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Abstract The local behavior of the lowest order boundary element method on quasi-
uniformmeshes for Symm’s integral equation and the stabilizedhyper-singular integral
equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a
priori estimates in L2 for Symm’s integral equation and in H1 for the hyper-singular
equation. The local rate of convergence is limited by the local regularity of the sought
solution and the sumof the rates given by the global regularity and additional regularity
provided by the shift theorem for a dual problem.

Mathematics Subject Classification 65N38

1 Introduction

The boundary element method (BEM) for the discretization of boundary integral
equations is an established numerical method for solving partial differential equations
on (un)bounded domains. As an energy projection method, the Galerkin BEM is, like
the finite element method (FEM), (quasi-)optimal in some global norm. However,
often the quantity of interest is not the error on the whole domain, but rather a local
error on part of the computational domain. For the FEM, the analysis of local errors
goes back at least to [18]; advanced versions can be found in [10,30]. For the Poisson
problem, the local error estimates typically have the form
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594 M. Faustmann, J. M. Melenk

‖u − uh‖H1(B0) � inf
χh∈Xh

‖u − χh‖H1(B1) + R−1 ‖u − uh‖L2(B1) , (1.1)

where u is the exact solution, uh the finite element approximation from a space Xh of
piecewise polynomials, and B0 � B1 are open subsets of Ω with R:=dist(B0, ∂B1).
Thus, the local error in the energy norm is bounded by the local best approximation
on a larger domain and the error in the weaker L2-norm. The local best approxima-
tion allows for convergence rates limited only by the local regularity; the L2-error is
typically controlled with a duality argument and limited by the regularity of the dual
problem as well as the global regularity of the solution. Therefore, if the solution is
smoother locally, we can expect better rates of convergence for the local error.

Significantly fewer works study the local behavior of the BEM. The case of smooth
two dimensional curves is treated in [5,21,28], in [27] three dimensional screen prob-
lems are studied, and [14] discusses local error estimates on polygons. [19,20] provide
estimates in the L∞-norm on smooth domains. Local error estimators for the BEM
are presented in [23]. However, for the case of piecewise smooth geometries such
as polygonal and polyhedral domains, sharp local error estimates that exploit the
maximal (local) regularity of the solution are not available. Moreover, the analyses
of [14,21,27,28] are tailored to the energy norm and do not provide optimal local
estimates in stronger norms, whereas [5] imposes additional global regularity.

In this article, we obtain sharp local error estimates for lowest order discretiza-
tions on quasi-uniform meshes for Symm’s integral equation in the L2-norm and
for the (stabilized) hyper-singular integral equation in the H1-seminorm on polygo-
nal/polyhedral domains. Structurally, the local estimates are similar to (1.1): The local
error is bounded by a local best approximation error and a global error in a weaker
norm. More precisely, our local convergence rates depend only on the local regularity
and the sum of the rates given by the global regularity and the additional regularity
of the dual problem on polygonal/polyhedral domains. Numerical examples show the
sharpness of our analysis. As discussed in Remark 2.5 below, our results improve
[21,27,28] as estimates in L2 (for Symm’s equation) and H1 (for the hyper-singular
equation) are obtained there from local energy norm estimates with the aid of inverse
estimates, thereby leading to a loss of h−1/2. In contrast, we avoid using an inverse
inequality to go from the energy norm to a stronger norm.

The paper is structured as follows. We start with some notations and then present
the main results for both Symm’s integral equation and the hyper-singular integral
equation in Sect. 2. In Sects. 3 and 4 we are concerned with the proofs of these results.
First, some technical preliminaries that exploit the additional regularity on piecewise
smooth geometries to prove some improved a priori estimates for solutions of Poisson’s
equation as well as for the boundary integral operators are presented. Then, we prove
the main results, first for Symm’s equation, then for the stabilized hyper-singular
equation. In principle, the proofs take ideas from [30], but important modifications of
the arguments are necessary due to the nonlocal character of the integral operators. As
in [30] a key ingredient are interior regularity estimates, which were provided recently
in [11,12], and to exploit some additional smoothing properties of commutators that
arise in a localization step. Finally, Sect. 5 provides numerical examples that underline
the sharpness of our theoretical local a priori estimates.
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Local convergence of the boundary element method 595

1.1 Notation on norms

For domains ω ⊂ R
d , we define the integer order Sobolev spaces Hk(ω), k ∈ N0,

in the standard way [15, p. 73ff]. The fractional Sobolev spaces Hk+s(ω), k ∈ N0,
s ∈ (0, 1) are defined by the Slobodeckii norm as described in [15, p. 73ff]. For open
sets ω = ∪m

i=1ωi consisting of finitely many components of connectedness ωi , the
Sobolev spaces Hk+s(ω) are understood in a piecewise way with norm ‖u‖2

Hk+s (ω)
=

∑
i ‖u‖2

Hk+s (ωi )
. The spaces H̃ s(ω), s ≥ 0, consist of those function whose zero

extension to R
d is in Hs(Rd). The spaces H−s(ω), s ≥ 0, are taken to be the dual

space of H̃ s(ω). We will make use of the fact that for bounded Lipschitz domains ω

Hs(ω) = H̃ s(ω) ∀s ∈ [0, 1/2). (1.2)

For Lipschitz domains Ω ⊂ R
d with boundary Γ :=∂Ω , we define Sobolev spaces

Hs(Γ ) with s ∈ [0, 1] as described in [15, p. 96ff] using local charts. For s > 1, we
define the spaces Hs(Γ ) in a non-standard way: Hs(Γ ) consists of those functions
that have a lifting to H1/2+s(Rd), and we define the norm ‖ · ‖Hs (Γ ) by

‖u‖Hs (Γ ) := inf{‖v‖H1/2+s (Rd ) : v ∈ H1/2+s(Rd), v|Γ = u}. (1.3)

Correspondingly, for s > 1 there is a lifting operator

L : Hs(Γ ) → H1/2+s(Rd) (1.4)

with the lifting property (Lu)|Γ = u, which is bounded by definition of the norm
(1.3). The spaces H−s(Γ ), s ≥ 0, are the duals of Hs(Γ ). Their norm is defined as

‖u‖H−s (Γ ):= sup
v∈Hs (Γ )

〈u, v〉
‖v‖Hs (Γ )

.

Remark 1.1 (equivalent norm definitions)

(i) For s > 1 an equivalent definition of the norm ‖ · ‖Hs (Γ ) in (1.3) would be to
replace ‖ · ‖Hs+1/2(Rd ) with ‖ · ‖Hs+1/2(Ω), i.e.,

‖u‖Hs (Γ ) := inf{‖v‖H1/2+s (Ω) : v ∈ H1/2+s(Ω), v|Γ = u}.

This follows from the existence of the universal extension operator E :
L2(Ω) → L2(Rd) described in [25, Chap. VI.3], which asserts that E is also a
bounded linear operator Hk(Ω) → Hk(Rd) for any k ≥ 0.

(ii) The trace operator γ0 : Hs+1/2(Rd) → Hs(Γ ) is a continuous operator for 0 <

s < 1 (cf. [15, Thm. 3.38], [22, Thm. 2.6.8], [17, Thm. 2.3]). [22, Thm. 2.6.11]
(cf. also [15, Thm. 3.37], [17, Lem. 2.6]) assert the existence of a continuous
lifting L in the range 0 < s < 1 as well so that (1.3) is an equivalent norm for
0 < s < 1 as well.
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596 M. Faustmann, J. M. Melenk

(iii) For polygonal (in 2D) and polyhedral (in 3D) Lipschitz domains the spaces
Hs(Γ ) in the range s ∈ (1, 3/2) can be characterized alternatively as follows:
Let Γi , i = 1, . . . , N , be the affine pieces of Γ , which may be identified with
an interval (for the 2D case) or a polygon (for the 3D case). Then

u ∈ Hs(Γ ) ⇐⇒ u|Γi ∈ Hs(Γi ) ∀i ∈ {1, . . . , N } and u ∈ C0(Γ ). (1.5)

The equivalence (1.5) gives rise to yet another norm equivalence for the space
Hs(Γ ), namely, ‖u‖Hs (Γ ) ∼ ∑N

i=1 ‖u‖Hs (Γi ). The condition u ∈ C0(Γ ) is a
compatibility condition. More generally, for s > 3/2 similar, more complicated
compatibility conditions can be formulated to describe the space Hs(Γ ) in terms
of piecewise Sobolev spaces. ��

Wewill also need local norms on the boundary. For an open subset Γ0 ⊂ Γ and s ≥ 0,
we define local negative norms by

‖u‖H−s (Γ0) = sup
{ 〈u, w〉

‖w‖Hs (Γ )

: w ∈ Hs(Γ ), suppw ⊂ Γ0

}
. (1.6)

In the following,wewriteγ int
0 for the interior trace operator, i.e., the trace operator from

the inside of the domain andγ ext
0 for the exterior trace operator. For the jumpof the trace

of a function u we use the notation [γ0u]:=γ ext
0 u−γ int

0 u. In order to shorten notation,
we write γ0 for the trace, if the interior and exterior trace are equal, i.e., [γ0u] =
0. We denote the interior and exterior conormal derivative by γ int

1 u:=γ int
0 ∇u · n,

γ ext
1 u:=γ ext

0 ∇u ·n, where n denotes the normal vector pointing into R
d\Ω . The jump

of the normal derivative across the boundary is defined by [∂nu]:=γ ext
1 u − γ int

1 u, and
we write ∂nu for the normal derivative if [∂nu] = 0.

We will call axis-parallel squares/cubes “boxes”.

2 Main results

We study bounded Lipschitz domains Ω ⊂ R
d , d ≥ 2 with polygonal/polyhedral

boundary Γ := ∂Ω .

2.1 Symm’s integral equation

The elliptic shift theorem for the Dirichlet problem is valid in a range that is larger than
for general Lipschitz domains. We characterize this extended range by a parameter
αD ∈ (0, 1/2) that will pervade most of the estimates of the present work. It is defined
by the following assumption:

Assumption 2.1 Ω ⊂ R
d , d ≥ 2, is a bounded Lipschitz domain whose boundary

consists of finitely many affine pieces (i.e., Ω is the intersection of finitely many
half-spaces). RΩ > 0 is such that the open ball BRΩ (0) ⊂ R

d of radius RΩ that is
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Local convergence of the boundary element method 597

centered at the origin contains Ω . The parameter αD ∈ (0, 1/2) is such that for every
ε ∈ (0, αD] there is Cε > 0 such that the a priori bound

‖T f ‖H3/2+ε(BRΩ
(0)\Γ ) ≤ Cε ‖ f ‖H−1/2+ε(BRΩ

(0)\Γ ) ∀ f ∈ H−1/2+ε(BRΩ (0)\Γ )

(2.1)
holds, where u:=T f ∈ H1(BRΩ (0)\Γ ) denotes the solution of

− Δu = f in BRΩ (0)\Γ, γ0u = 0 on Γ ∪ ∂BRΩ (0). (2.2)

Recall that the norms ‖·‖Hs (BRΩ
(0)\Γ ), s > 0 are understood as the sum of the norm

on Ω and BRΩ (0)\Ω , i.e.,

‖u‖2Hs (BRΩ
(0)\Γ ) := ‖u‖2Hs (Ω) + ‖u‖2

Hs (BRΩ
(0)\Ω)

.

