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Abstract
This paper is concerned with monotone (time-explicit) finite difference scheme asso-
ciated with first order Hamilton–Jacobi equations posed on a junction. It extends the
scheme introduced by Costeseque et al. (Numer Math 129(3):405–447, 2015) to gen-
eral junction conditions. On the one hand, we prove the convergence of the numerical
solution towards the viscosity solution of the Hamilton–Jacobi equation as the mesh
size tends to zero for general junction conditions. On the other hand, we derive some
optimal error estimates of in L∞

loc for junction conditions of optimal-control type.

Mathematics Subject Classification 65M06 · 65M12 · 49L25

1 Introduction

This paper is concerned with numerical approximation of first order Hamilton–Jacobi
equations posed on a junction, that is to say a network made of one node and a finite
number of edges.

The theory of viscosity solutions for such equations on such domains has reached
maturity by now [1,25,26,30,31]. In particular, it is now understood that general junc-
tion conditions reduce to special ones of optimal-control type [25]. Roughly speaking,
it is proved in [25] that imposing a junction condition ensuring the existence of a con-
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tinuous viscosity solution and a comparison principle is equivalent to imposing a
junction condition obtained by “limiting the flux” at the junction point.

For the “minimal” flux-limited junction conditions, Costeseque, Lebacque and
Monneau [16] introduced a monotone numerical scheme and proved its convergence.
Their scheme can be naturally extended to general junction conditions and our first
contribution is to introduce it and to prove its convergence.

Our second andmain result is an error estimate in the style of Crandall–Lions [17] in
the case of flux-limited junction conditions. It is explained in [17] that the proof of the
comparison principle between sub- and super-solutions of the continuous Hamilton–
Jacobi equation can be adapted in order to derive error estimates between the numerical
solution associated with monotone (stable and consistent) schemes and the continuous
solution. In the case of a continuous equation, the comparison principle is proved
thanks to the technique of doubling variables; it relies on the classical penalisation
term ε−1|x − y|2. Such a penalisation procedure is known to fail in general if the
equation is posed on a junction, because the equation is discontinuous in the space
variable; it is explained in [25] that it has to be replaced with a vertex test function.
But the vertex test function used in [25] is not regular enough (the derivatives are
not locally Lipschitz) to get the error estimates. So here we replace it by the reduced
minimal action introduced in [26] for the “minimal” flux-limited junction conditions,
i.e. the flux is not limited since A ≤ A0 the smallest limiting parameter defined in
(1.7). We study and use it in the case where the flux is “strictly limited”, i.e. A > A0.

In order to derive error estimates as in [17], it is important to study the regularity
of the test function. More precisely, we prove (Proposition 5.9) that its gradient is
locally Lipschitz continuous, at least if the flux is “strictly limited” and far away from
a special curve. But we also see that the reduced minimal action is not of class C1 on
this curve. However we can get “weaker” viscosity inequalities thanks to a result in
[25] (see Proposition 2.4). Such a regularity result is of independent interest.

1.1 Hamilton–Jacobi equations posed on junctions

A junction is a network made of one node and a finite number of infinite edges. It can
be viewed as the set of N distinct copies (N ≥ 1) of the half-line which are glued at
the origin. Let us consider different unit vectors eα ∈ R

2 for α = 1, . . . , N .We define
the branches

Jα = [0,∞).eα, J �
α = Jα\{0}, α = 1, . . . N ,

J =
⋃

α=1,...,N

Jα with Jα ∩ Jβ = {0} for α �= β

where the origin 0 is called the junction point.
Let T > 0 be fixed and finite. For points x, y ∈ J , d(x, y) denotes the geodesic

distance on J defined as

d(x, y) =
{ |x − y| if x, y belong to the same branch,

|x | + |y| if x, y belong to different branches.
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With such a notation in hand, we consider the following Hamilton–Jacobi equation
posed on the junction J ,

{
ut + Hα(ux ) = 0 in (0, T ) × J �

α , α = 1, . . . , N

ut + F
(

∂u
∂x1

, . . . , ∂u
∂xN

)
= 0 in (0, T ) × {0}, (1.1)

with the initial condition

u(0, x) = u0(x), for x ∈ J (1.2)

where u0 is globally Lipschitz in J . The second equation in (1.1) is referred to as the
junction condition.

Hypotheses on the Hamiltonians We consider two cases of quasi-convex Hamilto-
nians Hα . The first case is used for the theorem of convergence (Theorem 1.22) and
here the Hamiltonians Hα satisfy the following conditions

There exists pα
0 ∈ R such that

⎧
⎨

⎩

Hα ∈ C1(R)

±H ′
α(p) ≥ 0 for ± (p − pα

0 ) ≥ 0
lim|p|→+∞ Hα(p) = +∞.

(1.3)

The second case is used for the error estimates (Theorem 1.2) and here the Hamilto-
nians Hα satisfy the following conditions

There exists pα
0 ∈ R such that

⎧
⎨

⎩

Hα ∈ C2(R) and H ′′
α (pα

0 ) > 0
±H ′

α(p) > 0 for ± (p − pα
0 ) > 0

lim|p|→+∞ Hα(p) = +∞.

(1.4)

In particular Hα is non-increasing in (−∞, pα
0 ] and non-decreasing in [pα

0 ,+∞),
and we set

H−
α (p) =

{
Hα(p) for p ≤ pα

0

Hα(pα
0 ) for p ≥ pα

0

and H+
α (p) =

{
Hα(pα

0 ) for p ≤ pα
0 ,

Hα(p) for p ≥ pα
0

where H−
α is non-increasing and H+

α is non-decreasing.

Junction conditions We next introduce a one-parameter family of junction condi-
tions: given a flux limiter A ∈ R ∪ {−∞}, the A-limited flux junction function is
defined for p = (p1, . . . , pN ) as,

FA(p) = max

(
A, max

α=1,...,N
H−

α (pα)

)
(1.5)

for some given A ∈ R
⋃{−∞} where H−

α is the non-increasing part of Hα .
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We now consider the following important special case of (1.1),

{
ut + Hα(ux ) = 0 in (0, T ) × J �

α ,

ut + FA

(
∂u
∂x1

, . . . , ∂u
∂xN

)
= 0 in (0, T ) × {0}. (1.6)

We point out that all the junction functions FA associatedwith A ∈ [−∞, A0] coincide
if one chooses

A0 = max
α=1,...,N

min
R

Hα = max
α=1,...,N

Hα(pα
0 ). (1.7)

As far as general junction conditions are concerned, we assume that the junction
function F : Rn �→ R satisfies

⎧
⎪⎨

⎪⎩

F is continuous and piecewise C1(RN ),

∀α,∀p = (p1, . . . , pN ) ∈ R
N , ∂F

∂ pα
(p) < 0,

F(p1, . . . , pN ) → +∞ as min
i∈{1,...,N } pi → −∞.

(1.8)

Hypothesis in the following of the paper: pα
0 = 0 Without loss of generality (see

[25, Lemma 3.1]), we consider in this paper that pα
0 = 0 for α = 1, . . . , N , i.e.,

min
R

Hα = Hα(0). (1.9)

Indeed, u solves (1.6) if and only if ũ(t, x) := u(t, x) − pα
0 x for x ∈ Jα solves the

same equation in which Hα is replaced by H̃α(p) = Hα(p + pα
0 ). We have the same

result for uh the solution of the scheme (1.16).

The optimal control framework It is well known that the Legendre-Fenchel conju-
gate is crucial in establishing a link between the general Cauchy problem (1.6)–(1.2)
and a control problem [28]. Through this link, we obtain the representation formula for
the exact solution. While deriving the error estimate, regarding to Lemma 6.2, treating
the case where the Hamiltonians Hα satisfy (1.4), reduce to the case of Hamiltonians
satisfying the hypotheses of [26] i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

(Regularity) Hα is of class C2

(Coercivity) lim|p|→+∞ Hα(p) = +∞
(Convexity) Hα is convex and is the Legendre Fenchel transform of Lα

where Lα is of class C2 and satisfies (B0).
(1.10)

We recall that
Hα(p) = L�

α(p) = sup
q∈R

(pq − Lα(q)). (1.11)

We consider the following hypothesis for Lα ,

(B0) There exists a constant γ > 0 such that for all α = 1, . . . , N , the C2(R)

functions Lαsatisfy L ′′
α ≥ γ > 0.
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An optimal control interpretation of the Hamilton–Jacobi equation (1.6) is given in
[4,7,27,28]. Let (eα)α=1,...,N be the family of unit vectors for each Jα . We define the
set of admissible controls at a point x ∈ J by

U(x) =
{
Reα0 if x ∈ J �

α0
,

∪α=1,...NR
+eα if x = 0.

For (s, y), (t, x) ∈ [0, T ] × J with s ≤ t, we define the set of admissible trajectories
from (s, y) to (t, x) by

A(s, y; t, x) =
⎧
⎨

⎩X ∈ W 1,1([s, t],R2) :
∣∣∣∣∣∣

X(τ ) ∈ J for all τ ∈ (s, t)
Ẋ(τ ) ∈ U(X(τ )) for a.e τ ∈ (s, t)
X(s) = y and X(t) = x

∣∣∣∣∣∣

⎫
⎬

⎭ .

(1.12)
For P = pei ∈ U(x) with p ∈ R, we define the Lagrangian on the junction

L(x, P) =
{
Lα(p) if x ∈ J �

α ,

L̃ A(p) if x = 0,
(1.13)

with

L̃ A(p) = min

(
− A, min

α=1,...,N
Lα(p)

)
.

TheHopf-Lax representation formula provides a solution of (1.6)–(1.2) only assum-
ing (1.10). This formula is given in [2,26] by

uoc(t, x) = inf
y∈J

{u0(y) + D(0, y; t, x)} (1.14)

with

D(s, y; t, x) = inf
X∈A(s,y;t,x)

{∫ t

s
L(X(τ ), Ẋ(τ ))dτ

}
.

Remark 1 More details about this function are explained in Sect. 5 where the relevant
trajectories of the optimal control problem are given. Also this function plays a crucial
role in getting the error estimates with the doubling variable method.

1.2 Presentation of the scheme

The domain (0,+∞)× J is discretized with respect to time and space with a constant
time step and space step. The space step is denoted by 	x and the time step by 	t . If
h denotes (	t,	x), the mesh (or grid) Gh is chosen as

Gh = {n	t : n ∈ N} × J	x (1.15)
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530 J. Guerand, M. Koumaiha

where

J	x =
⋃

α=1,...,N

J	x
α with Jα ⊃ J	x

α � {i	x : i ∈ N} · eα.

It is convenient to write xα
i for i	x ∈ Jα .

A numerical approximation uh of the solution u of the Hamilton–Jacobi equation
(1.1) is defined in Gh ; the quantity uh(n	t, xα

i ) is simply denoted byUα,n
i . We want it

to be an approximation of u(n	t, xα
i ) for n ∈ N, i ∈ N, where α stands for the index

of the branch.
We consider the following time-explicit scheme: for n ≥ 0,

⎧
⎪⎪⎨

⎪⎪⎩

Uα,n+1
i −Uα,n

i
	t + max{H+

α (pα,n
i,−), H−

α (pα,n
i,+)} = 0, i ≥ 1, α = 1, . . . , N

Uβ,n
0 := Un

0 , i = 0, β = 1, . . . , N
Un+1
0 −Un

0
	t + F(p1,n0,+, . . . , pN ,n

0,+ ) = 0,

(1.16)

where pα,n
i,± are the discrete (space) gradients defined by

pα,n
i,+ := Uα,n

i+1 −Uα,n
i

	x
, pα,n

i,− := Uα,n
i −Uα,n

i−1

	x
(1.17)

with the initial condition

Uα,0
i = u0(x

α
i ), i ≥ 0, α = 1, . . . , N . (1.18)

One can notice that pα,n
i,− = pα,n

i−1,+ but the notation is useful to do the analogy
between the viscosity inequalities in the discrete (see Lemma 4.3) and continuous
case (see Proposition 2.4).

The following Courant–Friedrichs–Lewy (CFL) condition ensures that the explicit
scheme is monotone (proof provided in Lemma 4.1),

	x

	t
≥ max

{
max
i≥0,

α=1,...,N ,
0≤n≤nT

|H ′
α(pα,n

i,+)|; max
0≤n≤nT

{
(−∇ · F)(p1,n0,+, . . . , pN ,n

0,+ )

}}
(1.19)

where the integer nT is the integer part of T
	t for a given T > 0.

1.3 Main results

As previously noticed in [16] in the special case F = FA0 , it is not clear that the time
step 	t and space step 	x can be chosen in such a way that the CFL condition (1.19)
holds true since the discrete gradients pα,n

i,+ depend itself on 	t and 	x (through the
numerical scheme). We thus impose a more stringent CFL condition,
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	x

	t
≥ max

{
max

α=1,...,N ,
p

α
≤p≤pα

|H ′
α(p)|; max

α=1,...,N ,

p0
α
≤pα≤pα

{
(−∇ · F)(p1, . . . , pN )

}}
(1.20)

for some p
α
, pα, p0

α
∈ R to be fixed (only depending on u0, H , and F). We can argue

as in [16] and prove that p
α
, pα, p0

α
∈ R can be chosen in such a way that the CFL

condition (1.20) implies (1.19) and, in turn, the scheme is monotone (Lemma 4.1 in
Sect. 4). We will also see that it is stable (Lemma 4.4) and consistent (Lemma 4.5). It
is thus known that it converges [6,17]. Notice that taking F = FA, gives the following
CFL condition

	x

	t
≥ max

α=1,...,N ,
p

α
≤p≤pα

|H ′
α(p)|. (1.21)

Theorem 1.1 (Convergence for general junction conditions) Let T > 0 and u0 be
Lipschitz continuous. Let the Hamiltonians Hα satisfy (1.3) and the junction function
F satisfies (1.8). Then there exist p

α
, pα, p0

α
∈ R, α = 1, . . . , N, depending only on

the initial data,Hα and F such that, if h satisfies the CFL condition (1.20), then the
numerical solution uh defined by (1.16)–(1.18) converges locally uniformly as h goes
to zero to the unique relaxed viscosity solution u of (1.1)–(1.2), on any compact set
K ⊂ [0, T ) × J , i.e.

lim sup
|h|→0

sup
(t,x)∈K∩Gh

|uh(t, x) − u(t, x)| = 0, (1.22)

where h = (	t,	x).

