j

c j
+ o(1),

and:

C̃ j (C + ε, C) = ε j

log
ε j +c j

c j

,

so that:

Dchem,j ∼ ε j log
ε j + c j

c j
,

which contradicts (4.7) since ε j �= o(|ε|).
Global conclusion

As each of the cases lead to a contradiction, we have the desired inequality for i ∈
[[1, N ]]. For the solvent, we see that:

cK ,0 − cL,0 = −
N∑

i=1

ki (cK ,i − cL,i ),

thus the announced result up to the choice of a bigger constant M . ��
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Remark Even though this lemma is provedwithout the assumption on c0, its adaptation
to Ĉ is themost difficult. The shortest sketch of proofwe obtained relied on the splitting
of case (4.2) in more than 15 sub-cases.

Using these tools, wemay now prove the following necessary compactness inequality:

Proposition 4.2 For all ε > 0, there exist M such that:

inf
mesh m

n∈[[1,NT ,m ]]
K∈Tm

cn
m,K ,0 > ε �⇒ ∥∥∇Tm ,�tm ci

∥∥2
L2(QT )

≤ M, ∀i ∈ [[0, N ]],∀m.

Proof We will show the result for i ∈ [[1, N ]] and use the definition of A to extend
it the solvent. For improved readability, we will drop the subscript m, and for σ =
K |L ∈ Eint, i ∈ [[1, N ]] let Cσ,i = Ci (CK , CL ,�K ,�L). By definition, we have:

∣∣∇T ,�t ci
∣∣2
L2(QT )

=
NT∑

n=1

�tn

∑

σ∈Eint
τσ (Dσ cn

i )2.

Thanks to Proposition 4.1 and Lemma 4.1, we have:

∑

σ∈Eint

τσ (Dσ cn
i )2≤ M

∑

σ=K |L∈EK ,int

τσDchem(Cn
K , Cn

L )≤ M

αε

∑

σ∈Eint

N∑

j=1

τσCn
σ, j (Dσ h j (Cn))2.

It is sufficient to bound
∑NT

n=1 �tn
∑

σ∈Eint τσCn
σ, j (Dσ h j (Cn))2, for all j ∈ [[1, N ]]

to get the desired result. We have:

(Dσ h j (Cn))2 ≤ 2(Dσ (h j (Cn) − z j�
n))2 + 2(z j Dσ �n)2.

Thanks to Eq. (3.14) of Lemma 3.4, we dispose of M such that:

NT∑

n=1

�tn

∑

σ∈Eint
τσCn

σ, j (Dσ (h j (Cn) − z j�
n))2 < M .

Moreover,
∑

σ∈Eint τσCn
σ, j (z j Dσ �n)2 is also bounded thanks to (3.12) and the L∞

bound on Ci and zi . Thus we have:

NT∑

n=1

�tn

∑

σ∈Eint
τσCn

σ, j (Dσ h j (Cn))2 ≤ M, (4.12)

which in turn yields the desired result.
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For the solvent we notice that:

∇Tm ,�tm c0 = −
N∑

i=1

ki∇Tm ,�tm ci ,

so that the bound on all ∇Tm ,�tm ci transfers into a bound on ∇Tm ,�tm c0. ��

Using this discrete L2(H1) estimate, we use a discrete Aubin–Lions lemma to get the
compactness of the sequence of solutions, as stated in following proposition:

Proposition 4.3 Let (Cm,�m) be the family of discrete solutions defined either by the
centered scheme or by the Sedan scheme. In both cases, there exists � ∈ L∞(QT ;R)∩
L2((0, T ); H1(�)), C ∈ L∞(QT ;A) such that, up to a subsequence,

πTm ,�tm Cm −→
m→∞ C strongly in L2(QT )N+1, (4.13)

∇Tm ,�tm Cm −→
m→∞ ∇C weakly in L2(QT ), (4.14)

πTm ,�tm �m −→
m→∞ � in the L∞(QT ) weak-� sense, (4.15)

∇Tm ,�tm �m −→
m→∞ ∇� in the L∞([0, T ], L2(�)d) weak-� sense. (4.16)

Proof For improved readability we drop again the subscripts m. The proof of the
first two result relies on a discrete Aubin–Lions lemma [33, Lemma 3.4]. We intend
to use it in the setting described in [10, Lemma 9]. Proposition 4.2 provides a first
property, but we still have to prove that there exist C independent of the mesh such
that

∑
n ‖cn

i − cn−1
i ‖T ,−1 ≤ C , where ‖ · ‖T ,−1 is defined by duality:

‖c‖T ,−1 = sup
ϕ

(∫

�

πT cπT ϕdx, ‖πT ϕ‖2L2 + ‖∇T ϕ‖2L2 = 1

)
.

Let ϕ ∈ R
T . Tanks to (2.4b), we have:

∫

�

πT (cn
i − cn−1

i )πT ϕdx = −�tn

∑

K∈T
ϕK

∑

σ∈EK

Fn
Kσ,i .

Using the definition of Fn
Kσ,i along with the definition of Ci respectively Eqs. (2.5)

and (3.1), we have:

∫

�

πT (cn
i − cn−1

i )πT ϕdx

= �tn

∑

σ=K |L∈EK ,int

DiτσCi (C
n
K , Cn

L ,�n
K ,�n

L)DKσ

(
hi (Cn) + zi�

n) DKσ ϕ.
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Thanks to the Cauchy-Schwarz inequality, we have:

∫

�

πT (cn
i − cn−1

i )πT ϕdx

≤ �tn Di

⎛

⎝
∑

σ=K |L∈E int

τσCi (C
n
K , Cn

L ,�n
K ,�n

L)
(
DKσ hi (Cn) + zi�

n)2
⎞

⎠

1
2

⎛

⎝
∑

σ=K |L∈E int

τσCi (C
n
K , Cn

L ,�n
K ,�n

L) (DKσ ϕ)2

⎞

⎠

1
2

.

Using Ci ≤ 1
ki v0

, the definition of Di and ‖∇T ϕ‖2
L2 ≤ 1, we have:

‖cn
i − cn−1

i ‖T ,−1 ≤ �tn Di

kiv0

⎛

⎝
∑

σ=K |L∈E int

τσDi (C
n
K , Cn

L ,�n
K ,�n

L)

⎞

⎠

1
2

.

Using the Cauchy-Schwarz inequality and the Eq. (3.14) of Lemma 3.4, we have:

∑

n

‖cn
i − cn−1

i ‖T ,−1 ≤
(
∑

n

�tn D2
i

k2i v20

) 1
2
⎛

⎝
∑

n

�tn

∑

σ=K |L∈EK ,int

τσDi (C
n
K , Cn

L , �n
K , �n

L )

⎞

⎠

1
2

≤ C .