Remark 2.2 The condition on the parameter αD in Assumption 2.1 can be described
in terms of two Dirichlet problems, one posed on Ω and one posed on BRΩ (0)\Ω .
For each of these two domains, a shift theorem is valid, and αD is determined by the
more stringent of the two conditions. It is worth stressing that the type of boundary
condition on ∂BRΩ (0) is not essential in view of the smoothness of ∂BRΩ (0) and
dist(Γ, ∂BRΩ (0)) > 0.

In the case d = 2 the parameter αD is determined by the extremal angles of the
polygon Ω . Specifically, let 0 < ω j < 2π , j = 1, . . . , J , be the interior angles of the
polygon Ω . Then, Assumption 2.1 is valid for any αD > 0 that satisfies

1

2
<

1

2
+ αD < min

j=1,...,J
min

{
π

ω j
,

π

2π − ω j

}

< 1.

(Note that ω j �= π for all j so that the right inequality is indeed strict.) ��
We consider Symm’s integral equation in its weak form: Given f ∈ H1/2(Γ ) find

φ ∈ H−1/2(Γ ) such that

〈Vφ,ψ〉L2(Γ ) = 〈 f, ψ〉L2(Γ ) ∀ψ ∈ H−1/2(Γ ). (2.3)

Here, the single-layer operator V is given by

Vφ(x) =
∫

Γ

G(x, y)φ(y)dsy, x ∈ Γ,

where, with the surface measure |Sd−1| of the Euclidean sphere in R
d , we set

G(x, y) =
{− 1

|S1| log |x − y|, for d = 2,

+ 1
|Sd−1| |x − y|−(d−2), for d ≥ 3.

(2.4)

123



598 M. Faustmann, J. M. Melenk

The single layer operatorV is a bounded linear operator in L(H−1/2+s(Γ ), H1/2+s(Γ ))

for |s| ≤ 1
2 , [22, Thm. 3.1.16]. It is elliptic for s = 0 with the usual proviso for d = 2

that diam(Ω) < 1, which we may assume by scaling.
Let Th = {T1, . . . , TN } be a quasi-uniform, regular and γ -shape regular triangula-

tion of the boundary Γ with mesh-width h := maxT∈Th diam(T ). By S0,0(Th):={u ∈
L2(Γ ) : u|Tj is constant ∀Tj ∈ Th} we denote the space of piecewise constant func-
tions on the mesh Th . The Galerkin formulation of (2.3) reads: Find φh ∈ S0,0(Th)
such that

〈Vφh, ψh〉L2(Γ ) = 〈 f, ψh〉L2(Γ ) ∀ψh ∈ S0,0(Th). (2.5)

The following theorem is one of the main results of this paper. It estimates the
Galerkin error in the L2-norm on a subdomain by the local best approximation error
in L2 on a slightly larger subdomain and the global error in a weaker norm.

Theorem 2.3 Let Assumption 2.1 hold and let Th be a quasi-uniform, γ -shape regular
triangulation. Let φ ∈ H−1/2(Γ ) and φh ∈ S0,0(Th) satisfy the Galerkin orthogonal-
ity condition

〈V (φ − φh), ψh〉L2(Γ ) = 0 ∀ψh ∈ S0,0(Th). (2.6)

Let Γ0, Γ̂ be open subsets of Γ with Γ0 ⊂ Γ̂ � Γ and R:= dist(Γ0, ∂Γ̂ ) > 0. Let h
be such that CαD

h
R ≤ 1

12 with a fixed constant CαD depending only on αD. Assume
that φ ∈ L2(Γ̂ ). Then, we have

‖φ − φh‖L2(Γ0)
≤ C

(

inf
χh∈S0,0(Th)

‖φ − χh‖L2(Γ̂ ) + ‖φ − φh‖H−1−αD (Γ )

)

.

The constant C > 0 depends only on Γ, Γ0, Γ̂ , d, R, and the γ -shape regularity of
Th.

If we additionally assume higher local regularity as well as some (low) global
regularity of the solution φ, this local estimate implies that the local error converges
faster than the global error, which is stated in the following corollary.

Corollary 2.4 Let the assumptions of Theorem 2.3 be fulfilled. Let Γ̃ ⊂ Γ be a subset
with Γ̂ � Γ̃ and dist(Γ̂ , ∂Γ̃ ) ≥ R > 0. Additionally, assume φ ∈ H−1/2+α(Γ ) ∩
Hβ(Γ̃ ) with α ≥ 0, β ∈ [0, 1]. Then, we have

‖φ − φh‖L2(Γ0)
≤ Chmin{1/2+α+αD ,β}

with a constant C > 0 depending only on Γ, Γ0, Γ̂ , Γ̃ , d, R, α, β, and the γ -shape
regularity of Th.

In the results of [18,30] singularities far from the domain of interest still have a
weak influence on the local convergence of the FEM. Corollary 2.4 shows that this
is similar in the BEM: The a priori estimate shows the effect of singularities of the
solution (represented by α) and those induced by the geometry (represented by αD)
affect the local convergence.

123



Local convergence of the boundary element method 599

Remark 2.5 In comparison to [27], Corollary 2.4 gives a better result for the rate of
convergence of the local error in the case where the convergence is limited by the
global error in the weaker norm. More precisely, for the case φ ∈ H1/2(Γ̃ ) ∩ L2(Γ ),
[27] obtains the local rate of 1/2, which coincides with our local rate. However, if
φ ∈ H1(Γ̃ ), we obtain rate 1 in the L2-norm, whereas the rate in [27] remains 1/2. ��
Remark 2.6 Even for smooth functions f , the solution φ of (2.3) is, in general, not
better than Hα(Γ ) with α = 1

2 + αD . Recall from Remark 2.2 that αD is determined
by the mapping properties for both the interior and the exterior Dirichlet problem. A
special situation therefore arises if Symm’s integral equation is obtained from refor-
mulating an interior (or exterior) Dirichlet problem. To be specific, consider again the
case d = 2 of a polygon Ω with interior angles ω j , j = 1, . . . , J . We rewrite the
boundary value problem −Δu = 0 in Ω with u|Γ = g as the integral equation

Vφ =
(
1

2
+ K

)

g

for the unknown function φ = ∂nu with the double layer operator K defined by

Kφ(x):=
∫

Γ

∂nyG(x, y)φ(y)dsy .

Then, φ ∈ Hα(Γ ) for any α with α < 1/2 + min j
π
ω j
. ��

2.2 The hyper-singular integral equation

For the Neumann problem, we assume an extended shift theorem as well.

Assumption 2.7 Ω ⊂ R
d , d ≥ 2, is a bounded Lipschitz domain whose boundary

consists of finitely many affine pieces (i.e., Ω is the intersection of finitely many half-
spaces). RΩ > 0 is such that the open ball BRΩ (0) ⊂ R

d contains Ω . The parameter
αN ∈ (0, αD], where αD is the parameter from Assumption 2.1, is such that for
every ε ∈ (0, αN ] there is Cε > 0 such that for all f ∈ H−1/2+ε(BRΩ (0)\Γ ) and
g ∈ H ε(Γ ) with

∫
Ω

f + ∫
Γ
g = 0 the a priori bound

‖T f ‖H3/2+ε(BRΩ
(0)\Γ ) ≤ Cε

(
‖ f ‖H−1/2+ε(BRΩ

(0)\Γ ) + ‖g‖H ε(Γ )

)
(2.7)

holds, where u:=T f ∈ H1(BRΩ (0)\Γ ) denotes the solution of

−Δu = f in Ω, γ int
1 u = g on Γ, 〈u, 1〉L2(Ω) = 0,

−Δu = f in BRΩ (0)\Ω, γ ext
1 u = g on Γ, γ int

0 u = 0 on ∂BRΩ (0).

The condition on the parameter αN again can be described in terms of two problems,
a pure Neumann problem posed in Ω , for which we need a compatibility condition,
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600 M. Faustmann, J. M. Melenk

and a mixed Dirichlet–Neumann problem posed on BRΩ (0)\Ω , which is uniquely
solvable without the need to impose a solvability condition for f, g.

The parameter αN again depends only on the geometry and the corners/edges that
induce singularities. In fact, on polygonal domains, i.e., d = 2,αD = αN , see, e.g., [9].

Studying the inhomogeneous Neumann boundary value problem −Δu = 0, ∂nu =
g, leads to the boundary integral equation of finding ϕ ∈ H1/2(Γ ) such thatWϕ = f
with f ∈ H−1/2(Γ ) satisfying the compatibility condition 〈 f, 1〉L2(Γ ) = 0, and the
hyper-singular integral operator W ∈ L(H1/2(Γ ), H−1/2(Γ )) defined by

Wϕ(x) = −∂nx

∫

Γ

∂nyG(x, y)ϕ(y)dsy, x ∈ Γ.

We additionally assume that Γ is connected, so that the hyper-singular integral oper-
ator has a kernel of dimension one consisting of the constant functions. Therefore,
the boundary integral equation is not uniquely solvable. Employing the constraint
〈ϕ, 1〉L2(Γ ) = 0 leads to the stabilized variational formulation

〈Wϕ,ψ〉L2(Γ ) + 〈ϕ, 1〉L2(Γ ) 〈ψ, 1〉L2(Γ ) = 〈 f, ψ〉L2(Γ ) ∀ψ ∈ H1/2(Γ ), (2.8)

which has a unique solution ϕ ∈ H1/2(Γ ), see, e.g., [26]. For the Galerkin discretiza-
tion we employ lowest order test and trial functions in S1,1(Th):={u ∈ H1(Γ ) :
u|Tj ∈ P1 ∀Tj ∈ Th}, which leads to the discrete variational problem of finding
ψh ∈ S1,1(Th) such that

〈Wϕh, ψh〉L2(Γ ) + 〈ϕh , 1〉L2(Γ ) 〈ψh , 1〉L2(Γ ) = 〈 f, ψh〉L2(Γ ) ∀ψh ∈ S1,1(Th). (2.9)

The following theorem is the analog of Theorem 2.3 for the hyper-singular integral
equation. The local error in the H1-seminorm is estimated by the local best approxi-
mation error and the global error in a weak norm.

Theorem 2.8 Let Assumption 2.7 hold and let Th be a quasi-uniform, γ -shape regular
triangulation. Let ϕ ∈ H1/2(Γ ) and ϕh ∈ S1,1(Th) satisfy the Galerkin orthogonality
condition

〈W (ϕ − ϕh), ψh〉L2(Γ ) + 〈ϕ − ϕh, 1〉L2(Γ ) 〈ψh, 1〉L2(Γ ) = 0 ∀ψh ∈ S1,1(Th).
(2.10)

Let Γ0, Γ̂ be open subsets of Γ with Γ0 ⊂ Γ̂ � Γ and R:= dist(Γ0, ∂Γ̂ ) > 0. Let h
be such that CαN

h
R ≤ 1

12 with a fixed constant CαN depending only on αN . Assume
that ϕ ∈ H1(Γ̂ ). Then, we have

‖ϕ − ϕh‖H1(Γ0)
≤ C

(

inf
χh∈S1,1(Th)

‖ϕ − χh‖H1(Γ̂ ) + ‖ϕ − ϕh‖H−αN (Γ )

)

.

The constant C > 0 depends only on Γ, Γ0, Γ̂ , d, R, and the γ -shape regularity of
Th.
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Local convergence of the boundary element method 601

Again, assuming additional regularity, the local estimate of Theorem 2.8 leads to a
higher rate of local convergence of the BEM for the stabilized hyper-singular integral
equation.

