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Abstract
Optimal a priori and a posteriori error estimates are derived for three variants of
Nitsche’s mortar finite elements. The analysis is based on the equivalence of Nitsche’s
method and the stabilisedmixedmethod.Nitsche’smethod is defined so that it is robust
with respect to large jumps in the material and mesh parameters over the interface.
Numerical results demonstrate the robustness of the a posteriori error estimators.

1 Introduction

Nitsche’s method [23] is by now a well-established and successful method, e.g., for
domain decomposition [4,18,25], elastic contact problems [7,8,10–12], and as a ficti-
tious domainmethod [5,6,14]. However, its mathematical analysis has not, as yet, been
entirely satisfactory. In fact, for an elliptic problem with a variational formulation in
H1, the existing a priori estimates require that the solution is in Hs , with s > 3/2; cf.
[4,12]. Moreover, the a posteriori analysis has been based on a non-rigorous saturation
assumption; cf. [4,9].

In our paper [24], we made the observation that there is a close connection between
the Nitsche’s method for Dirichlet conditions and a certain stabilised mixed finite
element method, and we advocated the use of the former since it has the advantage
that it directly yields amethodwith an optimally conditioned, symmetric, and positive-
definite stiffness matrix. The a priori error analysis is also very straightforward but,
as understood from above, not optimal.
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The purpose of the present paper is to show that this connection can be used to
improve the error analysis of the domain decomposition problem, i.e. we will derive
optimal error estimates, both a priori and a posteriori. We consider three similar but
distinct Nitsche’s mortar methods. Two of the methods have appeared previously in
the literature [19–21] and the third one is a simpler master–slave formulation where
the stabilisation term is present only on the slave side of the interface. The methods
are designed so that they are robust with respect to large jumps in the material and
mesh parameters over the interface. The robustness is achieved by a proper scaling
of the stabilisation/Nitsche terms; cf. [19,25]. For simplicity we consider the Poisson
problem with two subdomains. The analysis, however, carries over to other problems
such as the transmission problem for which the Nitsche’s method was applied in [18].
In a forthcoming paper [16], we will extend these results, and our previous work on
variational inequalities [17], to elastic contact problems including different material
properties.

The plan of the paper is the following. In the next section, we present the model
transmission problem, rewrite it in a mixed saddle point variational form and prove its
stability in appropriately chosen continuous norms. In Sect. 3, we present three differ-
ent stabilised mixed finite element methods and their respective Nitsche formulations.
In Sect. 4, we prove the stability of the discrete saddle point formulations and derive
optimal a priori error estimates. In Sect. 5, we perform the a posteriori error analysis
and show that the residual estimators are both reliable and efficient. In Sect. 6, we
report the results of our numerical computations.

2 Themodel problem

Suppose that the polygonal or polyhedral domain � ⊂ R
d , d ∈ {2, 3}, is divided

into two non-overlapping parts �i , i = 1, 2, and denote their common boundary by
� = ∂�1 ∩ ∂�2. We assume that ∂� ⊂ ∂�, with ∂� being the boundary of the n − 1
dimensional manifold �.

We consider the problem: find functions ui that satisfy

−∇ · ki∇ui = f in �i ,

u1 − u2 = 0 on �,

k1
∂u1
∂n1

+ k2
∂u2
∂n2

= 0 on �,

ui = 0 on ∂�i\�,

(2.1)

where ki > 0, i = 1, 2, are material parameters, f ∈ L2(�) is a load function and ni
denote the outer normal vectors to the subdomains �i , i = 1, 2. In what follows we
often write n = n1 = −n2. Throughout the paper we assume that k1 ≥ k2.

The standard variational formulation of problem (2.1) reads as follows: find u ∈
H1
0 (�) such that

(k∇u,∇v)� = ( f , v)� ∀v ∈ H1
0 (�), (2.2)
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Error analysis of Nitsche’s mortar method 975

where k|�i = ki and u|�i
= ui . On the interface �, the restriction of the solution

u lies in the Lions–Magenes space H
1
2
00(�) (c.f. [22, Theorem 11.7, p. 66] or [26,

Chapter 33]), with its intrinsic norm defined as

‖v‖21
2 ,�

= ‖v‖20,� +
∫

�

∫
�

|v(x) − v(y)|2
|x − y|d dx dy +

∫
�

v(x)2

ρ(x)
dx, (2.3)

where ρ(x) is the distance from x to the boundary ∂�.
The mixed formulation follows from imposing the continuity condition on � in a

weak form by using the normal flux as the Lagrange multiplier, viz.

λ = k1
∂u1
∂n

= −k2
∂u2
∂n

.

