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Abstract
We present natural axisymmetric variants of schemes for curvature flows introduced
earlier by the present authors and analyze them in detail. Although numerical methods
for geometric flows have been used frequently in axisymmetric settings, numerical
analysis results so far are rare. In this paper, we present stability, equidistribution,
existence and uniqueness results for the introduced approximations. Numerical com-
putations show that these schemes are very efficient in computing numerical solutions
of geometric flows as only a spatially one-dimensional problem has to be solved. The
good mesh properties of the schemes also allow them to compute in very complex
axisymmetric geometries.

Mathematics Subject Classification 65M60 · 65M12 · 53C44 · 35K55

1 Introduction

Numerical approximations of curvature flows such as the mean curvature flow and the
Gauss curvature flow have been studied intensively during the last 30years. In many
situations the axisymmetry of these geometric flows can be used to reduce the dimen-
sion of the governing equations, and so numerical methods have been used frequently
in such axisymmetric settings. However, results on the numerical analysis of such
schemes so far are rare. In this paper we present parametric finite element approxima-
tions for axisymmetric curvature flows, and carefully analyse their properties.
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In general, in curvature driven evolution equations the normal velocity of a hyper-
surface in R

3 is given by an expression involving the mean and/or the Gauss curvature
of the surface. Evolving surfaces are of interest in geometry, and they can appear in
application areas such as materials science, for example as grain boundaries. In addi-
tion, evolution laws involving the curvature of the surface arise in situations, where
surface quantities are coupled to the surrounding volume by additional fields, which
for example arises in the evolution of phase boundaries or in two-phase flow. In any
case solving the evolution law for the surface with a stable discretization of curvature
is a corner stone of a reliable and efficient numerical method.

Approaches to solve surface evolution equations numerically involve different
descriptions of the evolving surface. Traditionally level set methods, phase field meth-
ods or parametric front tracking methods have been used. For example, parametric
finite element approximations of curvature flows have been considered in [7,20,23,35].
We refer to the review paper [18], and the references therein, for further information
on numerical methods for general geometric evolution equations.

In this paper we aim to numerically compute a family of hypersurfaces (S (t))t≥0
⊂ R

3, which we later assume to be axisymmetric, and which fulfills a geometric
evolution law involving its principal curvatures. We will focus on the mean curvature
flow, which forS (t) is given by the evolution law

VS = km on S (t), (1.1)

and which is the L2-gradient flow forH 2(S (t)), since

d

dt
H 2(S (t)) = −

∫
S (t)

km VS dH 2 = −
∫
S (t)

(VS )2 dH 2

for surfaces without boundary. Here VS denotes the normal velocity of S (t) in the
direction of the normal �nS . Moreover, km is the mean curvature ofS (t), i.e. the sum
of the principal curvatures ofS (t), see [37] for an introduction to the mean curvature
flow.

We also consider the nonlinear mean curvature flow

VS = f (km) on S (t), (1.2)

where f : (a, b) → R with −∞ ≤ a < b ≤ ∞, is a strictly monotonically increasing
continuous function, as well as the volume preserving variant

VS = f (km) −
∫
S f (km) dH 2∫

S 1 dH 2
on S (t). (1.3)

Possible choices for f are

f (r) = |r |β−1r , β ∈ R>0, (1.4a)
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Variational discretization of axisymmetric curvature flows 793

or
f (r) = −r−1 (1.4b)

for the inverse mean curvature flow. These two choices have applications for example
in image processing or in general relativity, see [33,42] and the references therein. Of
course, (1.2) with

f (r) = r (1.4c)

collapses to (1.1).
If Ω(t) denotes the region enclosed by S (t), i.e. S (t) = ∂Ω(t), then the flow

(1.3) is such that
d

dt
L 3(Ω(t)) =

∫
S (t)

VS dH 2 = 0, (1.5)

where here we assume that �nS is the outer normal to Ω(t) onS (t). This justifies the
expression volume preserving flow. These flows are of interest in geometry and we
refer to [4,14,29,31] for more information.

More generally, we can also consider flows of the form

VS = F(km, kg) = F(k1 + k2, k1 k2) on S (t), (1.6)

where kg = k1 k2 denotes theGauss curvature ofS (t), with k1 and k2 the two principal
curvatures. Of course, (1.6) with F(r , s) = f (r) reduces to (1.2). On the other hand,
the choice F(r , s) = −s, for closed surfaces, leads to the Gauss curvature flow

VS = −kg on S (t), (1.7)

see e.g. [8, (1.14)], where in (1.7) we again assume that �nS is the outer normal to
Ω(t) onS (t). Such flows have found considerable interest in geometry recently and
we refer to [27,40,41,43] for more information. One reason why the Gauss curvature
flow is of particular interest, is because this flow allows to study the fate of the rolling
stones, see [2].

In this paper, we consider the case that S (t) is an axisymmetric surface, that is
rotationally symmetric with respect to the x2-axis. We further assume that S (t) is
made up of a single connected component, with or without boundary. Clearly, in the
latter case the boundary ∂S (t) ofS (t) consists of either one or two circles that each
lie within a hyperplane that is parallel to the x1 − x3-plane. For the evolving family of
surfaces we allow for the following types of boundary conditions. A boundary circle
may assumed to be fixed, it may be allowed to move vertically along the boundary of
a fixed infinite cylinder that is aligned with the axis of rotation, or it may be allowed to
expand and shrink within a hyperplane that is parallel to the x1− x3-plane. Depending
on the postulated free energy, certain angle conditions will arise where S (t) meets
the external boundary. If the free energy is just surface area, H 2(S (t)), then a 90◦
degree contact angle condition arises. We refer to Sect. 2 below for further details, in
particular with regard to more general contact angles.

The dimensionally reduced formulation has several severe advantages both analyti-
cally as well as numerically. In analysis it has been used for example to study the onset
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of singularities, see [22,32,36,38,40] and other singularity formation mechanisms,
see [12,13]. Numerically it leads to equations which are far easier to solve and at the
same time problems with the mesh topology do not occur. Therefore, axisymmetric
settings have been frequently used for numerical computations of surface evolutions.
For example, graph formulations for axisymmetric geometric evolution laws have
been considered in [15,17,19], while a finite difference approximation of a parametric
description for the evolution of general axisymmetric surfaces has been studied in [39].
Hence the latter is closely related to the presented work, although we stress that it does
not contain any numerical analysis.Moreover, alsomore complex problems such as for
example two phase flows or biomembranes, in which also curvature effects play a role,
have been treated in an axially symmetric setting. We refer to [16,26,30,44,45], and
we expect that our approach will have an impact on such more complex evolutions as
well. In terms of the numerical analysis for the approximation of axisymmetric surface
evolutions only very few results have appeared in the literature so far, see e.g. [17,19]
in the context of a graph formulation for the higher order curvature flows surface
diffusion and Willmore flow, respectively. To the best of our knowledge, our paper
contains the first stability results for fully discrete approximations of axisymmetric
mean curvature flow. In addition, we consider the numerical analysis of approxima-
tions for axisymmetric higher order flows, such as surface diffusion and Willmore
flow, in the recently appeared article [11].

Thepresent authors in the last 10years introducedparametricfinite elementmethods
for geometric evolution equations which have the property that the mesh generically
behaves well during the evolution. We also refer to the recent work [23] for a method
which also leads to good meshes. This is an advantage compared to earlier front
tracking approaches in which often the meshes degenerated during the evolution such
that the computations had to be stopped. In a series of papers [5–9], we were able to
analyzemesh properties and showed stability results. In particular, in two dimensions a
semi-discrete version of themethod led to equidistribution ofmesh points. In this paper
we introduce a parametric finite element method for the axisymmetric formulations of
the surface evolution equations discussed above relying on ideas of our earlier work.
However, a lot of new techniques have to be introduced stemming partly from the fact
that close to the axis of rotation the equations, depending on the formulation, become
either singular or degenerate, and partly because one has to decide how to deal with the
equidistribution property. We will discuss several ways to handle these issues and will
show stability, equidistribution, existence and uniqueness results for the new schemes.

This paper is organised as follows. In Sect. 2 we introduce several weak formula-
tionswhichwill be crucial for the parametric finite element approximations introduced
later. In Sect. 3 we derive semidiscrete, i.e. continuous-in-time discrete in space dis-
cretizations, and discuss stability and equidistribution properties. Section 4 is devoted
to the fully discrete schemes that turn out to be most practical. For the linear schemes
we prove existence and uniqueness results, while a stability result can be shown for a
mildly nonlinear discretization. Additional fully discrete variants, and some of their
properties, are summarized in “Appendix C”. Finally, we present several numerical
results demonstrating that the majority of the schemes lead to efficient, reliable results
for mean curvature flow as well as for fully nonlinear curvature flows including its
mass preserving variants.
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Variational discretization of axisymmetric curvature flows 795

2 Weak formulations

Let R/Z be the periodic interval [0, 1], and set

I = R/Z, with ∂ I = ∅, or I = (0, 1), with ∂ I = {0, 1}.

We consider the axisymmetric situation, where �x(t): I → R
2 is a parameterization

of Γ (t). Throughout Γ (t) represents the generating curve of a surface S (t) that is
axisymmetric with respect to the x2-axis, see Fig. 1. In particular, on defining

�Π3
3 (r , z, θ) = (r cos θ, z, r sin θ)T for r ∈ R≥0, z ∈ R, θ ∈ [0, 2π ]

and
Π3

2 (r , z) = { �Π3
3 (r , z, θ): θ ∈ [0, 2π)},

we have that
S (t) =

⋃
(r ,z)T ∈Γ (t)

Π3
2 (r , z) =

⋃
ρ∈I

Π3
2 (�x(ρ, t)). (2.1)

Here we allow Γ (t) to be either a closed curve, parameterized over R/Z, which
corresponds to S (t) being a genus-1 surface without boundary. Or Γ (t) may be
an open curve, parameterized over [0, 1]. Then Γ (t) has two endpoints, and each
endpoint can either correspond to an interior point of S (t), or to a boundary circle
of S (t). Endpoints of Γ (t) that correspond to an interior point of the surface S (t)
are attached to the x2-axis, on which they can freely move up and down. For example,
if both endpoints of Γ (t) are attached to the x2-axis, then S (t) is a genus-0 surface
without boundary. If only one end of Γ (t) is attached to the x2-axis, then S (t) is
an open surface with boundary, where the boundary consists of a single connected

e1

e2

Γ

e1

e3
e2

Fig. 1 Sketch of Γ andS , as well as the unit vectors �e1, �e2 and �e3
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Table 1 The different types of
boundary nodes enforced by
(2.2b)–(2.2d)

∂ I ∂Γ ∂S

∂0I
e1

e2 N/A

∂DI
e1

e2

∂1I
e1

e2

∂2I
e1

e2

component. If no endpoint of Γ (t) is attached to the x2-axis, then S (t) is an open
surface with boundary, where the boundary consists of two connected components.

In particular, we always assume that, for all t ∈ [0, T ],

�x(ρ, t) · �e1 > 0 ∀ ρ ∈ I\∂0 I , (2.2a)

�x(ρ, t) · �e1 = 0 ∀ ρ ∈ ∂0 I , (2.2b)

�xt (ρ, t) · �ei = 0 ∀ ρ ∈ ∂i I , i = 1, 2, (2.2c)

�xt (ρ, t) = �0 ∀ ρ ∈ ∂D I , (2.2d)

where ∂D I ∪⋃2
i=0 ∂i I = ∂ I is a disjoint partitioning of ∂ I , with ∂0 I denoting the

subset of boundary points of I that correspond to endpoints of Γ (t) attached to the
x2-axis. Moreover, ∂D I ∪⋃2

i=1 ∂i I denotes the subset of boundary points of I that
model components of the boundary of S (t). Here endpoints in ∂D I correspond to
fixed boundary circles of S (t), that lie within a hyperplane parallel to the x1 − x3-
plane R × {0} × R. Endpoints in ∂1 I correspond to boundary circles of S (t) that
can move freely along the boundary of an infinite cylinder that is aligned with the
axis of rotation. Endpoints in ∂2 I correspond to boundary circles of S (t) that can
expand/shrink freely within a hyperplane parallel to the x1 − x3-plane R × {0} × R.
See Table 1 for a visualization of the different types of boundary nodes.
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Variational discretization of axisymmetric curvature flows 797

On assuming that
|�xρ | ≥ c0 > 0 ∀ ρ ∈ I , (2.3)

we introduce the arclength s of the curve, i.e. ∂s = |�xρ |−1 ∂ρ , and set

�τ(ρ, t) = �xs(ρ, t) = �xρ(ρ, t)

|�xρ(ρ, t)| and �ν(ρ, t) = −[�τ(ρ, t)]⊥, (2.4)

where (·)⊥ denotes a clockwise rotation by π
2 .

On recalling (2.1), we observe that the normal �nS on S (t) is given by

�nS ( �Π3
3 (�x(ρ, t), θ)) =

⎛
⎝(�ν(ρ, t) · �e1) cos θ

�ν(ρ, t) · �e2
(�ν(ρ, t) · �e1) sin θ

⎞
⎠ for ρ ∈ I , t ∈ [0, T ], θ ∈ [0, 2π). (2.5)

Similarly, the normal velocity VS of S (t) in the direction �nS is given by

VS = �xt (ρ, t) · �ν(ρ, t) on Π3
2 (�x(ρ, t)) ⊂ S (t), ∀ ρ ∈ I , t ∈ [0, T ]. (2.6)

For the curvature κ of Γ (t) it holds that

κ �ν = �κ = �τs = 1

|�xρ |
[ �xρ

|�xρ |
]

ρ

. (2.7)

An important role in this paper is played by the surface area of the surface S (t),
which is equal to

H 2(S (t)) = A(�x(t)) = 2π

∫
I
�x(ρ, t) · �e1 |�xρ(ρ, t)| dρ. (2.8)

Often the surface area, A(�x(t)), will play the role of the free energy in our paper.
But for an open surface S (t), with boundary ∂S (t), we consider contact energy
contributions which are discussed in [24], see also [9, (2.21)]. In the axisymmetric
setting the relevant energy is given by

E(�x(t)) = A(�x(t))+2π
∑
p∈∂1 I

ρ̂
(p)
∂S (�x(p, t) · �e1) �x(p, t) · �e2 +π

∑
p∈∂2 I

ρ̂
(p)
∂S (�x(p, t) · �e1)2,

(2.9)
where we recall from (2.2c) that, for i = 1, 2, either ∂i I = ∅, {0}, {1} or {0, 1}. In
the above ρ̂

(p)
∂S ∈ R, for p ∈ {0, 1}, are given constants. Here ρ̂

(p)
∂S , for p ∈ ∂1 I ,

denotes the change in contact energy density in the direction of − �e2, that the two
phases separated by the interfaceS (t) have with the infinite cylinder at the boundary
circle ofS (t) represented by �x(p, t). Similarly, ρ̂(p)

∂S , for p ∈ ∂2 I , denotes the change
in contact energy density in the direction of − �e1, that the two phases separated by
the interface S (t) have with the hyperplane R × {0} × R at the boundary circle of
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798 J. W. Barrett et al.