Remark 2 We know from [25] that the equation (1.1)–(1.2) may have no viscosity
solution but always a unique relaxed viscosity solution (in the sense of Definition 2).
Notice that the scheme has a junction condition which is not relaxed. However the
solution of the scheme converges to the unique relaxed solution of the associated
Hamilton–Jacobi equation.

The main result of this paper lies in getting error estimates in the case of flux-limited
junction conditions.

Theorem 1.2 (Error estimates for flux-limited junction conditions) Let T > 0 and
u0 be Lipschitz continuous. Let the Hamiltonians Hα satisfy (1.4), uh be the solution
of the associated numerical scheme (1.16)–(1.18) and u be the viscosity solution of
(1.6)–(1.2) for some A ∈ R. If the CFL condition (1.21) is satisfied, then there exists
C > 0 (independent of h) such that

sup
[0,T )×J∩Gh

|uh(t, x) − u(t, x)| ≤
{
C(	x)1/2 if A > A0,

C(	x)2/5 if A = A0.
(1.23)
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1.4 Related results

Numerical schemes for Hamilton–Jacobi equations on networks The discretization
of viscosity solutions of Hamilton–Jacobi equations posed on networks has been stud-
ied in a few papers only. Apart from [16] mentioned above, we are only aware of two
other works. A convergent semi-Lagrangian scheme is introduced in [9] for equations
of eikonal type and in [13] for Hamilton–Jacobi equations with application to traf-
fic flow models. In [23], an adapted Lax-Friedrichs scheme is used to solve a traffic
model; it is worth mentioning that this discretization implies to pass from the scalar
conservation law to the associated Hamilton–Jacobi equation at each time step.

Numerical schemes for Hamilton–Jacobi equations for optimal control problems For
optimal control problems, the numerical approximation of Hamilton–Jacobi equations
has already been studied using schemes based on the discrete dynamic programming
principle. Essentially, these schemes are built by replacing the continuous optimal
control problem by its discrete time version. We refer to Capuzzo Dolcetta [11],
Capuzzo Dolcetta-Ishii [12] for the results concerning the convergence of uh to u and
the a priori estimates (of order 	x) , in the L∞ norm, giving the order of convergence
of the discrete-time approximation. For papers related to Lax-Hopf formulas and
programming principle with a traffic application, we refer to [8]. We refer to Falcone
[20] for the results related to the order of convergence of the fully discrete (i.e. in
space and time) approximation and for the construction of the algorithm, we mention
that under a semiconcavity assumption the rate of convergence is of order 1. We
cite also [21] and references therein for discrete time high order schemes for Hamilton
Jacobi Bellman equations. Also semi-Lagrangian schemes [9] can be seen as a discrete
version of the Hopf-Lax formula and are related to optimal control problems.

Link with monotone schemes for scalar conservation laws We first follow [16] by
emphasizing that the convergence result, Theorem 1.1, implies the convergence of a
monotone scheme for scalar conservation laws (in the sense of distributions).

In order to introduce the scheme, it is useful to introduce a notation for the numerical
Hamiltonian Hα ,

Hα(p+, p−) = max{H−
α (p+), H+

α (p−)}.

The discrete solution (V n) of the scalar conservation law vt + (Hα(v))x = 0 with
v = ux far from the junction is defined as follows,

V α,n
i+ 1

2
=
⎧
⎨

⎩

Uα,n
i+1−Uα,n

i
	x if i ≥ 1

Uα,n
1 −Un

0
	x if i = 0.

In view of (1.16), it satisfies for all α = 1, . . . , N ,
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V α,n+1

i+ 1
2

−V α,n

i+ 1
2

	t + (	x)−1
(
Hα

(
V α,n
i+ 3

2
, V α,n

i+ 1
2

)
− Hα

(
V α,n
i+ 1

2
, V α,n

i− 1
2

))
= 0, i ≥ 1,

V α,n+1
1
2

−V α,n
1
2

	t + (	x)−1
(
Hα

(
V α,n

3
2

, V α,n
1
2

)
− F

(
V 1,n

1
2

, . . . , V N ,n
1
2

))
= 0,

submitted to the initial condition

V α,0
i+ 1

2
= u0(xα

i ) − u0(0)

	x
, i ≥ 0, α = 1, . . . , N .

In view of Theorem 1.1, we thus can conclude that the discrete solution vh constructed
from (V n) converges towards ux in the sense of distributions, at least far from the
junction point.

Error estimates for numerical schemes We would like next to explain why our
result can be seen as the Hamilton–Jacobi counterpart of the error estimates obtained
by Ohlberger and Vovelle [29] for scalar conservation laws submitted to Dirichlet
boundary conditions.

On the one hand, it is known since 1979 andBardos et al. [5] that Dirichlet boundary
conditions imposed to scalar conservation laws should be understood in a generalized
sense. This can be seen by studying the parabolic regularization of the problem. A
boundary layer analysis canbeperformed for systems if the solutionof the conservation
law is smooth; see for instance [22,24]. Depending on the fact that the boundary is

characteristic or not, the error is h
1
2 or h. In the scalar case, it is proved in [19] that

the error between the solution of the regularized equation with a vanishing viscosity
coefficient equal to h and the entropy solution of the conservation law (which is merely
of bounded variation in space) is of order h1/3 (in L∞

t L1
x norm). In [29], the authors

derive error estimates for finite volume schemes associated with such boundary value
problems and prove that it is of order (	x)1/6 (in L1

t L
1
x norm). More recently, scalar

conservation laws with flux constraints were studied [14,15] and some finite volume
schemes were built [3]. In [10], assuming that the flux is bell-shaped, that is to say the
opposite is quasi-convex, it is proved that the error between the finite volume scheme

and the entropy solution is of order (	x)
1
3 and that it can be improved to (	x)

1
2 under

an additional condition on the traces of the BV entropy solution. It is not known if the
estimates from [10] are optimal or not.

On the other hand, the derivative of a viscosity solution of a Hamilton–Jacobi
equation posed on the real line is known to coincide with the entropy solution of the
corresponding scalar conservation law. It is therefore reasonable to expect that the error
between the viscosity solution of the Hamilton–Jacobi equation and its approximation
is as good as the one obtained between the entropy solution of the scalar conservation
law and its approximation.

Moreover, it is explained in [26] that the junction conditions of optimal-control type
are related to the Bardos, LeRoux andNédélec (BLN) conditionmentioned above. It is
therefore interesting to get an error estimate of order (	x)1/2 for the Hamilton–Jacobi
problem.
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1.5 Open problems

Let us first mention that it is not known if the error estimate between the (entropy)
solution of the scalar conservation law with Dirichlet boundary condition and the
solution of the parabolic approximation [19] or with the numerical scheme [29] is
optimal or not. Here, we prove an optimal error estimate for A > A0 but we do not
know if our error estimate is optimal or not for A = A0. But the test performed seems
to suggest that the estimate is not optimal for A = A0.

Deriving error estimates for general junction conditions seems difficult to us. The
main difficulty is the singular geometry of the domain. The test function, used in
deducing the error estimates with flux limited solutions, is designed to compare flux
limited solutions. Consequently, when applying the reasoning of Sect. 6, the discrete
viscosity inequality cannot be combined with the continuous one.

1.6 Organization of the article

The remaining of the paper is organized as follows. In Sect. 2, we recall definitions and
results from [25] about viscosity solutions for (1.1)–(1.2). Section 3 is dedicated to
the derivation of discrete gradient estimates for the numerical scheme. In Sect. 4, the
convergence result, Theorem 1.1 is proved. In Sect. 5, we study the reduced minimal
action for a “strictly” limited flux and prove that the gradient is locally Lipschitz
continuous (at least if the flux is strictly limited). The final section, Sect. 6, is dedicated
to the proof of the error estimates.

2 Preliminaries

2.1 Viscosity solutions

We introduce the main definitions related to viscosity solutions for Hamilton–Jacobi
equations that are used in the remaining. For a more general introduction to viscosity
solutions, the reader could refer to Barles [7] and to Crandall et al. [18].

Space of test functions For a smooth real valued function u defined on J , we denote
by uα the restriction of u to (0, T ) × Jα . Let JT = (0, T ) × J .

Then we define the natural space of functions on the junction:

C1(JT ) = {u ∈ C(JT ) : ∀α = 1, . . . , N , uα ∈ C1((0, T ) × Jα)}.

Viscosity solutions In order to define classical viscosity solutions, we recall the defi-
nition of upper and lower semi-continuous envelopes u� and u� of a (locally bounded)
function u defined on [0, T ) × J :

u�(t, x) = lim sup
(s,y)→(t,x)

u(s, y) u�(t, x) = lim inf
(s,y)→(t,x)

u(s, y).
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Definition 1 (Viscosity solution) Assume that the Hamiltonians satisfy (1.4) and that
F satisfies (1.8) and let u : (0, T ) × J → R.

(i) We say that u is a sub-solution (resp. super-solution) of (1.1) in (0, T )× J if for
all test function ϕ ∈ C1(JT ) such that

u� ≤ ϕ (resp. u� ≥ ϕ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

{
ϕt + Hα(ϕx ) ≤ 0 (resp. ≥ 0) at (t0, x0) ∈ (0, T ) × J �

α

ϕt + FA

(
∂ϕ
∂x1

, . . . ,
∂ϕ
∂xN

)
≤ 0 (resp. ≥ 0) at (t0, x0) ∈ (0, T ) × {0}.

(ii) We say that u is a sub-solution (resp. super-solution) of (1.1)-(1.2) on [0, T )× J
if additionally

u�(0, x) ≤ u0(x) (resp. u�(0, x) ≥ u0(x)) for all x ∈ J .

(iii) We say that u is a (viscosity) solution if u is both a sub-solution and a super-
solution.

As explained in [25], it is difficult to construct viscosity solutions in the sense of
Definition 1 because of the junction condition. It is possible in the case of the flux-
limited junction conditions FA. For general junction conditions, the Perron process
generates a viscosity solution from the following relaxed sense [25].

Definition 2 (Relaxed viscosity solution) Assume that the Hamiltonians satisfy (1.4)
and that F satisfies (1.8) and let u : (0, T ) × J → R.

(i) We say that u is a relaxed sub-solution (resp. relaxed super-solution) of (1.1) in
(0, T ) × J if for all test function ϕ ∈ C1(JT ) such that

u� ≤ ϕ (resp. u� ≥ ϕ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have if x0 �= 0

ϕt + Hα(ϕx ) ≤ 0 (resp. ≥ 0) at (t0, x0) ∈ (0, T ) × J �
α ,

if x0 = 0,

⎧
⎨

⎩
either ϕt + F

(
∂ϕ
∂x1

, . . . ,
∂ϕ
∂xN

)
≤ 0 (resp. ≥ 0) at (t0, x0) = (t0, 0)

or ϕt + Hα

(
∂ϕ
∂xα

)
≤ 0 (resp. ≥ 0) at (t0, x0) = (t0, 0) for some α.

(ii) We say that u is a relaxed (viscosity) solution of (1.1) if u is both a relaxed
sub-solution and a super-solution.

Let us recall some theorems in [25].
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Theorem 2.1 (Comparison principle on a junction) Let A ∈ R ∪ {−∞}. Assume that
the Hamiltonians satisfy (1.3) and the initial datum u0 is uniformly continuous. Then
for all sub-solution u and super-solution v of (1.6)–(1.2) satisfying for some T > 0
and CT > 0

u(t, x) ≤ CT (1 + d(0, x)), v(t, x) ≥ −CT (1 + d(0, x)),

for all (t, x) ∈ [0, T ) × J ,

we have

u ≤ v in [0, T ) × J .

Theorem 2.2 (General junction conditions reduce to flux-limited ones) Assume that
the Hamiltonians satisfy (1.3) and that F satisfies (1.8). Then there exists AF ∈ R

such that any relaxed viscosity (sub-/super-)solution of (1.1) is in fact a viscosity
(sub-/super-)solution of (1.6) with A = AF .

Theorem 2.3 (Existence and uniqueness on a junction) Assume that the Hamiltonians
satisfy (1.3) and that F satisfies (1.8) and that the initial datum u0 is Lipschitz con-
tinuous. Then there exists a unique relaxed viscosity solution u of (1.1)–(1.2), such
that

|u(t, x) − u0(x)| ≤ Ct for all (t, x) ∈ [0, T ) × J

for some constant C only depending on H and u0. Moreover, it is Lipschitz continuous
with respect to time and space, in particular,

‖∇u‖∞ ≤ C .

The following proposition is a main tool in the proof of error estimates. Indeed, we
use a test function which is not C1 with respect to the gradient variable at one point
and this proposition allows us to get a “weak viscosity inequality”. We don’t give the
proof since it is the same as the proof of [25, Proposition 2.16].