This concludes the proof of Eqs. (4.13) and (4.14).
We may now focus on the convergence of the potential. The existence of � satis-

fying (4.15) is a straightforward consequence of (3.11). Similarly, (3.12) implies the
existence of a vector field u such that∇Tm ,�tm �m −→

m→∞ u in the L∞([0, T ], L2(�)d)

weak-� sense.
We have to identify u with ∇�. We let w ∈ C∞

c (QT , Rd) and define:

wn
σ = 1

|σ |
∫

σ

w(tn, x)dx ∀σ ∈ E, n ∈ [[1, NT ]],

and the associated diamond-cell reconstruction:

wE,�t(t, x) = wn
σ if x ∈ �σ and t ∈ (tn−1, tn].

Thanks to the smoothness of w, we have convergence of wE,�t toward w and:

∫∫

QT

wE,�t · ∇T ,�t�dxdt →
∫∫

QT

w · udxdt .
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Using the geometric relation dσ mσ = dm�σ and the definition of wn
σ , we have:

∫∫

QT

wE,�t · ∇T ,�t�dxdt = −
NT∑

i=1

�tn

∑

K∈T
�n

K

∫

K
div

(
w(tn, x)

)
dx .

Thanks to the smoothness of w and the convergence of �, we have:

∫∫

QT

wE,�t · ∇T ,�t�dxdt → −
∫∫

QT

� div(w)dxdt =
∫∫

QT

∇� · wdxdt

This concludes the identification of u and the proof of (4.16). ��
These convergence topologies are sub-optimal and will be improved in Lemma 4.4.
First, we notice that for the concentrations, we also dispose of edge averages C and
C̃ defined in Eqs. (3.1) and (4.2). Using these edge values, we introduce two other
reconstructions. For i in [[1, N ]], we let:

cE,�t,i (x, t) =
{
Ci (Cn

K , Cn
L ,�n

K ,�n
L) if x ∈ �K |L and t ∈ (tn−1, tn],

cn
K if x ∈ �σ , σ ∈ EK ∩ Eext and t ∈ (tn−1, tn].

Similarly, we introduce c̃E,�t,i . As we expect, these reconstructions are convergent
and share their limit with πT ,�t ci . This is the main purpose of the following lemma.

Lemma 4.4 Let C be as in Proposition 4.3. We have:

πTm ,�tm cm,i → ci strongly in L p, p ∈ [1,∞) ∀i ∈ [[0, N ]], (4.17)

πTm ,�tm � → � strongly in L p, p ∈ [1,∞), (4.18)

cEm ,�tm ,i → ci strongly in L p, p ∈ [1,∞) ∀i ∈ [[1, N ]], (4.19)

c̃Em ,�tm ,i → ci strongly in L p, p ∈ [1,∞) ∀i ∈ [[0, N ]]. (4.20)

Proof Equation (4.17) is a straightforward consequence of (4.13) and the boundedness
ofA. The proof of (4.19) and (4.20) rely on the LemmaD.2. Thanks to Proposition 4.2,
the hypothesis is satisfied with p, p̃ = 2, using (4.17), we have the L1 convergence of
the diamond reconstructions. Thanks to the L∞ bound on the edge concentrations, this
result translate in the desired equations. The enhanced convergence of the potential
relies on the same ideas as the ones given in the previous proof ([33, Lemma 3.4]
and [10, Lemma 9]) to get strong L2 convergence. This is done following the lines of
[9, Proposition 4.5]. ��

Finally, we show a weak-convergence property on the gradients of the logarithms:

Lemma 4.5 Let C be as in Proposition 4.3. We have:

∇Tm ,�tm log(c) → ∇ log(cm) weakly in L2(QT )d . (4.21)
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Moreover, assuming inf mesh m
n∈[[1,NT ,m ]]

K∈Tm

cn
m,K ,0 > 0, we have:

∇Tm ,�tm log(cm,0) → ∇ log(c0) weakly in L2(QT )d . (4.22)

Proof Let us start with the proof on Eq. (4.22). By definition (4.2), we have:

∇Tm ,�tm log(cm,0) = 1

c̃Em ,�tm ,0
∇Tm ,�tm cm,0,

so that, using (4.20), (4.14), and the assumed bound on c0 we have:

∇Tm ,�tm log(cm,0) → 1

c0
∇c0.

We notice that the limit c0 is also bounded away from 0 and conclude using the
continuous chain-rule.

For (4.21), we proceed similarly. Notice that since c ≥ 1
v0 max ki

> 0 the bound

does not need to be assumed. We only need the strong L2 convergence of the recon-
struction using the logarithmic average on the diamond cells. This is an application of
Lemma D.2, as in the proof of Lemma 4.4. ��

4.3 Identification

In this section we will identify the limits obtained in Proposition 4.3 as weak solutions
in the sense ofDefinition 1. First we improve the convergence topology on the potential
and identify it as a weak solution of the Poisson equation.

Proposition 4.4 The function � ∈ L∞((0, T ), H1(�)) defined in Proposition 4.3
satisfies: �−�D ∈ L∞((0, T ), H�D) and for all ψ ∈ H�D and almost all t ∈ (0, T )

Eq. (1.14) holds:

λ2
∫

�

∇�(t, x) · ∇ψ(x)dx =
∫

�

ψ(x)

N∑

i=1

zi ci (t, x)dx .

Proof Let ψ ∈ C∞
c ([0, T ] × {� ∪ �N}), then define ψn

K = ψ(xK , tn) and ψn
σ =

ψ(xσ , tn) for 1 ≤ n ≤ NT , K ∈ T and σ ∈ Eext. As for [9, Proposition 4.5], we
introduce an other reconstruction of the gradient following [24] (see [18] for a practical
example). Let ∇̂T : RT → L∞(�)d be strongly consistent i.e.

∇̂T ψn −→
hT →0

∇ψ(·, tn) uniformly in �, ∀n ∈ {1, . . . , NT }, (4.23)
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thanks to the smoothness of ψ . The operator ∇̂ is also such that

∫

�

∇T u · ∇̂T vdx =
∑

σ∈E
τσ DKσ uDKσ v, ∀u, v ∈ R

T .

The scheme (2.4a) then reduces to

λ2
∫

�

∇T �n · ∇̂T ψndx

=
∫

�

πT ψn
N∑

i=1

ziπT cn
i dx, ∀n ∈ {1, . . . , NT }, ∀ψ ∈ R

(T ∪Eext)×NT .

Integrating with respect to time over (0, T ) and passing to the limit hT , h�t → 0
thanks to Proposition 4.3 Eqs. (4.13) and (4.16) and Eq. (4.23) we have:

λ2
∫∫

QT

∇� · ∇ψdxdt =
∫∫

QT

ψ

N∑

i=1

zi cidxdt, ∀ψ ∈ C∞
c ([0, T ] × � ∪ �N).

By density of C∞
c ([0, T ] × � ∪ �N) in L∞([0, T ], H�D) and continuity of the linear

application, we have:

λ2
∫∫

QT

∇� · ∇ψdxdt =
∫∫

QT

ψ

N∑

i=1

zi cidxdt, ∀ψ ∈ L∞([0, T ], H�D).