The Lagrange multiplier belongs to the dual space Q = (
H

1
2
00(�)

)′, equipped with the
norm

‖ξ‖− 1
2 ,� = sup

v∈H
1
2
00 (�)

〈v, ξ 〉
‖v‖ 1

2 ,�

, (2.4)

where 〈·, ·〉 : Q′ × Q → R stands for the duality pairing.
Let

Vi = {v ∈ H1(�i ) : v|∂�i\� = 0}, V = V1 × V2, (2.5)

and define the bilinear and linear forms,B : (V ×Q)×(V ×Q) → R andL : V → R

by

B(w, ξ ; v, μ) =
2∑

i=1

(ki∇wi ,∇vi )�i − 〈�w� , μ〉 − 〈�v� , ξ 〉, (2.6)

L(v) =
2∑

i=1

( f , vi )�i , (2.7)

where w and v denote the pair of functions w = (w1, w2) ∈ V1 × V2 and v =
(v1, v2) ∈ V1 × V2. Furthermore, �w� |� = (w1 − w2)|� denotes the jump in the
value of w over �. The mixed variational formulation of (2.1) reads as follows: find
(u, λ) ∈ V × Q such that

B(u, λ; v, μ) = L(v) ∀(v, μ) ∈ V × Q. (2.8)
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976 T. Gustafsson et al.

The norm in V × Q used in the analysis is scaled by the material parameters, viz.

|||(w, ξ)|||2 =
2∑

i=1

(
ki‖∇wi‖20,�i

+ 1

ki
‖ξ‖2− 1

2 ,�

)
. (2.9)

Theorem 1 (Continuous stability) For every (w, ξ) ∈ V × Q there exists (v, μ) ∈
V × Q such that

B(w, ξ ; v, μ) � |||(w, ξ)|||2 (2.10)

and

|||(v, μ)||| � |||(w, ξ)|||. (2.11)

Proof In both subdomains, we have the inf-sup condition (cf. [2])

sup
vi∈Vi

〈vi , ξ 〉
‖∇vi‖0,�i

≥ Ci‖ξ‖− 1
2 ,� ∀ξ ∈ Q, i = 1, 2. (2.12)

Therefore

sup
v=(v1,v2)∈V

〈�v� , ξ 〉
(
∑2

i=1 ki‖∇vi‖20,�i
)1/2

≥ C

(
1

k1
+ 1

k2

)1/2

‖ξ‖− 1
2 ,� ∀ξ ∈ Q.

(2.13)

The stability follows now from the Babuška–Brezzi theory [2]. �
Remark 1 Given that k1 ≥ k2, it holds with some constants C1,C2 > 0 that

C1|||(w, ξ)|||2 ≤
2∑

i=1

ki‖∇wi‖20,�i
+ 1

k2
‖ξ‖2− 1

2 ,�
≤ C2|||(w, ξ)|||2. (2.14)

This defines a norm that will be used in the following for defining and analysing a
“master–slave” formulation.

3 The finite element methods

We start by defining the stabilised mixed method. The subdomains�i are divided into
sets of non-overlapping simplices Cih , i = 1, 2, with h referring to the mesh parameter.
The edges/facets of the elements in Cih are divided into two meshes: E i

h consisting of
thosewhich are located in the interior of�i , andGi

h of those that lie on�. Furthermore,
by G∩

h we denote the boundary mesh obtained by intersecting the edges/facets of G1
h
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Error analysis of Nitsche’s mortar method 977

and G2
h . In particular, each E ∈ G∩

h corresponds to a pair (E1, E2) ∈ G1
h × G2

h such
that E = E1 ∩ E2. In the subdomains, we define the finite element subspaces

Vi,h = {vi,h ∈ Vi : vi,h |K ∈ Pp(K ) ∀K ∈ Cih}, Vh = V1,h × V2,h, (3.1)

where p ≥ 1. The finite element space for the dual variable consists of discontinuous
piecewise polynomials, also of degree p, defined at the intersection mesh G∩

h :

Qh = {μh ∈ Q : μh |E ∈ Pp(E) ∀E ∈ G∩
h }. (3.2)

We will now introduce three slightly different stabilised finite element methods and
the corresponding Nitsche’s formulations for problem (2.1).