Proposition 2.4 (Non C1 test function at one point [25]) that H satisfies (1.3) and let
u be a solution of

ut + Hα(ux ) = 0 in (0, T ) × J �
α .

For all x0 ∈ J �
α and all test function ϕ ∈ C1((0, T ) × Jα\{0, x0})

u� ≤ ϕ (resp. u� ≥ ϕ) in a neighborhood of (t0, x0) ∈ (0, T ) × J �
α

with equality at (t0, x0), we have

ϕt (t0, x0) + max
{
H+

α (ϕx (t0, x
−
0 ), H−

α (ϕx (t0, x
+
0 )
} ≤ 0 (resp. ≥ 0).
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3 Discrete gradient estimates

This section is devoted to the proofs of the discrete (time and space) gradient estimates.
These estimates ensure the monotonicity of the scheme and, in turn, its convergence.
The discrete time derivative is defined as

Wα,n
i := Uα,n+1

i −Uα,n
i

	t
.

Theorem 3.1 (Discrete gradient estimates) If uh = (Uα,n
i ) is the numerical solution

of (1.16)–(1.18) and if the CFL condition (1.20) is satisfied and if

m0 = inf
β=1,...,N ,

i∈N
Wβ,0

i (3.1)

is finite, then the following two properties hold true for any n ≥ 0.

(i) (Gradient estimate) There exist p
α
, pα , p0

α
(only depending on Hα , u0 and F) such

that {
p

α
≤ pα,n

i,+ ≤ pα i ≥ 1, α = 1, . . . , N ,

p0
α

≤ pα,n
0,+ ≤ pα i = 0, α = 1, . . . , N .

(3.2)

(ii) (Time derivative estimate) The discrete time derivative Wα,n
i satisfies

m0 ≤ mn ≤ mn+1 ≤ Mn+1 ≤ Mn ≤ M0

where

mn := inf
α,i

Wα,n
i , Mn := sup

α,i
Wα,n

i .

In the proofs of discrete gradient estimates, “generalized” inverse functions of H±
α are

needed; they are defined as follows:

{
π+

α (a) := sup{p : H+
α (p) = max(a, Aα)}

π−
α (a) := inf{p : H−

α (p) = max(a, Aα)} (3.3)

with the additional convention that (H±
α )−1(+∞) = ±∞, where

Aα := min
R

Hα.

In order to define a “generalized” inverse function of F , we remark that (1.8) implies
that

for all K ∈ R, there exists ρ(K ) = (ρ1(K ), . . . , ρN (K )) ∈ R
N

such that F(p1, . . . , pN ) ≤ K ⇒ pα ≥ ρ
α
(K ).
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Remark that the functions ρ
α
can be chosen non-increasing.

Remark 3 The quantities p
α
,pα , p0

α
are defined as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p
α

=
{

π−
α (−m0) if − m0 > Aα

π−
α (−m0 + 1) if − m0 = Aα

pα =
{

π+
α (−m0) if − m0 > Aα

π+
α (−m0 + 1) if − m0 = Aα

p0
α

=
{

ρ
α
(−m0) if ρ

α
(−m0) < pα

ρ
α
(−m0 + 1) if ρ

α
(−m0) = pα

(3.4)

where m0 is defined in (3.1).

In order to establish Theorem 3.1, we first prove two auxiliary results. In order to state
them, some notations should be introduced.

3.1 Discrete time derivative estimates

In order to state the first one, Proposition 3.2 below, we introduce some notation. For
σ ∈ {+,−}, we set

I α,n
i,σ := [min(pα,n

i,σ , pα,n+1
i,σ ),max(pα,n

i,σ , pα,n+1
i,σ )]

with pα,n
i,σ defined in (1.17) and

Dα,n
i,+ := sup

{
sup

pα∈Iα,n
i,+

|H ′
α(pα)|, sup

pα∈Iα,n
0,+

{
− (∇ · F)(p1, . . . , pN )

}}
. (3.5)

The following proposition asserts that if the discrete space gradients enjoy suitable
estimates, then the discrete time derivative is controlled.

Proposition 3.2 (Discrete time derivative estimate) Let n ≥ 0 be fixed and 	x, 	t >

0. Let us consider (Uα,n
i,α )α,i satisfying for some constant Cn > 0:

|pα,n
i,+| ≤ Cn for i ≥ 0, α = 1, . . . , N .

We also consider (Uα,n+1
i )α,i and (Uα,n+2

i )α,i computed using the scheme (1.16). If

Dα,n
i,+ ≤ 	x

	t
for i ≥ 0, α = 1, . . . , N , (3.6)

then

mn ≤ mn+1 ≤ Mn+1 ≤ Mn .
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Proof For σ = + (resp. σ = −), −σ denotes − (resp. +). We introduce for n ≥ 0,
α ∈ {1, . . . , N }, i ∈ {1, . . . , N }, σ ∈ {+,−},

Cα,n
i,σ := −σ

∫ 1

0
(H−σ

α )′
(
pα,n+1
i,σ + τ(pα,n

i,σ − pα,n+1
i,σ )

)
dτ ≥ 0, (3.7)

Cα,n
0,+ := −

∫ 1

0

∂F

∂ pα

(
{pβ,n+1

0,+ + τ(pβ,n
0,+ − pβ,n+1

0,+ )}β
)
dτ ≥ 0.

Notice that for i ≥ 1, Cα,n
i,σ is defined as the integral of (H−σ

α )′ over a convex com-
bination of p ∈ I α,n

i,σ . Similarly for Cα,n
0,+ which is defined as the integral of F ′ on a

convex combination of p ∈ I α,n
0,+. Hence, in view of (3.6), we have for any n ≥ 0,

α = 1, . . . , N and for any σ ∈ {+,−} or for i = 0 and σ = +, we can check that

{
Cα,n
i,σ ≤ 	x

	t if i ≥ 1, σ ∈ {−,+}
∑N

β=1 C
β,n
0,+ ≤ 	x

	t .
(3.8)

We can also underline that for any n ≥ 0, α = 1, . . . , N and for any i ≥ 1,
σ ∈ {+,−} or for i = 0 and σ = +, we have the following relationship

pα,n
i,σ − pα,n+1

i,σ

	t
= −σ

Wα,n
i+σ − Wα,n

i

	x
. (3.9)

Let n ≥ 0 be fixed and consider (Uα,n
i )α,i with 	x,	t > 0 given. We compute

(Uα,n+1
i )α,i and (Uα,n+2

i )α,i using the scheme (1.16).

Step 1: (mn)n is non-decreasing We want to show that Wα,n+1
i ≥ mn for i ≥ 0 and

α = 1, . . . , N . Let i ≥ 0 be fixed and let us distinguish two cases.
Case 1: i ≥ 1 Let a branch α be fixed and let σ(i, α, n + 1) = σ ∈ {+,−} be such
that

max

{
H+

α (pα,n+1
i,− ), H−

α (pα,n+1
i,+ )

}
= H−σ

α (pα,n+1
i,σ ). (3.10)

We have

Wα,n+1
i − Wα,n

i

	t
= 1

	t

(
max

{
H+

α (pα,n
i,−), H−

α (pα,n
i,+)

}

−max

{
H+

α (pα,n+1
i,− ), H−

α (pα,n+1
i,+ )

})

≥ 1

	t

(
H−σ

α (pα,n
i,σ ) − H−σ

α (pα,n+1
i,σ )

)

=
∫ 1

0
(H−σ

α )′(pα,n+1
i,σ + τ(pα,n

i,σ − pα,n+1
i,σ ))

(
pα,n
i,σ − pα,n+1

i,σ

	t

)
dτ

= Cα,n
i,σ

(
Wα,n

i+σ − Wα,n
i

	x

)
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where we used (3.7) and (3.9) in the last line. Using (3.8), we thus get

Wα,n+1
i ≥

(
1 − Cα,n

i,σ
	t

	x

)
Wα,n

i + Cα,n
i,σ

	t

	x
Wα,n

i+σ

≥ mn .

Case 2: i = 0 We recall that in this case, we have Uβ,n
0 := Un

0 and Wβ,n
0 := Wn

0 =
Un+1
0 −Un

0
	t for any β = 1, . . . , N . We compute in this case:

Wn+1
0 − Wn

0

	t
= 1

	t

(
−F({pα,n+1

0,+ }α) + F({pα,n
0,+}α)

)

= 1

	t

∫ 1

0

N∑

β=1

pβ

∂F

∂ pβ

(
{pα,n+1

0,+ + τ pα}α
)
dτ

with p = ({pα,n
0,+ − pα,n+1

0,+ }α)

= −
∫ 1

0

N∑

β=1

∂F

∂ pβ

(
{pα,n+1

0,+ + τ pα}α
)
dτ

(
Wβ,n

1 − Wn
0

	x

)

=
N∑

β=1

Cβ,n
0,+
(
Wβ,n

1 − Wn
0

	x

)
.

Using (3.8), we argue like in Case 1 and get

Wn+1
0 ≥ mn .

Step 2: (Mn)n is non-increasing We want to show that Wα,n+1
i ≤ Mn for i ≥ 0 and

α = 1, . . . , N . We argue as in Step 1 by distinguishing two cases.
Case 1: i ≥ 1 We simply choose σ = σ(i, α, n) (see (3.10)) and argue as in Step 1.
Case 2: i = 0 Using (3.6), we can argue exactly as in Step 1. The proof is now
complete. ��

3.2 Gradient estimates

The second result needed in the proof of Theorem 3.1 is the following one. It asserts
that if the discrete time derivative is controlled from below, then a discrete gradient
estimate holds true.

Proposition 3.3 (Discrete gradient estimate) Let n ≥ 0 be fixed, consider that
(Uα,n

i )α,i is given and compute (Uα,n+1
i )α,i using the scheme (1.16)–(1.17). If there

exists a constant K ∈ R such that for any i ≥ 0 and α = 1, . . . , N ,

K ≤ Wα,n
i := Uα,n+1

i −Uα,n
i

	t
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then

{
π−

α (−K ) ≤ pα,n
i,+ ≤ π+

α (−K ), α = 1, . . . , N , i ≥ 1,
ρ

α
(−K ) ≤ pα,n

0,+ ≤ (H+
α )−1(−K ), α = 1, . . . , N

where pα,n
i,+ is defined in (1.17) and π±

α and p are the “generalized” inverse functions
of Hα and F, respectively.

Proof Let n ≥ 0 be fixed and consider (Uα,n
i )α,i with	x,	t > 0 given. We compute

(Uα,n+1
i )α,i using the scheme (1.16). Let us consider any i ≥ 0 and α = 1, . . . , N .

If i ≥ 1, the result follows from

K ≤ Wα,n
i = − max

σ=+,− Hσ
α (pα,n

i,−σ ).

If i = 0, the results follows from

K ≤ Wn
0 = −F

(
{pα,n

0,+}α
)

.

This achieves the proof of Proposition 3.3 ��

3.3 Proof of gradient estimates

Proof of Theorem 3.1 The idea of the proof is to introduce new Hamiltonians H̃α and
a new junction function F̃ for which it is easier to derive gradient estimates but whose
corresponding numerical scheme in fact coincide with the original one.

Step 1: Modification of the Hamiltonians and the junction function Let the new
Hamiltonians H̃α for all α = 1, . . . , N be defined as

H̃α(p) =

⎧
⎪⎨

⎪⎩

Hα(p
α
) + H ′

α(p
α
)(p − p

α
) if p ≤ p

α

Hα(p) if p ∈ [p
α
pα]

Hα(pα) + H ′
α(pα)(p − pα) if p ≥ pα

(3.11)

where p
α
and pα are defined in (3.4) respectively. These new Hamiltonians are now

globally Lipschitz continuous: their derivatives are bounded. More precisely, the H̃α

satisfy (1.4) and

H̃α ≡ Hα in [p
α
, pα]

and
∀p ∈ R, |H̃ ′

α(p)| ≤ sup
pα∈[p

α
,pα]

|H ′
α(pα)|. (3.12)
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Let the new F̃ satisfy (1.8), be such that

F̃ ≡ F in Q0 :=
N∏

α=1

[p0
α
, pα]

and (see “Appendix A.2”)

∀p ∈ R
N , (−∇ · F̃)(p) ≤ sup

Q0

(−∇ · F). (3.13)

In the remaining of the proof, when notation contains a tilde, it is associated with
the new Hamiltonians H̃α and the new non-linearity F̃ . We then consider the new
numerical scheme

⎧
⎪⎪⎨

⎪⎪⎩

Ũα,n+1
i −Ũα,n

i
	t + max{H̃+

α ( p̃α,n
i,−), H̃−

α ( p̃α,n
i,+)} = 0, i ≥ 1, α = 1, . . . , N

Ũβ,n
0 := Un

0 , i = 0, β = 1, . . . , N
Ũn+1
0 −Ũ n

0
	t + F̃( p̃1,n0,+, p̃2,n0,+, . . . , p̃N ,n

0,+ ) = 0

with the same initial condition, namely,

Ũα,0
i = uα

0 (i	x), i ≥ 0, α = 1, . . . , N .

In view of (3.12) and (3.13), the CFL condition (1.20) gives that for any i ≥ 0,
n ≥ 0, and α = 1, . . . , N

D̃α,n
i,+ ≤ sup

⎧
⎨

⎩ sup
p

α
≤p≤pα

|H ′
α(p)|; sup

Ĩα,n
0,+

(−∇ · F)

⎫
⎬

⎭ ≤ 	x

	t
(3.14)

where D̃α,n
i,+ is given by (3.5) after replacing Hα and F with H̃α and F̃ .