Corollary 2.9 Let the assumptions of Theorem 2.8 be fulfilled. Let Γ̃ ⊂ Γ be a
subset with Γ̂ � Γ̃ , dist(Γ̂ , ∂Γ̃ ) ≥ R > 0. Additionally, assume ϕ ∈ H1/2+α(Γ ) ∩
H1+β(Γ̃ ) with α ≥ 0, β ∈ [0, 1]. Then, we have

‖ϕ − ϕh‖H1(Γ0)
≤ Chmin{1/2+α+αN ,β}

with a constant C > 0 depending only on Γ, Γ0, Γ̂ , Γ̃ , d, R, α, β, and the γ -shape
regularity of Th.

3 Shift theorems

The following two sections are dedicated to the proofs of Theorem 2.3 and Corol-
lary 2.4 for Symm’s integral equation as well as Theorem 2.8 and Corollary 2.9 for the
hyper-singular integral equation. We start with some technical results that are direct
consequences of the assumed shift theorems from Assumption 2.1 for the Dirichlet
problem andAssumption 2.7 for the Neumann problem. The shift theorem of Assump-
tion 2.1 implies the following shift theorem for Dirichlet problems:

Lemma 3.1 Let the shift theorem from Assumption 2.1 hold and let u be the solution
of the inhomogeneous Dirichlet problem −Δu = 0 in BRΩ (0)\Γ , γ0u = g on Γ ∪
∂BRΩ (0) for some g ∈ H1/2(Γ ∪ ∂BRΩ (0)).

(i) There is a constant C > 0 depending only on Ω and αD such that

‖u‖H1/2−αD (BRΩ
(0)\Γ ) ≤ C ‖g‖H−αD (Γ ∪∂BRΩ

(0)) . (3.1)

(ii) Let ε ∈ (0, αD] and B ⊂ B ′ ⊂ BRΩ (0) be nested subdomains with dist(B, ∂B ′) >

0. Let η ∈ C∞(Rd) be a cut-off function satisfying η ≡ 1 on B ∩ Γ , supp η ⊂ B ′,
and ‖η‖Ck (B′) � dist(B, ∂B ′)−k for k ∈ {0, 1, 2}. Assume ηg ∈ H1+ε(Γ ). Then

‖u‖H3/2+ε(B\Γ ) ≤ C
(‖u‖H1(B′\Γ ) + ‖ηg‖H1+ε(Γ )

)
. (3.2)

Here, the constant C > 0 additionally depends on dist(B, ∂B ′).

Proof: Proof of (i): Let v solve −Δv = w in BRΩ (0)\Γ , γ0v = 0 on Γ ∪ ∂BRΩ (0)
for w ∈ H−1/2+αD (BRΩ (0)\Γ ). Then, in view of (1.2), we have

‖u‖H1/2−αD (BRΩ
(0)\Γ ) = sup

w∈H−1/2+αD (BRΩ
(0)\Γ )

〈u, w〉L2(BRΩ
(0)\Γ )

‖w‖H−1/2+αD (BRΩ
(0)\Γ )

= sup
w∈H−1/2+αD (BRΩ

(0)\Γ )

−〈u,Δv〉L2(BRΩ
(0)\Γ )

‖w‖H−1/2+αD (BRΩ
(0)\Γ )

.
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Integration by parts on Ω and BRΩ (0)\Ω and the boundary condition γ0v = 0 lead
to

〈u,Δv〉L2(BRΩ
(0)\Γ ) = 〈Δu, v〉L2(BRΩ

(0)\Γ ) + 〈γ0u, [∂nv]〉L2(Γ )

+〈γ0u, ∂nv〉L2(∂BRΩ
(0))

= 〈g, [∂nv]〉L2(Γ ) + 〈g, ∂nv〉L2(∂BRΩ
(0)) .

We split the polygonal/polyhedral boundary Γ = ⋃m
�=1 Γ� into its (smooth) faces Γ�

and prolong each face Γ� to the hyperplane Γ ∞
� , which decomposes R

d into two half
spaces Ω±

� . Let χ� ∈ L2(Γ ) be the characteristic function for Γ�. Since the normal
vector on a face does not change, we may use the trace estimate (note: 0 < αD < 1/2)
facewise, to estimate

‖[∂nv]‖HαD (Γ ) �
m∑

�=1

‖χ�[∇v · n]‖HαD (Γ�)
�

m∑

�=1

‖∇v‖H1/2+αD (Ω±
� ∩BRΩ

(0))

� ‖v‖H3/2+αD (BRΩ
(0)\Γ ) . (3.3)

As the boundary ∂BRΩ (0) is smooth, standard elliptic regularity yields
‖∂nv‖HαD (∂BRΩ

(0)) � ‖v‖H3/2+αD (BRΩ
(0)\Γ ). This leads to

‖u‖H1/2−αD (BRΩ
(0)\Γ ) � sup

w∈H−1/2+αD (BRΩ
(0)\Γ )

∣
∣
∣〈g, [∂nv]〉L2(Γ ) + 〈g, ∂nv〉L2(∂BRΩ

(0))

∣
∣
∣

‖w‖H−1/2+αD (BRΩ
(0)\Γ )

� sup
w∈H−1/2+αD (BRΩ

(0)\Γ )

‖g‖H−αD (Γ ∪∂BRΩ
(0))

(
‖[∂nv]‖HαD (Γ ) + ‖∂nv‖HαD (∂BRΩ

(0))

)

‖w‖H−1/2+αD (BRΩ
(0)\Γ )

� ‖g‖H−αD (Γ ∪∂BRΩ
(0)) sup

w∈H−1/2+αD (BRΩ
(0)\Γ )

‖v‖H3/2+αD (BRΩ
(0)\Γ )

‖w‖H−1/2+αD (BRΩ
(0)\Γ )

Ass. 2.1
� ‖g‖H−αD (Γ ∪∂BRΩ

(0)) .

Proof of (ii): With the lifting operator L : H1+ε(Γ ) → H3/2+ε(BRΩ (0)\Γ )

from (1.4), the function ũ:=η2u − ηL(ηg) satisfies

−Δũ = −4η∇η · ∇u − (Δη2)u + Δ(ηL(ηg)) in BRΩ (0)\Γ,

γ0ũ = 0 on Γ ∪ ∂BRΩ (0).

With the shift theorem from Assumption 2.1 we get
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‖u‖H3/2+ε(B\Γ ) ≤
∥
∥
∥η2u

∥
∥
∥
H3/2+ε(B\Γ )

≤ ‖ũ‖H3/2+ε(BRΩ
(0)\Γ ) + ‖ηL(ηg)‖H3/2+ε(BRΩ

(0)\Γ )

�
∥
∥
∥4η∇η · ∇u + (Δη2)u

∥
∥
∥
L2(BRΩ

(0)\Γ )
+ ‖Δ(ηL(ηg))‖H−1/2+ε(BRΩ

(0)\Γ )

+ ‖L(ηg)‖H3/2+ε(BRΩ
(0)\Γ )

� ‖u‖H1(B′\Γ ) + ‖L(ηg)‖H3/2+ε(BRΩ
(0)\Γ ) � ‖u‖H1(B′\Γ ) + ‖ηg‖H1+ε(Γ ) ,

which proves the second statement. ��
The following lemma collects mapping properties of the single-layer operator V

that exploits the present setting of piecewise smooth geometries:

Lemma 3.2 Define the single layer potential Ṽ by

Ṽφ(x):=
∫

Γ

G(x, y)φ(y)dsy, x ∈ R
d\Γ. (3.4)

(i) The single layer potential Ṽ is a bounded linear operator from H−1/2+s(Γ ) to
H1+s(BRΩ (0)\Γ ) for −1/2 ≤ s < 1.

(ii) The single-layer operator V is a bounded linear operator from H−1/2+s(Γ ) to
H1/2+s(Γ ) for −1/2 ≤ s < 1.

(iii) The adjoint double-layer operator K ′ is a bounded linear operator from
H−1/2+s(Γ ) to H−1/2+s(Γ ) for −1/2 ≤ s < 1.

Proof: Proof of (i): The case s ∈ (−1/2, 1/2) is shown in [22, Thm. 3.1.16], and
for s = − 1

2 we refer to [29]. For the case s ∈ [1/2, 1), we exploit that Γ is piece-
wise smooth. We split the polygonal/polyhedral boundary Γ = ⋃m

�=1 Γ� into its
(smooth) faces Γ�. Let χ� ∈ L2(Γ ) be the characteristic function for Γ�. Then, for
ϕ ∈ H−1/2+s(Γ ), we have Ṽϕ = ∑m

�=1 Ṽ (χ�ϕ). We prolong each face Γ� to the
hyperplane Γ ∞

� , which decomposes R
d into two half spaces Ω±

� . Due to s < 1, we
have χ�ϕ ∈ H−1/2+s(Γ ∞

� ). Since the half spaces Ω±
� have smooth boundaries, we

may use the mapping properties of Ṽ on smooth geometries, see, e.g., [15, Thm. 6.13]
to estimate

∥
∥Ṽϕ

∥
∥
H1+s (BRΩ

(0)\Γ )
�

m∑

�=1

∥
∥Ṽ (χ�ϕ)

∥
∥
H1+s (Ω±

� )

�
m∑

�=1

‖χ�ϕ‖H−1/2+s (Γ ∞
� ) � ‖ϕ‖H−1/2+s (Γ ) .

Proof of (ii): The case −1/2 ≤ s ≤ 1/2 is taken from [22, Thm. 3.1.16]. For s ∈
(1/2, 1) the result follows from part (i) and the definition of the norm ‖ · ‖Hs (Γ ) given
in (1.3).

Proof of (iii): The case −1/2 ≤ s ≤ 1/2 is taken from [22, Thm. 3.1.16]. With
K ′ = ∂n Ṽ − 1

2 Id the case s ∈ (1/2, 1) follows from part (i) and a facewise trace
estimate (3.3) since

123



604 M. Faustmann, J. M. Melenk

∥
∥∂n Ṽϕ

∥
∥
H−1/2+s (Γ )

�
∥
∥Ṽϕ

∥
∥
H1+s (Ω)

� ‖ϕ‖H−1/2+s (Γ ) .

��
In addition to the single layer operator V , we will need to understand localized

versions of these operators, i.e., the properties of commutators. For a smooth cut-off
function η, we define the commutators

(Cηφ̂)(x):=(V (ηφ̂) − ηV (φ̂))(x) =
∫

Γ

G(x, y)(η(x) − η(y))φ̂(y)dsy, (3.5)

(Cη
η φ̂)(x):=(Cη(ηφ̂) − ηCη(φ̂))(x) =

∫

Γ

G(x, y)(η(x) − η(y))2φ̂(y)dsy . (3.6)

Since the singularity of the Green’s function at x = y is smoothed by η(x)−η(y), we
expect that the commutators Cη, C

η
η have better mapping properties than the single-

layer operator; this is stated in the following lemma.

Lemma 3.3 Let η ∈ C∞
0 (Rd) be fixed.

(i) Let s ∈ (−1/2, 1/2). The commutator Cη can be extended in a unique way
to a bounded linear operator Cη : H−1+s(Γ ) → H1+s(Γ ). The continuity
constant depends only on ‖η‖W 1,∞(Rd ), Ω , and s. Furthermore, the operator is
skew-symmetric (with respect to the L2(Γ )-inner product).