S (t) represented by �x(p, t). These changes in contact energy lead to the contact angle
conditions

(−1)p �τ(p, t) · �e2 = ρ̂
(p)
∂S p ∈ ∂1 I , (2.10a)

(−1)p �τ(p, t) · �e1 = ρ̂
(p)
∂S p ∈ ∂2 I , (2.10b)

for all t ∈ (0, T ]. In most cases, the contact energies are assumed to be the same,
so that ρ̂

(0)
∂S = ρ̂

(1)
∂S = 0, which leads to 90◦ contact angle conditions in (2.10a, b),

and means that (2.9) collapses to (2.8). See [9] for more details on contact angles and
contact energies. We note that a necessary condition to admit a solution to (2.10a) or
to (2.10b) is that

|ρ̂(p)
∂S | ≤ 1 p ∈ {0, 1}. (2.11)

In addition, we observe that the energy (2.9) is not bounded from below if ρ̂
(p)
∂S �= 0

for p ∈ ∂1 I or if ρ̂
(p)
∂S < 0 for p ∈ ∂2 I .

For later use we note that

d

dt
E(�x(t)) = 2π

∫
I

[
�xt · �e1 + �x · �e1 (�xt )ρ · �xρ

|�xρ |2
]

|�xρ | dρ

+ 2π
∑
p∈∂1 I

ρ̂
(p)
∂S

[
(�xt (p, t) · �e1) �x(p, t) · �e2 + (�x(p, t) · �e1) �xt (p, t) · �e2

]

+ 2π
∑
p∈∂2 I

ρ̂
(p)
∂S (�x(p, t) · �e1) �xt (p, t) · �e1. (2.12)

Moreover, we recall that expressions for the mean curvature and the Gauss curvature
of S (t) are given by

κS = κ − �ν · �e1
�x · �e1 and KS = −κ

�ν · �e1
�x · �e1 on I , (2.13)

respectively; see e.g. [16, (6)]. More precisely, if km and kg denote the mean and Gauss
curvatures of S (t), then

km = κS (ρ, t) and kg = KS (ρ, t) on Π3
2 (�x(ρ, t)) ⊂ S (t), ∀ ρ ∈ I , t ∈ [0, T ].

In the literature, the two terms making up κS in (2.13) are often referred to as in-
plane and azimuthal curvatures, respectively, with their sum being equal to the mean
curvature. We note that combining (2.13) and (2.7) yields that

κS �ν = �xss − �ν · �e1
�x · �e1 �ν = 1

|�xρ |
[ �xρ

|�xρ |
]

ρ

− �ν · �e1
�x · �e1 �ν. (2.14)

It follows from (2.14) and (2.4) that

�x · �e1 κS �ν = (�x · �e1) �xss − (�ν · �e1) �ν = ((�x · �e1) �xs)s − �e1. (2.15)

123



Variational discretization of axisymmetric curvature flows 799

Aweak formulation of (2.15)will form the basis of our stable approximations formean
curvature flow and surface diffusion. Clearly, for a smooth surface with boundedmean
curvature it follows from (2.14) that

�ν(ρ, t) · �e1 = 0 ∀ ρ ∈ ∂0 I , ∀ t ∈ [0, T ], (2.16)

which, on recalling (2.4), is clearly equivalent to

�xρ(ρ, t) · �e2 = 0 ∀ ρ ∈ ∂0 I , ∀ t ∈ [0, T ]. (2.17)

A precise derivation of (2.17) in the context of a weak formulation of (2.14) will be
given in the “Appendix A”.

2.1 Mean curvature flow

In terms of the axisymmetric description of S (t), the evolution law (1.1) can be
written as

�xt · �ν = κS = κ − �ν · �e1
�x · �e1 on I , (2.18a)

with, on recalling (2.2b–d),

�xt (ρ, t) · �e1 = 0 ∀ ρ ∈ ∂0 I , �xt (ρ, t) · �ei = 0 ∀ ρ ∈ ∂i I , i = 1, 2,

�xt (ρ, t) = �0 ∀ ρ ∈ ∂D I , ∀ t ∈ [0, T ], (2.18b)

as well as (2.17) and (2.10a, b).
Let

V ∂0
=
{
�η ∈ [H1(I )]2: �η(ρ) · �e1 = 0 ∀ ρ ∈ ∂0 I

}
,

V ∂ =
{
η ∈ V ∂0

: �η(ρ) · �ei = 0 ∀ ρ ∈ ∂i I , i = 1, 2, �η(ρ) = �0 ∀ ρ ∈ ∂D I
}

.

Then we consider the following weak formulation of (2.18a, b), on recalling (2.7).
(A ) Let �x(0) ∈ V ∂0

. For t ∈ (0, T ] find �x(t) ∈ [H1(I )]2, with �xt (t) ∈ V ∂ , and
κ(t) ∈ L2(I ) such that
∫
I

�xt · �ν χ |�xρ | dρ =
∫
I

(
κ − �ν · �e1

�x · �e1
)

χ |�xρ | dρ ∀ χ ∈ L2(I ), (2.19a)

∫
I

κ �ν · �η |�xρ | dρ +
∫
I
(�xρ · �ηρ) |�xρ |−1 dρ = −

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S �η(p) · �e3−i ∀ �η ∈ V ∂ .

(2.19b)

We note that (2.19b) weakly imposes (2.17) and (2.10a, b). We observe that (2.18a)
degenerates for �x · �e1 = 0, i.e. when ρ ∈ ∂0 I . Hence this degeneracy is balanced by
the condition (2.16). In fact, on recalling (2.7) it holds that
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lim
ρ→ρ0

�ν(ρ, t) · �e1
�x(ρ, t) · �e1 = lim

ρ→ρ0

�νρ(ρ, t) · �e1
�xρ(ρ, t) · �e1 = �νs(ρ0, t) · �τ(ρ0, t) = −κ(ρ0, t)

∀ ρ0 ∈ ∂0 I , ∀ t ∈ [0, T ].
(2.20)

We remark that the weak formulation (A ) is close in spirit to the weak formulations
introduced in [5,7] for mean curvature flow. In particular, the tangential component of
�xt is not prescribed, which on the discrete level leads to an equidistribution property.

Choosing �η = (�x · �e1) �xt ∈ V ∂ in (2.19b) and χ = (�x · �e1) (�xt · �ν) in (2.19a), we
obtain on recalling (2.12), �xt ∈ V ∂ , (2.4) and (2.2a) that

d

dt
E(�x(t))

= 2π

∫
I

[
�xt · �e1 + �x · �e1 (�xt )ρ · �xρ

|�xρ |2
]

|�xρ | dρ + 2π

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S (�x(p, t) · �e1) �xt (p, t) · �e3−i

= 2π

∫
I
�xt .
[�e1 − (�e1 · �τ) �τ ] |�xρ | dρ − 2π

∫
I
(�x · �e1) κ �ν · �xt |�xρ | dρ

= 2π

∫
I
(�xt · �ν) �e1 · �ν |�xρ | dρ − 2π

∫
I
(�x · �e1) κ �xt · �ν |�xρ | dρ

= −2π

∫
I
�x · �e1

[
κ − �ν · �e1

�x · �e1
]

�xt · �ν |�xρ | dρ = −2π

∫
I
�x · �e1 (�xt · �ν)2 |�xρ | dρ ≤ 0. (2.21)

An alternative strong formulation of mean curvature flow, in the axisymmetric
setting, to (2.18a) is given by

�xt = �κ − �ν · �e1
�x · �e1 �ν, (2.22)

with (2.18b), where we have recalled (2.7). We consider the following weak formula-
tion of (2.22).

(B) Let �x(0) ∈ V ∂0
. For t ∈ (0, T ] find �x(t) ∈ [H1(I )]2, with �xt (t) ∈ V ∂ , and

�κ(t) ∈ [L2(I )]2 such that
∫
I
�xt · �χ |�xρ | dρ =

∫
I

(
�κ · �χ − �ν · �e1

�x · �e1 �ν · �χ
)

|�xρ | dρ ∀ �χ ∈ [L2(I )]2, (2.23a)

∫
I

�κ · �η |�xρ | dρ +
∫
I
(�xρ · �ηρ) |�xρ |−1 dρ = −

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S �η(p) · �e3−i ∀ �η ∈ V ∂ .

(2.23b)

Similarly to (2.19b), we observe that (2.23b) weakly imposes (2.17) and (2.10a, b).
We remark that the weak formulation (B) in some sense is close in spirit to the weak
formulations introduced in [20,21] formean curvature flow. In particular, the tangential
component of �xt is fixed to be zero, as the right hand side of (2.23a) is normal, recall
(2.7).
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Choosing �χ = �η = (�x · �e1) �xt ∈ V ∂ in (2.23a, b), we obtain, similarly to (2.21),
that

d

dt
E(�x(t))

= 2π

∫
I

[
�xt · �e1 + �x · �e1 (�xt )ρ · �xρ

|�xρ |2
]

|�xρ | dρ + 2π

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S (�x(p, t) · �e1) �xt (p, t) · �e3−i

= 2π

∫
I
(�xt · �ν) �e1 · �ν |�xρ | dρ − 2π

∫
I
(�x · �e1) �κ · �xt |�xρ | dρ

= −2π

∫
I
�x · �e1

[
�κ − �ν · �e1

�x · �e1 �ν
]

· �xt |�xρ | dρ = −2π

∫
I
�x · �e1 |�xt |2|�xρ | dρ ≤ 0. (2.24)

We remark that it does not appear possible to mimic either (2.21) for (A ) or (2.24)
for (B) on the discrete level. Hence, in order to develop stable approximations, we
investigate alternative formulations based on (2.15). The first formulation corresponds
to the strong formulation (�x · �e1) �xt · �ν = �x · �e1 κS , together with (2.15).

(C ) Let �x(0) ∈ V ∂0
. For t ∈ (0, T ] find �x(t) ∈ [H1(I )]2, with �xt (t) ∈ V ∂ , and

κS (t) ∈ L2(I ) such that

∫
I
(�x · �e1) �xt · �ν χ |�xρ | dρ =

∫
I
�x · �e1 κS χ |�xρ | dρ ∀ χ ∈ L2(I ), (2.25a)

∫
I
�x · �e1 κS �ν · �η |�xρ | dρ +

∫
I

[
�η · �e1 + �x · �e1 �xρ · �ηρ

|�xρ |2
]

|�xρ | dρ

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S (�x(p, t) · �e1) �η(p) · �e3−i ∀ �η ∈ V ∂ . (2.25b)

The second formulation corresponds to the strong formulation (�x · �e1) �xt = �x · �e1 �κS ,
where �κS = κS �ν, together with (2.15).

(D) Let �x(0) ∈ V ∂0
. For t ∈ (0, T ] find �x(t) ∈ [H1(I )]2, with �xt (t) ∈ V ∂ , and

�κS (t) ∈ [L2(I )]2 such that

∫
I
(�x · �e1) �xt · �χ |�xρ | dρ =

∫
I
(�x · �e1) �κS · �χ |�xρ | dρ ∀ �χ ∈ [L2(I )]2, (2.26a)

∫
I
(�x · �e1) �κS · �η |�xρ | dρ +

∫
I

[
�η · �e1 + �x · �e1 �xρ · �ηρ

|�xρ |2
]

|�xρ | dρ

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S (�x(p, t) · �e1) �η(p) · �e3−i ∀ �η ∈ V ∂ . (2.26b)

We note that the variational formulation for �κS in (2.26b) has previously been
employed in [26, p. 124].
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Choosing �η = �xt ∈ V ∂ in (2.25b) and χ = κS in (2.25a), we obtain for the
formulation (C ), on recalling (2.12), that

− 1

2π

d

dt
E(�x(t)) =

∫
I

�x · �e1 |κS |2 |�xρ | dρ =
∫
I

�x · �e1 (�xt · �ν)2 |�xρ | dρ ≥ 0. (2.27)

Similarly, choosing �η = �xt ∈ V ∂ in (2.26b) and �χ = �κS in (2.26a), we obtain for
the formulation (D) that

− 1

2π

d

dt
E(�x(t)) =

∫
I

�x · �e1 | �κS |2 |�xρ | dρ =
∫
I

�x · �e1 |�xt |2 |�xρ | dρ ≥ 0. (2.28)

We observe that (2.25b) and (2.26b) weakly impose (2.10a, b). But, in contrast to
(2.19b) and (2.23b), it is not obvious that they also weakly impose (2.17), due to the
presence of the degenerate weight �x · �e1. However, we show in the “Appendix A” that
in fact they also weakly impose (2.17).