3.1 Method I

We define a bilinear form Bh : (Vh × Qh) × (Vh × Qh) → R through

Bh(w, ξ ; v, μ) = B(w, ξ ; v, μ) − αSh(w, ξ ; v, μ), (3.3)

where α > 0 is a stabilisation parameter and

Sh(w, ξ ; v, μ) =
2∑

i=1

∑
E∈Gi

h

hE

ki

(
ξ − ki

∂wi

∂n
, μ − ki

∂vi

∂n

)
E

, (3.4)

a stabilising term, with hE denoting the diameter of E ∈ Gi
h . The first stabilised finite

element method is written as: find (uh, λh) ∈ Vh × Qh such that

Bh(uh, λh; vh, μh) = L(vh) ∀(vh, μh) ∈ Vh × Qh . (3.5)

Note that testing with (0, μh) ∈ Vh × Qh in (3.5) yields the equation

〈�uh� , μh〉 + α

2∑
i=1

∑
E∈Gi

h

hE

ki

(
λh − ki

∂vi,h

∂n
, μh

)
E

= 0 ∀μh ∈ Qh . (3.6)

Hence, denoting by hi : � → R, i = 1, 2, a local mesh size function such that

hi |E = hE ∀E ∈ Gi
h, i = 1, 2, (3.7)

equation (3.6) can be written as

(
�uh� + α

2∑
i=1

hi
ki

(
λh − ki

∂ui,h
∂n

)
, μh

)

�

= 0 ∀μh ∈ Qh . (3.8)
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Now, since each E ∈ G∩
h is an intersection of a pair (E1, E2) ∈ G1

h × G2
h and the

polynomial degree is p for all variables, we obtain the following expression for the
discrete Lagrange multiplier

λh =
{{
k
∂uh
∂n

}}
− β �uh� , (3.9)

where

β = α−1k1k2
k2h1 + k1h2

, (3.10)

and

{{
k
∂w

∂n

}}
= k2h1

k2h1 + k1h2
k1

∂w1

∂n
+ k1h2

k2h1 + k1h2
k2

∂w2

∂n
. (3.11)

Substituting expression (3.9) into the discrete variational formulation leads to the
Nitsche formulation: find uh ∈ Vh such that

ah(uh, vh) = L(vh) ∀vh ∈ Vh, (3.12)

where the bilinear form ah is defined through

ah(w, v) =
2∑

i=1

(ki∇wi ,∇vi )�i + bh(w, v), (3.13)

with

bh(w, v) =
∑
E∈G∩

h

{
(β �w� , �v�)E −

(
γ

�

k
∂w

∂n

�

,

�

k
∂v

∂n

�)
E

−
({{

k
∂w

∂n

}}
, �v�

)
E

−
(

�w� ,

{{
k
∂v

∂n

}})
E

}
,

(3.14)

and the jump term and the function γ are given by

�

k
∂w

∂n

�

= k1
∂w1

∂n
− k2

∂w2

∂n
, γ = αh1h2

k2h1 + k1h2
. (3.15)

Note that (3.11) is a convex combination of two fluxes as in the method suggested in
[25]. The formulation (3.12) corresponds to the method introduced in [21], and to the
second method proposed for problem (2.1) in [19, pp. 468–470].
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Error analysis of Nitsche’s mortar method 979

3.2 Method II: Master–slave formulation

Assume that k1 � k2. The norm equivalence (2.14) suggests using only the term
from the “less rigid” subdomain �2 for stabilisation in (3.4). Calling �1 the master
domain and �2 the slave domain and stabilising from the slave side only, yields a
mixed stabilised finite element as in (3.5) except that

Sh(w, ξ ; v, μ) =
∑
E∈G2

h

hE

k2

(
ξ − k2

∂w2

∂n
, μ − k2

∂v2

∂n

)
E

. (3.16)

Note that the space for the Lagrange multiplier is still defined by (3.2).
The corresponding Nitsche’s formulation reads as in (3.12) with the bilinear form

bh defined simply as

bh(w, v) =
∑
E∈G∩

h

{(
k2

αh2
�w� , �v�

)
E

−
(
k2

∂w

∂n
, �v�

)
E

−
(

�w� , k2
∂v

∂n

)
E

}
.

(3.17)

3.3 Method III: Stabilisation using a convex combination of fluxes [4,19,20,25]

Let us reformulate (3.5) by considering the stabilising term

αSh(w, ξ ; v, μ) =
(

β−1
(

ξ −
{{
k
∂w

∂n

}})
, μ −

{{
k
∂v

∂n

}})
�

, (3.18)

where
{{
k ∂w

∂n

}}
denotes the convex combination (3.11) and β is defined by (3.10).

To derive the corresponding Nitsche’s method, we proceed as above and obtain an
equivalent expression for the discrete Lagrange multiplier:

λh =
{{
k
∂uh
∂n

}}
− β �uh� . (3.19)

Substituting this back to the stabilised formulation leads to the method (3.12) with bh
given by

bh(w, v) = (
β �w� , �v�

)
�

−
({{

k
∂w

∂n

}}
, �v�

)
�

−
(

�w� ,

{{
k
∂v

∂n

}})
�

. (3.20)

This exact method was discussed before in [20]. A similar method with a slightly
different definition for the convex combination of fluxes was considered in [19].