(ii) The commutatorCη
η is a symmetric and continuousmappingC

η
η : H−1−αD (Γ ) →

H1+αD (Γ ). Here, the continuity constant depends only on ‖η‖W 1,∞(Rd ), Ω , and
the constants appearing in Assumption 2.1.

Proof: Proof of (i): 1. step: We show the boundedness for the case 0 < s < 1/2. Let
φ̂ ∈ H−1+s(Γ ), and set

u:=C̃ηφ̂ := Ṽ (ηφ̂) − ηṼ (φ̂). (3.7)

Since the volume potential Ṽ φ̂ is harmonic and in view of the jump relations [γ0Ṽφ] =
0, [∂n Ṽφ] = −φ satisfied by Ṽ , cf. [22, Thm. 3.3.1], we have

−Δu = 2∇η · ∇ Ṽ φ̂ + ΔηṼ φ̂ inR
d\Γ,

[γ0u] = 0, [∂nu] = 0 onΓ.

We may write u = N (2∇η · ∇ Ṽ φ̂ + ΔηṼ φ̂) with the Newton potential

N f (x):=
∫

Rd
G(x, y) f (y)dy, (3.8)

since u andN (2∇η ·∇ Ṽ φ̂+ΔηṼ φ̂) have the same decay for |x | → ∞. The mapping
properties of the Newton potential (see, e.g., [22, Thm. 3.1.2]), as well as the mapping
properties of Ṽ of Lemma 3.2, (i) provide
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‖u‖H3/2+s (BRΩ
(0)\Γ ) �

∥
∥2∇η · ∇ Ṽ φ̂ + ΔηṼ φ̂

∥
∥
H−1/2+s (BRΩ

(0)\Γ )

�
∥
∥Ṽ φ̂

∥
∥
H1/2+s (BRΩ

(0)\Γ )
�

∥
∥φ̂

∥
∥
H−1+s (Γ )

. (3.9)

The definition of Cη and the definition of the norm ‖·‖H1+s (Γ ) from (1.3) prove the
mapping properties of Cη for 0 < s < 1/2.

The mapping properties of the Newton potential ( see, e.g., [22, Thm. 3.1.2]) also
lead to

∥
∥C̃ηφ̂

∥
∥
H1/2+s (BRΩ

(0)\Γ )
= ‖u‖H1/2+s (BRΩ

(0)\Γ ) �
∥
∥Ṽ φ̂

∥
∥
H−1/2+s (BRΩ

(0)\Γ )
.

(3.10)

2. step: Since V is symmetric, we have for arbitrary φ̂, ψ ∈ H−1/2(Γ )

〈
Cηφ̂, ψ

〉 = 〈
V (ηφ̂) − ηV (φ̂), ψ

〉 = 〈
φ̂, ηV (ψ) − V (ηψ)

〉 = − 〈
φ̂,Cηψ

〉
.

With the mapping property Cη : H−1+s(Γ ) → H1+s(Γ ) for 0 < s < 1/2, we see
that the right-hand side of this equation extends to a bounded linear functional on
H−1−s(Γ ), which proves the mapping properties for the case −1/2 < s < 0.

A similar computation proves the symmetry of the commutator Cη
η asserted in (ii).

3. step: We have Cη : H−1+s(Γ ) → H1+s(Γ ) for s ∈ (−1/2, 1/2)\{0}. An
interpolation argument extends the boundedness to the remaining case s = 0.

Proof of (ii): Let
v := C̃η

η φ̂ := C̃η(ηφ̂) − ηC̃ηφ̂. (3.11)

Since

ΔC̃η(ηφ̂) − ηΔC̃ηφ̂ = −2∇η · ∇C̃ηφ̂ − ΔηC̃ηφ̂ − 2 |∇η|2 Ṽ φ̂,

the function v solves

−Δv = 4∇η · ∇C̃ηφ̂ + 2ΔηC̃ηφ̂ + 2 |∇η|2 Ṽ φ̂ inR
d\Γ, (3.12)

[γ0v] = 0, [∂nv] = 0 onΓ. (3.13)

Again, the function v and the Newton potential of the right-hand side of (3.12) have
the same decay for |x | → ∞, and the mapping properties of the Newton potential as
well as the previous estimate (3.10) for C̃ηφ̂ provide
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‖v‖H3/2+αD (BRΩ
(0)\Γ ) �

∥
∥4∇η · ∇C̃ηφ̂ + 2ΔηC̃ηφ̂ + 2 |∇η|2 Ṽ φ̂

∥
∥
H−1/2+αD (BRΩ

(0)\Γ )

�
∥
∥C̃ηφ̂

∥
∥
H1/2+αD (BRΩ

(0)\Γ )
+ ∥

∥Ṽ φ̂
∥
∥
H−1/2+αD (BRΩ

(0)\Γ )

(3.10)

�
∥
∥Ṽ φ̂

∥
∥
H−1/2+αD (BRΩ

(0)\Γ )

αD<1/2
�

∥
∥Ṽ φ̂

∥
∥
H1/2−αD (BRΩ

(0)\Γ )
.

(3.14)

We apply Lemma 3.1 to Ṽ φ̂. Since dist(Γ, ∂BRΩ (0)) > 0, we have that Ṽ φ̂ is smooth
on ∂BRΩ (0), and we can estimate this term by an arbitrary negative norm of φ̂ on Γ

to obtain

∥
∥Ṽ φ̂

∥
∥
H1/2−αD (BRΩ

(0)\Γ )

(3.1)

�
∥
∥γ0Ṽ φ̂

∥
∥
H−αD (Γ ∪∂BRΩ

(0))

�
∥
∥V φ̂

∥
∥
H−αD (Γ )

+ ∥
∥φ̂

∥
∥
H−1−αD (Γ )

.

The mapping properties of V of Lemma 3.2, (ii) and the symmetry of V imply

∥
∥V φ̂

∥
∥
H−αD (Γ )

= sup
w∈HαD (Γ )

〈
V φ̂, w

〉
L2(Γ )

‖w‖HαD (Γ )

= sup
w∈HαD (Γ )

〈
φ̂, Vw

〉
L2(Γ )

‖w‖HαD (Γ )

� sup
w∈HαD (Γ )

∥
∥φ̂

∥
∥
H−1−αD (Γ )

‖Vw‖H1+αD (Γ )

‖w‖HαD (Γ )

�
∥
∥φ̂

∥
∥
H−1−αD (Γ )

.

Inserting this in (3.14) leads to ‖v‖H3/2+αD (BRΩ
(0)\Γ ) �

∥
∥φ̂

∥
∥
H−1−αD (Γ )

, which,

together with the definition of the H1+αD (Γ )-norm in (1.3), proves the lemma. ��
The shift theorem for the Neumann problem from Assumption 2.7 implies the

following shift theorem.

Lemma 3.4 Let Assumption 2.7 be valid, and let u be the solution of the inhomoge-
neous problems

−Δu = 0 in Ω, γ int
1 u = gN on Γ , 〈u, 1〉L2(Ω) = 0,

−Δu = 0 in BRΩ (0)\Ω, γ ext
1 u = gN on Γ , γ int

0 u = gD on ∂BRΩ (0),

where gN ∈ H−1/2(Γ ) with 〈gN , 1〉L2(Γ ) = 0, and gD ∈ H1/2(∂BRΩ (0)).

(i) There is a constant C > 0 depending only on Ω and αN such that

‖u‖H1/2−αN (BRΩ
(0)\Γ ) ≤ C

(
‖gN‖H−1−αN (Γ ) + ‖gD‖H−αN (∂BRΩ

(0))

)
. (3.15)

(ii) Let ε ∈ (0, αN ]. Let B ⊂ B ′ ⊂ BRΩ (0) be nested subdomains with
dist(B, ∂B ′) > 0 and let η ∈ C∞

0 (Rd) satisfy η ≡ 1 on B ∩ Γ , supp η ⊂ B ′, and
‖η‖Ck (B′) � dist(B, ∂B ′)−k for k ∈ {0, 1, 2}. Assume ηgN ∈ H ε(Γ ). Then
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‖u‖H3/2+ε(B\Γ ) ≤ C
(‖u‖H1(B′\Γ ) + ‖ηgN‖H ε(Γ )

)
. (3.16)

Here, the constant C > 0 depends on Ω,αN , and dist(B, ∂B ′).

Proof: Proof of (i): For w ∈ H−1/2+αN (BRΩ (0)\Γ ) and w := 1
|Ω| 〈w, 1〉L2(Ω), let v

solve

−Δv = w − w in Ω, γ int
1 v = 0 on Γ , 〈v, 1〉L2(Ω) = 0,

−Δv = w in BRΩ (0)\Ω, γ ext
1 v = 0 on Γ , γ int

0 v = 0 on ∂BRΩ (0).

Then, with 〈u, 1〉L2(Ω) = 0, we have

‖u‖H1/2−αN (BRΩ
(0)\Γ ) = sup

w∈H−1/2+αN (BRΩ
(0)\Γ )

〈u, w〉L2(BRΩ
(0)\Γ )

‖w‖H−1/2+αN (BRΩ
(0)\Γ )

= sup
w∈H−1/2+αN (BRΩ

(0)\Γ )

〈u, w − w〉L2(Ω) + 〈u, w〉L2(BRΩ
(0)\Ω)

‖w‖H−1/2+αN (BRΩ
(0)\Γ )

= sup
w∈H−1/2+αN (BRΩ

(0)\Γ )

− 〈u,Δv〉L2(BRΩ
(0)\Γ )

‖w‖H−1/2+αN (BRΩ
(0)\Γ )

.

Integration by parts on Ω and BRΩ (0)\Ω and the boundary conditions of v lead to

〈u,Δv〉L2(BRΩ
(0)\Γ ) = 〈Δu, v〉L2(BRΩ

(0)\Γ ) − 〈∂nu, [γ0v]〉L2(Γ )

+〈γ0u, ∂nv〉L2(∂BRΩ
(0))

= −〈gN , [γ0v]〉L2(Γ ) + 〈gD, ∂nv〉L2(∂BRΩ
(0)) .

The definition of the norm (1.3) implies

∥
∥
∥γ int

0 v

∥
∥
∥
H1+αN (Γ )

� ‖v‖H3/2+αN (BRΩ
(0)\Γ ) ,

and the same estimate holds for γ ext
0 v. Since ∂BRΩ (0) is smooth, we may estimate

with the trace inequality

‖∂nv‖HαN (∂BRΩ
(0)) � ‖v‖H3/2+αN (BRΩ

(0)\Γ ) .

This leads to

‖u‖H1/2−αN (BRΩ
(0)\Γ ) � sup

w∈H−1/2+αN (BRΩ
(0)\Γ )

∣
∣
∣〈gN , [γ0v]〉L2(Γ ) − 〈gD, ∂nv〉L2(∂BRΩ

(0))

∣
∣
∣

‖w‖H−1/2+αN (BRΩ
(0)\Γ )

� sup
w∈H−1/2+αN (BRΩ

(0)\Γ )

‖gN ‖H−1−αN (Γ ) ‖[γ0v]‖H1+αN (Γ ) + ‖gD‖H−αN (∂BRΩ
(0)) ‖∂nv‖HαN (∂BRΩ

(0))

‖w‖H−1/2+αN (BRΩ
(0)\Γ )
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�
(
‖gN ‖H−1−αN (Γ ) + ‖gD‖H−αN (∂BRΩ

(0))

)
sup

w∈H−1/2+αN (BRΩ
(0)\Γ )

‖v‖H3/2+αN (BRΩ
(0)\Γ )

‖w‖H−1/2+αN (BRΩ
(0)\Γ )

Ass. 2.7
� ‖gN ‖H−1−αN (Γ ) + ‖gD‖H−αN (∂BRΩ

(0)) .