We also note that the formulation (C ) is loosely related to (A ), in the sense that the
tangential component of �xt is not prescribed. But in contrast to (A ), discretizations
of (C ) cannot be shown to have an equidistribution property. In a similar way, the
formulation (D) is loosely related to (B), in the sense that the velocity �xt is purely
in the normal direction, recall (2.15) and (2.7). Finally, we observe that the variable
κS can be eliminated from (C ), by choosing χ = �ν · �η in (2.25a) for �η ∈ V ∂ , and
then combining (2.25a) and (2.25b). Similarly, �κS can be eliminated from (D) by
choosing �χ = �η in (2.26a) for �η ∈ V ∂ , and then combining (2.26a) and (2.26b). We
remark that the formulation (C ), with the variable κS , as well as the formulation
(A ), are useful with a view towards introducing numerical approximations of higher
order flows, such as surface diffusion, see [11].

2.2 Nonlinear mean curvature flow

It is a simple matter to extend the formulations (A ) and (C ) to the nonlinear flow
(1.2). In principle this can also be achieved for (B) and (D), but as the mean curvature
needs to be recovered from the mean curvature vector, the resulting formulations are
less natural. Hence we concentrate on (A ) and (C ). For the former, replacing the right
hand side in (2.19a) with

∫
I f (κ− �ν· �e1�x · �e1 ) χ |�xρ | dρ yields a weak formulation for (1.2),

which we call (A f ). Similarly, replacing κS with f (κS ) in (2.25a) generalizes (C )

to (C f ) for (1.2).
Similarly to (2.27), and using the same choices of �η and χ , it can be shown that

solutions to (C f ) satisfy

− 1

2π

d

dt
E(�x(t)) =

∫
I
�x · �e1 f (κS ) κS |�xρ | dρ, (2.29)

which yields stability if f is monotonically increasing with f (0) = 0.
Finally, we may also generalize these nonlinear formulations to the volume pre-

serving flow (1.3).
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(A f ,V ) Let �x(0) ∈ V ∂0
. For t ∈ (0, T ] find �x(t) ∈ [H1(I )]2, with �xt (t) ∈ V ∂ ,

and κ(t) ∈ L2(I ) such that

∫
I
�xt · �ν χ |�xρ | dρ =

∫
I
f

(
κ − �ν · �e1

�x · �e1
)

χ |�xρ | dρ

−
∫
I �x · �e1 f (κ − �ν· �e1�x · �e1 ) |�xρ | dρ∫

I �x · �e1 |�xρ | dρ
∫
I
χ |�xρ | dρ ∀ χ ∈ L2(I ), (2.30a)

∫
I
κ �ν · �η |�xρ | dρ +

∫
I
(�xρ · �ηρ) |�xρ |−1 dρ = −

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S �η(p) · �e3−i ∀ �η ∈ V ∂ .

(2.30b)

Choosing χ = 2π �x · �e1 in (2.30a) yields, on recalling (1.5), that

± d

dt
L 3(Ω(t)) =

∫
S (t)

VS dH 2 = 2π

∫
I
(�x · �e1) �xt · �ν |�xρ | dρ = 0, (2.31)

where S (t) = ∂Ω(t), and where the sign in (2.31) depends on whether �nS is the
outer or inner normal to Ω(t) on S (t), recall (2.5) and (2.6).

(C f ,V ) Let �x(0) ∈ V ∂0
. For t ∈ (0, T ] find �x(t) ∈ [H1(I )]2, with �xt (t) ∈ V ∂ , and

κS (t) ∈ L2(I ) such that

∫
I
(�x · �e1) �xt · �ν χ |�xρ | dρ =

∫
I
�x · �e1 f (κS ) χ |�xρ | dρ

−
∫
I �x · �e1 f (κS ) |�xρ | dρ∫

I �x · �e1 |�xρ | dρ
∫
I
�x · �e1 χ |�xρ | dρ ∀ χ ∈ L2(I ), (2.32a)

∫
I
�x · �e1 κS �ν · �η |�xρ | dρ +

∫
I

[
�η · �e1 + �x · �e1 �xρ · �ηρ

|�xρ |2
]

|�xρ | dρ

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S (�x(p, t) · �e1) �η(p) · �e3−i ∀ �η ∈ V ∂ . (2.32b)

Choosing χ = 2π in (2.32a) yields (2.31), as before. Moreover, and similarly to
(2.29), it can be shown for solutions of (C f ,V ) in the case (1.4c) that

− 1

2π

d

dt
E(�x(t)) =

∫
I
�x · �e1 |κS |2 |�xρ | dρ −

[∫
I
�x · �e1 |�xρ | dρ

]−1 ∣∣∣∣
∫
I
�x · �e1 κS |�xρ | dρ

∣∣∣∣
2

≥ 0, (2.33)

where we have noted the Cauchy–Schwarz inequality. It does not appear possible to
extend the stability result (2.33) to the case of more general f .
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3 Semidiscrete schemes

Let [0, 1] =⋃J
j=1 I j , J ≥ 3, be a decomposition of [0, 1] into intervals given by the

nodes q j , I j = [q j−1, q j ]. For simplicity, and without loss of generality, we assume
that the subintervals form an equipartitioning of [0, 1], i.e. that

q j = j h, with h = J−1, j = 0, . . . , J . (3.1)

Clearly, if I = R/Z we identify 0 = q0 = qJ = 1.
The necessary finite element spaces are given by

V h = {χ ∈ C(I ):χ |I j is linear ∀ j = 1 → J
}
,

V h = [V h]2, V h
∂0

= V h ∩ V ∂0
and V h

∂ = V h ∩ V ∂ . Let {χ j }Jj= j0
denote the standard

basis of V h , where j0 = 0 if I = (0, 1) and j0 = 1 if I = R/Z. For later use, we
let πh :C(I ) → V h be the standard interpolation operator at the nodes {q j }Jj=0. We

extend πh to �πh for vector valued functions. Let (·, ·) denote the L2-inner product on
I , and define the mass lumped L2-inner product ( f , g)h , for two piecewise continuous
functions, with possible jumps at the nodes {q j }Jj=1, via

( f , g)h = 1
2 h

J∑
j=1

[
( f g)(q−

j ) + ( f g)(q+
j−1)

]
, (3.2)

where we define f (q±
j ) = limδ↘0 f (q j ± δ). The definition (3.2) naturally extends

to vector valued functions. It is easily shown that

(η, η) ≤ (η, η)h ≤ 3 (η, η) ∀ η ∈ V h . (3.3)

Let ( �Xh(t))t∈[0,T ], with �Xh(t) ∈ V h
∂0
, be an approximation to (�x(t))t∈[0,T ] and

define Γ h(t) = �Xh(t)(I ). Throughout this section we assume that

�Xh(ρ, t) · �e1 > 0 ∀ ρ ∈ I\∂0 I , ∀ t ∈ [0, T ]. (3.4)

Assuming that | �Xh
ρ | > 0 almost everywhere on I , and similarly to (2.4), we set

�τ h = �Xh
s =

�Xh
ρ

| �Xh
ρ | and �νh = −(�τ h)⊥.

We note that

(�τ h, (�πh[χ �η])ρ) = (�τ h, (χ �η)ρ) ∀ χ ∈ C(I ), �η ∈ [C(I )]2. (3.5)

For later use, we let �ωh ∈ V h be the mass-lumped L2-projection of �νh onto V h , i.e.

(
�ωh, �ϕ | �Xh

ρ |
)h =

(
�νh, �ϕ | �Xh

ρ |
)

=
(
�νh, �ϕ | �Xh

ρ |
)h ∀ �ϕ ∈ V h . (3.6)
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Recall from (2.8) and (2.9) that

E( �Xh(t)) = 2π
( �Xh(t) · �e1, | �Xh

ρ(t)|
)

+ 2π
∑
p∈∂1 I

ρ̂
(p)
∂S ( �Xh(p, t) · �e1) �Xh(p, t) · �e2 + π

∑
p∈∂2 I

ρ̂
(p)
∂S ( �Xh(p, t) · �e1)2.

(3.7)

We have, similarly to (2.12), that

d

dt
E( �Xh(t)) = 2π

([
�Xh
t · �e1 + �Xh · �e1

( �Xh
t )ρ · �Xh

ρ

| �Xh
ρ |2

]
, | �Xh

ρ |
)

+ 2π
∑
p∈∂1 I

ρ̂
(p)
∂S

[
( �Xh

t (p, t) · �e1) �Xh(p, t) · �e2 + ( �Xh(p, t) · �e1) �Xh
t (p, t) · �e2

]

+ 2π
∑
p∈∂2 I

ρ̂
(p)
∂S ( �Xh(p, t) · �e1) �Xh

t (p, t) · �e1. (3.8)

3.1 Mean curvature flow

In view of the degeneracy on the right hand side of (2.18a), and on recalling (2.20)
and (3.6), we introduce, given a κh(t) ∈ V h , the function Kh(κh(t), t) ∈ V h such that

[Kh(κh(t), t)](q j ) =

⎧⎪⎨
⎪⎩

�ωh(q j , t) · �e1
�Xh(q j , t) · �e1

q j ∈ I\∂0 I ,
−κh(q j , t) q j ∈ ∂0 I .

(3.9)

Our semidiscrete finite element approximation of (A ), (2.19a, b), is given as fol-
lows.

(Ah)
h Let �Xh(0) ∈ V h

∂0
. For t ∈ (0, T ] find �Xh(t) ∈ V h , with �Xh

t (t) ∈ V h
∂ , and

κh(t) ∈ V h such that
( �Xh

t , χ �νh | �Xh
ρ |
)h =

(
κh − Kh(κh), χ | �Xh

ρ |
)h ∀ χ ∈ V h, (3.10a)

(
κh �νh, �η | �Xh

ρ |
)h +

( �Xh
ρ, �ηρ | �Xh

ρ |−1
)

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S �η(p) · �e3−i ∀ �η ∈ V h

∂ .

(3.10b)

Remark 3.1 Let �h j (t) = �Xh(q j , t) − �Xh(q j−1, t) for j = 1, . . . , J , and set �h0 = �hJ

if ∂ I = ∅. Then, if ( �Xh(t), κh(t)) ∈ V h × V h satisfies (3.10b), it holds that

|�h j (t)| = |�h j−1(t)| if �h j (t) ∦ �h j−1(t)

{
j = 1, . . . , J ∂ I = ∅,

j = 2, . . . , J ∂ I �= ∅.
(3.11)

The equidistribution property (3.11) can be shown by choosing �η = χ j−1
[ �ωh(q j−1, t)]⊥ ∈ V h

∂ in (3.10b), recall (3.6). See also [6, Remark 2.4] and
[5, Remark 2.5] for more details.

123



806 J. W. Barrett et al.

We also remark that it follows from (3.6) that

| �ωh(q j−1, t)| < 1 if �h j (t) ∦ �h j−1(t)

{
j = 1, . . . , J ∂ I = ∅,

j = 2, . . . , J ∂ I �= ∅.
(3.12)

We note that mass lumping in (3.10b) is crucial for the proof of the equidistribution
property (3.11). Hence we only consider the variant (Ah)

h with mass lumping. Of
course, in the case ∂0 I = ∅, an alternative scheme to (3.10a, b) is

( �Xh
t , χ �νh | �Xh

ρ |
)h =

(
κh − �νh · �e1

�Xh · �e1
, χ | �Xh

ρ |
)h

∀ χ ∈ V h, (3.13)

together with (3.10b). Note that if ∂0 I = ∅ then (3.10a) collapses to (3.13) with �νh
replaced by �ωh . Unfortunately, neither choice appears to lead to a stability proof.

In an attempt to prove stability, we choose �η = �πh[( �Xh · �e1) �Xh
t ] in (3.10b). Then

it follows from (3.8), �Xh
t ∈ V h

∂ , (3.5) and (3.6) that

d

dt
E( �Xh(t)) = 2π

([
�Xh
t · �e1 + �Xh · �e1

( �Xh
t )ρ · �Xh

ρ

| �Xh
ρ |2

]
, | �Xh

ρ |
)

+ 2π

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S ( �Xh(p, t) · �e1) �Xh

t (p, t) · �e3−i .

= 2π
( �Xh

t ,
[
�e1 − (�e1 · �τ h) �τ h

]
| �Xh

ρ |
)

− 2π
( �Xh · �e1 κh �νh, �Xh

t | �Xh
ρ |
)h

= 2π
( �Xh

t · �νh, �e1 · �νh | �Xh
ρ |
)

− 2π
( �Xh · �e1 κh, �Xh

t · �νh | �Xh
ρ |
)h

= 2π
( �Xh

t · �νh, �e1 · �νh | �Xh
ρ |
)h − 2π

( �Xh · �e1 κh, �Xh
t · �νh | �Xh

ρ |
)h

= −2π

(
�Xh · �e1

[
κh − �νh · �e1

�Xh · �e1

]
, �Xh

t · �νh | �Xh
ρ |
)h

= −2π
( �Xh · �e1, κh �Xh

t · �ωh | �Xh
ρ |
)h + 2π

(
�νh · �e1, �Xh

t · �νh | �Xh
ρ |
)h

.

(3.14)

Moreover, considering for simplicity the case ∂0 I = ∅, and choosing
χ = −πh[2π ( �Xh · �e1) ( �Xh

t · �ωh)] in (3.13) yields, on noting (3.6), that

0 ≥ −2π
( �Xh · �e1, ( �Xh

t · �ωh)2 | �Xh
ρ |
)h = −2π

(
�Xh · �e1

[
κh − �ωh · �e1

�Xh · �e1

]
, �Xh

t · �ωh | �Xh
ρ |
)h

= −2π
( �Xh · �e1, κh �Xh

t · �ωh | �Xh
ρ |
)h + 2π

(
�ωh · �e1, �Xh

t · �ωh | �Xh
ρ |
)h

= −2π
( �Xh · �e1, κh �Xh

t · �ωh | �Xh
ρ |
)h + 2π

(
�νh · �e1, �Xh

t · �ωh | �Xh
ρ |
)h

. (3.15)
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Unfortunately, the right hand sides in (3.14) and (3.15) are not equal, recall (3.6), and
so combining (3.14) and (3.15) does not yield a stability result. On the other hand, the
function ( �Xh · �e1) ( �Xh

t · �νh) is discontinuous, and so πh[( �Xh · �e1) ( �Xh
t · �νh)] is not

well-defined, and cannot be chosen as a test function in (3.10a) or (3.13).
However, the fully discrete variant of (Ah)

h , (3.10a, b), in our numerical simulations
did not exhibit any stability issues.