In particular, (1.14) holds for almost every t ∈ (0, T ).
Concerning the boundary conditions for �, the fact that � = �D on (0, T ) × �D

can be proved for instance following the lines of [6, Section 4]. ��
The following theorem focuses on the identification of C as a weak solution satis-

fying (1.13). As announced in Theorem 2.2 this can only be done with an assumption
on the solvent. Remark 1.1 is a first clue of the validity of this assumption. For positive
initial condition, this assumption is valid in all the numerical test. In the 1D setting
and under a CFL condition, it might be possible to prove it through improvements of
Lemmas 3.2 and 3.5. This could be the topic of further research.

Theorem 4.1 Let C and�be as in Propositions4.3. If one has inf mesh m
n∈[[1,NT ,m ]]

K∈Tm

cn
m,K ,0c0 >

0, they are weak solutions of (1.3)–(1.8) in the sense of Definition 1.

Proof Let i ∈ [[1, N ]], ϕ ∈ C∞
c ([0, T ) × �), then define ϕn

K = ϕ(xK , tn) for all
n ∈ {0, . . . , NT } and K ∈ T . Multiplying (2.4b) by �tnϕn−1

K , then summing over
K ∈ T and n ∈ {1, . . . , NT } leads to

T1 + Di T2 + Di zi T3 = 0, (4.24)

123



Finite volumes for Nernst–Planck–Poisson with ion… 133

where we have set

T1 =
NT∑

n=1

∑

K∈T
mK (cn

K ,i − cn−1
K ,i )ϕn−1

K ,

T2 =
NT∑

n=1

�tn

∑

σ∈E
τσCn

σ,i DKσ hi (cn)DKσ ϕn−1,

T3 =
NT∑

n=1

�tn

∑

σ∈E
τσCn

σi
DKσ �n DKσ ϕn−1,

where ϕn−1
Kσ = 0 for σ ∈ Eext and Cσ is defined by Lemma 3.1. The treatment of terms

T1 and T3 follows the lines of [9, Proposition 4.7].
More precisely, for T1 we use the discrete integration by part

NT∑

n=1

(cn − cn−1)ϕn−1 = −c0ϕ0 +
NT −1∑

n=1

cn(ϕn−1 − ϕn) + cNT ϕNT −1,

and notice that ϕNT = 0 to pass the time derivative on ϕ. Thanks to the smoothness
of ϕ and the convergence of πT ,�tci and πT c0i , we have:

T1 −→
m→∞ −

∫∫

QT

ci∂tϕdxdt −
∫

�

c0i ϕ(0, ·)dx . (4.25)

For T3, we extend in time the reconstruction introduced in the proof of Proposi-
tion 4.4 and notice that:

T3 =
∫∫

QT

cE,�t,i∇T ,�t� · ∇̂T ,�tϕdxdt,

so that

T3 −→
m→∞

∫∫

QT

ci∇� · ∇ϕdxdt . (4.26)

The treatment of the term T2 is more intricate. First we let T̃2 be the same term with
a different edge concentration:

T̃2 =
N∑

n=1

�tn

∑

σ∈E
τσ C̃n

σ,i DKσ hi (cn)DKσ ϕn−1,

where C̃n
σ,i = C̃i (Cn

K , Cn
Kσ ) is the logarithmic mean introduced in (4.2). We will first

prove the convergence of T̃2 then identify its limit. To this end, we set:

123



134 B. Gaudeul, J. Fuhrmann

T̃2,1 =
N∑

n=1

�tn

∑

σ∈E
τσ C̃n

σ,i DKσ log(cn
i )DKσ ϕn−1,

T̃2,2 = − ki

N∑

n=1

�tn

∑

σ∈E
τσ C̃n

σ,i DKσ log(cn
0)DKσ ϕn−1,

T̃2,3 =(ki − 1)
N∑

n=1

�tn

∑

σ∈E
τσ C̃n

σ,i DKσ log(cn)DKσ ϕn−1.

For term T̃2,1 we use the chain rule C̃n
σ,i DKσ log(cn

i ) = DKσ cn
i and get:

T̃2,1 =
N∑

n=1

�tn

∑

σ∈E
τσ DKσ cn

i DKσ ϕn−1 =
∫∫

QT

∇Tm ,�tm · ci ∇̂Tm ,�tm ϕdxdt .

Thanks to the weak convergence of ∇Tm ,�tm ci and the strong convergence of
∇̂Tm ,�tm ϕ, we have:

T̃2,1 →
∫∫

QT

∇ci · ∇ϕdxdt .

For the other terms, we need the enhanced convergence of gradients provided by
Lemma 4.5. So that the terms T̃2,2 and T̃2,3 have the following limits:

T̃2,2 = − ki

∫∫

QT

c̃Em ,�tm ,i∇Tm ,�tm log(c0)∇̂Tm ,�tm ϕdxdt

→ −ki

∫∫

QT

ci∇ log(c0)∇ϕdxdt,

T̃2,3 = (ki − 1)
∫∫

QT

c̃Em ,�tm ,i∇Tm ,�tm log(c)∇̂Tm ,�tmdxdtϕ

→ (ki − 1)
∫∫

QT

ci∇ log(c)∇ϕdxdt .

Let us now establish that T2 and T̃2 share the same limit.
Thanks to the triangle and Cauchy–Schwarz inequalities, one has

|T2 − T̃2| ≤
N∑

n=1

�tn

∑

σ∈E
τσ

∣∣Cn
σ,i − C̃n

σ,i

∣∣ ∣∣Dσ hi (cn)
∣∣ ∣∣Dσ ϕn−1

∣∣

≤
(

N∑

n=1

�tn

∑

σ∈E
τσCn

σ,i |Dσ h(cn)|2
)1/2 ( N∑

n=1

�tn

∑

σ∈E
τσ

(Cn
σ,i − C̃n

σ,i )
2

Cn
σ,i

|Dσ ϕn−1|2
)1/2

.
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The first term in the right-hand side is uniformly bounded thanks to (4.12). Thus our
problem amounts to show that

R :=
N∑

n=1

�tn

∑

σ∈E
τσ

(Cn
σ,i − C̃n

σ,i )
2

Cn
σ,i

|Dσ ϕn−1|2 −→
m→∞ 0. (4.27)

Let us reformulate R as

R =
N∑

n=1

�tn

∑

σ∈E
τσ |Cn

σ,i − C̃n
σ,i |

∣∣∣∣∣1 − C̃n
σ,i

Cn
σ,i

∣∣∣∣∣ |Dσ ϕn−1|2.