Remark 2 (On the choice of the method) The performance of the different methods is
equal by all practical measures when k1 � k2. The variational formulation of Method
III has fewer terms and is therefore simpler to implement than Method I whereas the
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980 T. Gustafsson et al.

master–slave formulation (Method II) is clearly the simplest of them all, both when it
comes to the implementation and the analysis.

4 A priori error analysis

In this section, we perform a priori error analyses of the stabilised formulations which
then, by construction, carry over to the Nitsche’s formulations. We will perform the
analysis in full detail for Method I and briefly indicate the differences in analysing the
other two methods.

In order to prove the a priori estimate (Theorem 3), we need a stability estimate for
the discrete bilinear form Bh . The stability estimate is proven using Lemma 1 which
follows from a scaling argument:

Lemma 1 (Discrete trace estimate) There exists CI > 0, independent of h, such that

CI

∑
E∈Gi

h

hE

ki

∥∥∥∥ki ∂vi,h

∂n

∥∥∥∥
2

0,E
≤ ki‖∇vi,h‖20,�i

∀vi,h ∈ Vi,h, i = 1, 2.

The discrete stability of Method I will be established in the mesh-dependent norm

|||(wh, ξh)|||2h = |||(wh, ξh)|||2 +
2∑

i=1

∑
E∈Gi

h

hE

ki
‖ξh‖20,E . (4.1)

Note, however, that trivially we have

|||(wh, ξh)|||h ≥ |||(wh, ξh)|||. (4.2)

Theorem 2 (Discrete stability) Suppose that 0 < α < CI . Then for every (wh, ξh) ∈
Vh × Qh there exists (vh, μh) ∈ Vh × Qh such that

Bh(wh, ξh; vh, μh) � |||(wh, ξh)|||2h (4.3)

and

|||(vh, μh)|||h � |||(wh, ξh)|||h . (4.4)

Proof Applying the discrete trace estimate leads to stability in the mesh-dependent
part of the norm
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Error analysis of Nitsche’s mortar method 981

Bh(wh, ξh;wh,−ξh) ≥ (1 − αC−1
I )

2∑
i=1

ki‖∇wi,h‖20,�i
+ α

2∑
i=1

∑
E∈Gi

h

hE

ki
‖ξh‖20,E

≥ C1

⎛
⎜⎝

2∑
i=1

ki‖∇wi,h‖20,�i
+

2∑
i=1

∑
E∈Gi

h

hE

ki
‖ξh‖20,E

⎞
⎟⎠ .

(4.5)

Next, we recall the steps (cf. [15]) for extending the result to the continuous part of
the norm. By the continuous inf-sup condition (2.13), for any ξh ∈ Qh there exists
v ∈ V such that

〈�v� , ξh〉(∑2
i=1 ki‖∇vi‖20,�i

)1/2 ≥ C

(
1

k1
+ 1

k2

)1/2

‖ξh‖− 1
2 ,�. (4.6)

Consequently, there exist positive constants C2, C3, C4, such that for the Clément
interpolant Ihv ∈ Vh of v it holds

〈�Ihv� , ξh〉 ≥ C2

(
1

k1
+ 1

k2

)
‖ξh‖2− 1

2 ,�
− C3

2∑
i=1

∑
E∈Gi

h

hE

ki
‖ξh‖20,E , (4.7)

2∑
i=1

ki‖∇vi,h‖20,�i
≤ C4

(
1

k1
+ 1

k2

)
‖ξh‖2− 1

2 ,�
. (4.8)

Using the Cauchy–Schwarz inequality, the arithmetic-geometric mean inequality, and
the discrete trace estimate (Lemma 1), we then see that

Bh(wh, ξh;−Ihv, 0) = −
2∑

i=1

(ki∇wi,h,∇ Ihvi ) + 〈�Ihv� , ξh〉

−
2∑

i=1

∑
E∈Gi

h

hE

(
ξh − ki

∂wi,h

∂n
,
∂ Ihvi
∂n

)
E

≥ −C5

⎛
⎜⎝

2∑
i=1

ki‖∇wi,h‖20,�i
+

2∑
i=1

∑
E∈Gi

h

hE

ki
‖ξh‖20,E

⎞
⎟⎠

+ C6

(
1

k1
+ 1

k2

)
‖ξh‖2− 1

2 ,�
.