Step 2: First gradient bounds Let n ≥ 0 be fixed. If m̃n and M̃n are finite, we have

m̃n ≤ W̃α,n
i for any i ≥ 0, α = 1, . . . , N .

Proposition 3.3 implies that

{
π̃−

α (−m̃n) ≤ p̃α,n
i,+ ≤ π̃+

α (−m̃n), i ≥ 1, α = 1, . . . , N ,

ρ̃
α
(−m̃n) ≤ p̃α,n

0,+ ≤ π̃+
α (−m̃n), i ≥ 0, α = 1, . . . , N .

In particular, we get that

| p̃α,n
i,+| ≤ Cn for i ≥ 0, α = 1, . . . , N
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with

Cn = max
α

(
max

(
|π̃−

α (−m̃n)|, |π̃+
α (−m̃n)|, |ρ̃

α
(−m̃n)|

))
.

In view of (3.14), Proposition 3.2 implies that

m̃n ≤ m̃n+1 ≤ M̃n+1 ≤ M̃n for any n ≥ 0. (3.15)

In particular, m̃n+1 is also finite. Since m̃0 = m0 and M̃0= M0 are finite, we conclude
that m̃n and M̃n are finite for all n ≥ 0 and for all n ≥ 0,

m0 ≤ m̃n ≤ M̃n ≤ M0. (3.16)

Step 3: Time derivative and gradient estimates. Now we can repeat the same rea-
soning but applying Proposition 3.3 with K = m0 and get

{
p

α
≤ p̃α,n

i,+ ≤ pα, i ≥ 1, α = 1, . . . , N ,

p0
α

≤ p̃α,n
0,+ ≤ pα, i ≥ 0, α = 1, . . . , N .

(3.17)

This implies that Ũα,n
i = Uα,n

i for all i ≥ 0, n ≥ 0, α = 1, . . . , N . In view of (3.15),
(3.16) and (3.17), the proof is now complete. ��

4 Convergence for general junction conditions

This section is devoted to the convergence of the scheme defined by (1.16)–(1.17).

4.1 Monotonicity of the scheme

In order to prove the convergence of the numerical solution as the mesh size tends to
zero, we need first to prove a monotonicity result. It is common to write the scheme
defined by (1.16)–(1.17) under the compact form

uh(t + 	t, x) = Sh[uh(t)](x)

where the operator Sh is defined on the set of functions defined in Jh . The scheme is
monotone if

u ≤ v ⇒ Sh[u] ≤ Sh[v].

In our cases, if t = n	t and x = i	x ∈ Jα and U (t, x) = Uα,n
i for x ∈ Jα , then

Sh[U ] is defined as follows,

{
Uα,n+1
i = Sα[Uα,n

i−1,U
α,n
i ,Uα,n

i+1] for i ≥ 1, α = 1, . . . , N ,

Un+1
0 = S0[Un

0 , (Uβ,n
1 )β=1,...,N ]
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where

⎧
⎪⎨

⎪⎩

Sα[Uα,n
i−1,U

α,n
i ,Uα,n

i+1] := Uα,n
i − 	t max

{
H+

α

(
Uα,n
i −Uα,n

i−1
	x

)
, H−

α

(
Uα,n
i+1−Uα,n

i
	x

)}
,

S0[Un
0 , (Uβ,n

1 )β=1,...,N ] := Un
0 − 	t F(p1,n0,+, . . . , pN ,n

0,+ )

(4.1)
Checking the monotonicity of the scheme reduces to checking that Sα and S0 are
non-decreasing in all their variables.

Lemma 4.1 (Monotonicity of the numerical scheme) Let (Un) := (Uα,n
i )α,i the

numerical solution of (1.16)–(1.18). Under the CFL condition (1.19) the scheme is
monotone.

Proof We distinguish two cases.

Case 1 i ≥ 1. It is straightforward to check that, for any α = 1, . . . , N , the function
Sα is non-decreasing with respect to Uα,n

i−1 and U
α,n
i+1. Moreover,

∂Sα

∂Uα,n
i

=
{
1 − 	t

	x (H+
α )′(pα,n

i,−) if max{H+
α (pα,n

i,−), H−
α (pα,n

i,+)} = H+
α (pα,n

i,−)

1 + 	t
	x (H−

α )′(pα,n
i,+) if max{H+

α (pα,n
i,−), H−

α (pα,n
i,+)} = H−

α (pα,n
i,+)

which is non-negative if the CFL condition (1.19) is satisfied.

Case 2 i = 0. Similarly it is straightforward to check that S0 is non-decreasing with
respect to Uβ,n

1 for β = 1, . . . , N . Moreover,

∂S0
∂Un

0
= 1 + 	t

	x

N∑

β=1

∂F

∂ pβ

{(pα,n
0,+)Nα=1}

which is non-negative due to the CFL condition. The proof is now complete. ��
A direct consequence of the previous lemma is the following elementary but useful
discrete comparison principle.

Lemma 4.2 (Discrete Comparison Principle) Let (Un) := (Uα,n
i )α,i and (V n) :=

(V α,n
i )α,i be such that

∀n ≥ 1, Un+1 ≤ Sh[Un] and V n+1 ≥ Sh[V n].

If the CFL condition (1.19) is satisfied and if U 0 ≤ V 0, then Un ≤ V n for all n ∈ N.

Remark 4 The discrete function (Un) (resp. (V n)) can be seen as a sub-scheme (resp.
super-scheme).

We finally recall how to derive discrete viscosity inequalities for monotone schemes.
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Lemma 4.3 (Discrete viscosity inequalities) Let uh be a solution of (1.16)–(1.18)with
F = FA defined in (1.5). Then uh is a discrete sub-solution (resp. super-solution) in
the following sense. If uh − ϕ has a global maximum (resp. global minimum) on Gh
defined in (1.15) at (t + 	t, x), then

δtϕ(t, x) + H(x, D+ϕ(t, x), D−ϕ(t, x)) ≤ 0. (resp. ≥ 0)

where

H(x, p+, p−) =
{
max{H+

α (p−), H−
α (p+)} if x �= 0

max{A,maxα H−
α (p+

α )} if x = 0

and

D+ϕ(t, x) =
{

1
	x {ϕ(t, x + 	x) − ϕ(t, x)} if x �= 0( 1
	x {ϕα(t,	x) − ϕα(t, 0)})

α
if x = 0

D−ϕ(t, x) = 1

	x
{ϕ(t, x) − ϕ(t, x − 	x)}

δtϕ(t, x) = 1

	t
{ϕ(t + 	t, x) − ϕ(t, x)}.

We say that uh is a discrete subsolution (resp. supersolution).

4.2 Stability and consistency of the scheme

We first derive a local L∞ bound for the solution of the scheme.

Lemma 4.4 (Stability of the numerical scheme) Assume that the CFL condition (1.20)
is satisfied and let uh be the solution of the numerical scheme (1.16)–(1.18). There
exists a constant C0 > 0, such that for all (t, x) ∈ Gh,

|uh(t, x) − u0(x)| ≤ C0t . (4.2)

In particular, the scheme is (locally) stable.

Proof If C0 large enough so that

{
C0 + max{H+

α (pα,0
i,−), H−

α (pα,0
i,+)} ≥ 0, i ≥ 1, α = 1, . . . , N

C0 + F(p1,00,+, p2,00,+, . . . , pN ,0
0,+ ) ≥ 0,

and

{
−C0 + max{H+

α (pα,0
i,−), H−

α (pα,0
i,+)} ≤ 0, i ≥ 1, α = 1, . . . , N

−C0 + F(p1,00,+, p2,00,+, . . . , pN ,0
0,+ ) ≤ 0,
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then Ūα,n
i = Uα,0

i + C0n	t is a super-scheme and Ūα,n
i = Uα,0

i − C0n	t is a sub-
scheme (see Remark 4). The discrete comparison principle, Lemma 4.2, then implies

|Uα,n
i −Uα,0

i | ≤ C0n	t

which is the desired inequality. This achieves the proof. ��

Another condition to satisfy convergence of the numerical scheme (1.16) towards the
continuous solution of (1.6) is the consistency of the scheme (which is obvious in our
case).

Lemma 4.5 (Consistency of the numerical scheme) Under the assumptions on the
Hamiltonians (1.4), the finite difference scheme is consistent with the continuous prob-
lem (1.6), that is to say for any smooth function ϕ(t, x), we have locally uniformly

Sh[ϕ](s, y) − ϕ(s, y)

	t
→ Hα(ϕx (t, x)) as Gh � (s, y) → (t, x)

if x ∈ J �
α , and

Sh[ϕ](s, y) − ϕ(s, y)

	t
→ F

(
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xN
(t, 0)

)
as Gh � (s, y) → (t, 0).

4.3 Convergence of the numerical scheme

In this subsection, we present a sketch of the proof of Theorem 1.1.
Sketch of the proof of Theorem 1.1 Let T > 0 and h := (	t,	x) satisfying the CFL
condition (1.20). We recall that

uh(0, x) = u(0, x) for x ∈ Gh .

We consider u and u respectively defined as

u(t, y) = lim sup
h→0

Gh�(t ′,y′)→(t,y)

uh(t ′, y′), u(t, y) = lim inf
h→0

Gh�(t ′,y′)→(t,y)

uh(t ′, y′).

By construction, we have u ≤ u. Since the scheme is monotone (Lemma 4.1), stable
(Lemma 4.4) and consistent (Lemma 4.5), we can follow [6,16] we can show that u
(resp. u) is a relaxed viscosity super-solution (resp. viscosity sub-solution) of equation
(1.1)–(1.2), see for example the proof of [16, Theorem 1.8]. Using Theorem 2.2, we
know that u (resp. u) is a viscosity super-solution (resp. sub-solution) of (1.6)–(1.2).
Moreover, (4.2) implies that

u(0, x) ≤ u0(x) ≤ u(0, x).
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The comparison principle (see Theorem 2.1) then implies that

u ≤ u ≤ u

which achieves the proof. ��

5 Study of the reducedminimal action

In this section, we consider that the Hamiltonians Hα satisfy (1.10). We study the

reduced minimal action D0 which replaces the classical term (x−y)2

2ε in the dou-
bling variable method. This function allows us to prove that the error estimate is

of order (	x)
1
2 .

5.1 Reduction of the study

We start this section by the following remark, the analysis can be reduced to the case
(s, t) = (0, 1). Precisely, using the fact that the Hamiltonian does not depend on time
and is homogeneous with respect to the state, the reader can check that a change of
variables in time yields the following Lemma.

Lemma 5.1 For all y, x ∈ J and s < t, we have

D(s, y; t, x) = (t − s)D
(
0,

y

t − s
; 1, x

t − s

)
.

where

D(s, y; t, x) = inf
X∈A(s,y;t,x)

{∫ t

s
L(X(τ ), Ẋ(τ ))dτ

}
.

This is the reason why we consider the reduced minimal actionD0 : J 2 → R defined
by

D0(y, x) = D(0, y; 1, x). (5.1)

We also need the following lower bound on D.

Lemma 5.2 Assume (B0). Then

D(s, y; t, x) ≥ γ

2(t − s)
d2(x, y) − A(t − s)

where γ is defined in (B0).
Moreover,

D(s, x; t, x) ≤ L̃ A(p)(t − s).
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Proof We only prove the first inequality since the other inequality is elementary. As
L ′

α(0) = 0, and Lα(0) ≥ L̃ A(p) = −A, we have

Lα(p) ≥ γ

2
p2 + L ′

α(0)p + Lα(0) ≥ γ

2
p2 − A.

Thus, we can write for X(.) ∈ A(s, y; t, x),
∫ t

s
L(X(τ ), Ẋ(τ ))dτ ≥ −A(t − s) + γ

2

∫ t

s
(Ẋ(τ ))2dτ.

Then Jensen’s inequality allows us to conclude. ��

5.2 Piecewise linear trajectories

We are going to see that the infimum defining the minimal action can be computed
among piecewise linear trajectories. In order to provide a precise statement, we first
observe that optimal curves in (1.14) are of two types depending on the position of
y and x on the same branch or not: if they are, then the trajectories are of two types:
either they reach the junction point, or they stay in a branch and are straight lines. For
y ∈ Jβ, x ∈ Jα with β �= α, the trajectories can spend some time at the junction
point.

Lemma 5.3 The infimum defining the reduced minimal action D0 can be computed
among piecewise linear trajectories; more precisely for all y, x ∈ J ,

D0(y, x) =
{Djunction(y, x) if α �= β,

min(Lα(x − y),Djunction(y, x)) if α = β,
(5.2)

where for x ∈ Jα, y ∈ Jβ

Djunction(y, x) = inf
0≤t1≤t2≤1

{
t1Lβ

(−y

t1

)
+ (t2 − t1)L̃ A(p) + (1− t2)Lα

(
x

1 − t2

)}
.

(5.3)

Proof We write D0 = infX∈A0(y,x) �(X), where �(X) = ∫ 1
0 L(X(τ ), Ẋ(τ ))dτ. In

order to prove the lemma, it is enough to consider a curve X ∈ A(0, y; 1, x) and prove
that

�(X) ≥ min(Lα(x − y), Djunction(y, x)).