A semidiscrete approximation of (B), (2.23a, b), is given as follows.
(Bh)

h Let �Xh(0) ∈ V h
∂0
. For t ∈ (0, T ] find �Xh(t) ∈ V h , with �Xh

t (t) ∈ V h
∂ , and

�κh(t) ∈ V h , such that

( �Xh
t , �χ | �Xh

ρ |
)h =

(
�κh − �Kh(�κh), �χ | �Xh

ρ |
)h ∀ �χ ∈ V h, (3.16a)

(
�κh, �η | �Xh

ρ |
)h +

( �Xh
ρ, �ηρ | �Xh

ρ |−1
)

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S �η(p) · �e3−i ∀ �η ∈ V h

∂ ,

(3.16b)

where �Kh(�κh) ∈ V h is such that

[�Kh(�κh(t), t))](q j ) =

⎧⎪⎨
⎪⎩

�ωh(q j , t) · �e1
�Xh(q j , t) · �e1

�ωh(q j , t)

| �ωh(q j , t)|2 q j ∈ I\∂0 I ,
−�κh(q j , t) q j ∈ ∂0 I .

(3.17)

The rescaling factor | �ωh(q j , t)|2 in (3.17) normalizes the discrete vertex normals
�ωh(q j , t), recall (3.12), which is the most natural approach. Similarly to (Ah)

h , it
does not appear possible to prove a stability result for (Bh)

h .
However, it turns out that approximations of the formulations (C ) and (D) can be

shown to be stable. In particular, our semidiscrete approximations of (C ), (2.25a, b),
and (D), (2.26a, b), are given as follows, where we first define

Wh = V h, Wh
∂0

=
{
χ ∈ V h :χ(ρ) = 0 ∀ ρ ∈ ∂0 I

}
, Wh = V h, Wh

∂0
= [Wh

∂0
]2.

(Ch)
(h) Let �Xh(0) ∈ V h

∂0
. For t ∈ (0, T ] find �Xh(t) ∈ V h , with �Xh

t (t) ∈ V h
∂ , and

κh
S (t) ∈ Wh

(∂0)
such that

(
( �Xh · �e1) �Xh

t , χ �νh | �Xh
ρ |
)(h) =

( �Xh · �e1 κh
S , χ | �Xh

ρ |
)(h) ∀ χ ∈ Wh

(∂0)
,

(3.18a)( �Xh · �e1 κh
S �νh, �η | �Xh

ρ |
)(h) +

(
�η · �e1, | �Xh

ρ |
)

+
(
( �Xh · �e1) �Xh

ρ, �ηρ | �Xh
ρ |−1

)

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S ( �Xh(p, t) · �e1) �η(p) · �e3−i ∀ �η ∈ V h

∂ . (3.18b)
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Here and throughout we use the notation ·(h) to denote an expression with or without
the superscript h, and similarly for the subscripts ·(∂0). I.e. the scheme (Ch)

h employs
mass lumping, recall (3.2), and seeks κS(t) ∈ Wh

∂0
, while the scheme (Ch) employs

true integration throughout and seeks κS(t) ∈ Wh = V h .
(Dh)

(h) Let �Xh(0) ∈ V h
∂0
. For t ∈ (0, T ] find �Xh(t) ∈ V h , with �Xh

t (t) ∈ V h
∂ , and

�κh
S (t) ∈ Wh

(∂0)
such that

(
( �Xh · �e1) �Xh

t , �χ | �Xh
ρ |
)(h) =

(
( �Xh · �e1) �κh

S , �χ | �Xh
ρ |
)(h) ∀ �χ ∈ Wh

(∂0)
, (3.19a)

(
( �Xh · �e1) �κh

S , �η | �Xh
ρ |
)(h) +

(
�η · �e1, | �Xh

ρ |
)

+
(
( �Xh · �e1) �Xh

ρ, �ηρ | �Xh
ρ |−1

)

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S ( �Xh(p, t) · �e1) �η(p) · �e3−i ∀ �η ∈ V h

∂ . (3.19b)

We observe that (Ch)
h and (Dh)

h do not depend on the values of κh
S and �κh

S , respec-
tively, on ∂0 I . Hence we fix these values to be zero by requiring that κh

S ∈ Wh
∂0

and

�κh
S ∈ Wh

∂0
, and by using a reduced set of test functions in (3.18a) and (3.19a). As a

consequence, it seems at first that �Xh
t is not defined on ∂0 I . However, �Xh on ∂0 I is

determined through (3.18b) and (3.19b), respectively.
We have on choosing χ = κh

S in (3.18a), �χ = �κh
S in (3.19a) and �η = �Xh

t in
(3.18b) and (3.19b), on recalling (3.8), that

− 1

2π

d

dt
E( �Xh(t)) =

⎧⎪⎨
⎪⎩

( �Xh · �e1 |κh
S |2, | �Xh

ρ |
)(h)

,( �Xh · �e1 |�κh
S |2, | �Xh

ρ |
)(h)

,

(3.20)

respectively. This shows that both methods are stable, where we recall (3.4). Similarly
to (2.28) and (2.27), we observe that (3.20) implies for (Dh)

(h) and (Ch)
h that

− 1

2π

d

dt
E( �Xh(t)) =

⎧⎪⎨
⎪⎩

( �Xh · �e1 | �Xh
t |2, | �Xh

ρ |
)(h)

,( �Xh · �e1 ( �Xh
t · �ωh)2, | �Xh

ρ |
)h

,

respectively, where we have recalled (3.6). This shows that they can be interpreted as
natural L2-gradient flows of (3.7).

We observe that it is possible to eliminate �κh
S from the schemes (Dh)

(h), which

yields (3.19b)with �κh
S replaced by �Xh

t . Similarly, κh
S can be removed from the scheme

(Ch)
h to yield (3.18b) with κh

S �νh replaced by ( �Xh
t · �ωh) �ωh , on recalling (3.6). For

the scheme (Ch) this elimination procedure is not possible.
For the reader’s convenience, Table 2 summarises the main properties of all the

schemes introduced in this section.
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Table 2 Properties of the
different semidiscrete schemes
for mean curvature flow

Scheme Stability proof Implicit tangential
motion

Equidistribution

(Ah)h No Yes Yes

(Bh)h No No No

(Ch)(h) Yes Yes No

(Dh)(h) Yes No No

3.2 Nonlinear mean curvature flow

Replacing κh − Kh(κh) with f (κh − Kh(κh)) in (3.10a) yields the scheme (A
f

h )h .

Similarly, the scheme (A
f ,V

h )h is given by (3.10a, b) with the right hand side in (3.10a)
replaced by

(
f (κh − Kh(κh)), χ | �Xh

ρ |
)h −

( �Xh · �e1, f (κh − Kh(κh)) | �Xh
ρ |
)h

( �Xh · �e1, | �Xh
ρ |
) (

χ, | �Xh
ρ |
)h

.

(3.21)
These two schemes inherit the equidistribution property, recall (3.11). Replacing κh

S

with πh[ f (κh
S )] in (3.18a) yields the schemes (C

f
h )(h) and similarly we can define

(C
f ,V
h )(h) by replacing the right hand side in (3.18a) by

( �Xh · �e1 πh[ f (κh
S )], χ | �Xh

ρ |
)(h) −

( �Xh · �e1, πh[ f (κh
S )] | �Xh

ρ |
)(h)

( �Xh · �e1, | �Xh
ρ |
) ( �Xh · �e1, χ | �Xh

ρ |
)(h)

.

(3.22)
Similarly to (3.20), andusing the samechoices of �η andχ , it can be shown that solutions

to the scheme (C
f
h )(h) satisfy − 1

2π
d
dt E( �Xh(t)) =

(
( �Xh · �e1) f (κh

S ), κh
S | �Xh

ρ |
)(h)

,

which yields a stability bound for (C f
h )h if f is monotonically increasing with f (0) =

0. Of course, (3.22) is a discrete analogue of (2.29). Moreover, solutions to (C
f ,V
h )(h),

in the case (1.4c), satisfy

− 1

2π

d

dt
E( �Xh(t))

=
( �Xh · �e1 |κh

S |2, | �Xh
ρ |
)(h) −

[( �Xh · �e1, | �Xh
ρ |
)]−1

∣∣∣∣
( �Xh · �e1, κh

S | �Xh
ρ |
)(h)

∣∣∣∣
2

≥ 0,

similarly to (2.33), where here we have also used a Cauchy–Schwarz inequality for the
mass lumped inner product (3.2). Finally, solutions to the scheme (C

f ,V
h ) conserve

the volume of the domain Ωh(t) ⊂ R
3 that is enclosed by the three-dimensional

axisymmetric surfaceS h(t) that is generated by the curve Γ h(t). To see this, choose
χ = 2π in (3.18a), with the modified right hand side (3.22), to obtain
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0 = 2π
( �Xh · �e1, �Xh

t · �νh | �Xh
ρ |
)

=
∫
S h(t)

V h
S h dH 2 = d

dt
L 3(Ωh(t)), (3.23)

recall (1.5). Here V h
S h (t) denotes the normal velocity of S h(t) in the direction of

�νh
S h (t), the outer normal to Ωh(t) onS h(t), where �νh

S h (t) is induced by �νh through
a discrete analogue of (2.5). Using the same testing procedure for the scheme (C

f ,V
h )h

yields that

0 = 2π
( �Xh · �e1, �Xh

t · �νh | �Xh
ρ |
)h

, (3.24)

and so the enclosed volume is only approximately preserved, compare with (3.23).
Finally, choosing χ = �Xh · �e1 in (A

f ,V
h )h , recall (3.21), also yields (3.24), and so an

approximate volume preservation property.

4 Fully discrete schemes

In this section we present and analyse fully discrete variants of the approximations
discussed in Sect. 3 that turn out to be most useful in practice. Other fully discrete
schemes, which we will use for comparison purposes in the numerical results section,
are summarized in “Appendix C”.

Let 0 = t0 < t1 < · · · < tM−1 < tM = T be a partitioning of [0, T ]
into possibly variable time steps Δtm = tm+1 − tm , m = 0 → M − 1. We set
Δt = maxm=0→M−1 Δtm . For a given �Xm ∈ V h

∂0
, assuming that | �Xm

ρ | > 0 almost

everywhere on I , we set �νm = −[ �Xm
ρ ]⊥

| �Xm
ρ | . Let �ωm ∈ V h be the natural fully discrete

analogue of �ωh ∈ V h , recall (3.6), i.e.

(
�ωm, �ϕ | �Xm

ρ |
)h =

(
�νm, �ϕ | �Xm

ρ |
)

=
(
�νm, �ϕ | �Xm

ρ |
)h ∀ �ϕ ∈ V h . (4.1)

4.1 Mean curvature flow

Similarly to (3.9), and given a κm+1 ∈ V h , we introduce Km(κm+1) ∈ V h such that

[Km(κm+1)](q j ) =

⎧⎪⎨
⎪⎩

�ωm(q j ) · �e1
�Xm(q j ) · �e1

q j ∈ I\∂0 I ,
−κm+1(q j ) q j ∈ ∂0 I .

(4.2)

Then our fully discrete analogue of (Ah)
h , (3.10a, b), is given as follows.

(Am)h Let �X0 ∈ V h
∂0
. For m = 0, . . . , M − 1, find (δ �Xm+1, κm+1) ∈ V h

∂ × V h ,

where �Xm+1 = �Xm + δ �Xm+1, such that
( �Xm+1 − �Xm

Δtm
, χ �νm | �Xm

ρ |
)h

=
(
κm+1 − Km(κm+1), χ | �Xm

ρ |
)h ∀ χ ∈ V h,

(4.3a)
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(
κm+1 �νm , �η | �Xm

ρ |
)h +

( �Xm+1
ρ , �ηρ | �Xm

ρ |−1
)

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S �η(p) · �e3−i

∀ �η ∈ V h
∂ . (4.3b)

We make the following assumptions.

(A) Let | �Xm
ρ | > 0 for almost all ρ ∈ I , and let �Xm · �e1 > 0 for all ρ ∈ I\∂0 I .

(B)h Let Z h =
{(

�νm, χ | �Xm
ρ |
)h : χ ∈ V h

}
⊂ R

2 and assume that

dim spanZ h = 2.

Note that the assumption (B)h , on recalling (3.6), is equivalent to assuming that
dim span{ �ωm(q j )}Jj=0 = 2. Clearly, it can only be violated if all the J + 1 vectors lie

on a single line. It was shown in [6, Remark 2.2] that the assumption (B)h always
holds for closed curves without self-intersections.

Lemma 4.1 Let �Xm ∈ V h
∂0

satisfy the assumptions (A) and (B)h. Then there exists a

unique solution (δ �Xm+1, κm+1) ∈ V h
∂ × V h to (Am)h.

Proof We note that since �Xm ∈ V h
∂0

satisfies the assumption (A), the right hand side
of (4.3a) is well-defined. As (4.3a, b) is linear, existence follows from uniqueness. To
investigate the latter, we consider the system: find (δ �X , κ) ∈ V h

∂ × V h such that

(
δ �X
Δtm

, χ �νm | �Xm
ρ |
)h

=
(
λ κ, χ | �Xm

ρ |
)h ∀ χ ∈ V h, (4.4a)

(
κ �νm, �η | �Xm

ρ |
)h +

(
(δ �X)ρ, �ηρ | �Xm

ρ |−1
)

= 0 ∀ �η ∈ V h
∂ , (4.4b)

where we recall from (4.2) that λ ∈ V h with

λ(q j ) =
{
1 q j ∈ I\∂0 I ,
2 q j ∈ ∂0 I .