Thanks to Lemma 4.1, the quantity

∣∣∣∣1 − C̃n
σ,i

Cn
σ,i

∣∣∣∣ is uniformly bounded, whereas the

regularity of ϕ implies that Dσ ϕn−1 ≤ ‖∇ϕ‖∞dσ . Putting this in the above expression
of R, we obtain that

0 ≤ R ≤ C‖cEm ,�tm ,i − c̃Em ,�tm ,i‖L1(QT ) −→
m→∞ 0,

thanks to Lemma 4.4. Thus T2 and T̃2 share the same limit, which gives the announced
result. ��
Remark 4.1 As the proof is based on compactness we cannot extract convergence rates
for our solutions. The numerous non-linearities involved would render a proof of a
convergence rate difficult. The best rate one could hope for given the reconstruction
introduced is 1.

To get the second order "super convergence" shown in Fig. 6, we have used a
P1 reconstruction. To use this technique we need to use Voronoï meshes with cell
centers on the boundary of our domain so that the dual Delaunay mesh covers the
whole domain. Due to the specific treatment of boundary conditions in such meshes
(formally, τσ = +∞) they are not covered by our analysis.

In meshes simply satisfying Definition 2, the key idea is to project the reference
solution to the space of constant by cells function, i.e. to consider only the discretization
errors. The projection to this P0 space could be done either using L2 projections (as for
the discretiation of the initial condition) or by taking the value at the cell-centers (to
acknowledge the degree of freedom in their choice for orthogonal meshes or simplify
the code).

5 Numerical examples

The numerical examples have been implemented in the Julia language [5] based on
the package VoronoiFVM.jl [32] which realizes the implicit Euler Voronoi finite
volume method for nonlinear systems of diffusion-convection-reaction equations on
simplicial grids. The two two schemes (2.4), (2.5) supplemented with either (C) or
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Fig. 2 Evolution of electrostatic potential �, solvent concentration c0, anion concentration c− and cation
concentration c+ for a symmetric binary electrolyte with equal sizes of solvent molecules, anions and
cations

(S) require the solution of a nonlinear system of equations for each time step. For
this purpose we use Newton’s method with analytical Jacobians with optional homo-
topy embedding. An advantage of the implementation in Julia is the availability of
ForwardDiff.jl [43], a forwardmode automatic differentiation package based on
dual number arithmetic. This package allows the assembly of the analytical Jacobians
based on the implementation of functions calculating two point fluxes and charges,
without the need to write source code for derivatives. For the one- and two dimensional
examples in this paper, the resulting linear systems are solved using UMFPACK [19]
as Julia’s built-in sparse direct solver.

5.1 Species redistribution in a one-dimensional cell filled with binary electrolyte

Let � = (0, L) with L = 20. As an initial state, assume a binary electrolyte with
two ionic species with opposite charges and a solvent. At moment t = 0, we assume
a spatially constant, electroneutral distribution of the ions. We apply a potential dif-
ference via Dirichlet boundary conditions �|x=0 = −10 and �x=L = 10 and solve
the Poisson equation with these data as initial value. We set homogeneous Neumann
boundary conditions for both ionic species. With starting time step size �t = 10−3

we start the evolution until the species distribution reaches its equilibrium under the
applied potential difference. As discussed in [8], the time step sizes are controlled
such that the energy dissipation per time step is limited: E(ti ) − E(ti+1) ≤ 10−1.

Figure 2 shows the evolution in the case v0 = v1 = v2 = 1, z0 = 0, z1 =
1, z2 = −1. At the end of the time evolution, most of the ions are accumulated in their
respective polarization boundary layers, almost completely displacing the solvent. As
predicted, the ion concentration is bounded by 1. The computation used the flux (S).

Figure 3 shows the evolution in the case v0 = v1 = v2 = 1 and z0 = 0, z1 =
2, z2 = −1. Once again, at the end of the evolution, anions and cations pile up in the
corresponding boundary layers. Ion concentrations are bounded by 1, but due to the
larger charge of the cation, the corresponding boundary layer becomes smaller.
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Fig. 3 Evolution of electrostatic potential �, solvent concentration c0, anion concentration c− and cation
concentration c+ for an asymmetric binary electrolyte with equal sizes of solvent molecules, cations and
anions

Fig. 4 Evolution of electrostatic potential �, solvent concentration c0, anion concentration c− and cation
concentration c+ for a symmetric binary electrolyte with equal sizes of solvent molecules and anions, but
larger cations

Figure 4 shows the evolution in the case v0 = v2 = 1, v1 = 2 and z0 = 0, z1 =
1, z2 = −1. Once again, at the end of the evolution, anions and cations pile up in the
corresponding boundary layers but now, the cation concentration is bounded by 1

2 .
The corresponding evolution of the relative free energy E(t)− E∞ is shown in Fig. 5.
We observe an exponential decay and almost equal behavior for both variants of the
flux approximation (S) and (C). Moreover, the time step control algorithm keeps the
dissipation per timestep below the intended limit. On the grid of 100 nodes the whole
computation took 700ms on an Intel(R) Core(TM) i7-9850H CPUwith 2.60GHz. The
Newton method used 14 iterations for the first timestep, and at most 4 iterations for
the remaining time steps.

5.2 1D stationary convergence test

In the same domain as above, we set v0 = 1, v1 = 2, v2 = 1, and z1 = 1, z2 = −1.
This time, we look for the stationary solution with homogeneous Dirichlet boundary
conditions for �, and Dirichlet boundary conditions for the concentrations. These
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Fig. 5 Evolution of relative free energy and energy dissipation per time step for symmetric binary electrolyte
with equal sizes of solvent molecules and anions, but larger cations

Fig. 6 Left: stationary solution of Dirichlet problem. Center and right: results of numerical convergence
test

boundary conditions are for x = 0, c1v1 = 1.0− 3ε, c2v2 = ε and for x = L , c1v1 =
ε, c2v2 = 1−3ε, where ε = 10−2. Implicitely, this sets c0 = 2ε at both boundaries. As
shown in Fig 6, the result of the numerical convergence tests (comparison to fine grid
solution with 40960 grid points) for both types of fluxes suggest O(h2) convergence
in the L2 norm and O(h) convergence in the H1 seminorm.