For α �= β, the trajectories can spend some time at the junction point, hence we can
write

D0(y, x) = inf
X(0)=y
X(1)=x

{∫ t1

0
Lβ(Ẋ(τ ))dτ +

∫ t2

t1
L(X(τ ), Ẋ(τ ))dτ +

∫ 1

t2
Lα(Ẋ(τ ))dτ

}
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≥ inf
0≤t1≤t2≤1

{
inf

X(0)=y
X(t1)=0

∫ t1

0
Lβ(Ẋ(τ ))dτ + inf

X(t1)=0
X(t2)=0

∫ t2

t1
L(X(τ ), Ẋ(τ ))dτ

+ inf
X(t2)=0
X(1)=x

∫ 1

t2
Lα(Ẋ(τ ))dτ

}

then using that L ≥ L̃ A for the second term and Jensen’s inequality for all terms, we
conclude that

D0(y, x) ≥ Djunction(y, x).

Now for α = β, we can deduce from the preceding that

D0(y, x) ≥ min

⎛

⎝Djunction(y, x), inf
X(0)=y
X(1)=x

∫ 1

0
Lα(Ẋ(τ ))dτ

⎞

⎠ .

Then, by Jensen’s inequality once again, we can deduce (5.2). This ends the proof. ��
In view of (5.2), we see that the study of D0 can now be reduced to the study of

Djunction.

5.3 Study ofDjunction

We introduce a simpler notation of Djunction defined in (5.3),

Djunction(y, x) = inf
0≤t1≤t2≤1

G(t1, t2, y, x), (5.4)

where

G(t1, t2, y, x) = t1Lβ

(−y

t1

)
+ (t2 − t1)L̃ A(p) + (1 − t2)Lα

(
x

1 − t2

)
.

As in [26], for (y, x) ∈ J �
β × J �

α the function (t1, t2) → G(t1, t2, y, x) is stricly convex
on (0, 1) × (0, 1). Indeed, for t1, t2 ∈ (0, 1), we compute

D2G(t1, t2, y, x) =
L ′′

β

(−y
t1

)

t1
V T
y Vy +

L ′′
α

(
x

1−t1

)

1 − t2
V T
x Vx ≥ 0,

where Vy = (
−y
t1

, 0, 1, 0) and Vx = (0, x
1−t1

, 0, 1) and in particular, we have

∂2

∂t21
G(t1, t2, y, x) = y2

t31
L ′′

β

(−y

t1

)
> 0,
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and

∂2

∂t22
G(t1, t2, y, x) = x2

(1 − t2)3
L ′′

α

(
x

1 − t1

)
> 0.

So we deduce that for (y, x) ∈ J �
β × J �

α , if the function (t1, t2) → G(t1, t2, y, x)
admits a critical point, then it reaches its infimum at this point, else it reaches its
infimum at the boundary.

Lemma 5.4 Let (y, x) ∈ J , and Djunction(y, x) as in (5.3). We have the following
equivalences for the infimum,

{
x = 0 ⇔ t2 = 1,
y = 0 ⇔ t1 = 0.

Proof It is a direct consequence of the expression (5.3). ��
Definition 3 (Numbers ξ+

α , ξ−
α ) We define ξ−

α , ξ+
α thanks to the following function

(for l ∈ {1, . . . N })
Kα(x) = Lα(x) − xL ′

α(x) − L̃ A(p). (5.5)

We define (K−
α )−1 (resp. (K+

α )−1) as the inverse of the function Kα restricted to
(−∞, 0] (resp. [0,+∞)), in fact one can write

K ′
α(x) = −xL ′′

α(x) < 0 on (0,+∞) ( resp. > 0 on (−∞, 0)).

More precisely, we define ξ±
α = (K±

α )−1(0).

Lemma 5.5 (Explicit expression of Djunction(y, x)) It exists a unique function τ :
J × J → (0, 1) of class C1 such that for (y, x) ∈ Jβ × Jα, we have

Djunction(y, x)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ(y, x)Lβ

( −y
τ(y,x)

)
+ (1 − τ(y, x))Lα

(
x

1−τ(y,x)

)
if (y, x) ∈ (J�

β × J�
α)\	βα,

−yL ′
β(ξ−

β ) + xL ′
α(ξ+

α ) + L̃ A(p) if (y, x) ∈ 	βα,

Lα(x) if y = 0 and x > ξ+
α ,

Lβ(−y) if x = 0 and y > −ξ−
β ,

(5.6)

where

	βα =
{
(y, x) ∈ Jβ × Jα,

x

ξ+
α

− y

ξ−
β

≤ 1

}
.

We have a different expression of Djunction on each subset of the previous Lemma
(see Fig. 1).
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Fig. 1 Subsets of Djunction for
α �= β

y ∈ Jβ

x ∈ Jα

0

x
ξ +α −

y
ξ −

β =
1

−ξ−
β

ξ+α

Proof Writing the optimal conditions of G associated with the infimum in (5.4), we
have ⎧

⎪⎪⎨

⎪⎪⎩

y
t1
L ′

β

(−y
t1

)
− L̃ A(p) + Lβ

(−y
t1

)
= 0,

− x
1−t2

L ′
α

(
x

1−t2

)
− L̃ A(p) + Lα

(
x

1−t2

)
= 0,

(5.7)

where t1 and t2 are the quantities realizing theminimum. Hence from (5.7), we deduce

Kβ

(
− y

t1

)
= 0 = Kα

(
x

1 − t2

)
.

But Kβ is a bijection on (−∞, 0), and so is Kα on (0,+∞). Therefore, setting
(K−

β )−1(0) := ξ−
β , and (K+

α )−1(0) := ξ+
α , we deduce for (y, x) ∈ 	βα\{xy = 0},

Djunction(y, x) = −y

ξ−
β

Lβ(ξ−
β ) + x

ξ+
α

Lα(ξ+
α ) +

(
1 − x

ξ+
α

+ y

ξ−
β

)
L̃ A(p)

= −yL ′
β(ξ−

β ) + xL ′
α(ξ+

α ) + L̃ A(p).

Now, for x = 0 and y < −ξ−
β , using the first condition of (5.7), we deduce that

Djunction(y, 0) = −yL ′
β(ξ−

β ) + L̃ A(p).

For x = 0 and y ≥ −ξ−
β , we deduce from Lemma 5.4, that t2 = 1. Using the first

optimal condition in (5.7), we have Kβ

(−y
t1

)
= 0 so t1 = −y

ξ−
β

≥ 1. We deduce that

the optimal condition must be satisfied at the boundary of the set {0 ≤ t1 ≤ 1}. Here
using (5.3), we have t1 = 1, so

Djunction(y, 0) = Lβ(−y).
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Similarly, for y = 0 and x < ξ+
α ,

Djunction(y, x) = xL ′
α(ξ+

α ) + L̃ A(p).

For y = 0 and x ≥ ξ+
α , we deduce that

Djunction(0, x) = Lα(x).

In all other cases, that is to say for (y, x) ∈ (J �
β × J �

α)\	βα, the infimum of G is
attained at the boundary of {0 ≤ t1 ≤ t2 ≤ 1}, here for some t1 = t2 = τ ∈ (0, 1).
Hence we have

Djunction(y, x) = inf
0<τ<1

{
τ Lβ

(−y

τ

)
+ (1 − τ)Lα

(
x

1 − τ

)}

Once again, writing the optimal conditions for G(τ, τ, y, x), we deduce that

Kβ

(−y

τ

)
= Kα

(
x

1 − τ
.

)
. (5.8)

We define

G̃(τ, y, x) = Kβ

(−y

τ

)
− Kα

(
x

1 − τ

)
.

Deriving

∂G̃

∂τ
= K ′

β

(−y

τ

)
y

τ 2
− K ′

α

(
x

1 − τ

)
x

(1 − τ)2
> 0 for (y, x) ∈ (J �

β × J �
α)\	βα,

by implicit function theorem, we deduce that there exists a unique τ̃ ∈ C1(0, 1)
satisfying G̃(τ̃ , y, x) = 0. The proof is thus complete. ��
Lemma 5.6 (Continuity of Djunction) The function Djunction is continuous in J 2.

Proof From (5.6), we already know that Djunction ∈ C((J �
β × J �

α)\	βα) ∪ C(	βα ∪
{x = 0} ∪ {y = 0}). Therefore in order to prove that Djunction ∈ C(Jβ × Jα), it is
sufficient to prove that for any given sequence (yk, xk) ∈ (J �

β × J �
α)\	βα such that

(yk, xk) → (y, x), where (y, x) ∈ 	̄ := { x
ξ+
α

− y
ξ−
β

= 1} ∪ {x ≥ ξ+
α } ∪ {y ≥ −ξ−

β },
we have

Djunction(y
k, xk) → Djunction(y, x).

Since the sequence {τ(yk, xk)} is bounded, we can deduce that there exists a sub-
sequence such that τ(yk, xk) → τ 0. We distinguish the following cases.
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Case 1 τ 0 ∈ (0, 1). By continuity of Kα, we have

Kα

(
x

1 − τ 0

)
= Kβ

(−y

τ 0

)
. (5.9)

If x = 0, we have as Kα(0) > 0 and (K−
β )−1 is increasing

y

τ 0
= −(K−

β )−1(Kα)(0) < −(K−
β )−1(0) = −ξ−

β ,

hence deduce that (y, 0) /∈ 	̄, so this case is not possible.
Similarly, if y = 0, we have

x

1 − τ 0
= (K+

α )−1(Kβ)(0) < (K+
α )−1(0) = ξ+

α ,

hence deduce that (0, x) /∈ 	̄, so this case is not possible.
Now if (y, x) ∈ (J �

β × J �
α) ∩ 	̄, then x

ξ+
α

− y
ξ−
β

= 1 and passing to the limit, we

have (5.9). We know that Kα(ξ+
α ) = Kβ(ξ−

β ) = 0, so if we set τ̄ = − y
ξ−
β

= 1 − x
ξ+
α

so 1 − τ̄ = x
ξ+
α
, we have

Kβ

(−y

τ̄

)
= 0 = Kα

(
x

1 − τ̄

)
. (5.10)

By uniqueness of τ satisfying (5.8), we deduce that τ 0 = τ̄ . So we have

Djunction(y
k, xk) → −yL ′

β(ξ−
β ) + xL ′

α(ξ+
α ) + L̃ A(p) = Djunction(y, x).

Case 2: τ 0 = 0. In this case using Lemma 5.4, yk → y = 0, so x ≥ ξ+
α and with

(5.8) we deduce that

−yk

τ(yk, xk)
= (K−

β )−1
(
Kα

(
xk

1 − τ(yk, xk)

))
→ (K−

β )−1 (Kα (x)) . (5.11)

Therefore Djunction(yk, xk) → Lα(x) = Djunction(0, x).

Case 3 τ 0 = 1. In this case, xk → x = 0. Arguing as in Case 2, we deduce that
y ≥ ξ−

β , and

xk

1 − τ(yk, xk)
= (K+

α )−1
(
Kβ

( −yk

τ(yk, xk)

))
→ (K+

α )−1 (Kβ (−y)
)
. (5.12)

Therefore, Djunction(yk, xk) → Lβ(−y) = Djunction(y, x).
The proof is thus complete. ��
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Fig. 2 Subsets of D0 for α = β y ∈ Jα

x ∈ Jα

0

D
junction (y, x) =

L
α (y −

x)
−ξ−

α

ξ+α

Lemma 5.7 The function Djunction is C1 in J 2 and for (y, x) ∈ Jβ × Jα, we have

∂xDjunction(y, x) =

⎧
⎪⎪⎨

⎪⎪⎩

L ′
α( x

1−τ
) if (y, x) ∈ (J �

β × J �
α)\	βα,

L ′
α(ξ+

α ) if (y, x) ∈ 	βα,

L ′
α(x) if y = 0 and x > ξ+

α ,

L ′
α ◦ (K+

α )−1 ◦ Kβ(−y) if x = 0 and y > −ξ−
β ,

(5.13)
and

∂yDjunction(y, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−L ′
β(

−y
τ

) if (y, x) ∈ (J �
β × J �

α)\	βα,

−L ′
β(ξ−

β ) if (y, x) ∈ 	βα,

−L ′
β ◦ (K−

β )−1 ◦ Kα(x) if y = 0 and x > ξ+
α ,

−L ′
β(−y) if x = 0 and y > −ξ−

β .

(5.14)

Proof We compute the partial derivatives in domains where the function is naturally
of class C1 using that the function τ is continuously differentiable in (0, 1)2 and
using (5.8). We prove the continuity of the partial derivatives using the same proof as
Lemma 5.6. ��

5.4 Compatibility condition

In this subsection, we prove a compatibility result, which will be used in deriving error
estimates. Let us recall the following shorthand notation

H(x, p) =
{
Hα(p) if x ∈ J �

α

FA(p) if x = 0.

Remark 5 In Jα × Jα , we give a description of {Djunction(y, x) = Lα(x − y)} ∩ 	αα

using [26], see Fig. 2. We have

{Djunction(0, ξ+
α ) = ξ+

α L ′
α(ξ+

α ) + L̃ A(p) = Lα(ξ+
α ),

Djunction(−ξ−
α , 0) = ξ−

α L ′
α(ξ−

α ) + L̃ A(p) = Lα(ξ−
α ).
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This means that the functions Djunction and (y, x) → Lα(x − y) coincide at the same
points Xα = (0, ξ+

α ) and Yα = (−ξ−
α , 0). Therefore we have

Lα(x − y) < Djunction(y, x) on the open line segment ]Xα,Yα[

because Djunction is linear and Lα is strictly convex as a function of y − x .
The function (y, x) �→ Lα(x − y) − Djunction(y, x) being convex because

Djunction(y, x) is linear, we can consider the convex set

K α = {(y, x) ∈ Jα × Jα, Lα(x − y) ≤ Djunction(y, x)}.