(4.5)

Choosing χ = κ ∈ V h in (4.4a) and �η = δ �X ∈ V h
∂ in (4.4b) yields that

(
|(δ �X)ρ |2, | �Xm

ρ |−1
)

+ Δtm
(
λ |κ|2, | �Xm

ρ |
)h = 0. (4.6)

It follows from (4.6) that κ = 0 and that δ �X ≡ �Xc ∈ R
2; and hence that

0 =
( �Xc, χ �νm | �Xm

ρ |
)h = �Xc ·

(
�νm, χ | �Xm

ρ |
)h ∀ χ ∈ V h . (4.7)

It follows from (4.7) and assumption (B)h that �Xc = �0. Hence we have shown that
(4.3a, b) has a unique solution (δ �Xm+1, κm+1) ∈ V h

∂ × V h .
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A fully discrete analogue of the scheme (Ch)
(h), (3.18a, b), is given as follows.

Here we introduce the notation [r ]± = ±max{±r , 0} for r ∈ R.
(Cm,�)

(h) Let �X0 ∈ V h
∂0
. Form = 0, . . . , M−1, find (δ �Xm+1, κm+1

S ) ∈ V h
∂ ×Wh

(∂0)
,

where �Xm+1 = �Xm + δ �Xm+1, such that

(
�Xm · �e1

�Xm+1 − �Xm

Δtm
, χ �νm | �Xm

ρ |
)(h)

=
( �Xm · �e1 κm+1

S , χ | �Xm
ρ |
)(h) ∀ χ ∈ Wh

(∂0)
,

(4.8a)
( �Xm · �e1 κm+1

S �νm , �η | �Xm
ρ |
)(h) +

(
�η · �e1, | �Xm+1

ρ |
)

+
(
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

)

= −
∑
p∈∂1 I

ρ̂
(p)
∂S ( �Xm(p) · �e1) �η(p) · �e2

−
∑
p∈∂2 I

(([ρ̂(p)
∂S ]+ �Xm+1(p) + [ρ̂(p)

∂S ]− �Xm(p)) · �e1) �η(p) · �e1 ∀ �η ∈ V h
∂ . (4.8b)

We note that in practice we solve the nonlinear scheme (Cm,�)
(h) with a Newton

iteration, which in all our experiments always converged with at most three iterations.

Remark 4.1 Similarly to the semidiscrete variants, we observe that it is possible to
eliminate the discrete curvature, κm+1

S from (Cm,�)
h . On recalling (3.6) and on choos-

ing χ = πh[�η · �ωm] ∈ Wh
(∂0)

in (4.8a) for �η ∈ V h
∂ , the scheme reduces to: Find

δ �Xm+1 ∈ V h
∂ such that, for all �η ∈ V h

∂ ,

(
�Xm · �e1

�Xm+1 − �Xm

Δtm
· �ωm, �η · �ωm | �Xm

ρ |
)h

+
(
�η · �e1, | �Xm+1

ρ |
)

+
(
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

)
= −

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S ( �Xm+1(p) · �e1) �η(p) · �e3−i .

(4.9)

For the scheme (Cm,�) this elimination procedure is not possible. A related variant to
(4.9) is given by: find δ �Xm+1 ∈ V h

∂ such that, for all �η ∈ V h
∂ ,

(
�Xm · �e1

�Xm+1 − �Xm

Δtm
· �νm, �η · �νm | �Xm

ρ |
)h

+
(
�η · �e1, | �Xm+1

ρ |
)

+
(
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

)
= −

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S ( �Xm+1(p) · �e1) �η(p) · �e3−i .

(4.10)
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Theorem 4.1 Let �Xm ∈ V h
∂0
satisfy the assumption (A). Let ( �Xm+1, κm+1

S ) be a solu-

tion to (Cm,�)
(h). Then it holds that

E( �Xm+1) + 2π Δtm
( �Xm · �e1 |κm+1

S |2, | �Xm
ρ |
)(h) ≤ E( �Xm), (4.11)

where we recall the definition (3.7).

Proof Choosing χ = Δtm κm+1
S in (4.8a) and �η = �Xm+1 − �Xm ∈ V h

∂ in (4.8b) yields,

on noting that �Xm(p) · �e1 = �Xm+1(p) · �e1 for p ∈ ∂1 I , that

− Δtm
( �Xm · �e1 |κm+1

S |2, | �Xm
ρ |
)(h)

=
( �Xm+1 − �Xm , �e1 | �Xm+1

ρ |
)

+
(
( �Xm · �e1) ( �Xm+1 − �Xm)ρ, �Xm+1

ρ | �Xm
ρ |−1

)

+
∑
p∈∂1 I

ρ̂
(p)
∂S ( �Xm(p) · �e1) ( �Xm+1(p) − �Xm(p)) · �e2

+
∑
p∈∂2 I

([ρ̂(p)
∂S ]+ �Xm+1(p) + [ρ̂(p)

∂S ]− �Xm(p)] · �e1) ( �Xm+1(p) − �Xm(p)) · �e1

≥
( �Xm+1 − �Xm , �e1 | �Xm+1

ρ |
)

+
( �Xm · �e1, | �Xm+1

ρ | − | �Xm
ρ |
)

+
∑
p∈∂1 I

ρ̂
(p)
∂S ( �Xm(p) · �e1) �Xm+1(p) · �e2 −

∑
p∈∂1 I

ρ̂
(p)
∂S ( �Xm(p) · �e1) �Xm(p) · �e2

+ 1
2

∑
p∈∂2 I

[ρ̂(p)
∂S ]+ ( �Xm+1(p) · �e1)2 − 1

2

∑
p∈∂2 I

[ρ̂(p)
∂S ]+ ( �Xm(p) · �e1)2

+ 1
2

∑
p∈∂2 I

[ρ̂(p)
∂S ]− ( �Xm+1(p) · �e1)2 − 1

2

∑
p∈∂2 I

[ρ̂(p)
∂S ]− ( �Xm(p) · �e1)2

=
( �Xm+1 · �e1, | �Xm+1

ρ |
)

−
( �Xm · �e1, | �Xm

ρ |
)

+
∑
p∈∂1 I

ρ̂
(p)
∂S ( �Xm+1(p) · �e1) �Xm+1(p) · �e2 −

∑
p∈∂1 I

ρ̂
(p)
∂S ( �Xm(p) · �e1) �Xm(p) · �e2

+ 1
2

∑
p∈∂2 I

ρ̂
(p)
∂S ( �Xm+1(p) · �e1)2 − 1

2

∑
p∈∂2 I

ρ̂
(p)
∂S ( �Xm(p) · �e1)2

= 1

2π
E( �Xm+1) − 1

2π
E( �Xm), (4.12)

where we have used the two inequalities �a · (�a − �b) ≥ |�b| (|�a| − |�b|) for �a, �b ∈ R
2,

and 2 γ (γ − α) ≥ γ 2 − α2 for α, γ ∈ R. This proves the desired result.

We note that the scheme (4.10) can also be shown to be unconditionally stable, i.e.
a solution to (4.10) satisfies

E( �Xm+1) + 2π Δtm

⎛
⎝ �Xm · �e1

∣∣∣∣∣
�Xm+1 − �Xm

Δtm
· �νm

∣∣∣∣∣
2

, | �Xm
ρ |
⎞
⎠

h

≤ E( �Xm).
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4.2 Nonlinear mean curvature flow

It is a simple matter to extend the presented fully discrete approximations to the
nonlinear mean curvature flow (1.2) and the volume preserving variant (1.3). We
recall the fully 3d parametric finite element schemes (2.4a, b) and (2.5) in [7] for
the approximation of (1.2) and (1.3), respectively. We can now define their natural
axisymmetric analogues. For example, the natural adaptation (A

f
m )h of the scheme

(Am)h to (1.2) is given by (4.3a, b) with (4.3a) replaced by

( �Xm+1 − �Xm

Δtm
, χ �νm | �Xm

ρ |
)h

=
(
f (κm+1 − Km(κm+1)), χ | �Xm

ρ |
)h ∀ χ ∈ V h .

(4.13)
Similarly, the natural adaptation (C

f
m,�)

(h) of the scheme (Cm,�)
(h) to (1.2) is given by

(4.8a, b) with (4.8a) replaced by

(
�Xm · �e1

�Xm+1 − �Xm

Δtm
, χ �νm | �Xm

ρ |
)(h)

=
( �Xm · �e1 πh[ f (κm+1

S )], χ | �Xm
ρ |
)(h)

∀ χ ∈ Wh
(∂0)

. (4.14)

Similarly to (4.11), with the same choices of χ and �η, it is then possible to prove that
solutions to (C

f
m,�)

h satisfy E( �Xm+1)+2π Δtm
( �Xm · �e1 f (κm+1

S ), κm+1
S | �Xm

ρ |
)h ≤

E( �Xm), which provides a stability bound if f ismonotonically increasingwith f (0) =
0.

Finally, replacing (4.13) with
( �Xm+1 − �Xm

Δtm
, χ �νm | �Xm

ρ |
)h

=
(
f (κm+1 − Km(κm+1)), χ | �Xm

ρ |
)h

−
( �Xm · �e1, f (κm − Km(κm)) | �Xm

ρ |
)h

( �Xm · �e1, | �Xm
ρ |
) (

χ, | �Xm
ρ |
)h ∀ χ ∈ V h

(4.15)

and replacing (4.14) with

(
�Xm · �e1

�Xm+1 − �Xm

Δtm
, χ �νm | �Xm

ρ |
)(h)

=
( �Xm · �e1 πh[ f (κm+1

S )], χ | �Xm
ρ |
)(h)

−
( �Xm · �e1, πh[ f (κm+1

S )] | �Xm
ρ |
)(h)

( �Xm · �e1, | �Xm
ρ |
) ( �Xm · �e1, χ | �Xm

ρ |
)(h) ∀ χ ∈ Wh

(∂0)

(4.16)
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gives the fully discrete approximations (A
f ,V

m )h and (C
f ,V
m,� )(h), respectively, of (1.3).

For the case (1.4c) it is possible to prove a stability bound for (C
f ,V
m,� )(h). In particular,

solutions to (C
f ,V
m,� )(h) satisfy, similarly to (4.12), that

1

2π
E( �Xm) − 1

2π
E( �Xm+1)

≥ Δtm
( �Xm · �e1 |κm+1

S |2, | �Xm
ρ |
)(h) −

[( �Xm · �e1, | �Xm
ρ |
)]−1

∣∣∣∣
( �Xm · �e1, κm+1

S | �Xm
ρ |
)(h)

∣∣∣∣
2

≥ 0,

wherewehavenoted theCauchy–Schwarz inequality. For the fully discrete approxima-
tions (A f ,V

m )h and (C
f ,V
m,� )(h) it is not possible to prove avolumeconservationproperty.

However, in practice all three schemes preserve the enclosed volume well, with the
relative volume loss decreasing as the discretization parameters become smaller.

Finally, we note that for the schemes (A
f

m )h and (A
f ,V

m )h , depending on the choice
of f , existence and uniqueness results can be shown, see “Appendix B”.

Remark 4.2 In order to be able to compute evolutions for the general flow (1.6),
we propose the scheme (A F

m )h , which can be obtained from the scheme (Am)h

(4.3a, 4.3b), by replacing (4.3a) with
( �Xm+1 − �Xm

Δtm
, χ �νm | �Xm

ρ |
)h

=
(
F(κm − Km(κm),−κm Km(κm)), χ | �Xm

ρ |
)h

∀ χ ∈ V h . (4.17)

This is linear scheme for which existence of a unique solution, provided that the
assumption (B)h holds, can easily be shown. Moreover, solutions to the semidiscrete
variant of (A F

m )h satisfy the equidistribution property (3.11).

5 Numerical results

As the fully discrete energy, we consider E( �Xm), recall (3.7). We always employ
uniform time steps, Δtm = Δt , m = 0, . . . , M − 1.

We also consider the ratio

rm = max j=1→J | �Xm(q j ) − �Xm(q j−1)|
min j=1→J | �Xm(q j ) − �Xm(q j−1)|

(5.1)

between the longest and shortest element of Γ m , and are often interested in the evo-
lution of this ratio over time.

On recalling (2.7), and given Γ 0 = �X0(I ), for the scheme (A
f ,V

m )h we define
κ0 ∈ V h via

κ0 = πh
[ �κ0 · �ω0

| �ω0|
]

,

recall (4.1), where �κ0 ∈ V h is such that
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(
�κ0, �η | �X0

ρ |
)h +

( �X0
ρ, �ηρ | �X0

ρ |−1
)

= 0 ∀ �η ∈ V h .