5.3 An electrolytic diode

The second example regards a domain � = (0, W )× (0, L) with W = 2 and L = 10.
We assume z0 = 0, z1 = 1, z2 = −1 and v0 = 1, v1 = 4, v2 = 4. At y = 0 and
y = L we fix concentrations to a value c1 = c2 = 0.01 We set �|y=0 = 0 and
apply a changing value �bias at y = L . At x = 0 we apply symmetry (homogeneous
Neumann) boundary conditions for�, c1, c2. Homogeneous Neumann boundary con-
ditions are also applied for c1, c2 at x = W . We set Neumann boundary conditions
λ∇� · n = q(y) at x = W , where

q(y) =

⎧
⎪⎨

⎪⎩

σ, y ∈ ( 12 L, 3
4 L)

−σ, y ∈ ( 14 L, 1
2 L)

0, else
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Fig. 7 Electrostatic potential �, solvent concentration c0, anion concentration c− and cation concentration
c+ in an electrolytic diode filled with a symmetric binary electrolyte with equal sizes of solvent molecules
at reverse bias �bias = −10 (top), zero bias �bias = 0 (center) and forward bias �bias = 10 (bottom)

with σ = 5.
Figure 7 shows three different states of the electrolytic diode. Figure 8 (left) shows

the corresponding current-voltage curve. We see a well developed rectification effect:
At reverse bias, ion concentrations under the charged surface are rather low, resulting
in low conductance and low ionic current. Whereas at forward bias, larger ion con-
centrations lead to a larger ionic current. On the 2D grid with 1681 nodes, the whole
computation for the IV curve took 19 seconds on the aforementioned system.
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Fig. 8 Left: Current-voltage curve for electrolytic diode, calculated using the scheme (S). Right: Conver-
gence of calculated IV curve

Figure 8 (right) shows the estimated error of the IV curve in dependence of the grid
refinement. Reference was a calculation on a grid with the quarter of the stepsize of
the finest grid result shown. From this experiment, we postulate a convergence rate
for the ionic current calculation of O(h2).
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Appendix A: Chemical free energy density and chemical potentials

In this “Appendix”, we aim to prove (1.9), (1.10), and some convexity of:

H(c1, ...cN ) = −c log(c) +
N∑

i=0

ci log(ci ),

where c0 and c are functions of c1, ..., cN . This is summarized in the following lemma:

Lemma A.1 The N-variables function H is convex, moreover we have:

∂ci H(c1, ..., cN ) = hi (C), ∀i ∈ [[1, N ]], C = (c1, ..., cN ) ∈ A, (1.9)
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− log(N + 1)

v0 min ki
≤ H(C) ≤ 0 ∀C ∈ A. (1.10)

Elementary computation shows that:

∂ci H(C) = log
ci

c
− ki log

c0
c

∀i ∈ [[1, N ]].

Hence the announced relation (1.9).
We now focus on the proof of the convexity of H overA. Let C, C∗ ∈ A, we have:

(∇RN H(C) − ∇RN H(C∗)|C − C∗) =
N∑

i=0

(
log

ci

c̄
− log

c∗
i

c̄∗

)
(ci − c∗

i ). (A.1)

To prove the convexity of H , it is sufficient to show that this quantity is non-negative.
To that extend, we introduce AN+1 the natural extension of A in R

N+1 and consider
the right-hand side of (A.1) as a function ofCN+1 = (c0(c1, ...cN ), c1..., cN ) ∈ AN+1
parameterized by C∗:

GC∗(c0, . . . , cN ) =
N∑

i=0

(
log

ci

c̄
− log

c∗
i

c̄∗

)
(ci − c∗

i ),

and show that minCN+1∈AN+1(GC∗(C)) = 0. To do so we compute the derivatives
of GC∗ as a function of RN+1 and use the Lagrange multiplier theorem. After some
simplifications, we have for all i ∈ [[0, N ]]:

∂ci GC∗(c0, ...cN ) = c∗

ci

(
ci

c̄
− c∗

i

c̄∗

)
+
(
log

ci

c̄
− log

c∗
i

c̄∗

)

Notice that both terms have the sign of ci
c̄ − c∗

i
c̄∗ . The Lagrange multiplier theorem

states that any extremum satisfies:

∃α ∈ R,∀i ∈ [[0, N ]], ∂ci GC∗ = αki

Hence, all the partial derivatives of GC∗ should have the same sign. Moreover, we

notice that the sum of ci
c̄ − c∗

i
c̄∗ is zero. This is only possible the sign of the derivatives is

constantly zero, i.e. : ci
c̄ = c∗

i
c̄∗ . At such a point, we have GC∗ = 0. As the coercitivity

and continuity of GC∗ grants the existence of a minimum, we have the desired result:

0 ≤ (∇RN H(C) − ∇RN H(C∗)|C − C∗),

which yields the convexity of H .
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We still have to establish the bounds (1.10). To that end, we notice that:

H(C) = c
N∑

i=0

ci

c
log

ci

c
∀C ∈ A.

As c is positive and 0 ≤ ci
c ≤ 1, we have H(C) ≤ 0. For the lower bound, we notice

that −∑N
i=0

ci
c log ci

c can be interpreted as the entropy of a random variable over a set
of N + 1 elements. It is common knowledge that it is maximal for ci

c = 1
N+1 thus:

−c log(N + 1) ≤ H(C)

Finally, notice that 1
v0 max ki

≤ c ≤ 1
v0 min ki

yields

− log(N + 1)

v0 min ki
≤ H(C),

which is the desired bound.

Appendix B: Proof of Lemma 3.2

This “Appendix” is devoted to the proof of Lemma 3.2 stating the blow-up of the
diffusion for extreme concentrations. More precisely, we recall:

Lemma B.1 Let for δ, ε, M, c > 0, i ∈ [[1, N ]]:
�δ,ε,M,i (c) := inf

(CK ,CL )∈A2, (�K ,�L )∈[−M,M]2
cK ,0,cL,0>ε, cK ,i ≥min(δ, 0.5

ki v0
), cL,i <c

Di (CK , CL ,�K ,�L),

ϒδ,M (c) := inf
(CK ,CL )∈A2, (�K ,�L )∈[−M,M]2

cK ,0≥min(δ, 0.5
v0

), cL,0<c

D(CK , CL ,�K ,�L).

We have, for all δ, ε, M > 0:

lim
c→0+ ϒδ,M (c) = +∞ lim

c→0+ �δ,ε,M,i (c) = +∞ ∀i ∈ [[1, N ]].

We will prove the result for �δ,ε,M,i first, then use this property to show the bound
on the solvent.

Limit of9ı,�,M,i

In this section we intend to prove the limit:

lim
c→0
c>0

�δ,ε,M,i (c) = +∞ ∀i ∈ [[1, N ]], δ, ε, M > 0.
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The proof for the centered scheme relies on expression (3.5):

Di (CK , CL ,�K ,�L)=Ci (CK , CL ,�K ,�L) (hi (CK )+zi�K − hi (CL)−zi�L)2 .

We notice that hi (CK ) + zi�K − hi (CL) − zi�L blows up and that Ci ≥ cK ,i
2 , hence

the blow-up of the limit.
For the Sedan scheme, it is more intricate and try to bound Fi (CK , CL ,�K ,�L)

away from zero to take advantage of the blow-up of
(

hi (CK ) + zi�K − hi (CL) − zi

�L

)
. The positivity of the product, ensures that the limit will have the right sign. Let

δ, ε, M > 0, i ∈ [[1, N ]]. We denote by Oc the set:

Oc =
{
(CK , CL ) ∈ A2, (�K ,�L ) ∈ [−M, M]2 | cK ,0, cL,0 > ε, cK ,i ∈ [δ, 1), cL,i < c

}
.