Proof of (ii): Since η ≡ 0 on ∂BRΩ (0), the function ũ:=ηu satisfies

−Δũ = −2∇η · ∇u − (Δη)u in BRΩ (0)\Γ,

γ int
1 ũ = (∂nη)γ int

0 u + ηgN on Γ,

γ ext
1 ũ = (∂nη)γ ext

0 u + ηgN on Γ,

γ int
0 ũ = 0 on ∂BRΩ (0).

The shift theoremfromAssumption2.7 and the trace inequality
∥
∥(∂nη)γ int

0 u
∥
∥
H1/2(Γ )

�
‖u‖H1(B′\Γ ) provide

‖u‖H3/2+ε(B\Γ ) ≤ ‖ũ‖H3/2+ε(BRΩ
(0)\Γ )

� ‖2∇η · ∇u + (Δη)u‖L2(BRΩ
(0)\Γ ) +

∥
∥
∥(∂nη)γ int

0 u
∥
∥
∥
H ε(Γ )

+ ∥
∥(∂nη)γ ext

0 u
∥
∥
H ε(Γ )

+ ‖ηgN‖H ε(Γ )

� ‖u‖H1(B′\Γ ) + ‖ηgN‖H ε(Γ ) ,

which proves the second statement. ��
The following lemma collects mapping properties of the double-layer operator K

and the hyper-singular operatorW that exploit the present setting of piecewise smooth
geometries:

Lemma 3.5 Define the double layer potential K̃ by

K̃ϕ(x):=
∫

Γ

∂nyG(x, y)ϕ(y)dsy, x ∈ R
d\Γ. (3.17)

(i) The double layer potential K̃ is a bounded linear operator from H1/2+s(Γ ) to
H1+s(BRΩ (0)\Γ ) for −1/2 ≤ s ≤ 1/2 + αN .

(ii) The double layer operator K is a bounded linear operator from H1/2+s(Γ ) to
H1/2+s(Γ ) for −1/2 ≤ s ≤ 1/2 + αN .

(iii) The hyper singular operator W is a bounded linear operator from H1/2+s(Γ )

to H−1/2+s(Γ ) for −1/2 − αN ≤ s ≤ 1/2 + αN .

Proof: Proof of (i): With the mapping properties of the single layer potential Ṽ ∈
L(H−1/2+s(Γ ), H1+s(BRΩ (0)\Γ )) from Lemma 3.2, the mapping properties of the
solution operator of the Dirichlet problem from Assumption 2.1 (T : H1/2+s(Γ ) →
H1+s(BRΩ (0)\Γ )), and the assumptionαN ≤ αD , themapping properties of K̃ follow
from Green’s formula by expressing K̃ in terms of Ṽ , T , and the Newton potentialN .
For details, we refer to [22, Thm. 3.1.16], where the case s ∈ (−1/2, 1/2) is shown.
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Proof of (ii): The case −1/2 ≤ s ≤ 1/2 is taken from [22, Thm. 3.1.16]. For
s ∈ (1/2, 1/2 + αN ] the result follows from part (i), the definition of the norm
‖ · ‖Hs+1/2(Γ ) given in (1.3), and K = γ int

0 K̃ + 1
2 Id.

Proof of (iii): The case −1/2 ≤ s ≤ 1/2 is taken from [22, Thm. 3.1.16]. Since
W = −∂n K̃ , we get with a facewise trace estimate as in the proof of Lemma 3.1,
estimate (3.3), that

‖Wϕ‖H−1/2+s (Γ ) = ∥
∥∂n K̃ϕ

∥
∥
H−1/2+s (Γ )

�
∥
∥K̃ϕ

∥
∥
H1+s (Ω)

� ‖ϕ‖H1/2+s (Γ ) ,

which finishes the proof for the case s ∈ (1/2, 1/2 + αN ]. With the symmetry of W ,
the case s ∈ [−1/2 − αN ,−1/2) follows. ��

For a smooth function η, we define the commutators

Cηϕ̂ := W (ηϕ̂) − ηW ϕ̂, (3.18)

Cη
η (ϕ̂) := Cη(ηϕ̂) − ηCη(ϕ̂) = W (η2ϕ̂) − 2ηW (ηϕ̂) + η2W (ϕ̂). (3.19)

By the mapping properties of W , both operators map H1/2(Γ ) → H−1/2(Γ ). How-
ever, Cη is in fact an operator of order 0 and Cη

η is an operator of positive order:

Lemma 3.6 Fix η ∈ C∞
0 (Rd).

(i) Let s ∈ (−1/2, 1/2). Then, the commutator Cη can be extended in a unique way
to a bounded linear operator Hs(Γ ) → Hs(Γ ), which satisfies

‖Cηϕ‖Hs (Γ ) ≤ C‖ϕ‖Hs (Γ ) ∀ϕ ∈ Hs(Γ ). (3.20)

The constantC depends only on‖η‖W 1,∞(Rd ),Ω , and s. Furthermore, the operator
is skew-symmetric (with respect to the extended L2-inner product).

(ii) The commutator Cη
η is a symmetric and continuous mapping Cη

η : H−αN (Γ ) →
HαN (Γ ). The continuity constant depends only on ‖η‖W 1,∞(Rd ), Ω , and the con-
stants appearing in Assumption 2.7.

Proof: Proof of (i): 1. step: We show (3.20) for the range 0 < s < 1/2. For ϕ ∈
H1/2(Γ ), consider the operator

C̃ηϕ:=K̃ (ηϕ) − ηK̃ (ϕ) − Ṽ ((∂nη)ϕ) (3.21)

with the single layer potential Ṽ and the double layer potential K̃ from (3.17). Using
the jump conditions [γ0Ṽφ] = 0, [∂n Ṽφ] = −φ for Ṽ and additionally the jump
relations [γ0 K̃φ] = φ, [∂n K̃φ] = 0 satisfied by K̃ from [22, Thm. 3.3.1], we observe
that the function u := C̃ηϕ solves

−Δu = 2∇η · ∇ K̃ϕ + (Δη)K̃ϕ in R
d\Γ,

[γ0u] = 0, [∂nu] = −∂nη[γ0 K̃ϕ] − [∂n Ṽ (∂nηϕ)] = 0 on Γ.
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610 M. Faustmann, J. M. Melenk

The decay of u - the dominant part is the single-layer potential - and the Newton
potential N (2∇η · ∇ K̃ϕ + (Δη)K̃ϕ) for |x | → ∞ are the same, which allows us to
write u = N (2∇η · ∇ K̃ϕ + (Δη)K̃ϕ). With the mapping properties of the Newton
potential and the standard mapping properties of K̃ from [22, Thm. 3.1.16], we get

‖u‖H3/2+s (BRΩ
(0)\Γ ) �

∥
∥∇η · ∇ K̃ϕ + ΔηK̃ϕ

∥
∥
H−1/2+s (BRΩ

(0)\Γ )

�
∥
∥K̃ϕ

∥
∥
H1/2+s (BRΩ

(0)\Γ )
� ‖ϕ‖Hs (Γ ) . (3.22)

The trace estimate applied facewise as in the proof of Lemma 3.1, and estimates (3.3),
(3.22) lead to

∥
∥∂n C̃ηϕ

∥
∥
Hs (Γ )

= ‖∂nu‖Hs (Γ ) � ‖u‖H3/2+s (BRΩ
(0)\Γ ) � ‖ϕ‖Hs (Γ ) . (3.23)

Similarly, we obtain with Lemma 3.2, (i)

‖∂n Ṽ (ηϕ)‖Hs (Γ ) � ‖Ṽ (ηϕ)‖H3/2+s (BRΩ
(0)\Γ ) � ‖ηϕ‖Hs (Γ ). (3.24)

Next, we identify ∂n C̃η. With W = −∂n K̃ , K ′ = ∂n Ṽ − 1
2 Id, and K = 1

2 Id+γ int
0 K̃ ,

we compute

∂n C̃ηϕ = ηWϕ − W (ηϕ) − K ′((∂nη)ϕ) − (∂nη)Kϕ.

Recalling the mapping properties K ′, K : Hs(Γ ) → Hs(Γ ) and the relation ∂n Ṽ =
1
2 Id−K ′, we get with the aid of (3.23), (3.24)

‖W (ηϕ) − ηWϕ‖Hs (Γ ) � ‖ϕ‖Hs (Γ ). (3.25)

2. step: Since H1/2(Γ ) is dense in Hs(Γ ), s ∈ (0, 1/2), the operator Cη can be
extended (in a unique way) to a bounded linear operator Hs(Γ ) → Hs(Γ ).

3. step: The operator Cη is skew-symmetric: The operator W maps H1/2(Γ ) →
H−1/2(Γ ) and is symmetric. The skew-symmetry of Cη then follows from a direct
calculation.

4. step:The skew-symmetry of Cη allows us to extend (in a uniqueway) the operator
as an operator H−s(Γ ) → H−s(Γ ) for 0 < s < 1/2 by the following argument: For
ϕ, ψ ∈ H1/2(Γ ) we compute

〈Cηϕ,ψ〉 = −〈ϕ, Cηψ〉. (3.26)

Since Cη : Hs(Γ ) → Hs(Γ ) for 0 < s < 1/2, we see that ϕ �→ 〈ϕ, Cηψ〉 of the
right-hand side of (3.26) extends to a bounded linear functional on H−s(Γ ). Hence,
Cη : H−s(Γ ) → H−s(Γ ) for 0 < s < 1/2.

5. step:We have Cη : Hs(Γ ) → Hs(Γ ) for s ∈ (−1/2, 1/2)\{0}. An interpolation
argument allows us to extend the boundedness to the remaining case s = 0.
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Local convergence of the boundary element method 611

Proof of (ii): Let ϕ̂ ∈ H−αN (Γ ). The argument leading to the first inequality in
(3.22), i.e., the mapping properties of N , also shows

‖C̃ηϕ̂‖H1/2+αN (BRΩ
(0)\Γ ) � ‖K̃ ϕ̂‖H−1/2+αN (BRΩ

(0)\Γ ). (3.27)

Since

ΔC̃η(ηϕ̂) − ηΔC̃ηϕ̂ = −2∇η · ∇C̃ηϕ̂ − ΔηC̃ηϕ̂ − 2 |∇η|2 K̃ ϕ̂ − Δ(ηṼ (∂nηϕ̂)),

the function v := C̃η
η ϕ̂:=C̃η(ηϕ̂) − ηC̃ηϕ̂ solves

−Δv = 4∇η · ∇C̃ηϕ̂ + 2ΔηC̃ηϕ̂ + 2 |∇η|2 K̃ ϕ̂ + Δ(ηṼ (∂nηϕ̂)) inR
d\Γ,

[γ0v] = 0, [∂nv] = 0 onΓ.