(4.9)
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Combining estimates (4.5) and (4.9), we finally obtain

Bh(wh, ξh;wh − δ Ihv,−ξh)

≥ (C1 − δC5)

⎛
⎜⎝

2∑
i=1

ki‖∇wi,h‖20,�i
+

2∑
i=1

∑
E∈Gi

h

hE

ki
‖ξh‖20,E

⎞
⎟⎠

+ δC6

(
1

k1
+ 1

k2

)
‖ξh‖2− 1

2 ,�

≥ C7

⎛
⎜⎝

2∑
i=1

ki‖∇wi,h‖20,�i
+

2∑
i=1

∑
E∈Gi

h

hE

ki
‖ξh‖20,E

+
(
1

k1
+ 1

k2

)
‖ξh‖2− 1

2 ,�

)
,

where the last bound follows from choosing 0 < δ < C1/C5.
In order to obtain (4.4), we first use the triangle inequality and (4.8) to get

|||(wh − δ Ihv,−ξh)||| ≤ |||(wh, ξh)|||.

The claim follows by adding

2∑
i=1

∑
E∈Gi

h

hE

ki
‖ξh‖20,E

to both sides of the inequality. �
Wewill need one more lemma before we can establish an optimal a priori estimate.

Let fh ∈ Vh be an approximation of f and define

oscK ( f ) = hK ‖ f − fh‖0,K . (4.10)

Moreover, for each E ∈ Gi
h , denote by K (E) ∈ Cih the element satisfying ∂K (E)∩E =

E .

Lemma 2 For an arbitrary (vh, μh) ∈ Vh × Qh it holds

⎛
⎜⎝

2∑
i=1

∑
E∈Gi

h

hE

ki

∥∥∥∥μh − ki
∂vi,h

∂n

∥∥∥∥
2

0,E

⎞
⎟⎠

1/2

� |||(u − vh, λ − μh)||| +
⎛
⎜⎝

2∑
i=1

∑
E∈Gi

h

oscK (E)( f )
2

⎞
⎟⎠

1/2

.

(4.11)
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Proof Let bE ∈ Pd(E) ∩ H1
0 (E), E ∈ G1

h , be the edge/facet bubble function with
maximum value one. Define σE as the polynomial defined on K (E) through

σE
∣∣
E = hEbE

k1

(
μh − k1

∂v1,h

∂n

)
and σE

∣∣
∂K (E)\E = 0.

We have by the norm equivalence in polynomial spaces

hE

k1

∥∥∥μh − k1
∂v1,h

∂n

∥∥∥2
0,E

� hE

k1

∥∥∥√
bE

(
μh − k1

∂v1,h

∂n

)∥∥∥2
0,E

=
(
μh − k1

∂v1,h

∂n
, σE

)
E
.

Let σ = ∑
E∈G1

h
σE . Testing the continuous variational problem with (v1, v2, μ) =

(σ, 0, 0) gives (k1∇u1,∇σ)�1 − 〈σ, λ〉 − ( f , σ )�1 = 0. This leads to

∑
E∈G1

h

hE

k1

∥∥∥μh − k1
∂v1,h

∂n

∥∥∥2
0,E

� 〈σ,μh − λ〉 + (k1∇u1,∇σ)�1 − ( f , σ )�1 −
∑
E∈G1

h

(
k1

∂v1,h

∂n
, σE

)
E

= 〈σ,μh − λ〉 + (k1∇u1,∇σ)�1 − ( f , σ )�1

−
∑
E∈G1

h

(
(∇ · k1∇v1,h, σE )K (E) + (k1∇v1,h,∇σE )K (E)

)

= 〈σ,μh − λ〉 + (k1∇(u1 − v1,h),∇σ)�1 +
∑
E∈G1

h

(−∇ · k1∇v1,h − f , σE )K (E).

By inverse estimates

k1‖σ‖21,�1
� k1

∑
E∈G1

h

h−2
E ‖σE‖20,K (E) �

∑
E∈G1

h

hE

k1

∥∥∥μh − k1
∂v1,h

∂n

∥∥∥2
0,E

. (4.12)

Using the Cauchy–Schwarz and the trace inequalities, it then follows that

∑
E∈G1

h

hE

k1

∥∥∥μh − k1
∂v1,h

∂n

∥∥∥2
0,E

� ‖λ − μh‖− 1
2 ,�‖σ‖ 1

2 ,� + k1‖∇(u1 − v1,h)‖0,�1‖∇σ‖0,�1

+
∑
E∈G1

h

‖∇ · k1∇v1,h + f ‖0,K (E)‖σE‖0,K (E)
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� 1√
k1

‖λ − μh‖− 1
2 ,�

√
k1‖σ‖1,�1 + √

k1‖∇(u1 − v1,h)‖0,�1

√
k1‖σ‖1,�1

+
⎛
⎜⎝ ∑

E∈G1
h

h2E
k1

‖∇ · k1∇v1,h + f ‖20,K (E)

⎞
⎟⎠

1/2 ⎛
⎜⎝k1

∑
E∈G1

h

h−2
E ‖σE‖20,K (E)

⎞
⎟⎠

1/2

.