We notice that the hypothesis c0 > ε yields a bound on νi . Moreover, this bound
is uniform in c. We intend to use this bound to prove that the flux function defined by
(S) is bounded away from zero. We let:

M ′ = sup
c∈R+,∗

(
sup

(CK ,CL ,�K ,�L )∈Oc

zi�L + ν(CL,i ) − zi�K − ν(CK ,i )

)
< ∞.

We have, for all (CK , CL ,�K ,�L) ∈ Oc:

Fi (CK , CL ,�K ,�L) ≥ B(M ′)δ − B(−M ′)c,

hence Fi is bounded away from zero for c small enough and the desired result.

Limit of7ı,M

In this section, we prove the remaining limit:

lim
c→0

ϒδ,M (c) = +∞ ∀δ, M > 0

To reuse the ideas of previous section, we would like to dispose of a specie i such
that cL,i > ε. We start by building one artificially. Let δ, M > 0, and:

O(c) =
{
(CK , CL) ∈ A2, (�K ,�L) ∈ [−M, M]2 | cK ,0 ∈ [δ, 1), cL,0 < c

}
.

Notice that for all (CK , CL ,�K ,�L) ∈ Oc, we dispose of i ∈ [[1, N ]] such that
cL,i ≥ 1−v0c

Nki v0
. Notice also that ϒδ,M is increasing, it is then sufficient to prove the

limit for a given sequence. Let cn be sequence that steadily decreases to zero such
that for all n ∈ N , cn ≤ 1

2v0
and there exist i ∈ [[1, N ]], (Cn

K , Cn
L ,�n

K ,�n
L) ∈ Ocn
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satisfying:

D(Cn
K , Cn

L ,�n
K ,�n

L) ≤ ϒδ,M (cn) + 1

n
and cn

L,i ≥ 1

2Nkiv0
.

We have, using cn
L,0 ≤ cn , cn

K ,i ≤ 1
ki v0

, 1
v0 max k j

≤ c ≤ 1
v0 min k j

, cn
K ,0 ≥ δ, the bounds

on �, and cn
L,i ≥ 1

2Nki v0
:

hi (C
n
K ) + zi �

n
K − hi (C

n
L ) − zi �

n
L ≤ ki log

cn

δ
+ |ki − 1| log max k j

min k j
+ log(2N ) + 2M |zi |.

As all the terms are bounded except log(cn) which goes to −∞, we have blow-up of
hi (Cn

K ) + zi�
n
K − hi (Cn

L) − zi�
n
L .

For the centered scheme, we use Ci (Cn
K , Cn

L ,�n
K ,�n

L) ≥ 1
4Nvi

, and we have:

ϒδ,M (cn) ≥ Di (C
n
K , Cn

L ,�n
K ,�n

L) − 1

n

≥ 1

4Nvi

(
hi (C

n
K ) + zi�

n
K − hi (C

n
L) − zi�

n
L

)2 − 1

n
,

hence the desired result.
For the Sedan scheme, we will also only consider Di , but we need a more precise

approach: as in previous section, we bound the flux away from zero. We let:

M ′ = sup
c∈(0, 1

2v0
]

⎛

⎝ sup
(CK ,CL ,�K ,�L )∈Oc0 ,cL,i ≥ 1

2Nvi

zi �L + (ki − 1) log cL − zi �K − ν(CK ,i )

⎞

⎠ .

We have:

Fi (C
n
K , Cn

L ,�n
K ,�n

L) ≤ B
(−ki log cn − M ′) 1

vi
− B

(
ki log cn + M ′) 1

2Nvi
.

As the right-hand side tends to −∞, the left-hand side is bounded away from zero.
Using the previously detailed arguments, we have the desired limit.

Appendix C: Study of a numerical scheme for hi = log(ci) − ˛ log(c0)

To prove the existence of solutions to the Sedan and centered scheme, we introduce
this simplified cross diffusion system where the coupling occurs only through the
solvent using the chemical potential defined above. This system is discretized using
the ideas of the centered scheme and [13]. In detail, we use equations (2.4b), (2.4c)
with ki , Di = 1, zi = 0, and:

Fi (CK , CL ,�K ,�L) = C̃ j (CK , CL) (hi (CK ) − hi (CL)) ,
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C̃ j (CK , CL) = cK ,i − cL,i

log(cK ,i ) − log(cL,i )

where hi (C) is: log(ci ) − α log(c0). We want to bound the concentrations away from
zero uniformly in α. This is the meaning of the following lemma, which is highly
inspired by Lemma 3.5.

Lemma C.1 There exist ε = min(ε0, ε1, . . . , εN ) > 0 depending on, among other
things, C0 and decreasing with h�t and minσ∈E τσ such that for all Cn−1 ∈ AT

satisfying Lemma 3.3, α ∈ [0, 1], we have:

cn
K ,i ≥ εi ∀K , i

The proof follows the same reasoning as for the full system and is only sketched
here. Using (2.4c) we have:

cn
K ,0 − cn−1

K ,0

�tn
mK = −

∑

σ=K |L∈Eint
τσ

(
cn

K ,0 − cn
L,0

)

− α
∑

σ=K |L∈Eint
τσR(Cn

K , Cn
L)

(
log(cn

K ,0) − log(cn
L,0)

)
(C.1)

where we have set:

R(CK , CL) =
N∑

i=1

cK ,i − cL,i

log(cK ,i ) − log(cL,i )
.

Remark 1.1 Noticing that R(CK , CL) ≥ 0 yields a maximum principle on c0. As we
did not assume that c00 is uniformly positive, we have to compute further.

Multiplying (C.1) by log(cn
K ,0) and summing over K ∈ T yields:

∑

K∈T

cn
K ,0 − cn−1

K ,0

�tn
mK log(cn

K ,0) +
∑

σ=K |L∈EK

τσ DK L cn
0 DK L log cn

0

+α
∑

σ=K |L∈EK

τσR(CK , CL)
(
DK L log cn

0

)2 = 0

using the convexity of u log u, we have:

∑

K∈T

mk

�tn
(cn

K ,0 log(c
n
K ,0) − cn−1

K ,0 log(cn−1
K ,0 )) ≤ −

∑

σ=K |L∈EK

τσ DK L c
n
0 DK L log cn

0

−α
∑

σ=K |L∈EK

R(CK , CL )
(
DK L log cn

0
)2

.
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Wemay now use the decay of this entropy to prove the desired result for i = 0. To that
extent we proceed as in Lemma 3.5 and see that DK L cn

0 DK L log cn
0 is clearly coercive

in the sense of lemma 3.2 while the part in α has the right sign. This yields the uniform
bound for c0.

The bound for ci relies on the entropy H̃ = ∑N
j=1 c j log(c j ) + αc0 log(c0). As

for Lemma A.1, this entropy restricted toA is convex and its derivatives as a function
of RN are the chemical potentials, Thus multiplying the conservation equation by h
yields:

∑

K∈T
mK

(
H̃(Cn

K ) − H̃(Cn−1
K )

)
≤

∑

σ∈Eint

N∑

j=1

C̃σ, j
(
Dσ h j (Cn)

)2
.