5.1 Numerical results for mean curvature flow

5.1.1 Sphere

It is easy to show that a sphere of radius r(t), with

r(t) = [r2(0) − 4 t] 12 , (5.2)

is a solution to (1.1). We use this true solution for a convergence test for the various
schemes for mean curvature flow, similarly to Table 1 in [7]. Here we start with a
nonuniform partitioning of a semicircle of radius r(0) = r0 = 1 and compute the
flow until time T = 0.125. In particular, we have ∂0 I = ∂ I = {0, 1} and we choose
�X0 ∈ V h

∂0
with

�X0(q j ) = r0

(
cos[(q j − 1

2 ) π + 0.1 cos((q j − 1
2 ) π)]

sin[(q j − 1
2 ) π + 0.1 cos((q j − 1

2 ) π)]
)

, j = 0, . . . , J , (5.3)

recall (3.1). We compute the error

‖Γ − Γ h‖L∞ = max
m=1,...,M

max
j=0,...,J

|| �Xm(q j )| − r(tm)| (5.4)

over the time interval [0, T ] between the true solution (5.2) and the discrete solutions
for the schemes (Am)h , (Bm)h , (Cm)(h), (Dm)(h), (Cm,�)

(h) and (Dm,�)
(h). Here we

used the time step sizeΔt = 0.1 h2
Γ 0 , where hΓ 0 is themaximal edge length ofΓ 0. The

computed errors are reported in Tables 3, 4 and 5. Comparing the reported numbers
with the values in Table 1 in [7], we see that the errors for the axisymmetric schemes
are significantly smaller than the values in Table 1 in [7] for similar discretization
parameters. It is clear from Table 3 that the schemes (Am)h and (Bm)h appear to
converge with the optimal convergence rate of O(h2

Γ 0). Similarly, Tables 4 and 5

Table 3 Errors for the convergence test for (5.2) with r0 = 1 over the time interval [0, 0.125]
J hΓ 0 (Am )h (Bm )h

‖Γ − Γ h‖L∞ EOC ‖Γ − Γ h‖L∞ EOC

32 1.0792e−01 7.3110e−04 – 1.2074e−03 –

64 5.3988e−02 1.8422e−04 1.99 3.0227e−04 2.00

128 2.6997e−02 4.6098e−05 2.00 7.5534e−05 2.00

256 1.3499e−02 1.1525e−05 2.00 1.8878e−05 2.00

512 6.7495e−03 2.8813e−06 2.00 4.7192e−06 2.00
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Table 4 Errors for the convergence test for (5.2) with r0 = 1 over the time interval [0, 0.125]
J (Cm )h (Cm ) (Cm,�)

h (Cm,�)

‖Γ − Γ h‖L∞ ‖Γ − Γ h‖L∞ ‖Γ − Γ h‖L∞ EOC ‖Γ − Γ h‖L∞ EOC

32 – – 6.5076e−03 – 3.7596e−03 –

64 – – 1.9553e−03 1.74 1.1565e−03 1.70

128 – – 5.8247e−04 1.75 3.5226e−04 1.72

256 – – 1.7056e−04 1.77 1.0672e−04 1.72

512 – – 4.9112e−05 1.80 3.2277e−05 1.73

Table 5 Errors for the convergence test for (5.2) with r0 = 1 over the time interval [0, 0.125]
J (Dm )h (Dm ) (Dm,�)

h (Dm,�)

‖Γ − Γ h‖L∞ ‖Γ − Γ h‖L∞ ‖Γ − Γ h‖L∞ EOC ‖Γ − Γ h‖L∞ EOC

32 8.1006e−03 3.0757e−03 8.0470e−03 – 3.6921e−03 –

64 2.4707e−03 8.8590e−04 2.4549e−03 1.71 1.0449e−03 1.82

128 7.3144e−04 2.5363e−04 7.2755e−04 1.75 2.9111e−04 1.84

256 2.1165e−04 7.2522e−05 2.1075e−04 1.79 8.0222e−05 1.86

512 6.0176e−05 2.0472e−05 5.9972e−05 1.81 2.1916e−05 1.87

suggest that the schemes (Cm,�)
(h), (Dm)(h) and (Dm,�)

(h) converge with an order
slightly less than quadratic. We note that the linear schemes (Cm)(h) lead to solutions
�Xm with minρ∈I �Xm(ρ) · �e1 < 0 and so we cannot complete the evolutions. In
particular, in practice the two boundary elements shrink in size due to the scheme’s
tangential motion. Once the element has shrunk to a length almost zero, the freely
moving vertex can become negative. The linear schemes (Dm)(h) behave well, on the
other hand. But as they are very close to the nonlinear schemes (Dm,�)

(h), from now
on we concentrate on the schemes (Dm,�)

(h), (Cm,�)
(h), (Am)h and (Bm)h .

5.1.2 Torus

We repeat the two torus experiments in Figures 5 and 6 in [7]. To this end, we let
∂ I = ∅. For an initial torus with radii R = 1, r = 0.7, we obtain a surface that closes
up towards a genus-0 surface, as in [7, Fig. 5]. See Fig. 2 for the simulation results
for the scheme (Am)h , for the discretization parameters J = 256 and Δt = 10−4. On
the other hand, for an initial torus with radii R = 1, r = 0.5, we obtain a shrinking
evolution towards a circle, as in [7, Fig. 6]. See Fig. 3 for the evolution for the scheme
(Am)h , again for J = 256 and Δt = 10−4. On repeating the numerical experiment
for the (Bm)h , we observe strong oscillations, as shown on the right of Fig. 3. These
oscillations become smaller in magnitude as Δt is decreased. The remaining schemes
can integrate the evolution shown in Fig. 3 in a stable way, and their numerical results
are very close to the ones displayed in Fig. 3 for the scheme (Am)h . However, the
schemes differ in the exhibited tangential motions, which leads to diverse evolutions
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Fig. 2 (Am )h Evolution for a torus with radii R = 1, r = 0.7. Plots are at times t = 0, 0.01, . . . , 0.08.
We also show a plot at time t = 0.082, together with a plot of the discrete energy. Below we visualize the
axisymmetric surface S m generated by Γ m at times t = 0 and t = 0.082
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Fig. 3 (Am )h Evolution for a torus with radii R = 1, r = 0.5. Plots are at times t = 0, 0.01, . . . , 0.13. We
also show a plot of the discrete energy and, below, we visualize the axisymmetric surface S m generated
by Γ m at times t = 0 and t = 0.135. On the top far right, the evolution for the scheme (Bm )h , with plots
at times t = 0, 0.01, . . . , 0.13

of the ratio rm , see Fig. 4. The best distribution of mesh points is shown by the schemes
(Am)h and (Cm,�)

h , followed by (Cm,�). The most nonuniform distribution of mesh
points can be observed for the two schemes (Dm,�)

(h).

5.1.3 Cylinder

For the scheme (Am)h we repeat the singular evolution from [22, Fig. 1]. To this end,
we set ∂D I = ∂ I = {0, 1}. In particular, starting with a cylinder, mean curvature flow
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Fig. 4 Plots of the ratio rm for the schemes (Am )h , (Cm,�)
h , (Cm,�), (Dm,�)

h , (Dm,�)
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Fig. 5 (Am )h [∂D I = ∂ I = {0, 1}] Evolution for a cylinder with fixed boundary. Plots are at times
t = 0, 0.1, . . . , 0.5. We also show a plot at time t = 0.51, as well as a plot of the discrete energy. On the
right we visualize the axisymmetric surface S m generated by Γ m at times t = 0 and t = 0.51

leads to a pinch-off. We show the results for the scheme (Am)h , with the discretization
parameters J = 128 and Δt = 10−4, in Fig. 5.

For the next two experiments, we consider a cylinder attached to two parallel hyper-
planes, with prescribed contact angle conditions, recall (2.10b). To this end, we set
∂2 I = ∂ I = {0, 1} and use the discretization parameters J = 128 and Δt = 10−3.
Letting ρ̂

(0)
∂S = ρ̂

(1)
∂S = − 1

2 and starting with a cylinder, the evolution yields a growing
catenoid-like surface, see Fig. 6. We observe convergence to a travelling wave type
solution, with the associated energy unbounded from below. We conjecture that the
profile of the curve approaches in the limit the so-called grim reaper solution, see [37,
p. 15] and [28],

�g(ρ, t) = (z0 + π
3 t) �e1 + (− 3

π
ln cos

(
π
3 (ρ − 1

2 )
)
, ρ
)T

, (5.5)
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Fig. 6 (Am )h
[
∂2 I = ∂ I = {0, 1}, ρ̂(0)

∂S = ρ̂
(1)
∂S = − 1

2

]
Evolution for an open cylinder attached to R ×

{0} × R and R × {1} × R. Solution at times t = 0, 0.5, . . . , 4, as well as a plot of the discrete energy over
time. We also visualize the axisymmetric surface S m generated by Γ m at time t = 4
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Fig. 7 We plot �Xm (0) · �e1 over time, compared with the linear function t �→ π
3 t − 13

2 , for the evolution
in Fig. 6 over the larger time interval [0, 100]

where z0 ∈ R specifies the position of the travelling wave solution at time t = 0. In
fact, plotting �g(ρ, t) − (z0 + π

3 t) �e1 at time t = 4 versus �Xm − (minρ∈I �Xm · �e1) �e1
for our final solution in Fig. 6, yields perfect agreement between the two graphs. We
conjecture that the speed of the travelling wave type solution will approach π

3 , the
speed of (5.5). To test this conjecture, we continue the evolution until t = 100 and
plot the evolution of �Xm(0) · �e1 over time, comparing the graph with a suitably chosen
line with slope π

3 , see Fig. 7. As we can see, the speed of the curve does indeed
approach π

3 .
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Fig. 8 (Am )h
[
∂2 I = ∂ I = {0, 1}, ρ̂(0)

∂S = ρ̂
(1)
∂S = 1

2

]
Evolution for an open cylinder attached to R ×

{0} × R and R × {1} × R. Solution at times t = 0, 0.1, . . . , 1.5, 1.53, 1.54, 1.55, 1.56, as well as a plot of
the discrete energy over time. We also visualize the axisymmetric surface S m generated by Γ m at times
t = 1.5, t = 1.55 and t = 1.56

If we let ρ̂(0)
∂S = ρ̂

(1)
∂S = 1

2 , on the other hand, we observe a shrinking surface, with
the radius of the contact circles eventually converging to zero. On reaching two single
contact points with the external substrates, we allow the discrete surface to detach
from the two hyperplanes and to continue the evolution as a closed genus 0 surface,
see Fig. 8 for the evolution. To allow for an accurate resolution of the detaching, we
employ the smaller time step size Δt = 10−6 for this simulation.

5.1.4 Surface patch within a cylinder

For the next experiment, we consider a disk attached to an infinite cylinder of radius 1,
with prescribed contact angle conditions, recall (2.10a). To this end, we set ∂0 I = {0}
and ∂1 I = {1}, and use the discretization parameters J = 128 andΔt = 10−3. Letting
ρ̂

(1)
∂S = − 1

2 and starting with a disk, the evolution seems to converge to a translating
surface patch, see Fig. 9. Taking the angle condition (2.10a), there is a unique convex
scaled surface grim reaper profile moving with constant speed by translation. We
conjecture that a general class of initial data will converge to this shape for large
times. We refer to [1] for more information on the grim reaper analogues in higher
dimensions.

5.2 Numerical results for conservedmean curvature flow

5.2.1 Sphere

Clearly, a sphere is a stationary solution for conserved mean curvature flow, (1.3) with
(1.4c). Hence, setting ∂0 I = ∂ I = {0, 1} and choosing as initial data the nonuniform
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Fig. 9 (Am )h
[
∂0 I = {0}, ∂1 I = {1}, ρ̂(1)

∂S = − 1
2

]
Evolution for a disk attached to an infinite cylinder of

radius 1. Solution at times t = 0, 0.5, . . . , 2, as well as a plot of the discrete energy over time. We also
visualize the axisymmetric surface S m generated by Γ m at time t = 2

approximation of a semicircle (5.3) with J = 64, we now investigate the different
tangential motions exhibited by our proposed schemes. The initial data �X0 has a ratio
r0 = 1.22, recall (5.1). We set Δt = 10−4 and integrate the evolution until time
T = 1. For the three schemes (Am)h , (Cm,�)

h and (Cm,�) the element ratios rm at time
T = 1 are 1.01, 73.13, 2.94, and the enclosed volume is preserved almost exactly by
all the schemes.We show the final distributions of vertices, and plots of rm over time in
Fig. 10.An insight thatwegain from this set of experiments is that the tangentialmotion
displayed by the scheme (Cm,�)

h can lead to very nonuniform meshes. Hence, for the
remainder of this paper, we will only present numerical results for the two schemes
(Am)h and (Cm,�) and their nonlinear variants. Note that the former is a linear fully
discrete approximation of (Ah)

h , for which the equidistribution property (3.11) holds.
The latter, on the other hand, is a nonlinear scheme that is unconditionally stable,
recall Theorem 4.1. As the results for (Am)h and (Cm,�) are often indistinguishable,
we only visualize the numerical results for the former from now on.

5.2.2 Genus 0 surface

An experiment for a cigar shape can be seen in Fig. 11. Here we have once again that
∂0 I = ∂ I = {0, 1}. The discretization parameters are J = 128 and Δt = 10−4. The
relative volume loss for this experiment for (A

f ,V
m )h is 0.09%, while for (C

f ,V
m,� ) it
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Fig. 10 Comparison of the different schemes for conserved mean curvature flow, (1.3) with (1.4c), of the

unit sphere. Left to right: (A f ,V
m )h , (C f ,V

m,� )h and (C
f ,V
m,� ). Plots are for �Xm at time t = 1 and for the ratio

rm over time. The element ratios rm at time t = 1 are 1.01, 73.13 and 2.94, respectively

is − 0.01%. The same experiment for the scheme (C
f ,V
m,� )h yields a very nonuniform

mesh, with the final ratio rm > 430.
An experiment for a disc shape is shown in Fig. 12. The discretization parameters

are J = 128 andΔt = 10−4. The relative volume loss for this experiment for (A f ,V
m )h

is − 0.02%, while for (C
f ,V
m,� ) it is − 0.01%. Once again, the scheme (C

f ,V
m,� )h yields

a very nonuniform mesh for this simulation, with the final ratio rm > 145.

5.2.3 Genus 1 surface

We repeat the simulation in Fig. 3 for conserved mean curvature flow, i.e. (1.3) with
(1.4c), using the scheme (A

f ,V
m )h . Conservation of the enclosed volume means that

the torus can no longer shrink to a circle. Hence the torus now attempts to close up
and change topology, as can be seen from the numerical results in Fig. 13. As for the
original experiment, we use the discretization parameters J = 256 and Δt = 10−4.
The relative enclose volume loss for this experiment is − 0.00%. The evolutions for
the schemes (C

f ,V
m,� )h and (C

f ,V
m,� ) are nearly identical to what is shown in Fig. 13,

with a relative volume loss of 0.01% in both cases.
Finally, we present an example for conservedmean curvature flow, (1.3)with (1.4c),

for the scheme (A
f ,V

m )h with the initial data �X0 parameterizing a closed spiral, so
that the approximated surface has genus 1. As can be seen from Fig. 14, the spiral
slowly untangles, until the surface becomes a torus. For this experiment we use the
discretization parameters J = 1024 and Δt = 10−6. The relative enclosed volume
loss for this experiment is 0.01%. The evolutions for the schemes (C

f ,V
m,� )h and (C

f ,V
m,� )
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Fig. 11 (A
f ,V
m )h for (1.4c). Conservedmean curvature flow for a cigar. Plots are at times t = 0, 0.1, . . . , 1.