Again, the decay of v and the Newton potential applied to the right-hand side of the
equation are the same. Hence, the mapping properties of the Newton potential provide

‖v‖H3/2+αN (BRΩ
(0)\Γ )

�
∥
∥
∥4∇η · ∇C̃ηϕ̂ + 2ΔηC̃ηϕ̂ + 2 |∇η|2 K̃ ϕ̂ + Δ(ηṼ (∂nηϕ̂))

∥
∥
∥
H−1/2+αN (BRΩ

(0)\Γ )

�
∥
∥C̃ηϕ̂

∥
∥
H1/2+αN (BRΩ

(0)\Γ )
+ ∥

∥K̃ ϕ̂
∥
∥
H−1/2+αN (BRΩ

(0)\Γ )

+ ∥
∥Ṽ (∂nηϕ̂)

∥
∥
H1/2+αN (BRΩ

(0)\Γ )

(3.27)

�
∥
∥K̃ ϕ̂

∥
∥
H−1/2+αN (BRΩ

(0)\Γ )
+ ‖ϕ̂‖H−1+αN (Γ )

αN<1/2
�

∥
∥K̃ ϕ̂

∥
∥
H1/2−αN (BRΩ

(0)\Γ )
+ ‖ϕ̂‖H−1+αN (Γ ) . (3.28)

We apply Lemma 3.4 to K̃ ϕ̂ − K̃ ϕ̂, with K̃ ϕ̂:= 1
|Ω|

〈
K̃ ϕ̂, 1

〉
L2(Ω)

. Since we assumed

dist(Γ, ∂BRΩ (0)) > 0, we have that K̃ ϕ̂ is smooth on ∂BRΩ (0), and we can estimate
this term by an arbitrary negative norm of ϕ̂ on Γ to obtain

∥
∥
∥K̃ ϕ̂ − K̃ ϕ̂

∥
∥
∥
H1/2−αN (BRΩ

(0)\Γ )

(3.15)

� ‖W ϕ̂‖H−1−αN (Γ ) + ∥
∥γ0 K̃ ϕ̂

∥
∥
H−αN (∂BRΩ

(0))

� ‖W ϕ̂‖H−1−αN (Γ ) + ‖ϕ̂‖H−αN (Γ ) .
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612 M. Faustmann, J. M. Melenk

The mean value K̃ ϕ̂ can be estimated with r2 = |x |2, the observation Δr2 = 2d, and
integration by parts by

∣
∣
∣K̃ ϕ̂

∣
∣
∣ �

∣
∣
∣
∣

〈
K̃ ϕ̂, Δr2

〉

L2(Ω)

∣
∣
∣
∣ �

∣
∣
∣
∣

〈
γ int
0 K̃ ϕ̂, ∂nr

2
〉

L2(Γ )

∣
∣
∣
∣ +

∣
∣
∣
∣

〈
γ int
1 K̃ ϕ̂, r2

〉

L2(Γ )

∣
∣
∣
∣

�
∣
∣
∣
∣

〈
ϕ̂, (K ′ − 1/2)∂nr

2
〉

L2(Γ )

∣
∣
∣
∣ +

∣
∣
∣
∣

〈
W ϕ̂, r2

〉

L2(Γ )

∣
∣
∣
∣

� ‖ϕ̂‖H−αN (Γ ) + ‖W ϕ̂‖H−1−αN (Γ ) , (3.29)

where the last step follows since K ′ is a bounded operator mapping HαN (Γ ) →
HαN (Γ ) by Lemma 3.2. Using the mapping properties of W of Lemma 3.5, (iii) and
inserting (3.29) in (3.28) leads together with a facewise trace estimate to

‖∂nv‖HαN (Γ ) � ‖v‖H3/2+αN (BRΩ
(0)\Γ ) � ‖ϕ̂‖H−αN (Γ ) .

The computation

−Cη
η ϕ̂ = ∂n C̃η

η ϕ̂ + K ′((∂nη)ηϕ̂) − ηK ′((∂nη)ϕ̂) + 2(∂nη)γ0C̃η(ϕ̂) + (∂nη)V ((∂nη)ϕ̂),

the mapping properties of V and the commutator of K ′ (as normal trace of the com-
mutator C̃η from Lemma 3.3, cf. (3.9)) prove the lemma. ��

4 Proof of main results

With the consequences of the shift theorems from the previous section, we can prove
our main results, the local error estimates for Symm’s integral equation and the hyper-
singular integral equation.

4.1 Symm’s integral equation (proof of Theorem 2.3)

The main tools in our proofs are the Galerkin orthogonality

〈V (φ − φh), ψh〉 = 0 ∀ψh ∈ S0,0(Th) (4.1)

and aCaccioppoli-type estimate for discrete harmonic functions that satisfy the orthog-
onality

〈γ0v,ψh〉 = 0 ∀ψh ∈ S0,0(Th), supp ψh ⊂ D ∩ Γ. (4.2)

More precisely, we employ the space of discrete harmonic functions on an open set
D ⊂ R

d defined by

Hh(D):={v ∈ H1(D\Γ ) : v is harmonic on D\Γ,

∃ṽ ∈ S0,0(Th) s.t. [∂nv]|D∩Γ = ṽ|D∩Γ , v satisfies (4.2)}. (4.3)
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Local convergence of the boundary element method 613

Proposition 4.1 [11, Lemma 3.9] For discrete harmonic functions u ∈ Hh(B ′), the
interior regularity estimate

‖∇u‖L2(B) � h

d̂
‖∇u‖L2(B′) + 1

d̂
‖u‖L2(B′) (4.4)

holds, where B and B ′ are nested boxes and d̂:= dist(B, ∂B ′) > 0 satisfies 8h ≤ d̂.
The hidden constant depends only on Ω, d, and the γ -shape regularity of Th.

As a consequence of this interior regularity estimate and Lemma 3.1, we get an
estimate for the jump of the normal derivative of a discrete harmonic single-layer
potential.

Lemma 4.2 Let Assumption 2.1 hold and B ⊂ B ′ ⊂ BRΩ (0) be nested boxes with
d̂:= dist(B, ∂B ′) > 0. Let h be sufficiently small so that the assumption of Proposi-
tion4.1holds. Let u:=Ṽ ζh with ζh ∈ S0,0(Th)andassumeu ∈ Hh(B ′). Let Γ̂ ⊂ B∩Γ

and η ∈ C∞
0 (Rd) be an arbitrary cut-off function satisfying η ≡ 1 on B ′ ∩ Γ . Then,

‖[∂nu]‖L2(Γ̂ ) ≤ C
(
hαD/(1+2αD) ‖ηζh‖L2(Γ ) + h−1 ‖ηV ζh‖H−αD (Γ ) + ‖ζh‖H−1/2(Γ )

)
.

(4.5)

The constant C > 0 depends only on Ω, d, d̂ , the γ -shape regularity of Th,
‖η‖W 1,∞(Rd ), and the constants appearing in Assumption 2.1.

Proof: We split the function u = ufar + unear, where the near field unear and the far
field ufar solve the Dirichlet problems

−Δunear = 0 in BRΩ (0)\Γ, γ0u near = ηV ζh onΓ ∪ ∂BRΩ (0),

−Δufar = 0 in BRΩ (0)\Γ, γ0ufar = (1 − η)V ζh onΓ ∪ ∂BRΩ (0).

We first consider γ int
1 unear - the case γ ext

1 unear is treated analogously.
Let η̂ be another cut-off function satisfying η̂ ≡ 1 on Γ̂ and supp η̂ ⊂ B. The

multiplicative trace inequality, see, e.g., [16, Thm. A.2], implies for any ε ≤ 1/2 that

∥
∥
∥γ int

1 unear
∥
∥
∥
L2(Γ̂ )

�
∥
∥
∥γ int

1 (̂ηunear)
∥
∥
∥
L2(B∩Γ )

� ‖∇ (̂ηunear)‖2ε/(1+2ε)
L2(Ω)

‖∇ (̂ηunear)‖1/(1+2ε)
H1/2+ε(Ω)

� ‖∇ (̂ηunear)‖2ε/(1+2ε)
L2(B)

‖η̂unear‖1/(1+2ε)
H3/2+ε(B)

. (4.6)

Since unear ∈ Hh(B ′), we use the interior regularity estimate (4.2) for the first term
on the right-hand side of (4.6), and the second term of (4.6) can be estimated using
(3.2). In total, we get for ε ≤ αD < 1/2 that
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614 M. Faustmann, J. M. Melenk

‖∇ (̂ηunear)‖2ε/(1+2ε)
L2(B)

‖η̂unear‖1/(1+2ε)
H3/2+ε(B)

�
(
h ‖∇unear‖L2(B′) + ‖unear‖L2(B′)

)2ε/(1+2ε)

· (‖unear‖H1(B′) + ‖ηV ζh‖H1+ε(Γ )

)1/(1+2ε)

� h2ε/(1+2ε) ‖unear‖H1(B′) + ‖unear‖2ε/(1+2ε)
L2(B′) ‖unear‖1/(1+2ε)

H1(B′)

+ ‖unear‖2ε/(1+2ε)
L2(B′) ‖ηV ζh‖1/(1+2ε)

H1+ε(Γ )
+ h2ε/(1+2ε) ‖∇unear‖2ε/(1+2ε)

L2(B′) ‖ηV ζh‖1/(1+2ε)
H1+ε(Γ )

=: T1 + T2 + T3 + T4. (4.7)

Let Ih : C(Γ ) → S1,1(Th) be the nodal interpolation operator. The mapping proper-
ties of V from Lemma 3.2, (ii), the commutator Cη from (3.5) as well as an inverse
inequality, see, e.g., [13, Thm. 3.2, Thm. 3.6], lead to

‖ηV ζh‖H1+ε(Γ ) � ‖V (ηζh)‖H1+ε(Γ ) + ∥
∥Cηζh

∥
∥
H1+ε(Γ )

� ‖ηζh‖H ε(Γ ) + ‖ζh‖H−1+ε(Γ )

� ‖Ih(η)ζh‖H ε(Γ ) + ‖(η − Ihη)ζh‖H ε(Γ ) + ‖ζh‖H−1+ε(Γ )

� h−ε ‖Ih(η)ζh‖L2(Γ ) + h ‖ζh‖H ε(Γ ) + h1−ε ‖ζh‖L2(Γ ) + ‖ζh‖H−1+ε(Γ )

� h−ε
(‖(η − Ihη)ζh‖L2(Γ ) + ‖ηζh‖L2(Γ )

) + ‖ζh‖H−1+ε(Γ )

� h−ε
(‖ηζh‖L2(Γ ) + ‖ζh‖H−1(Γ )

)
. (4.8)

With the classical a priori estimate for the inhomogeneous Dirichlet problem in the
H1-norm, the commutator Cη, and Lemma 3.3, we estimate

T1 = h2ε/(1+ε) ‖unear‖H1(B′) � h2ε/(1+ε) ‖ηV ζh‖H1/2(Γ )

� h2ε/(1+ε)
(
‖V (ηζh)‖H1/2(Γ ) + ∥

∥Cηζh
∥
∥
H1/2(Γ )

)

� h2ε/(1+ε)
(
‖ηζh‖L2(Γ ) + ‖ζh‖H−1−αD (Γ )

)
, (4.9)

T4 = h2ε/(1+2ε) ‖∇unear‖2ε/(1+2ε)
L2(B′) ‖ηV ζh‖1/(1+2ε)

H1+ε(Γ )

(4.8)

� h2ε/(1+2ε) ‖unear‖2ε/(1+2ε)
H1(B′)

(
h−ε ‖ηζh‖L2(Γ ) + h−ε ‖ζh‖H−1(Γ )

)1/(1+2ε)

(4.9)

� hε/(1+2ε) (‖ηζh‖L2(Γ ) + ‖ζh‖H−1(Γ )

)
. (4.10)

We apply (3.1), (since η ≡ 0 on ∂BRΩ (0) only the boundary terms for Γ appear)
together with Young’s inequality ab ≤ a p/p + bq/q applied with p = (1 + 2ε)/2ε,
q = 1 + 2ε to obtain

T3 = ‖unear‖2ε/(1+2ε)
L2(B′) ‖ηV ζh‖1/(1+2ε)

H1+ε(Γ )

(3.1),(4.8)

� ‖ηV ζh‖2ε/(1+2ε)
H−αD (Γ )

(
h−ε ‖ηζh‖L2(Γ ) + h−ε ‖ζh‖H−1(Γ )

)1/(1+2ε)

� h−1 ‖ηV ζh‖H−αD (Γ ) + hε ‖ηζh‖L2(Γ ) + hε ‖ζh‖H−1(Γ ) .
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Local convergence of the boundary element method 615

Similarly, we get for the second term in (4.7)

T2 = ‖unear‖2ε/(1+2ε)
L2(B′) ‖unear‖1/(1+2ε)

H1(B′)
(3.1)

� h−2ε/(1+2ε) ‖ηV ζh‖2ε/(1+2ε)
H−αD (Γ )

h2ε/(1+2ε) ‖unear‖1/(1+2ε)
H1(B′)

(4.9)

� h−1 ‖ηV ζh‖H−αD (Γ ) + h2ε ‖ηζh‖L2(Γ ) + h2ε ‖ζh‖H−1−αD (Γ ) .