Then the set

�α = {(y, x) ∈ 	αα, Djunction(y, x) = Lα(x − y)}

is contained in the boundary of the convex set K α. More precisely, we have

�α = ((∂K α) ∩ 	αα) ⊂ Jα × Jα

which shows that �α is a curve which contains the points Xα and Yα .

Theorem 5.8 Assume the Hamiltonians are convex, with Legendre Fenchel transform
satisfying (B0). Then for all (x, y) ∈ J × J\ ⋃

α∈{1,...,N }
�α, (i.e., everywhere except on

the curves where D0 is not C1), we have

H(y,−∂yD0(y, x)) = H(x, ∂xD0(y, x)).

Proof of Theorem 5.8 First, notice that in the interior of K α (i.e., in the regions where
D0(y, x) = Lα(x − y)), we have the result as

H(y,−∂yD0(y, x)) = Hα(L ′
α(x − y)) = H(x, ∂xD0(y, x)).

Now we prove the result in the regions where D0 = Djunction. We distinguish
different regions of Jβ × Jα, defined in the expressions of ∂xDjunction and ∂yDjunction

in (5.13)–(5.14). Let us first point out that we have the following assertion

Hα(p) + Lα(q) = pq ⇔ q ∈ ∂Hα(p), (5.15)

where ∂Hα(p) is the convex subdifferential of Hα(p).
We distinguish several cases.

Case 1 (y, x) ∈ (J �
β × J �

α)\	βα . From (5.15), on one hand, and from (5.14) we have

Hβ

(
L ′

β

(−y

τ

))
= −y

τ
L ′

β

(−y

τ

)
− Lβ

(−y

τ

)
.
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From (5.5), we have then Hβ

(
L ′

β

(−y
τ

)) = −Kβ

(−y
τ

)− L̃ A(p).

On the other hand, and from (5.13)

Hα

(
L ′

α

(
x

1 − τ

))
= x

1 − τ
L ′

α

(
x

1 − τ

)
− Lα

(
x

1 − τ

)
,

similarly, from (5.5),wededuce thatHα

(
L ′

α

(
x

1−τ

))
= −Kα

(
x

1−τ

)
−L̃ A(p).Hence,

from (5.8), the compatibility condition.
Case 2 (y, x) ∈ (J �

β × J �
α) ∩ 	βα. We argue as in Case 1, one can deduce that

Hβ(L ′
β(ξ−

β )) = −Kβ(ξ−
β ) − L̃ A(p) = A

Hα(L ′
α(ξ+

α )) = −Kα(ξ+
α ) − L̃ A(p) = A

From the definition of ξ+
α and ξ−

β , one can deduce the compatibility condition.

Remark 6 We deduce that the functions π+
α , π−

β defined in [25] satisfy

π+
α (A) = L ′

α(ξ+
α ) and π−

β (A) = L ′
β(ξ−

β ).

Case 3 y = 0 and x > ξ+
α . Let us check the following equality

max

(
A, max

β=1,...,N
H−

β

(
L ′

β

((
K−

β

)−1 ◦ Kα(x)

)))
= Hα

(
L ′

α(x)
)
.

On one hand, from the definition of K−
β , we deduce that

H−
β

(
L ′

β

((
K−

β

)−1 ◦ Kα(x)

))
= Hβ

(
L ′

β

((
K−

β

)−1 ◦ Kα(x)

))
,

and arguing as previously, we deduce that

Hβ

(
L ′

β

((
K−

β

)−1 ◦ Kα(x)

))
= −Kβ

((
K−

β

)−1 ◦ Kα(x)

)
− L̃ A(p)

= −Kα(x) − L̃ A(p).

On the other hand from (5.15), we have Hα(L ′
α(x)) = −Kα(x) − L̃ A(p).

And for x > ξ+
α , we have Hα(L ′

α(x)) > Hα(L ′
α(ξ+

α )) = Hα(π+
α (A)) = A. So

one can deduce the compatibility condition.
Case 4 x = 0 and y > −ξ−

β Let us check the following equality

max

⎛

⎜⎜⎜⎝A, max
α = 1, . . . , N

α �= β

H−
α

(
L ′

α

((
K+

α

)−1 ◦ Kβ(−y)
))

, H−
β

(
L ′

β(−y)
)

⎞

⎟⎟⎟⎠

= Hβ

(
L ′

β(−y)
)

.
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Similarly, as in the previous case, one can deduce that

max
α = 1, . . . , N

α �= β

H−
α

(
L ′

α

((
K+

α

)−1 ◦ Kβ(−y)
))

= A0 ≤ A.

And for y > ξ−
β , we have H−

β (L ′
β(−y)) > H−

β (π−
β (A)) = A.

Case 5 y = 0 and 0 < x ≤ ξ+
α Let us check the following equality

max(A, max
β=1,...,N

H−
β (L ′

β(ξ−
β ))) = Hα(L ′

α(ξ+
α )).

On one hand, from (5.15) Hα(L ′
α(ξ+

α )) = −Kα(ξ+
α ) − L̃ A(p) = −L̃ A(p) = A.

On the other hand, maxβ=1,...,N H−
β (L ′

β(ξ−
β )) = maxβ=1,...,N H−

β (L ′
β(ξ−

β ))

= maxβ=1,...,N H−
β (π−

β (A)) = A.

Case 6 x = 0 and 0 < y ≤ −ξ−
β Let us check the following equality

max(A, max
α=1,...,N

H−
α (L ′

α(ξ+
α )) = Hβ(L ′

β(ξ−
β )).

Similarly, as in Case 5, one can deduce the compatibility condition.
Case 7 x = 0 and y = 0 Let us check the following equality

max(A, max
β=1,...,N

H−
β (L ′

β(ξ−
β )) = max(A, max

α=1,...,N
H−

α (L ′
α(ξ+

α )).

In fact, it follows directly from Cases 5 and 6.
The proof is thus complete. ��

5.5 C1,1 estimates for the reducedminimal action

In this section, we study the Lipschitz regularity of the gradient of the reducedminimal
action D0. It turns out that its gradient is indeed Lipschitz if the flux limiter A is not
equal to A0, theminimal flux limiter. Such a technical result will be usedwhen deriving
error estimates. It is also of independent interest.

Proposition 5.9 (C1,1 estimates for the reducedminimal action)Letρ > 0 and assume
that the Hamiltonians satisfy (1.10) and (1.9). The function D0 associated with the
flux limiter A0 + ρ can be chosen C1,1(J 2K ) for any K > 0 where J 2K = {(x, y) ∈
J 2 : d(0, x) ≤ K and d(0, y) ≤ K }. Moreover, there exist CK and C ′

K such that

‖∂xxDjunction‖L∞(J 2K ) ≤ CK

min(1, ρ)
; (5.16)
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and

‖H ′
α(∂xDjunction)∂xxDjunction‖L∞(J 2K ) ≤ C ′

K

min(1,
√

ρ)
. (5.17)

the constants CK and C ′
K depend only on K and (1.10).

Moreover, in the case where for all α ∈ {1, . . . , N }, min Hα = A0, we have

‖∂xxDjunction‖L∞(J 2K ) ≤ CK . (5.18)

Proof In the following A denotes A0 + ρ. Using (5.13), we see that ∂xxDjunction = 0
on 	βα for all (β, α) ∈ {1, . . . , N }2 and ∂xxDjunction(y, x) = L

′′
α(x) on {0} × {x ∈

Jα | x > ξ+
α }. So it is sufficient to prove (5.16) and (5.17) on T := J �

β × J �
α\	βα for

all (β, α) ∈ {1, . . . , N }2. By (5.13), we deduce that on T ,

∂xxDjunction(y, x) =
(

1

1 − τ(y, x)
+ x

(1 − τ(y, x))2
∂τ

∂x
(y, x)

)
L ′′

α

(
x

1 − τ(y, x)

)
.

Let us compute also ∂τ
∂x using (5.8),

∂τ

∂x
(y, x) =

1
1−τ(y,x)K

′
α

(
x

1−τ(y,x)

)

y
τ(y,x)2

K ′
β

( −y
τ(y,x)

)
− x

(1−τ(y,x))2
K ′

α

(
x

1−τ(y,x)

) .

And as K ′
β

(−y
τ

) = y
τ
L ′′

β

(−y
τ

) ≥ 0 and K ′
α

(
x

1−τ

)
= −x

1−τ
L ′′

α

(
x

1−τ

)
≤ 0 we deduce

that

∂τ

∂x
(y, x) =

−x
(1−τ(y,x))2

L ′′
α

(
x

1−τ(y,x)

)

y2

τ(y,x)3
L ′′

β

( −y
τ(y,x)

)
+ x2

(1−τ(y,x))3
L ′′

α

(
x

1−τ(y,x)

) . (5.19)

So we have on T

∂xxDjunction(y, x) =
y2

(1−τ(y,x))τ (y,x)3
L ′′

α

(
x

1−τ(y,x)

)
L ′′

β

( −y
τ(y,x)

)

y2

τ(y,x)3
L ′′

β

( −y
τ(y,x)

)
+ x2

(1−τ(y,x))3
L ′′

α

(
x

1−τ(y,x)

) ≥ 0. (5.20)

As the denominator is a sum of two positive functions, ∂xxDjunction from above by the
same numerator over only one term of the denominator. We deduce in these two cases
that,

∂xxDjunction(y, x) ≤

⎧
⎪⎨

⎪⎩

2L ′′
α

(
x

1−τ(y,x)

)
if τ(y, x) ≤ 1

2
8y2(
x

1−τ (y,x)

)2 L
′′
β

( −y
τ(y,x)

)
if τ(y, x) ≥ 1

2 .
(5.21)
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Moreover, we have on T ,

H ′
α

(
∂xDjunction(y, x)

) = H ′
α

(
L ′

α

(
x

1 − τ(y, x)

))
= x

1 − τ(y, x)
,

and

x

1 − τ(y, x)
∂xxDjunction(y, x) ≤

⎧
⎨

⎩
4x2L ′′

α

(
x

1−τ(y,x)

)
if τ(y, x) ≤ 1

2
8y2
x

1−τ (y,x)
L ′′

β

( −y
τ(y,x)

)
if τ(y, x) ≥ 1

2 .

In the case τ(y, x) ≤ 1
2 , as 0 ≤ x

1−τ(y,x) ≤ 2x , we get the inequality (5.16) and
(5.17). Let us prove the following lower bound for (y, x) ∈ T ,

x

1 − τ(y, x)
≥ ξ+

α , (5.22)

which helps us for the second case. For y ∈ Jβ , we see that x → x
1−τ(y,x) has a

non-negative derivative using (5.19), so it is a non-decreasing function. Therefore to
prove (5.22), it is sufficient to show it on ∂T . Let (y, x) be in ∂T . We distinguish three
cases.

In the case where y = 0, necessarily x ≥ ξ+
α and as τ(y, x) ∈ [0, 1], we deduce

(5.22).

In the case where y ∈]0,−ξ−
β [, we have (y, x) ∈

{
(y, x) ∈ Jβ × Jα, x

ξ+
α

− y
ξ−
β

=

1

}
. So by (5.10) we deduce that x

1−τ(y,x) = ξ+
α .

In the case where y ≥ −ξ−
β , we have x = 0. It is enough to prove that

lim inf
x ′→0

x ′

1 − τ(y, x ′)
≥ ξ+

α . (5.23)

We have for (y, x ′) ∈ T ,

Kα

(
x ′

1 − τ(y, x ′)

)
= Kβ

( −y

τ(y, x ′)

)
≤ Kβ

( −ξ−
β

τ(y, x ′)

)
,

as Kβ is non-decreasing on ] − ∞, 0]. We deduce that

x ′

1 − τ(y, x ′)
≥ (K+

α )−1 ◦ Kβ

( −ξ−
β

τ(y, x ′)

)
,
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as (K+
α )−1 is non-increasing. As lim

x ′→0
τ(y, x ′) = 1, taking the limit inferior in the

preceding inequality gives (5.23). So we deduce (5.22) and

∂xxDjunction(y, x) ≤ 8y2

(ξ+
α )2

L ′′
β

( −y

τ(y, x)

)
if τ(y, x) ≥ 1

2
,

x

1 − τ(y, x)
∂xxDjunction(y, x) ≤ 8y2

ξ+
α

L ′′
β

( −y

τ(y, x)

)
if τ(y, x) ≥ 1

2
.

If ξ+
α > 1, we deduce (5.16). If ξ+

α ≤ 1, let us prove that it exists a constant C > 0
only depending on (1.10) such that

(ξ+
α )2 ≥ Cρ. (5.24)

As A = A0 + ρ we have

Kα(ξ) = Lα(ξ) − ξL ′
α(ξ) + A0 + ρ,

and

K ′
α(ξ) = −ξL ′′

α(ξ).

The function L ′′
α is bounded on [0, 1], it exists M > 0 such that

γ ≤ L ′′
α ≤ M .

So we have K ′
α(ξ) ≥ −Mξ . We integrate from 0 to ξ ≥ 0 and get

Kα(ξ) − Kα(0) ≥ −M
ξ2

2
. (5.25)

Taking ξ = ξ+
α , as Kα(ξ+

α ) = 0 and as Lα(0) + A0 ≥ 0, we deduce that

(ξ+
α )2 ≥ 2

M
(Lα(0) + A0 + ρ) ≥ 2

M
ρ.