This new dissipation is also coercive in the sense of Lemma 3.2, thus we can proceed
as in Lemma 3.5 to get the announced bounds.

Appendix D: A simple convergence lemma

In this section, we express the results of [9] lemma 4.2 and [13, lemma 4.2] in a
more generic fashion. We let Tm be a sequence of admissible meshes of � such that
hTm → 0, um ∈ R

Tm , and ũm ∈ R
E int

m such that for all σ = K |L ∈ E int
m :

min(uK , uL) ≤ ũσ,m ≤ max(uK , uL).

Lemma D.1 If we dispose of p ∈ [1,∞) such that

hTm ‖∇Tmum‖L p(�) → 0

The L1 convergence of the natural and diamond reconstructions are equivalent, more-
over if one of them is convergent, they share the same limit.

Proof This result is equivalent to:

‖πTmum − ũm,Em ‖L1(�) → 0.

For the sake of simplicity, we drop the subscriptm for the rest of the proof.We let�Kσ

be the half diamond cell �σ ∩ K , and notice that m(�Kσ ) = 1
d mσ d(xK , σ ) ≤ hT mσ

d .
Elementary calculations yield:

‖πT u − ũE‖L1(�) ≤ hT
d

∑

K∈T

∑

σ∈EK

mσ |uK − uσ |.

Thanks to our average assumption, we have |uK − uσ | ≤ Dσ u thus:

‖πT u − ũE‖L1(�) ≤ 2hT
d

∑

σ∈E int

mσ Dσ u.
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Let p be as in the lemma and q its Hölder conjugate. We have:

∑

σ∈E int

mσ Dσ u ≤
⎛

⎝
∑

σ∈E int

mσ dσ

(
Dσ u
dσ

)p
⎞

⎠

1
p
⎛

⎝
∑

σ∈E int

mσ dσ

⎞

⎠

1
q

≤ dm(�)
1
q ‖∇T u‖L p(�),

hence:
‖πT u − ũE‖L1(�) ≤ 2m(�)

1
q hT ‖∇T u‖L p(�) → 0. (D.1)

This concludes the proof of the lemma. ��

For reconstructions in � × [0, T ], we consider um ∈ R
Tm×�tm , ũm ∈ R

E int
m ×�tm

satisfying the same average property, and we have the same result.

Lemma D.2 If we dispose of p ∈ [1,∞), p̃ ∈ [1,∞) such that

hTm ‖∇Tm ,�tmum‖L p̃([0,T ],L p(�)) → 0

The L1(� × [0, T ]) convergence of the natural and diamond reconstructions are
equivalent, moreover if one of them is convergent, they share the same limit.

Proof This result is equivalent to:

‖πTm ,�tmum − ũm,Em ,�tm ‖L1(�×[0,T ]) → 0.

We make use of the computations for the previous lemma, namely (D.1) yields for all
n ∈ [[1, NT ,m]]:

‖πTm ,�tmu
n
m − ũn

m,Em ,�tm
‖L1(�) ≤ 2m(�)

1
q hTm ‖∇Tmu

n‖L p(�).

Thus:

‖πTm ,�tmum − ũm,Em ,�tm ‖L1(�×[0,T ]) ≤ 2m(�)
1
q hTm

NT ,m∑

n=1

�tn‖∇Tmu
n‖L p(�).

Hölder’s inequality yields:

‖πTm ,�tmum − ũm,Em ,�tm ‖L1(�×[0,T ]) ≤ 2m(�)
1
q T

1
q̃ hTm ‖∇Tm ,�tmu‖L p̃([0,T ],L p(�)),

where q̃ is the Hölder conjugate of p̃. Using the assumed estimation of the gradient,
we have the announced result. ��

123



148 B. Gaudeul, J. Fuhrmann

References

1. Aldaz, J.M.: A stability version of Hölder’s inequality. J. Math. Anal. Appl. 343(2), 842–852 (2008)
2. Aldaz, J.M.: Strengthened Cauchy–Schwarz and Hölder inequalities. J. Inequal. Pure Appl. Math.

10(4), 116 (2009)
3. Bazant, M.Z., Kilic, M.S., Storey, B.D., Ajdari, A.: Towards an understanding of induced-charge

electrokinetics at large applied voltages in concentrated solutions. Adv. Coll. Interface. Sci. 152(1–2),
48–88 (2009)

4. Bessemoulin-Chatard, M.: A finite volume scheme for convection–diffusion equations with nonlinear
diffusion derived from the Scharfetter–Gummel scheme. Numer. Math. 121(4), 637–670 (2012)

5. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing.
SIAM Rev. 59(1), 65–98 (2017)

6. Brenner, K., Cancès, C., Hilhorst, D.: Finite volume approximation for an immiscible two-phase flow
in porous media with discontinuous capillary pressure. Comput. Geosci. 17(3), 573–597 (2013)

7. Cancès, C.: Energy stable numerical methods for porous media flow type problems. Oil Gas Sci.
Technol. Revue d’IFP Energies nouvelles 73, 78 (2018)

8. Cancès, C., Chainais-Hillairet, C., Fuhrmann, J., Gaudeul, B.: On four numerical schemes for a unipolar
degenerate drift-diffusion model. In: Klöfkorn, R., Radu, F., Keijgavlen, E., Fuhrmann, J. (eds.) Finite
Volumes for Complex Applications IX, Bergen (Norway), June 2020. Springer, Cham (2020)

9. Cancès, C., Chainais-Hillairet, C., Fuhrmann, J., Gaudeul, B.: A numerical-analysis-focused compar-
ison of several finite volume schemes for a unipolar degenerate drift-diffusion model. IMA J. Numer.
Anal. 41(1), 271–314 (2021)

10. Cancès,C., Chainais-Hillairet, C.,Gerstenmayer,A., Jüngel,A.: Finite-volume scheme for a degenerate
cross-diffusion model motivated from ion transport. Numer. Methods Partial Differ. Equ. 35(2), 545–
575 (2019)

11. Cancès, C., Chainais-Hillairet, C., Herda, M., Krell, S.: Large time behavior of nonlinear finite volume
schemes for convection–diffusion equations. SIAM J. Numer. Anal. 58, 2544–2571 (2020)

12. Cancès, C., Chainais-Hillairet, C., Krell, S.: Numerical analysis of a nonlinear free-energy diminishing
discrete duality finite volume scheme for convection diffusion equations.Comput.MethodsAppl.Math.
18(3), 407–432 (2018)

13. Cancès, C., Gaudeul, B.: A convergent entropy diminishing finite volume scheme for a cross-diffusion
system. SIAM J. Numer. Anal. 58(5), 2684–2710 (2020)