Inserting everything in (4.7) and using h � 1 gives

‖∂nunear‖L2(Γ̂ )

� hε/(1+2ε) (‖ηζh‖L2(Γ ) + ‖ζh‖H−1(Γ )

) + h−1 ‖ηV ζh‖H−αD (Γ ) .

Applying the same argument for the exterior Dirichlet boundary value problem leads
to an estimate for the jump of the normal derivative

‖[∂nunear]‖L2(Γ̂ ) � hε/(1+2ε) (‖ηζh‖L2(Γ ) + ‖ζh‖H−1(Γ )

) + h−1 ‖ηV ζh‖H−αD (Γ ) .

It remains to estimate the far field ufar, which can be treated similarly to the near field
using a trace estimate and Lemma 3.1. Applying Lemma 3.1 with a cut-off function
η̃ satisfying η̃ ≡ 1 on B ∩ Γ and supp η̃ ⊂ B ′, the boundary term in (3.2) disappears
since η̃(1 − η) ≡ 0, which simplifies the arguments:

‖[∂nufar]‖L2(Γ̂ ) ≤ ‖[∂n (̂ηufar)]‖L2(Γ̂ ) � ‖ufar‖H3/2+ε(B)

(3.2)

� ‖ufar‖H1(B′) + ‖η̃(1 − η)V ζh‖H1+ε(Γ ) = ‖ufar‖H1(B′)
� ‖(1 − η)V ζh‖H1/2(Γ ∪∂BRΩ

(0)) � ‖ζh‖H−1/2(Γ ) ,

which proves the lemma. ��
We use the Galerkin projection ΠV : H−1/2(Γ ) → S0,0(Th), which is defined by

〈
V (φ̂ − ΠV φ̂), ψh

〉 = 0 ∀ψh ∈ S0,0(Th). (4.11)

We denote by Ih the L2(Γ )-orthogonal projection given by

〈Ihu, vh〉L2(Γ ) = 〈u, vh〉L2(Γ ) ∀vh ∈ S0,0(Th).

The operator Ih has the following super-approximation property, [18]: For any discrete
function ψh ∈ S0,0(Th) and a cut-off function η, we have (with implied constants
depending on ‖η‖W 1,∞ )

‖ηψh − Ih(ηψh)‖2L2(Γ )
� h2

∑

T∈Th
‖∇(ηψh)‖2L2(T )

� h2 ‖ψh‖2L2(supp η)
. (4.12)
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The following lemma provides an estimate for the local Galerkin error and includes
the key steps to the proof of Theorem 2.3.

Lemma 4.3 Let the assumptions of Theorem 2.3 hold. Let Γ̂0 be an open subset of Γ
with Γ0 ⊂ Γ̂0 � Γ and R:= dist(Γ0, ∂Γ̂0) > 0. Let h satisfy h

R ≤ 1
12 . Assume that

φ ∈ L2(Γ̂0). Then, we have for the Galerkin error φ − φh = φ − ΠVφ

‖φ − φh‖L2(Γ0)
≤ C

(

inf
χh∈S0,0(Th)

‖φ − χh‖L2(Γ̂0)
+ ‖φ − φh‖H−1/2(Γ̂0)

+ hαD/(1+2αD) ‖φ − φh‖L2(Γ̂0)
+ ‖φ − φh‖H−1−αD (Γ )

)

.

The constant C > 0 depends only on Γ, Γ0, d, R, and the γ -shape regularity of Th.

Proof: We define e:=φ − φh , open subsets Γ0 ⊂ Γ1 ⊂ Γ2 · · · ⊂ Γ5 ⊂ Γ̂0, and
volume boxes B0 ⊂ B1 ⊂ B2 · · · ⊂ B5 ⊂ R

d , where Bi ∩ Γ̂0 = Γi . Throughout
the proof, we use cut-off functions ηi ∈ C∞

0 (Rd), i = 1, . . . , 5, satisfying ηi ≡ 1 on
Γi−1, supp ηi ⊂ Bi , supp ηi ∩ Γ ⊂ Γi and ‖∇ηi‖L∞(Bi ) � 1

R . We write

‖e‖2L2(Γ0)
≤ ‖η1e‖2L2(Γ )

= 〈η1e, η1e〉 =
〈
e, η21e

〉
. (4.13)

With the Galerkin projection ΠV from (4.11), we obtain

‖η1e‖2L2(Γ )
=

〈
e, η21e

〉
=

〈
η5e, η

2
1e

〉

=
〈
ΠV (η5e), η

2
1e

〉
+

〈
η5e − ΠV (η5e), η

2
1e

〉
. (4.14)

With an inverse inequality and the L2-orthogonal projection Ih , which satisfies the
super-approximation property (4.12) for η5φh , we get

‖η5φh − ΠV (η5φh)‖L2(Γ ) � ‖η5φh − Ih(η5φh)‖L2(Γ ) + ‖Ih(η5φh) − ΠV (η5φh)‖L2(Γ )

� h ‖φh‖L2(Γ̂0)
+ h−1/2 ‖Ih(η5φh) − ΠV (η5φh)‖H−1/2(Γ )

� h ‖φh‖L2(Γ̂0)
+ h−1/2 ‖Ih(η5φh) − η5φh‖H−1/2(Γ )

+ h−1/2 ‖η5φh − ΠV (η5φh)‖H−1/2(Γ )

� h ‖φh‖L2(Γ̂0)
, (4.15)

where the last estimate follows fromCéa’s lemma and super-approximation. The same
argument leads to

‖η5φ − ΠV (η5φ)‖L2(Γ ) � ‖η5φ − Ih(η5φ)‖L2(Γ ) + ‖Ih(η5φ) − ΠV (η5φ)‖L2(Γ )

� ‖η5φ‖L2(Γ ) + h−1/2 ‖Ih(η5φ) − ΠV (η5φ)‖H−1/2(Γ )

� ‖η5φ‖L2(Γ ) . (4.16)
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In fact, this argument shows L2-stability of ΠV :

‖ΠVψ‖L2(Γ ) � ‖ψ‖L2(Γ ) ∀ψ ∈ L2(Γ ). (4.17)

The bounds (4.15), (4.16) together imply

∣
∣
∣
〈
η5e − ΠV (η5e), η

2
1e

〉∣
∣
∣

≤
∥
∥
∥η21e

∥
∥
∥
L2(Γ )

(‖η5φ − ΠV (η5φ)‖L2(Γ ) + ‖η5φh − ΠV (η5φh)‖L2(Γ )

)

� ‖η1e‖L2(Γ )

(
‖η5φ‖L2(Γ ) + h ‖φh‖L2(Γ̂0)

)

� ‖η1e‖L2(Γ )

(
(1 + h) ‖φ‖L2(Γ̂0)

+ h ‖e‖L2(Γ̂0)

)
.

(4.18)

For the first term on the right-hand side of (4.14), we want to use Lemma 4.2. Since
[∂n Ṽ ζh] = −ζh ∈ S0,0(Th) for any discrete function ζh ∈ S0,0(Th), we need to
construct a discrete function satisfying the orthogonality condition (4.2). Using the
Galerkin orthogonality with test functions ψh with support suppψh ⊂ Γ4 and noting
that η5 ≡ 1 on suppψh , we obtain with the commutator Cη5 defined in (3.5)

0 = 〈Ve, η5ψh〉 = 〈η5Ve, ψh〉 = 〈
V (η5e) − Cη5e, ψh

〉

= 〈
V (η5e) − η5Cη5e, ψh

〉 =
〈
V (η5e − V−1(η5Cη5e)), ψh

〉

=
〈
V (ΠV (η5e) − ΠV (V−1(η5Cη5e))), ψh

〉
. (4.19)

Thus, defining

ζh :=ΠV (η5e) − ξh with ξh :=ΠV (V−1(η5Cη5e)), (4.20)

we get on the volume box B4 ⊂ R
d a discrete harmonic function

u:=Ṽ ζh ∈ Hh(B4).

The correction ξh can be estimated using the L2-stability (4.17) of the Galerkin pro-
jection, the mapping properties of V−1, Cη5 , C

η5
η5 from Lemma 3.3 by

‖ξh‖L2(Γ ) =
∥
∥
∥ΠV (V−1(η5Cη5e))

∥
∥
∥
L2(Γ )

�
∥
∥
∥V−1(η5Cη5e)

∥
∥
∥
L2(Γ )

�
∥
∥η5Cη5e

∥
∥
H1(Γ )

�
∥
∥Cη5(η5e)

∥
∥
H1(Γ )

+
∥
∥
∥Cη5

η5
e
∥
∥
∥
H1(Γ )

� ‖η5e‖H−1(Γ ) + ‖e‖H−1−αD (Γ ) .