So we get (5.24) and we deduce (5.16) and (5.17).
In the case where for all α ∈ {1, . . . , N }, min Hα = A0, we only have to consider

the case τ(y, x) ≥ 1
2 in (5.21) since the case τ(y, x) ≤ 1

2 gives already the bound

(5.21). In order to get a bound for the term 8y2(
x

1−τ (y,x)

)2 = 8y2(
(K+

α )−1◦Kβ

(
− y

τ (y,x)

))2 , let us

prove that for all ξ ∈ [−2K , 2K ], we have

ξ2

(
(K+

α )−1 ◦ Kβ(−ξ)
)2 ≤ C2K , (5.26)
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whereC2K > 0 is a constantwhich depends on K . LetM2K be such that on [−2K , 2K ]
we have for all α ∈ {1, . . . , N },

γ ≤ L ′′
α ≤ M2K .

Replacing ξ by (K+
α )−1(ξ) in (5.25), we deduce that

M2K

(
(K+

α )−1(ξ)
)2

2
≥ −ξ + Kα(0).

So we have

M2K

(
(K+

α )−1 ◦ Kβ(−ξ)
)2

2
≥ −Kβ(−ξ) + Kα(0).

As for (5.25), we have the following inequality

Kβ(0) − Kβ(−ξ) ≥ γ
ξ2

2
.

So as Kα(0) = Kβ(0) = ρ we deduce that

M2K

(
(K+

α )−1 ◦ Kβ(−ξ)
)2

2
≥ γ

ξ2

2
+ Kα(0) − Kβ(0) ≥ γ

ξ2

2
.

That gives (5.26) and we deduce (5.18). ��

6 Error estimates

6.1 Proof of the error estimates

To prove Theorem 1.2, we will need the following result whose classical proof is given
in “Appendix” for the reader’s convenience.

Lemma 6.1 (A priori control) Let T > 0 and let uh be a discrete sub-solution of the
numerical scheme (1.16)–(1.18) and u a super-solution of (1.1)–(1.2) satisfying for
some CT > 0,

u(t, x) ≥ −CT (1 + d(0, x)) for t ∈ (0, T ).

Then there exists a constant C = C(T ) > 0 such that for all (t, x) ∈ Gh, t ≤ T , and
(s, y) ∈ [0, T ) × J , we have

uh(t, x) ≤ u(s, y) + C(1 + d(x, y)). (6.1)

We also need the following result [25, Lemma 4.4] where the proof is given in [25].
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Lemma 6.2 (From quasi-convex to convex Hamiltonians) Let K ∈ (0,+∞). Given
Hamiltonians Hα : [−K , K ] → R satisfying (1.4), there exists a function χ : R → R

such that the functions χ ◦ Hα satisfy (1.10) for α = 1, . . . , N. Moreover, we can
choose χ such that χ ∈ C2(R) and χ ′ > 1.

Remark 7 In [25, Lemma 4.4], the functions χ ◦ Hα satisfy in fact the following
assumptions ⎧

⎨

⎩

Hα ∈ C2(R) with H ′′
α > 0 on R,

H ′
α < 0 on (−∞, 0) and H ′

α > 0 on (0,+∞),

lim|p|→+∞ Hα(p)
|p| = +∞.

(6.2)

which implies (1.10). Indeed, in the next proof on error estimates, we only need to
consider Hamiltonians on a compact set which only depends on u0 and the Hamilto-
nians Hα , thanks to the fact that the solution is Lipschitz continuous, see Theorem 2.3
and (3.2). So on [−K , K ], the functions (χ ◦ Hα)′′ are bounded by some constant
C > 0. We deduce that the functions Lα are of class C2 and satisfy L ′′

α ≥ γ = 1
C .

Indeed, from the relation Hα(p)+ Lα(q) = pq with q = H ′
α(p), one can deduce that

L ′
α(H ′

α(q)) = q, so

L ′′
α(q) = 1

H ′′
α ◦ (H ′

α)−1(q)
≥ γ.

We now turn to the proof of the error estimates in the case of flux-limited junction
conditions.

Proof of Theorem 1.2 We assume that the Hamiltonians Hα satisfy (1.4). Let u be the
solution of (1.6) and uh the solution of the corresponding scheme (1.16) with F = FA.

In order to get (1.23), we only prove that

uh(t, x) − u(t, x) ≤
{
CT (	x)1/2 if A > A0,

CT (	x)2/5 if A = A0
in [0, T ) × J ∩ Gh

since the proof of the other inequality is very similar. We are going to prove that

uh(t, x) − u(t, x)

≤
{O (	t

ν

)+ O (	x
ε

)+ O(ε) + O(ν) if A > A0,

O (	t
ν

)+ O
(

	x
ε
√

ρ

)
+ O

(
(	x)2

(ερ)2

)
+ O(ρ) + O(ε) + O(ν) if A = A0.

(6.3)

which yields the desired inequality by minimizing the right hand side with respect to ε

and ν in the case A > A0 and with respect to ρ, ε and ν in the case A = A0. Let χ be
the function defined in Lemma 6.2 such that the functions χ ◦ Hα satisfy (1.10). In the
following, we consider that the function D0 is associated to the Hamiltonians χ ◦ Hα

and to the flux limiter χ(A) which satisfies χ(A) > χ(A0) in the case A > A0.
The remaining of the proof proceeds in several steps.
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Step 1: Penalization procedure Using the expression of D0 in (5.2) and Djunction in
(5.6), we deduce that it exists C > 0, such that ∀x ∈ J

D0(0, 0) = L̃ A(p) = −A ≤ D0(x, x) ≤ C .

Let D̃0 = D0 + A, we have that

0 ≤ D̃0(x, x) ≤ C + A.

For η, δ, ε, ν positive constants, let us define

Mε,δ = sup
(t,x)∈Gh ,

(s,y)∈[0,T )×J

{
uh(t, x) − u(s, y) − εD̃0

( y
ε
,
x

ε

)
− (t − s)2

2ν
− δ

2
d2(y, 0) − η

T − s

}

(6.4)
where the test function D0 is given in (5.2). In this step, we assume that Mε,δ > 0.
Thanks to Lemma 6.1 and the superlinearity of D0 (see Lemma 5.2), we deduce that
for (x, y) such that the quantity in the supremum is larger than Mε,δ

2 , we have

0 <
Mε,δ

2
≤ C(1 + d(y, x)) − ε

γ

2
d2
( y

ε
,
x

ε

)
− (t − s)2

2ν
− δ

2
d2(y, 0) − η

T − s

which implies in particular

γ

2ε
d2(y, x) ≤ C(1 + d(y, x)),

and

δ

2
d2(y, 0) ≤ C(1 + d(y, x)).

Notice that in the following, we use the notation D0 instead of D̃0. Indeed we deal
only with partial derivatives of D0 which are equal to partial derivatives of D̃0 and
differences between two values of D0 at two points which are equal to differences
between two values of D̃0 at these two points.

We deduce from the two last inequalities that d(y, x) is bounded and d(y, 0) is
bounded, so the supremum is reached at some point (t, x, s, y) where y ∈ Jβ and
x ∈ Jα . This estimate together with the fact that −∂yD0(

y
ε
, x

ε
) − δd(y, 0) lies in the

viscosity subdifferential of u(t, ·) at x and the fact that δd(y, 0) is bounded, implies
that there exists K > 0 only depending on ‖∇u‖∞ (see Theorem 2.3) such that the
point (t, x, s, y) realizing the maximum satisfies

∣∣∣∂yD0

( y
ε
,
x

ε

)∣∣∣ ≤ K . (6.5)
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If α = β, for y
ε
or x

ε
large, then (6.5) implies

∣∣∣L ′
α

( y
ε

− x

ε

)∣∣∣ ≤ K .

As Lα is superlinear, it implies that d
( y

ε
, x

ε

) ≤ C , for C > 0 which is sufficient for
the use in step 2 of theC1,1 estimates asD0 only depends on d

( y
ε
, x

ε

)
for y

ε
or x

ε
large.

If α �= β, assume by contradiction that y
ε
or x

ε
are not bounded when ε → 0. Then

using (5.8) and (5.14) we get a contradiction with (6.5). So y
ε
and x

ε
are bounded by

a constant which only depends on ‖∇u‖∞ and the Hamiltonians Hα .
We want to prove that for η > η� (to be determined) the supremum in (6.4) is

attained for t = 0 or s = 0. We assume that t > 0 and s > 0 and we prove that
η ≤ η�.

Step 2: Viscosity inequalities Since t > 0 and s > 0, we can use Lemma 4.3 and get
the following viscosity inequalities.

If x �= 0, then

t − s

ν
− 	t

2ν
+ max

{
H−

α

(
ε

	x

{
D0

(
y

ε
,
x + 	x

ε

)
− D0

( y
ε
,
x

ε

)})
,

H+
α

(
ε

	x

{
D0

(
y

ε
,
x

ε

)
− D0

(
y

ε
,
x − 	x

ε

)})}
≤ 0.

If x = 0, then

t − s

ν
− 	t

2ν
+ max

(
A,max

β

{
H−

β

(
ε

	x

{
D0

(
y

ε
,
	x

ε

)
− D0

( y
ε
, 0
)})})

≤ 0.

If y �= 0, then

− η

(T − s)2
+ t − s

ν
+ Hα

(
−∂yD0

( y
ε
,
x

ε

)
− δd(y, 0)

)
≥ 0.

If y = 0, then

− η

(T − s)2
+ t − s

ν
+ FA

(
−∂yD0

(
0,

x

ε

))
≥ 0.

We now distinguish the case A > A0 and A = A0.

Case A > A0 Thanks to the C1,1 regularity of the function D0, see Proposition 5.9,
and the fact that the functions H±

α , Hα are locally Lipschitz
we obtain, for x ∈ Jα and y ∈ Jβ with α �= β (i.e. for D0 = Djunction),

if x �= 0,
t − s

ν
− 	t

2ν
+ Hα

(
∂xD0

( y
ε
,
x

ε

))
+ O

(
	x

ε

)
≤ 0 (6.6)
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if x = 0,
t − s

ν
− 	t

2ν
+ FA

(
∂xD0

( y
ε
, 0
))

+ O

(
	x

ε

)
≤ 0 (6.7)

if y �= 0,
t − s

ν
+ Hβ

(
−∂yD0

( y
ε
,
x

ε

))
+ O(

√
δ) ≥ η

2T 2 (6.8)

if y = 0,
t − s

ν
+ FA

(
−∂yD0

(
0,

x

ε

))
≥ η

2T 2 . (6.9)

Now for (y, x) ∈ Jα × Jα, from (5.2) and (5.6), one can deduce that D0 is in fact
C2 far away from the curve �α defined in Remark 5, hence the viscosity inequalities
(6.6)–(6.9) remain true.

Now we treat the case where (
y
ε
, x

ε
) is near the curve �α, but not on it.

First if (
y
ε
, x

ε
) is such that ( y

ε
, x

ε
) ∈ K α\�α and (

y
ε
, x−	x

ε
) /∈ K α, we have

D0

(
y

ε
,
x − 	x

ε

)
≤ Lα

(
x − 	x − y

ε

)
.

So as H+
α is non-decreasing, we deduce that

H+
α

(
ε

	x

{
Lα

(
x − y

ε

)
− Lα

(
x − 	x − y

ε

)})

≤ H+
α

(
ε

	x

{
D0

(
y

ε
,
x

ε

)
− D0

(
y

ε
,
x − 	x

ε

)})
.

Hence the viscosity inequalities (6.6)–(6.9) remain true. If ( y
ε
, x

ε
) is such that ( y

ε
, x

ε
) /∈

K α and (
y
ε
, x+	x

ε
) ∈ K α\�α , we have

D0

(
y

ε
,
x + 	x

ε

)
≤ Djunction

(
y

ε
,
x + 	x

ε

)
.

So as H−
α is non-increasing, we deduce that

H−
α

(
ε

	x

{
Djunction

(
y

ε
,
x + 	x

ε

)
− Djunction

(
y

ε
,
x

ε

)})

≤ H−
α

(
ε

	x

{
D0

(
y

ε
,
x + 	x

ε

)
− D0

(
y

ε
,
x

ε

)})
.

Hence the viscosity inequalities (6.6)–(6.9) remain true.
Now for (

y
ε
, x

ε
) on the curve �α, we get the following viscosity inequalities, using

Proposition 2.4.
If x �= 0, then

t − s

ν
− 	t

2ν
+ max

{
H−

α

(
ε

	x

{
Lα

(
x + 	x − y

ε

)
− Lα

(
x − y

ε

)})
,

H+
α

(
ε

	x

{
L ′

α(ξ+
α )

x

ε
− L ′

α(ξ+
α )

(
x − 	x

ε

)})}
≤ 0.
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If x = 0, then

t − s

ν
− 	t

2ν
+ max

(
A,max

α

{
H−

α

(
ε

	x

{
Lα

(
	x − y

ε

)
− Lα

(
− y

ε

)})})
≤ 0.

If y �= 0, then

− η

(T − s)2
+ t − s

ν

+max

{
H−

α

(
L ′

α

(
x − y

ε

)
− δd(y, 0)

)
, H+

α

(
L ′

α(ξ−
α ) − δd(y, 0)

)}
≥ 0.

If y = 0, then

− η

(T − s)2
+ t − s

ν
+ max

(
A,max

α
H−

α

(
L ′

α

(
x

ε

)))
≥ 0.