We also visualize the axisymmetric surfaceS m generated by Γ m at time t = 0.3. On the right are plots of

the discrete energy and the ratio rm and, as a comparison, a plot of the ratio rm for the scheme (C
f ,V
m,� )

are nearly identical to what is shown in Fig. 14, with a relative volume loss of 0.01%
in both cases.

5.3 Numerical results for nonlinear mean curvature flow

Similarly to (5.2), it is easy to show that a sphere of radius r(t), with

r(t) = [1 − 2β (β + 1) t] 1
β+1 , r(0) = 1, (5.6)

is a solution to (1.2) with (1.4a). We use this true solution for a convergence test for
β = 1

2 , similarly to Table 2 in [7]. Here we start with the nonuniform partitioning (5.3)
of a semicircle of radius r(0) = r0 = 1 and compute the flow until time T = 1

2 T ,

where T = 2
3 2

− 1
2 denotes that extinction time of the shrinking sphere. We compute

the error ‖Γ − Γ h‖L∞ , recall (5.4), over the time interval [0, T ] between the true
solution (5.6) and the discrete solutions for the schemes (A

f
m )h and (C

f
m,�). Here we

used the time step size Δt = 0.1 h2
Γ 0 , where hΓ 0 is the maximal edge length of Γ 0.

The computed errors are reported in Table 6.
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Fig. 12 (A
f ,V
m )h for (1.4c). Conserved mean curvature flow for a disc. Plots are at times t = 0, 0.1, . . . , 4.

We also visualize the axisymmetric surfaceS m generated by Γ m at time t = 0.5. On the right are plots of

the discrete energy and the ratio rm and, as a comparison, a plot of the ratio rm for the scheme (C
f ,V
m,� )

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.5  1  1.5
-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.5  1  1.5  17

 17.5

 18

 18.5

 19

 19.5

 20
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Fig. 13 (A
f ,V
m )h for (1.4c). Conserved mean curvature flow for a torus with radii R = 1, r = 0.5. Plots are

at times t = 0, 0.01, . . . , 0.14. We also show a plot at time t = 0.145, together with a plot of the discrete
energy over time. Below we visualize the axisymmetric surface S m generated by Γ m at times t = 0 and
t = 0.145
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Fig. 14 (A
f ,V
m )h for (1.4c). Conserved mean curvature flow. Plots are at times t = 0, 0.01, . . . , 0.05, 0.1.

We also show a plot of the discrete energy over time. Below we visualize the part of the axisymmetric
surface S m generated by Γ m ∩ R × [−0.2,∞) at times t = 0, t = 0.01, t = 0.02 and t = 0.05

Table 6 Errors for the convergence test for (5.6) over the time interval [0, 1
2 T ]

J hΓ 0 (A
f
m )h (C

f
m,�)

‖Γ − Γ h‖L∞ EOC ‖Γ − Γ h‖L∞ EOC

32 1.0792e−01 7.4955e−05 – 3.0322e−03 –

64 5.3988e−02 1.8223e−05 2.04 1.0450e−03 1.54

128 2.6997e−02 4.5218e−06 2.01 3.5931e−04 1.54

256 1.3499e−02 1.1282e−06 2.00 1.2357e−04 1.54

512 6.7495e−03 2.8189e−07 2.00 4.2698e−05 1.53

We repeat the same convergence experiment for the inverse mean curvature flow,
where we note that a sphere of radius r(t), with

r(t) = exp( 12 t), r(0) = 1, (5.7)

is a solution to (1.2) with (1.4b). The errors are reported in Table 7. We recall that
these numbers can be compared to the fully 3d results in Table 3 in [7]. It is clear
from Tables 6 and 7 that the solutions to the scheme (A

f
m )h appear to converge with

the optimal convergence rate of O(h2
Γ 0). For the scheme (C

f
m,�), on the other hand,

the solutions appear to converge with an order less than quadratic, and closer to 3
2 .

We believe that these lower convergence rates are caused by the nonuniform meshes
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Table 7 Errors for the convergence test for (5.7) over the time interval [0, 1]
J hΓ 0 (A

f
m )h (C

f
m,�)

‖Γ − Γ h‖L∞ EOC ‖Γ − Γ h‖L∞ EOC

32 1.0792e−01 7.1401e−04 – 1.2445e−02 –

64 5.3988e−02 1.8106e−04 1.98 4.7424e−03 1.39

128 2.6997e−02 4.5484e−05 1.99 1.7539e−03 1.44

256 1.3499e−02 1.1388e−05 2.00 6.3806e−04 1.46

512 6.7495e−03 2.8483e−06 2.00 2.3002e−04 1.47
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 0.5

 0  0.5  1  1.5

Fig. 15 (A
f
m )h for (1.4b). Inverse mean curvature flow for a torus with radii R = 1, r = 0.25. Plots are

at times t = 0, 0.05, . . . , 0.55. We also visualize the axisymmetric surfaceS m generated by Γ m at times
t = 0 and t = 0.5

induced by the scheme (C
f
m,�), recall Fig. 10, and also by the degeneracy of the

coefficients �x · �e1 in (C f ).
In the next experiment we repeat the simulation in [7, Fig. 8] for the inverse mean

curvature of a toruswith radii R = 1, r = 0.25.We recall that for this nonconvex initial
data, with κS (·, 0) < 0, the classical inverse mean curvature develops a singularity
in finite time, see also [27,43]. For the axisymmetric setting we use I = R/Z, so that
∂ I = ∅. As the discretization parameters for the scheme (A

f
m )h we use J = 256

and Δt = 10−4. See Fig. 15 for the simulation results. Similarly to the results in [7,
Fig. 8], the discrete solution becomes unphysical after around time 0.52, where we
conjecture that the singularity for the continuous flow occurs.

5.4 Numerical results for Gauss curvature flow

An experiment for Gauss curvature flow, (1.7), for the same initial data as in Fig. 11,
can be seen in Fig. 16. Here we have once again that ∂0 I = ∂ I = {0, 1}. The
discretization parameters for the scheme (A F

m )h from Remark 4.2 are J = 128 and
Δt = 10−5. As a comparison, we also show the evolution for standard mean curvature
flow, computed with the scheme (Am)h , in Fig. 16. It was suggested by Firey [25], that
surfaces of stones, which are pounded by waves and other stones, move according to
Gauss curvature flow. It is more likely that parts of the surface, where both principal
curvature directions are highly curved, will be hit by waves and other stones. He hence
proposed the Gauss curvature flow as the governing equation for the evolution of the
stone’s surface. In Fig. 16 it is clearly seen that the upper and lower part, which have
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Fig. 16 (A F
m )h for (1.7). Gauss curvature flow for a cigar, on the left. Plots are at times t =

0, 0.01, . . . , 0.12. We also visualize the axisymmetric surface S m generated by Γ m at time t = 0.12.
As a comparison, we show the evolution of (Am )h for mean curvature flow (1.1), on the right. Here the
plots are at times t = 0, 0.01, . . . , 0.06, and we visualize the axisymmetric surface S m generated by Γ m

at time t = 0.06

two highly curved principal curvature directions, move faster within Gauss curvature
flow when compared to mean curvature flow. The parts closer to the origin have a
nearly flat principal curvature direction. Hence they move far slower under Gauss
curvature flow than under mean curvature flow, as can be clearly seen in Fig. 16.

The Gauss curvature flow is not well-defined for general hypersurfaces as for
non-convex hypersurfaces the resulting equation is not parabolic, see [3,34]. In the
axisymmetric situation the degrees of freedomare reduced and the resulting equation is

�xt · �ν = κ
�ν · �e1
�x · �e1 on I ,

which is parabolic as long as �ν · �e1 is positive. In conclusion, even in the axisymmetric
case the evolution is not well-defined if the initial surface has the topology of a torus,
and so we do not present results for genus 1 surfaces. However, although this would
not be possible in the general formulation we can start the Gauss curvature flow in the
axisymmetric case with some nonconvex initial data, and we do so in the simulation
in Fig. 17, where we used the discretization parameters J = 128 and Δt = 10−5. For
a mathematical analysis for Gauss curvature flow in the axisymmetric case we refer
to [34].
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Fig. 17 (A F
m )h for (1.7). Gauss curvature flow for nonconvex initial data. Plots are at times t =

0, 0.05, . . . , 0.6. We also visualize the axisymmetric surfaceS m generated by Γ m at times t = 0, t = 0.2
and t = 0.6

6 Conclusions

We have derived and analysed various numerical schemes for the parametric approx-
imation of axisymmetric mean curvature flow, its nonlinear and volume conserving
variants, as well as more general curvature flows. The main fully discrete schemes to
consider for standard mean curvature flow are (Am)h and (Cm,�). Here we have dis-
missed the scheme (Bm)h , as it can show oscillations in practice, recall Fig. 3, as well
as the scheme (Cm,�)

h , as it can display very nonuniformmeshes in simulations where
the discrete curves are attached to the x2-axis, recall Fig. 10 for its variant (C

f ,V
m,� )h .

We also do not consider the schemes (Dm,�)
(h), as they have no advantage over (Cm,�)

and as they can also exhibit very nonuniformmeshes. Of the two schemes we consider,
the scheme (Am)h is a linear scheme that asymptotically leads to an equidistribution
of mesh points, recall Remark 3.1. In addition, even though there is no stability proof
for (Am)h , in practice the discrete energy is always monotonically decreasing. The
scheme (Cm,�), on the other hand, is a nonlinear scheme that is unconditionally stable.
The nonlinearity is only very mild, and so a Newton solver never takes more than 3
iterations in practice. Moreover, the distribution of vertices for (Cm,�) may be worse
than for (Am)h , but coalescence of vertices is not observed in practice. Similar state-
ments hold for the nonlinear variants (A

f
m )h , (A f ,V

m )h , (C f
m,�) and (C

f ,V
m,� ), where the

two conserving schemes show excellent volume conservation properties in practice,
with the observed relative volume changes always being less than 0.1%. Finally, for
general curvature flows of the form (1.6), we propose the linear scheme (A F

m )h , which
asymptotically exhibits equidistributed mesh points.

123



830 J. W. Barrett et al.

Acknowledgements The authors gratefully acknowledge the support of the Regensburger Universitäts-
stiftung Hans Vielberth.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

ADerivation of (2.17)

Here we demonstrate that (2.25b) and (2.26b) weakly impose (2.17). First we consider
(2.25b) and the case ρ0 = 0 ∈ ∂0 I .

We assume for almost all t ∈ (0, T ) that �x(t) ∈ [C1(I )]2 and κS(t) ∈ L∞(I ).
These assumptions and (2.3) imply that

C1 ρ ≤ |�x(ρ, t) · �e1| ≤ C2 ρ ∀ ρ ∈ [0, ρ], (A.1)

for ρ sufficiently small, and for almost all t ∈ (0, T ).
Let t ∈ (0, T ). For a fixed ρ > 0 and ε ∈ (0, ρ), we define

�ηε(ρ) =

⎧⎪⎨
⎪⎩

(ρ)−1
∫ ρ

ε
(�x(z, t) · �e1)−1 �e2 dz 0 ≤ ρ < ε,

(ρ)−1
∫ ρ

ρ
(�x(z, t) · �e1)−1 �e2 dz ε ≤ ρ < ρ,

�0 ρ ≤ ρ.

It follows from (A.1) that (�x · �e1) �ηε is integrable in the limit ε → 0. On choosing
�η = �ηε ∈ V ∂ in (2.25b), we obtain in the limit ε → 0 that

(ρ)−1
∫ ρ

0
�x · �e1 κS �e2 · �ν

(∫ ρ

ρ
(�x · �e1)−1 dz

)
|�xρ | dρ = (ρ)−1

∫ ρ

0
�xρ · �e2 |�xρ |−1 dρ.

(A.2)
Applying Fubini’s theorem and noting (A.1), as well as the boundedness of |�xρ | and
κS , yields the existence of a constant M such that

∣∣∣∣∣(ρ)−1
∫ ρ

0
�x · �e1 κS �e2 · �ν

(∫ ρ

ρ
(�x · �e1)−1 dz

)
|�xρ | dρ

∣∣∣∣∣

=
∣∣∣∣∣(ρ)−1

∫ ρ

0
(�x · �e1)−1

(∫ z

0
�x · �e1 κS �e2 · �ν |�xρ | dρ

)
dz

∣∣∣∣∣
≤ (ρ)−1 M

∫ ρ

0
z−1

(∫ z

0
ρ dρ

)
dz = 1

2 (ρ)−1 M
∫ ρ

0
z dz = 1

4 M ρ → 0 as ρ → 0.

(A.3)

On the other hand, the right hand side in (A.2) converges to (�xρ(0, t) · �e2) |�xρ(0, t)|−1

as ρ → 0, on recalling the smoothness assumptions on �x . Combining this with (A.3)
and (2.3) yields the boundary condition (2.17) for ρ = 0 ∈ ∂0 I . The proof for
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ρ = 1 ∈ ∂0 I is analogous. Finally, the proof for (2.26b) is easily adapted from the
above, on assuming that �κS (t) ∈ [L∞(I )]2 for almost all t ∈ (0, T ).

B Existence proof for (A f
m)

h and (A f ,V
m )h

We adapt [7, (2.12)–(2.14)] to (A
f

m )h and (A
f ,V

m )h .

Theorem B.1 Let �Xm ∈ V h
∂0

satisfy the assumptions (A) and (B)h, and assume that
f : (a, b) → R with −∞ ≤ a < 0 < b ≤ ∞ is strictly monotonically increasing,
continuous and such that f ((a, b)) = R. If b = −a = ∞, then there exists a solution
(δ �Xm+1, κm+1) ∈ V h

∂ × V h to (A
f

m )h and (A
f ,V

m )h. Moreover, for general a < b
there exists at most one solution.