In view of the standard lower bound for interior residuals [27] and the discrete inequal-
ities (4.12), we conclude that

⎛
⎜⎝ ∑

E∈G1
h

hE

k1

∥∥∥μh − k1
∂v1,h

∂n

∥∥∥2
0,E

⎞
⎟⎠

1/2

�
√
k1‖∇(u1 − v1,h)‖0,�1 + 1√

k1
‖λ − μh‖− 1

2 ,�

+
⎛
⎜⎝ ∑

E∈G1
h

oscK (E)( f )
2

⎞
⎟⎠

1/2

.

(4.13)

The estimate in �2 is proven similarly. Adding the estimates in �1 and �2 leads to
(4.11). �

The proof of the a priori estimate is now straightforward.

Theorem 3 (A priori estimate) The exact solution (u, λ) ∈ V × Q of (2.8) and the
discrete solution (uh, λh) ∈ Vh × Qh of (3.5) satisfy

|||(u − uh, λ − λh)|||

� inf
(vh ,μh)∈Vh×Qh

|||(u − vh, λ − μh)||| +
⎛
⎜⎝

2∑
i=1

∑
E∈Gi

h

oscK (E)( f )
2

⎞
⎟⎠

1/2

.
(4.14)

Proof The discrete stability estimate guarantees the existence of (wh, ξh) ∈ Vh × Qh ,
with |||(wh, ξh)|||h = 1, such that for any (vh, μh) ∈ Vh × Qh it holds

|||(uh − vh, λh − μh)||| ≤ |||(uh − vh, λh − μh)|||h � Bh(uh − vh, λh − μh;wh, ξh).

We have

Bh(uh − vh, λh − μh;wh, ξh) = B(u − vh, λ − μh;wh, ξh) + αSh(vh, μh;wh, ξh).

The first term above is estimated using the continuity of B in the continuous norm

B(u − vh, λ − μh;wh, ξh) � |||(u − vh, λ − μh)||| · |||(wh, ξh)|||
� |||(u − vh, λ − μh)|||.
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For the second term, the Cauchy–Schwarz inequality, Lemma 2 and the discrete trace
estimate yield

|Sh(vh, μh;wh, ξh)|

�

⎛
⎜⎝|||(u − vh, λ − μh)||| +

⎛
⎜⎝

2∑
i=1

∑
E∈Gi

h

oscK (E)( f )
2

⎞
⎟⎠

1/2⎞
⎟⎠ · |||(wh, ξh)|||h

� |||(u − vh, λ − μh)||| +
⎛
⎜⎝

2∑
i=1

∑
E∈Gi

h

oscK (E)( f )
2

⎞
⎟⎠

1/2

.

�
Remark 3 (Method II) The discrete stability can be established in the norm

⎛
⎜⎝

2∑
i=1

ki‖∇wi‖20,�i
+ 1

k2
‖ξ‖2− 1

2 ,�
+

∑
E∈G2

h

hE

k2
‖ξh‖20,E .

⎞
⎟⎠

1/2

and, as seen from its proof, Lemma 2 is valid individually for both stabilising terms.
We thus obtain the a priori estimate

|||(u − uh, λ − λh)|||

� inf
(vh ,μh)∈Vh×Qh

|||(u − vh, λ − μh)||| +
⎛
⎜⎝ ∑

E∈G2
h

oscK (E)( f )
2

⎞
⎟⎠

1/2

,
(4.15)

where

|||(w, ξ)||| =
(

2∑
i=1

ki‖∇wi‖20,�i
+ 1

k2
‖ξ‖2− 1

2 ,�

)1/2

. (4.16)

Remark 4 (Method III) The analysis of the third method is similar, albeit a bit more
cumbersome. The crucial observation is that we can write

ξ −
{{
k
∂w

∂n

}}
= α1

(
ξ − k1

∂w1

∂n

)
+ α2

(
ξ − k2

∂w2

∂n

)
,

where

α1 = k2h1
k2h1 + k1h2

, α2 = k1h2
k2h1 + k1h2

.
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Given that 0 ≤ αi (x) ≤ 1 ∀x ∈ �, i = 1, 2, and α1 +α2 = 1, it can be verified using
the triangle inequality that the a priori estimate of Theorem 3 holds also forMethod III.