We now simplify the above inequalities,

if x �= 0,
t − s

ν
− 	t

2ν

+max

{
H−

α

(
L ′

α

(
x − y

ε

))
, H+

α (L ′
α(ξ+

α ))

}
+ O

(
	x

ε

)
≤ 0 (6.10)

if x = 0,
t − s

ν
− 	t

2ν

+max

(
A,max

α
Hα

−
(
L ′

α

(
− y

ε

)))
+ O

(
	x

ε

)
≤ 0 (6.11)

if y �= 0,
t − s

ν

+max

{
H−

α

(
L ′

α

(
x − y

ε

))
, H+

α (L ′
α(ξ−

α ))

}
+ O(

√
δ) ≥ η

2T 2 (6.12)

if y = 0,
t − s

ν

+max

(
A,max

α
H−

α

(
L ′

α

(
x

ε

)))
≥ η

2T 2 . (6.13)

Combining these viscosity inequalities and using Theorem 5.8 with the Hamiltoni-
ans χ ◦Hα , we deduce the same equalities for the Hamiltonians Hα as χ is a bijection.
We use also the fact that H+

α (L ′
α(ξ+

α )) = A and H+
α (L ′

α(ξ−
α )) = A0, we get in all

cases

η ≤ O
(

	t

ν

)
+ O

(
	x

ε

)
+ O(

√
δ) =: η�.

Case A = A0 In this case the function Djunction is not of class C1,1, see Proposition
5.9. So we consider the function D0 associated with A = A0 + ρ where ρ is a small
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parameter. The main difference with the case A > A0 is in the case x ∈ Jα and y ∈ Jβ
with α �= β. We only treat the case x ∈ J �

α and y ∈ Jβ with α �= β since in the other
cases the arguments are the same as in the proof of the case A > A0. Since D0(

y
ε
, .)

is nondecreasing and H−
α (p) = A0 for p ≥ 0, and H+

α (p) = Hα(p) for p ≥ 0, we
have

t − s

ν
− 	t

2ν
+ Hα

(
ε

	x

{
D0

(
y

ε
,
x

ε

)
− D0

(
y

ε
,
x − 	x

ε

)})
≤ 0. (6.14)

By using the Taylor expansion of the function D0(
y
ε
, .) of class C1, there exists θ1 ∈

[0, 1] such that

Hα

(
ε

	x

{
D0

( y
ε
,
x

ε

)
− D0

(
y

ε
,
x − 	x

ε

)})

= Hα

(
∂xD0

( y
ε
,
x

ε

)
− 	x

2ε
∂xxD0

(
y

ε
,
x − θ1	x

ε

))
.

Using now a Taylor expansion of the function Hα of class C2, there exists θ2 ∈ [0, 1]
such that

Hα

(
ε

	x

{
D0

( y
ε
,
x

ε

)
− D0

(
y

ε
,
x − 	x

ε

)})

= Hα

(
∂xD0

( y
ε
,
x

ε

))
− 	x

2ε
∂xxD0

(
y

ε
,
x − θ1	x

ε

)
H ′

α

(
∂xD0

( y
ε
,
x

ε

))

+1

8

(
	x

ε

)2

∂xxD0

(
y

ε
,
x − θ1	x

ε

)2

H ′′
α

(
∂xD0

( y
ε
,
x

ε

)

−θ2	x

2ε
∂xxD0

(
y

ε
,
x − θ1	x

ε

))
. (6.15)

Using Taylor expansion for ∂xD0(.,
y
ε
) and H ′

α of class C1 there exists θ3, θ4 ∈
[0, 1] such that

H ′
α

(
∂xD0

( y
ε
,
x

ε

))
= H ′

α

(
∂xD0

(
y

ε
,
x − θ1	x

ε

)
+ θ1

	x

ε
∂xxD0

(
y

ε
,
x − θ3	x

ε

))

= H ′
α

(
∂xD0

(
y

ε
,
x − θ1	x

ε

))

+ θ1
	x

ε
∂xxD0

(
y

ε
,
x − θ3	x

ε

)
H ′′

α

(
∂xD0

(
y

ε
,
x − θ1	x

ε

)

+ θ4
	x

ε
∂xxD0

(
y

ε
,
x − θ3	x

ε

))
. (6.16)

Notice that the terms in H ′′
α are bounded since x

ε
, y

ε
and 	x

ερ
are bounded indepen-

dentely of 	x ≤ 1 as we take ε = ρ = 	x
2
5 .
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So combining (6.15) and (6.16), thanks to the C1,1 regularity of the function D0,
see Proposition 5.9 we deduce that

Hα

(
ε

	x

{
D0

( y
ε
,
x

ε

)
− D0

(
y

ε
,
x − 	x

ε

)})

= Hα

(
∂xD0

( y
ε
,
x

ε

))
+ O

(
	x

ε
√

ρ

)
+ O

((
	x

ερ

)2
)

.

So combining the viscosity inequality and using the fact that |FA − FA0 | ≤ ρ we have

η ≤ O
(

	t

ν

)
+ O

(
	x

ε
√

ρ

)
+ O

((
	x

ερ

)2
)

+ O(
√

δ) + ρ =: η�. (6.17)

Step 3: Estimate of the supremum We proved in the previous step that, if η > η�,
then either Mε,δ ≤ 0 or Mε,δ is reached either for t = 0 or s = 0.

If t = 0, then using Theorem 2.3, we have

Mε,δ ≤ u0(x) − u0(y) − γ

2ε
d2(y, x) + CT s − s2

2ν
.

Using the fact that u0 is L0-Lipschitz, one can deduce

Mε,δ ≤ sup
r≥0

(
L0r − γ

2ε
r2
)

+ sup
r>0

(
Cr − r2

2ν

)

≤ O(ε) + O(ν).

If s = 0, then we can argue similarly (by using the stability of the numerical scheme
Lemma 4.4 and get

Mε,δ ≤ O(ε) + O(ν).

Step 4: Conclusion We proved that for η > η�, Mε,δ ≤ O(ε) + O(ν). This implies
that for all (t, x) ∈ Gh , t ≤ T /2, we have

uh(t, x) − u(t, x) ≤ εD̃0

( x
ε
,
x

ε

)
+ δ

2
d2(x, 0) + 2η

T
+ O(ε) + O(ν)

Replacing η by 2η� and recalling that D̃0(x, x) ≤ C + A for all x ∈ J , we deduce
that for (t, x) ∈ Gε and t ≤ T /2 (after letting δ → 0),

uh(t, x) − u(t, x) ≤ O

(
	t

ν

)
+ O

(
	x

ε

)
+ O(ε) + O(ν).

Using the CFL condition (1.20) and optimizing with respect to ε and ν yields the
desired result on [0, T

2 ). Doing the whole proof with u the solution of (1.6) and uh
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10-3
10-5

10-4

Error for A0=0 of order =0.55941 and for A=0.1 of order =0.55446

linear line of slope 0.5
exact error for A0

linear regression line of the error for A0
exact error for A
linear regression line of the error for A

Fig. 3 Error estimates for A = A0 = 0 and A = 0.1 > A0

Table 1 Error estimates for A = A0 = 0

	x ||u(T , .) − uh(T , .)||∞ Order of convergence

0.00250 1.192 × 10−4 0.559

0.00100 0.753 × 10−4

0.00075 0.644 × 10−4

0.00050 0.503 × 10−4

0.00025 0.329 × 10−4

the solution of the corresponding scheme (1.16) with F = FA on [0, 2T ) yields the
desired result on [0, T ). ��

Remark 8 If for all α ∈ {1, . . . , N }, min Hα = A0, then in the case where A = A0,
thanks to the C1,1 regularity of the function D0, see Proposition 5.9, we can conclude

as the case A > A0 that the error estimate is of order 	x
1
2 .

6.2 Numerical simulations

In this subsection, we give a numerical example which illustrates the convergence rate
we obtained in the previous subsection.
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Table 2 Error estimates for A = 0.1 > A0

	x ||u(T , .) − uh(T , .)||∞ Order of convergence

0.00250 1.266 × 10−4 0.554

0.00100 0.719 × 10−4

0.00075 0.616 × 10−4

0.00050 0.511 × 10−4

0.00025 0.350 × 10−4

-0.02

0

0.02

0.04

0.06

0.08

0.1
Some numerical solutions for A=0.1

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.02

0

0.02

0.04

0.06

0.08

0.1

Some numerical solutions for A0=0

Fig. 4 Some numerical solutions at different steps

Here we consider a junction with two branches J1 = J2 = [0, X ]. We have the two
following Hamiltonians,

H1(p) = p2,

H2(p) = p2 − 1,

and the initial data

u0(x) =
{
0.2x if x ∈ J1,
x if x ∈ J2.

In the simulation we take X = 0.1 and we give the error ||u(T , .) − uh(T , .)||∞ at
time T = 0.01. We compute the error in both case A0 = 0 and A = 0.1 > A0 with
	t = 	x

10 we get the following result, see Fig. 3 ploted in logarithmic scale and the

123



Error estimates for a finite difference scheme associated… 571

10-3

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

10-3 Some numerical solutions for A=0.1

-1 0 1 2 3 4 5 6 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

10-3

-5

0

5

10

15

20

10-4 Some numerical solutions for A0=0

Fig. 5 Zoom of some numerical solutions at different steps

error values in Tables 1 and 2. We give also in Figs. 4 and 5 a plot of the numerical
solution for different space steps.

Remark 9 Since we don’t have any boundary condition, we initialize the scheme with
a larger space domain J ′

1 = J ′
2 = [0, X ′] with X ′ = 0.2 so that we allow us to loose

a space step at each iteration in time, i.e. for the iteration k, we compute the solution
on [0, Xk] with Xk = 0.2− k	x . The number of time iteration is well chosen so that
we get the numerical solution at time T in the space domain X = 0.1. To compute the
exact solution, we compute we approximate one with much smaller time and space
step than the “real” approximate ones. For the exact solution we take 	x = 10−6 and
	t = 10−7.

Comments Table 2 and Fig. 3 allow us to deduce that in the case A > A0, we get an

error estimate of order 	x
1
2 . Since we prove in Theorem 1.2 that the error should be

at least of order 	x
1
2 , we can conclude that this estimate is optimal. While in the case

A = A0, from Table 1 and Fig. 3 we get also an error estimate of order 	x
1
2 when in

the proof we have 	x
2
5 . So we wonder if the error estimate obtained in the proof is

optimal for the case A = A0.
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A Proofs of some technical results

A.1 Proof of a priori control

In order to prove Lemma 6.1, we need the following one.

Lemma A.1 (A priori control at the same time)Assume that u0 is Lipschitz continuous.
Let T > 0 and let uh be a discrete sub-solution of (1.16)–(1.18) and u be a super-
solution of (1.1)–(1.2). Then there exists a constant C = CT > 0 such that for all
(t, x) ∈ Gh, t ≤ T , y ∈ J , we have

uh(t, x) ≤ u(t, y) + CT (1 + d(x, y)). (A.1)

We first derive Lemma 6.1 from Lemma A.1.

Proof of Lemma 6.1 Let us fix some h and let us consider the discrete sub-solution u−
of (1.16) and the super-solution u+ of of (1.1) defined as :

u+(t, x) = u0(x) + C0t

u−(n	t, i	x) = u0(i	x) − C0n	t

where

C0 = max

{
|A|, max

α=1,...,N
max|pα |≤L0

|Hα(pα)|; max|pα |≤L0
F(p1, . . . , pN )

}

and L0 denotes the Lispchitz constant of u0. We have for all (t, x) ∈ Gh , with t ≤ T ,
(s, y) ∈ [0, T ) × J

u−(t, x) − u+(s, y) ≤ 2C0T + L0d(x, y).

We first apply Lemma A.1 to control uh(t, x) − u−(t, x) and then apply Lemma 6.1
to control u+(s, y) − u(s, y). Finally we get the control on uh(t, x) − u(s, y). ��
We can now prove Lemma A.1.

Proof of LemmaA.1 We define ϕ in J 2 as

ϕ(x, y) =
√
1 + d2(x, y).

Since,

d2(x, y) =
{

(x − y)2 if (x, y) ∈ Jα × Jα
(x + y)2 if (x, y) ∈ Jα × Jβ with α �= β
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we see that d2 (and consequently ϕ) is in C1,1 in J 2. Moreover ϕ satisfies

|ϕx (x, y)|, |ϕy(x, y)| ≤ 1. (A.2)

Recalling that there exists C > 0 such that

|uh(t, x) − u0(x)| ≤ Ct and |u(t, y) − u0(y)| ≤ Ct

(see Theorem 2.3 and (4.2)) and using that u0 is L0-Lipschitz continuous we deduce
that for all (t, x) ∈ Gh , t ≤ T , y ∈ J ,

uh(t, x) − u(t, y) ≤ 2Ct + L0ϕ(x, y),

which yields the desired result. ��

A.2 Construction of F̃

Lemma A.2 There exists F̃ , such that

1. F̃ satisfies (1.8);
2. F = F̃ in Q0;
3. For p ∈ R

N , (−∇ · F̃)(p) ≤ supQ0
(−∇ · F).

Proof Let Iα denote [p0
α
; pα] so that Q0 =∏α Iα. We then define

F̃(p) = F(P1(p1), . . . ,PN (pN )) −
N∑

α=1

Cα(pα − Pα(pα)),

where

Cα = min
p∈Q0

(
− ∂F

∂ pα

(p1, . . . , pN )

)
,

and

Pα(r) =

⎧
⎪⎨

⎪⎩

p0
α

if r < p0
α
,

r if r ∈ Iα,

pα if r > pα.

Remark that in view of the assumptions made on F , we have Cα > 0 which will
ensure that (1.8) holds true. It is now easy to check that (1.8) and Item 3 are satisfied.
This ends the proof of the Lemma. ��
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