14. Cancès, C., Guichard, C.: Convergence of a nonlinear entropy diminishing control volume finite ele-
ment scheme for solving anisotropic degenerate parabolic equations.Math. Comput. 85(298), 549–580
(2016)

15. Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme
for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)

16. Cancès, C., Nabet, F., Vohralík, M.: Convergence and a posteriori error analysis for energy-stable finite
element approximations of degenerate parabolic equations. Math. Comput. 90, 517–563 (2021)

17. Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-
diffusion equations and convergence analysis. ESAIM Math. Model. Numer. Anal. 37(2), 319–338
(2003)

18. Coudière, Y., Vila, J.-P., Villedieu, P.: Convergence rate of a finite volume scheme for a two dimensional
convection–diffusion problem. ESAIM Math. Model. Numer. Anal. 33(3), 493–516 (1999)

19. Davis, T.A.: Algorithm 832: UMFPACK V4. 3–an unsymmetric-pattern multifrontal method. ACM
Trans. Math. Softw. 30(2), 196–199 (2004)

20. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
21. Dreyer, W., Guhlke, C., Landstorfer, M.: A mixture theory of electrolytes containing solvation effects.

Electrochem. Commun. 43, 75–78 (2014)
22. Dreyer, W., Guhlke, C., Müller, R.: Overcoming the shortcomings of the Nernst–Planck model. Phys.

Chem. Chem. Phys. 15(19), 7075–7086 (2013)
23. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern

methods. Math. Models Methods Appl. Sci. 24(08), 1575–1619 (2014)
24. Droniou, J., Eymard, R.: The asymmetric gradient discretisation method. In: Cancès, C., Omnes, P.

(eds.) Finite Volumes for Complex Applications VIII: Methods and Theoretical Aspects. Springer
Proceedings in Mathematics & Statistics, pp. 311–319. Springer, Cham (2017)

123



Finite volumes for Nernst–Planck–Poisson with ion… 149

25. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method.
Springer, Cham (2018)

26. Eymard, R., Fuhrmann, J., Gärtner, K.: A finite volume scheme for nonlinear parabolic equations
derived from one-dimensional local Dirichlet problems. Numer. Math. 102(3), 463–495 (2006)

27. Eymard, R., Gallouët, T.: H-Convergence and Numerical Schemes for Elliptic Problems. SIAM J.
Numer. Anal. 41(2), 539–562 (2003)

28. Eymard, R., Gallouët, T., Guichard, C., Herbin, R., Masson, R.: TP or not TP, that is the question.
Comput. Geosci. 18(3), 285–296 (2014)

29. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.)
Handbook of Numerical Analysis, Volume 7 of Solution of Equation in R (Part 3), Techniques of
Scientific Computing (Part 3), pp. 713–1018. Elsevier (2000)

30. Fuhrmann, J.: Comparison and numerical treatment of generalised Nernst–Planck models. Comput.
Phys. Commun. 196, 166–178 (2015)

31. Fuhrmann, J.: A numerical strategy for Nernst–Planck systems with solvation effect. Fuel Cells 16(6),
704–714 (2016)

32. Fuhrmann, J.: VoronoiFVM.jl: solver for coupled nonlinear partial differential equations based on the
Voronoi finite volume method. https://doi.org/10.5281/zenodo.3529808 (2020)

33. Gallouët, T., Latché, J.-C.: Compactness of discrete approximate solutions to parabolic PDEs: appli-
cation to a turbulence model. Commun. Pure Appl. Anal. 11(6), 2371 (2012)

34. Gärtner, K.: Existence of bounded discrete steady-state solutions of the van Roosbroeck system on
boundary conforming Delaunay grids. SIAM J. Sci. Comput. 31(2), 1347–1362 (2009)

35. Gaudeul, B.: Approximation numérique entropique pour des systèmes de diffusion croisée issus de la
physique. Ph.D. thesis, Université de Lille (2021)

36. Glitzky, A., Gärtner, K.: Existence of bounded steady state solutions to spin-polarized drift-diffusion
systems. SIAM J. Math. Anal. 41(6), 2489–2513 (2010)

37. Herbin, R.: An error estimate for a finite volume scheme for a diffusion–convection problem on a
triangular mesh. Numer. Methods Partial Differ. Equ. 11(2), 165–173 (1995)

38. Jüngel, A.: Entropy Methods for Diffusive Partial Differential Equations. Springer, Cham (2016)
39. Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Annales scientifiques de l’École Normale

Supérieure 51, 45–78 (1934)
40. Liu, J.-L., Eisenberg, B.: Poisson–Nernst–Planck–Fermi theory for modeling biological ion channels.

J. Chem. Phys. 141(22), 12B640_1 (2014)
41. Liu, J.-L., Eisenberg, B.: Molecular mean-field theory of ionic solutions: a Poisson–Nernst–Planck–

Bikerman model. Entropy 22(5), 550 (2020)
42. Ostle, B., Terwilliger, H.L.: A comparison of two means. Proc. Mont. Acad. Sci. 17, 69–70 (1957)
43. Revels, J., Lubin, M., Papamarkou, T.: Forward-mode automatic differentiation in Julia.

arXiv:1607.07892 (2016)
44. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon Read diode oscillator. IEEE Trans.

Electron Devices 16(1), 64–77 (1969)
45. Silvaco International: Atlas User’s Manual. Santa Clara, CA (2016)
46. Synopsys, Inc.: Sentaurus Device Userguide. Mountain View, CA (2010)
47. Yu, Z., Dutton, R.: SEDAN III, July 88

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.5281/zenodo.3529808
http://arxiv.org/abs/1607.07892

	Entropy and convergence analysis for two finite volume schemes for a Nernst–Planck–Poisson system with ion volume constraints
	Abstract
	1 Introduction
	1.1 The Nernst–Planck–Poisson system with finite ionic volumes
	1.2 Key properties of the continuous system
	1.3 Positioning and outline

	2 Discretization and main theorems
	2.1 Discretization of (0,T) timesΩ
	2.2 A common setting for the Finite Volume schemes
	2.3 Numerical fluxes for the conservation equations
	2.3.1 The centered flux
	2.3.2 The ``Sedan'' flux

	2.4 Main theorems

	3 Fixed Mesh analysis
	3.1 Analysis of numerical flux based functions
	3.2 A priori estimates
	3.3 Existence of solutions 

	4 Convergence
	4.1 Reconstruction operators
	4.2 Compactness
	Global conclusion

	4.3 Identification

	5 Numerical examples
	5.1 Species redistribution in a one-dimensional cell filled with binary electrolyte
	5.2 1D stationary convergence test
	5.3 An electrolytic diode

	Acknowledgements
	Appendix A: Chemical free energy density and chemical potentials
	Appendix B: Proof of Lemma 3.2
	Limit of Ψδ,ε,M,i
	Limit of Υδ,M

	Appendix C: Study of a numerical scheme for hi=log(ci)-αlog(c0)
	Appendix D: A simple convergence lemma
	References