5 A posteriori estimate

Let us first define local residual estimators corresponding to the finite element solution
(uh, λh) through

η2K = h2K
ki

‖∇ · ki∇ui,h + f ‖20,K , K ∈ Cih, (5.1)

η2E,� = hE

ki

∥∥∥∥
�

ki
∂ui,h
∂n

�∥∥∥∥
2

0,E
, E ∈ E i

h, (5.2)

η2E,� = hE

ki

∥∥∥∥λh − ki
∂ui,h
∂n

∥∥∥∥
2

0,E
+ ki

hE
‖ �uh� ‖20,E , E ∈ Gi

h . (5.3)

with i = 1, 2. The global error estimator is then denoted by

η2 =
2∑

i=1

⎛
⎜⎝ ∑

K∈Ci
h

η2K +
∑
E∈E i

h

η2E,� +
∑
E∈Gi

h

η2E,�

⎞
⎟⎠ . (5.4)

In the following theorem we show that the error estimator η is both efficient and
reliable.

Theorem 4 (A posteriori estimate) It holds that

|||(u − uh, λ − λh)||| � η (5.5)

and

η � |||(u − uh, λ − λh)||| +
⎛
⎜⎝

2∑
i=1

∑
K∈Ci

h

oscK ( f )2

⎞
⎟⎠

1/2

. (5.6)

Proof The continuous stability estimate of Theorem 1 guarantees the existence of a
pair (v, μ) ∈ V × Q, with |||(v, μ)||| = 1, that satisfies

|||(u − uh, λ − λh)||| � B(u − uh, λ − λh; v, μ). (5.7)

Let Ihv ∈ Vh be the Clément interpolant of v ∈ V . The stabilised method is
consistent, thus

Bh(u − uh, λ − λh; Ihv, 0) = 0.
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Therefore, we can write

B(u − uh, λ − λh; v, μ) = B(u − uh, λ − λh; v − Ihv, μ) + αSh(uh, λh; Ihv, 0).

After integration by parts, the first term yields

B(u − uh, λ − λh; v − Ihv, μ)

= L(v − Ihv) − B(uh, λh; v − Ihv, μ)

=
2∑

i=1

[ ∑
K∈Ci

h

(∇ · ki∇ui,h + fi , vi − Ihvi )K +
∑
E∈E i

h

(�

ki
∂ui,h
∂n

�

, vi − Ihvi

)
E

+
∑
E∈Gi

h

(
λh − ki

∂ui,h
∂n

, vi − Ihvi

)
E

]
− 〈�uh� , μ〉.

(5.8)

On the other hand, for the Clément interpolant it holds

ki‖∇ Ihvi‖20,�i
+

∑
K∈Ci

h

ki
h2K

‖vi − Ihvi‖20,K +
∑
E∈E i

h

ki
hE

‖vi − Ihvi‖20,E

� ki‖∇vi‖20,�i
. (5.9)

For the first three terms in (5.8), we thus get

∑
K∈Ci

h

(∇ · ki∇ui,h + fi , vi − Ihvi )K +
∑
E∈E i

h

(�

ki
∂ui,h
∂n

�

, vi − Ihvi

)
E

+
∑
E∈Gi

h

(
λh − ki

∂ui,h
∂n

, vi − Ihvi

)
E

� η ‖ki∇vi‖0,�i � η.

(5.10)

The last term in (5.8) is estimated using the following discrete inverse inequality for
the H1/2

00 (�) norm (cf. [1,13])

‖vh‖21/2,� �
∑
E∈Gi

h

h−1
E ‖vh‖20,E ∀vh ∈ Vh,

viz.

−〈�uh� , μ〉 ≤ ‖ �uh� ‖1/2,�‖μ‖−1/2,�

�
2∑

i=1

⎛
⎜⎝ ∑

E∈Gi
h

ki
hE

‖ �uh� ‖20,E

⎞
⎟⎠

1/2

√
ki‖μ‖−1/2,�.