Proof Let f −1: R → (a, b) denote the inverse of f . It follows from (4.13) and (4.15),
on recalling (4.5), that

λ(q j ) κm+1(q j ) = f −1

[(
δ �Xm+1

Δtm
· �ωm

)
(q j ) + gm1

]
+ gm0 (q j ) j = 0, . . . , J ,

(B.1)
where gm1 ∈ R and gm0 ∈ Wh

∂0
⊂ V h are independent of δ �Xm+1 and κm+1. In particular,

gm1 = 0 for (A
f

m )h . Substituting (B.1) into (4.3b) yields

(
λ−1 f −1

(
δ �Xm+1 · �ωm

Δtm
+ gm1

)
, �ωm · �η | �Xm

ρ |
)h

+
(
δ �Xm+1

ρ , �ηρ | �Xm
ρ |−1

)
= �m (�η) ∀ �η ∈ V h

∂ ,

(B.2)
where �m : V h → R is a linear functional defined by

�m(�η) = −
( �Xm

ρ , �ηρ | �Xm
ρ |−1

)
−
(
gm0 �ωm, �η | �Xm

ρ |
)h −

2∑
i=1

∑
p∈∂i I

ρ̂
(p)
∂S �η(p) · �e3−i .

It follows that (B.2) is the Euler–Lagrange variation of the minimization problem
min�η∈V h

∂
J h(�η), where

J h(�η) := 1
2

(
|�ηρ |2, | �Xm

ρ |−1
)

+ Δtm

(
λ−1 Φ

( �η · �ωm

Δtm
+ gm1

)
, | �Xm

ρ |
)h

− �m(�η),

(B.3)
whereΦ ∈ C1(R) denotes an antiderivative of f −1.We note thatΦ: R → R is strictly
convex withΦ ′( f (0)) = f −1( f (0)) = 0 and hence we obtain thatΦ is bounded from
below and is coercive.

In the following we establish that the continuous functional J h : V h
∂ → R is

coercive, i.e. that J h(�η) → ∞ as ‖�η‖ → ∞, where ‖ · ‖ is a fixed norm on V h .
The main task is to bound the growth of the linear term �m(�η) in terms of the first two
terms in (B.3).
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If b = −a = ∞, it is possible to show that for all N ∈ N there exists a positive
constant C0(N ) such that

Φ(r) ≥ N |r | − C0(N ) ∀ r ∈ R. (B.4)

To see this, for N ∈ N choose an R ∈ R such that min{ f (R),− f (−R)} ≥ N , and
define ‖ f ‖∞,R := maxq∈[−R,R] | f (q)|. On assuming without loss of generality that
Φ(r) = ∫ r0 f (q) dq, it holds for r > R that

Φ(r) =
∫ R

0
f (q) dq +

∫ r

R
f (q) dq ≥ −R ‖ f ‖∞,R + (r − R) N = r N − (‖ f ‖∞,R + N ) R.

(B.5)
In addition, for r ∈ [0, R] it trivially holds that

Φ(r) ≥ −R ‖ f ‖∞,R + r N − r N ≥ r N − (‖ f ‖∞,R + N ) R. (B.6)

Combining (B.5) and (B.6) yields (B.4) for r ≥ 0. The case r ≤ 0 can be treated
analogously.

Given �η ∈ V h
∂ , we define �ζ = �η + �fm ∈ V h with �fm = Δtm gm1 �πh[| �ωm |−2 �ωm] ∈

V h . Then it holds for every N ∈ N that

J h(�η) = J h(�ζ −�fm)

= 1
2

(
|�ζρ −�fmρ |2, | �Xm

ρ |−1
)

+ Δtm

(
λ−1 Φ

( �ζ · �ωm

Δtm

)
, | �Xm

ρ |
)h

− �m(�ζ −�fm)

≥ 1
4

(
|�ζρ |2, | �Xm

ρ |−1
)

+ N
(
λ−1 |�ζ · �ωm |, | �Xm

ρ |
)h − �m(�ζ ) − C1(N ), (B.7)

where, here and throughout, constants of the form Ci are independent of �ζ , but may
depend on the data �Xm ,�fm etc. Similarly, constants of the formCi (N )may also depend

on N , recall (B.4), but are independent of �ζ . On defining ∫−η = (η,| �Xm
ρ |)

(1,| �Xm
ρ |) , and extending

the definition to vector valued functions, it follows from (B.7) that

J h(�η) ≥ 1
4

(
|�ζρ |2, | �Xm

ρ |−1
)

+ N
(
λ−1 | ∫−�ζ · �ωm |, | �Xm

ρ |
)h

− N
(
λ−1 |(�ζ − ∫−�ζ ) · �ωm |, | �Xm

ρ |
)h − C2 ‖�ζ − ∫−�ζ‖ − C2 ‖ ∫−�ζ‖ − C1(N )

= I + II − III − IV − V − C1(N ). (B.8)

It remains to bound −III − IV − V from below. We have from the assumption (B)h

that II − V ≥ N C3 | ∫−�ζ | −C4 | ∫−�ζ |. Choosing N ≥ 2C4/C3 implies that

II − V ≥ C4 | ∫−�ζ |. (B.9)
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In addition, it holds that

III + IV ≤ (N + 1)C5 ‖�ζ − ∫−�ζ‖ ≤ (N + 1)C6 ‖�ζρ‖
≤ (N + 1) δ

(
|�ζρ |2, | �Xm

ρ |−1
)

+ C7(N , δ) ∀ δ ∈ (0,∞). (B.10)

Choosing (N + 1) δ ≤ 1
8 in (B.10) and combining with (B.8) and (B.9) implies that

J h(�η) ≥ 1
8

(
|�ζρ |2, | �Xm

ρ |−1
)

+ C4 | ∫−�ζ | − C8(N )

≥ C9 ‖�ζ‖ − C10(N ) ≥ C9 ‖�η‖ − C11(N ),

which proves the coercivity of J h(�η).
We now consider the uniqueness of a solution to (B.2). Let δ �X (i) ∈ V h

∂ , i = 1, 2
be two solutions to (B.2). Then they satisfy

(
f −1

(
δ �X (1) · �ωm

Δtm
+ gm1

)
− f −1

(
δ �X (2) · �ωm

Δtm
+ gm1

)
, λ−1 �ωm · [δ �X (1) − δ �X (2)] | �Xm

ρ |
)h

+
(
|[δ �X (1) − δ �X (2)]ρ |2, | �Xm

ρ |−1
)

= 0. (B.11)

As f −1 is strictly monotonically increasing it immediately follows from (B.11) that
δ �X (1) − δ �X (2) = �Xc ∈ R

2, and hence, on recalling (3.2), that

(
f −1

[(
δ �X (1) · �ωm

Δtm

)
(q j ) + gm1

]
− f −1

[(
δ �X (2) · �ωm

Δtm

)
(q j ) + gm1

])
�Xc · �ωm(q j ) = 0

∀ j = 0, . . . , J .

Now the strict monotonicity of f −1 implies that �Xc · �ωm(q j ) = 0 for all j = 0, . . . , J ,
and so the assumption (B)h yields that �Xc = �0.This shows the uniqueness of a solution
to (A

f
m )h and (A

f ,V
m )h .

Theorem B.1 yields existence of a unique solution for the schemes (A
f

m )h and
(A

f ,V
m )h in the case (1.4a). For the case (1.4b)we only obtain uniqueness of a solution.

C Additional fully discrete schemes

Apart from the fully discrete schemes discussed in detail in Sect. 4, in this appendix
we state some fully discrete variants of schemes introduced in Sect. 3 that are used for
numerical computations in Sect. 5. We omit a detailed analysis of these schemes, but
the interested reader can find some analysis of these schemes in the preprint version
of this manuscript, see [10].

We begin with a fully discrete approximation of (Bh)
h , (3.16a, b).

123



834 J. W. Barrett et al.

(Bm)h Let �X0 ∈ V h
∂0
. For m = 0, . . . , M − 1, find (δ �Xm+1, �κm+1) ∈ V h

∂ × V h ,

where �Xm+1 = �Xm + δ �Xm+1, such that
( �Xm+1 − �Xm

Δtm
, �χ | �Xm

ρ |
)h

=
(
�κm+1 − �Km(�κm+1), �χ | �Xm

ρ |
)h ∀ �χ ∈ V h , (C.1a)

(
�κm+1, �η | �Xm

ρ |
)h +

( �Xm+1
ρ , �ηρ | �Xm

ρ |−1
)

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S �η(p) · �e3−i ∀ �η ∈ V h

∂ ,

(C.1b)

where �Km(�κm+1) ∈ V h is such that

[�Km(�κm+1)](q j ) =

⎧⎪⎨
⎪⎩

�ωm(q j ) · �e1
�Xm(q j ) · �e1

�ωm(q j )

| �ωm(q j )|2 q j ∈ I\∂0 I ,
−�κm+1(q j ) q j ∈ ∂0 I .

Lemma C.1 Let �Xm ∈ V h
∂0

satisfy the assumption (A). There exists a unique solution

(δ �Xm+1, �κm+1) ∈ V h
∂ × V h to (Bm)h.

Proof See [10]. ��
Linear discrete analogues of the schemes (Ch)

(h), (3.18a, b), and (Dh)
(h), (3.19a,

b), are given as follows.
(Cm)(h) Let �X0 ∈ V h

∂0
. Form = 0, . . . , M −1, find (δ �Xm+1, κm+1

S ) ∈ V h
∂ ×Wh

(∂0)
,

where �Xm+1 = �Xm + δ �Xm+1, such that
(

�Xm · �e1
�Xm+1 − �Xm

Δtm
, χ �νm | �Xm

ρ |
)(h)

=
( �Xm · �e1 κm+1

S , χ | �Xm
ρ |
)(h) ∀ χ ∈ Wh

(∂0)
,

(C.2a)
( �Xm · �e1 κm+1

S �νm , �η | �Xm
ρ |
)(h) +

(
�η · �e1, | �Xm

ρ |
)

+
(
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

)

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S ( �Xm(p) · �e1) �η(p) · �e3−i ∀ �η ∈ V h

∂ . (C.2b)

(Dm)(h) Let �X0 ∈ V h
∂0
. Form = 0, . . . , M−1, find (δ �Xm+1, �κm+1

S ) ∈ V h
∂ ×Wh

(∂0)
,

where �Xm+1 = �Xm + δ �Xm+1, such that
(

�Xm · �e1
�Xm+1 − �Xm

Δtm
, �χ | �Xm

ρ |
)(h)

=
(
( �Xm · �e1) �κm+1

S , �χ | �Xm
ρ |
)(h) ∀ �χ ∈ Wh

(∂0)
,

(C.3a)
(
( �Xm · �e1) �κm+1

S , �η | �Xm
ρ |
)(h) +

(
�η · �e1, | �Xm

ρ |
)

+
(
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

)

123



Variational discretization of axisymmetric curvature flows 835

= −
2∑

i=1

∑
p∈∂i I

ρ̂
(p)
∂S ( �Xm(p) · �e1) �η(p) · �e3−i ∀ �η ∈ V h

∂ . (C.3b)

We make the following assumption.

(C(∂0))
(h) Let Z (h)

(∂0)
=
{(

( �Xm · �e1) �νm, χ | �Xm
ρ |
)(h): χ ∈ Wh

(∂0)

}
⊂R

2 and assume that

dim spanZ (h)
(∂0)

= 2.

Lemma C.2 Let �Xm ∈ V h
∂0

satisfy the assumptions (A) and (C(∂0))
(h). Then there

exists a unique solution (δ �Xm+1, κm+1
S ) ∈ V h

∂ × Wh
(∂0)

to (Cm)(h).

Proof See [10]. ��
Lemma C.3 Let �Xm ∈ V h

∂0
satisfy the assumption (A). Then there exists a unique

solution (δ �Xm+1, �κm+1
S ) ∈ V h

∂ × Wh
(∂0)

to (Dm)(h).

Proof See [10]. ��
A nonlinear, and unconditionally stable, fully discrete variant of (Dh)

(h), (3.19a,
b), is given as follows.

(Dm,�)
(h) Let �X0 ∈ V h

∂0
. Form = 0, . . . , M−1, find (δ �Xm+1, �κm+1

S ) ∈ V h
∂×Wh

(∂0)
,

where �Xm+1 = �Xm + δ �Xm+1, such that
(

�Xm · �e1
�Xm+1 − �Xm

Δtm
, �χ | �Xm

ρ |
)(h)

=
(
( �Xm · �e1) �κm+1

S , �χ | �Xm
ρ |
)(h) ∀ �χ ∈ Wh

(∂0)
,

(C.4a)(
( �Xm · �e1) �κm+1

S , �η | �Xm
ρ |
)(h) +

(
�η · �e1, | �Xm+1

ρ |
)

+
(
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

)

= −
∑
p∈∂1 I

ρ̂
(p)
∂S ( �Xm(p) · �e1) �η(p) · �e2

−
∑
p∈∂2 I

(([ρ̂(p)
∂S ]+ �Xm+1(p) + [ρ̂(p)

∂S ]− �Xm(p)) · �e1) �η(p) · �e1 ∀ �η ∈ V h
∂ . (C.4b)

Theorem C.1 Let ∂0 I = ∅ and let �Xm ∈ V h satisfy the assumption (A). Then there
exists a solution (δ �Xm+1, �κm+1

S ) ∈ V h
∂ × Wh

(∂0)
to (Dm,�)

(h), (C.4a, b), if Δtm <

3 minI ( �Xm · �e1)2.
Proof See [10]. ��
Theorem C.2 Let �Xm ∈ V h

∂0
satisfy the assumption (A). Let ( �Xm+1, �κm+1

S ) be a solu-

tion to (Dm,�)
(h). Then it holds that

E( �Xm+1) + 2π Δtm
( �Xm · �e1 |�κm+1

S |2, | �Xm
ρ |
)(h) ≤ E( �Xm).

Proof The proof is analogous to the proof of Theorem 4.1. ��
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