123



988 T. Gustafsson et al.

On the other hand, from the Cauchy–Schwarz and the discrete trace inequalities and
from (5.9), it follows that

Sh(uh, λh; Ihv, 0) � η. (5.11)

The upper bound (5.5) can now be established by joining the above estimates.
The lower bound (5.6) follows fromLemma 2 together with standard lower bounds,

cf. [27]. �
We end this section by reiterating that the purpose of the mixed stabilised formu-

lation is to perform the error analysis. We advocate the use of Nitsche’s formulation
for computations and note that substituting the discrete Lagrange multiplier (3.9) in
the error indicators, we obtain for E ∈ G1

h

hE

k1

∥∥∥∥λh − k1
∂u1,h
∂n

∥∥∥∥
2

0,E
= hE

k1

∥∥∥∥α2

�

k
∂uh
∂n

�

+ β �uh�

∥∥∥∥
2

0,E
(5.12)

and for E ∈ G2
h

hE

k2

∥∥∥∥λh − k2
∂u2,h
∂n

∥∥∥∥
2

0,E
= hE

k2

∥∥∥∥α1

�

k
∂uh
∂n

�

− β �uh�

∥∥∥∥
2

0,E
. (5.13)

Remark 5 (Method II) The local estimators ηK , ηE,� and ηE,� are defined through
(5.1)–(5.3) and the estimates (5.5) and (5.6) hold true in the norm (4.16). After sub-
stituting the discrete Lagrange multiplier

λh = k2
∂u2,h
∂n

− α−1 k2
h2

�uh�

into the error indicators, we for the corresponding Nitsche’s formulation obtain

hE

k1

∥∥∥∥λh − k1
∂u1,h
∂n

∥∥∥∥
2

0,E
= hE

k1

∥∥∥∥
�

k
∂uh
∂n

�

+ α−1 k2
h2

�uh�

∥∥∥∥
2

0,E
(5.14)

for E ∈ G2
h , and

hE

k2

∥∥∥∥λh − k2
∂u2,h
∂n

∥∥∥∥
2

0,E
= α−2 k2

hE

∥∥�uh�
∥∥2
0,E (5.15)

for E ∈ G2
h .

Remark 6 (Method III) Once again the local estimators for the stabilised method are
defined as in (5.1)–(5.3) and the a posteriori estimates (5.5) and (5.6) hold true. In the
Nitsche’s formulation, the error indicators depending on the Lagrange multiplier are
given by (5.12) and (5.13).
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Fig. 1 The sequence of adaptive meshes with k1 = k2 = 1

6 Numerical results

We experiment with the proposed method by solving the domain decomposition prob-
lem adaptively with �1 = (0, 1)2, �2 = (1, 2) × (0, 1), f = 1, α = 10−2 and linear
elements. After each solution we mark a triangle K ∈ Cih , i = 1, 2, for refinement if
it satisfies EK > θ maxK ′∈C1

h∪C2
h
EK ′ where θ = 1√

2
and

123



990 T. Gustafsson et al.

Fig. 2 The sequence of adaptive meshes with k1 = 10 and k2 = 0.1

E2
K = h2K

ki
‖∇ · ki∇ui,h + f ‖20,K + 1

2

∑
E⊂∂K\�

hE

ki

∥∥∥∥
�

ki
∂ui,h
∂n

�∥∥∥∥
2

0,E

+
∑

E⊂∂K∩�

{
hE

ki

∥∥∥∥λh − ki
∂ui,h
∂n

∥∥∥∥
2

0,E
+ ki

hE
‖ �uh� ‖20,E

}
∀K ∈ Cih .

The set ofmarked elements is refined using the red-green-blue strategy, see e.g. Bartels
[3].
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Fig. 3 The sequence of adaptive meshes with k1 = 0.1 and k2 = 10

Changing the material parameters from (k1, k2) = (1, 1) to (k1, k2) = (10, 0.1),
and finally to (k1, k2) = (0.1, 10) produces adaptive meshes where the domain with
a smaller material parameter receives more elements, see Figs. 1, 2 and 3. This is
in accordance with results on adaptive methods for linear elastic contact problems,
see e.g. Wohlmuth [28] where it is demonstrated that softer the material, more the
respective domain is refined.

Next we solve the domain decomposition problem in an L-shaped domain with
�1 = (0, 1)2, �2 = (1, 2) × (0, 2) and k1 = k2 = 1. The resulting sequence
of meshes is depicted in Fig. 4 and the global error estimator as a function of the
number of degrees-of-freedom N is given in Fig. 5. Note that the exact solution is
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Fig. 4 The sequence of adaptive meshes on an L-shaped domain with k1 = k2 = 1

Fig. 5 The global error
estimator η as a function of the
number of degrees-of-freedom
N in the L-shaped domain case

103 104

10−1

10−0.5

O(N−0.5)

O(N−0.33)

N

η

Adaptive
Uniform

in H5/3−ε, ε > 0, in the neighbourhood of the reentrant corner which limits the
convergence rate of uniform refinements to O(N−1/3).

We finally remark that Methods II and III yield very similar numerical results.
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