(4.21)
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We write

〈
ΠV (η5e), η

2
1e

〉
=

〈
ΠV (η5e) − ξh, η

2
1e

〉
+

〈
ξh, η

2
1e

〉

=
〈
ζh, η

2
1e

〉
+

〈
ξh, η

2
1e

〉
. (4.22)

For the second term in (4.22) we estimate

∣
∣
∣
〈
ξh, η

2
1e

〉∣
∣
∣ ≤ ‖ξh‖L2(Γ )

∥
∥
∥η21e

∥
∥
∥
L2(Γ )

(4.21)

�
(
‖η5e‖H−1(Γ ) + ‖e‖H−1−αD (Γ )

)
‖η1e‖L2(Γ ) . (4.23)

We treat the first term in (4.22) as follows: We apply Lemma 4.2 with the boxes B2
and B3 (note that, since we assumed 12h ≤ R, the condition 8h ≤ dist(B2, ∂B3) can
be fulfilled) to the discrete harmonic function u := Ṽ ζh ∈ Hh(B4) and the cut-off
function η4. The jump condition [∂nu] = −ζh leads to

‖ζh‖L2(supp η1)
≤ ‖[∂nu]‖L2(Γ1)

� hαD/(1+2αD) ‖η4ζh‖L2(Γ ) + h−1 ‖η4V ζh‖H−αD (Γ ) + ‖ζh‖H−1/2(Γ ) . (4.24)

The definition of ζh , the bound (4.21), and the H−1/2-stability of the Galerkin projec-
tion lead to

‖ζh‖H−1/2(Γ ) � ‖η5e‖H−1/2(Γ ) + ‖ξh‖H−1/2(Γ )

� ‖η5e‖H−1/2(Γ ) + ‖e‖H−1−αD (Γ ) . (4.25)

With the L2-stability (4.17) of the Galerkin projection and (4.21) we get

‖ζh‖L2(Γ ) � ‖η5e‖L2(Γ ) + ‖ξh‖L2(Γ )

� ‖η5e‖L2(Γ ) + ‖e‖H−1−αD (Γ ) . (4.26)

We use the orthogonality (4.19) satisfied by ζh on Γ4, the L2-orthogonal projection Ih
and the properties of the commutator Cη5 given by Lemma 3.3 to arrive at

‖η4V ζh‖H−αD (Γ ) = sup
w∈HαD (Γ )

〈V ζh, η4w〉
‖w‖HαD (Γ )

= sup
w∈HαD (Γ )

〈V ζh, η4w − Ih(η4w)〉
‖w‖HαD (Γ )

� sup
w∈HαD (Γ )

‖η5V ζh‖H1(Γ ) ‖η4w − Ih(η4w)‖H−1(Γ )

‖w‖HαD (Γ )

� h1+αD
(
‖η5ζh‖L2(Γ ) + ∥

∥Cη5ζh
∥
∥
H1(Γ )

)

� h1+αD
(‖η5ζh‖L2(Γ ) + ‖ζh‖H−1(Γ )

)
. (4.27)
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Inserting (4.25)–(4.27) in (4.24) and using h � 1, we arrive at

‖ζh‖L2(supp η1)
�

(
hαD/(1+2αD) + hαD

)
‖η5ζh‖L2(Γ ) + ‖ζh‖H−1/2(Γ )

� hαD/(1+2αD) ‖η5e‖L2(Γ ) + ‖η5e‖H−1/2(Γ ) + ‖e‖H−1−αD (Γ ) . (4.28)

Combining (4.14), (4.22) with (4.18), (4.23), (4.28), and finally (4.13), we get

‖η1e‖2L2(Γ )

�
(
‖φ‖L2(Γ̂0)

+ ‖e‖H−1/2(Γ̂0)
+ hαD/(1+2αD) ‖e‖L2(Γ̂0)

+ ‖e‖H−1−αD (Γ )

)
‖η1e‖L2(Γ ) .

Since we only used the Galerkin orthogonality as a property of the error φ − φh , we
may write φ − φh = (φ − χh) + (χh − φh) for arbitrary χh ∈ S0,0(Th), and we have
proven the inequality claimed in Lemma 4.3. ��

In order to prove Theorem 2.3, we need a lemma:

Lemma 4.4 For every δ > 0 there is a bounded linear operator Jδ : H−1(Γ ) →
L2(Γ ) with the following properties:

(i) (stability): For every −1 ≤ s ≤ t ≤ 0 there is Cs,t > 0 (depending only on s, t ,
Ω) such that ‖Jδu‖Ht (Γ ) ≤ δs−tCs‖Jδu‖Hs (Γ ) for all u ∈ Hs(Γ ).

(ii) (locality): for ω ⊂ Γ the restriction (Jδu)|ω depends only on u|ωδ with
ωδ:= ∪x∈ω Bδ(x) ∩ Γ .

(iii) (approximation): For every −1 ≤ t ≤ s ≤ 1 there is Cs,t > 0 (depending only
on s, t , Ω) such that ‖u − Jδu‖Ht (Γ ) ≤ Cs,tδ

s−t‖u‖Hs (Γ ) for all u ∈ Hs(Γ ).

Proof: Operators with such properties are obtained by the usual mollification proce-
dure (on a length scale O(δ) for domains in R

d ). This technique can be generalized to
the present setting of surfaces with the aid of localization and charts. We also mention
[1,7] where similar operators mapping into S1,1(Th) are constructed. ��

We are in position to prove our main result, a local estimate for the Galerkin-
boundary element error for Symm’s integral equation in the L2-norm.

Proof (of Theorem 2.3): Starting with Lemma 4.3, it remains to estimate the two terms
hαD/(1+2αD) ‖e‖L2(Γ̂0)

and ‖e‖H−1/2(Γ̂0)
, where e:=φ − φh .

We start with the latter. Let η̂ ∈ C∞(Rd) be a cut-off-function with η̂ ≡ 1 on

Γ̂0, supp η̂ ⊂ BΓ̂0
R/2 = {x ∈ R

d : dist({x}, Γ̂0) < R
2 } and ‖∇η̂‖L∞ � 1

R . Let η̃ be

another cut-off function with η̃ = 1 on BΓ̂0
R/2+h ∩ Γ and supp η̃ ∩ Γ ⊂ Γ̂1, where

dist(Γ̂0, ∂Γ̂1) ≥ R. Select δ = ch with a constant c = O(1) such that the operator

Jch of Lemma 4.4 has the support property supp Jch (̂η) ⊂ BΓ̂0
R/2+h . We will employ

the operator Ih ◦ Jch : H−1(Γ ) → S0,0(Γ ) with the L2-orthogonal projection Ih . It
is easy to see that we may assume that
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620 M. Faustmann, J. M. Melenk

supp(Ih ◦ Jch (̂η)) ⊂ BΓ̂0
R/2+h . (4.29)

Concerning the approximation properties, we have

‖u − Ih ◦ Jchu‖H−1(Γ ) ≤ ‖u − Jchu‖H−1(Γ ) + ‖Jchu − Ih ◦ Jchu‖H−1(Γ )

� (ch)1/2‖u‖H−1/2(Γ ) + h‖Jchu‖L2(Γ ) � h1/2‖u‖H−1/2(Γ ). (4.30)

With the definition of the commutators Cη̂, C
η̂
η̂ , the Galerkin orthogonality satisfied

by e, and the fact that V : H−1/2(Γ ) → H1/2(Γ ) is an isomorphism, we get

‖η̂e‖H−1/2(Γ ) = sup
w∈H1/2(Γ )

〈̂ηe, w〉
‖w‖H1/2(Γ )

� sup
ψ∈H−1/2(Γ )

〈̂ηe, Vψ〉
‖ψ‖H−1/2(Γ )

= sup
ψ∈H−1/2(Γ )

〈Ve, η̂ψ〉 + 〈
Cη̂e, ψ

〉

‖ψ‖H−1/2(Γ )

= sup
ψ∈H−1/2(Γ )

〈Ve, η̂ψ − Ih ◦ Jch (̂ηψ)〉 + 〈
Cη̂e, ψ

〉

‖ψ‖H−1/2(Γ )

(4.29)= sup
ψ∈H−1/2(Γ )

〈̃ηVe, η̂ψ − Ih ◦ Jch (̂ηψ)〉 + 〈
Cη̂e, ψ

〉

‖ψ‖H−1/2(Γ )

= sup
ψ∈H−1/2(Γ )

〈V (̃ηe), η̂ψ − Ih ◦ Jch (̂ηψ)〉 − 〈
Cη̃e, η̂ψ − Ih ◦ Jch (̂ηψ)

〉 − 〈
e,Cη̂ψ

〉

‖ψ‖H−1/2(Γ )

� sup
ψ∈H−1/2(Γ )

(
‖η̃e‖L2(Γ ) + ‖e‖H−1−αD (Γ )

)
‖η̂ψ − Ih ◦ Jch (̂ηψ)‖H−1(Γ ) + ‖e‖H−1−αD (Γ ) ‖ψ‖H−1+αD (Γ )

‖ψ‖H−1/2(Γ )

� h1/2 ‖e‖L2(Γ̂1)
+ ‖e‖H−1−αD (Γ ) . (4.31)

The first term on the right-hand side of (4.31) can be treated in the same way
as the term hαD/(1+2αD) ‖e‖L2(Γ̂1)

on the right-hand side of Lemma 4.3, which is
treated by iterating the L2-estimate of the statement of Theorem 4.3. That is, we
set m:=� (1+αD)(1+2αD)

αD
�. The assumption CαD

h
R ≤ 1

12 allows us to define m nested

domains Γ̂i , i = 0, . . . ,m − 1 such that dist(Γ̂i , ∂Γ̂i+1) ≥ R, Γ̂m ⊂ Γ̂ . Since the
term hαD/(1+2αD) ‖e‖L2(Γ̂1)

again contains a local L2-norm, we may use Lemma 4.3
and (4.31) again on the larger set Γ̂2 � Γ to estimate

hαD/(1+2αD) ‖e‖L2(Γ̂1)
� hαD/(1+2αD)

(

inf
χh∈S0,0(Th)

‖φ − χh‖L2(Γ̂2)

+ hαD/(1+2αD) ‖e‖L2(Γ̂2)
+ ‖e‖H−1−αD (Γ )

)

.

Inserting this in the initial estimate of Lemma 4.3 (using h � 1) leads to

‖e‖L2(Γ0)
≤ C

(
inf

χh∈S0,0(Th)
‖φ − χh‖L2(Γ̂2)

+h2αD/(1+2αD) ‖φ − φh‖L2(Γ̂2)
+ ‖φ − φh‖H−1−αD (Γ )

)
.

Now, the L2-term on the right-hand side is multiplied by h2αD/(1+2αD), i.e., the
square of the initial factor. Iterating this argument m − 2-times, provides the fac-
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Local convergence of the boundary element method 621

tor hmαD/(1+2αD), and by the choice of m, we have h1+αD ≤ hmαD/(1+2αD). Together
with an inverse estimate, we obtain

h1+αD ‖e‖L2(Γ̂ ) ≤ h1+αD ‖φ − χh‖L2(Γ̂ ) + h1+αD ‖φh − χh‖L2(Γ̂ )

� h1+αD ‖φ − χh‖L2(Γ̂ ) + ‖φh − χh‖H−1−αD (Γ̂ )

� h1+αD ‖φ − χh‖L2(Γ̂ ) + ‖e‖H−1−αD (Γ̂ ) + ‖φ − χh‖H−1−αD (Γ̂ )

� ‖φ − χh‖L2(Γ̂ ) + ‖e‖H−1−αD (Γ ) ,

which proves the theorem. ��
Proof (of Corollary 2.4): The assumption φ ∈ H−1/2+α(Γ ) ∩ Hβ(Γ̃ ) leads to

inf
χh∈S0,0(Th)

‖φ − χh‖L2(Γ̂ ) � hβ ‖φ‖Hβ(Γ̃ ) ,

‖e‖H−1/2(Γ ) � hα ‖φ‖H−1/2+α(Γ ) ,

where the second estimate is the standard global error estimate for the BEM, see [22].
It remains to estimate ‖e‖H−1−αD (Γ ), which is treated with a duality argument: We

note that Assumption 2.1 and the jump relations imply the following shift theorem for
V : If w ∈ H1+αD (Γ ) and ψ solves Vψ = w ∈ H1+αD (Γ ), then ψ ∈ HαD (Γ ) and
‖ψ‖HαD (Γ ) � ‖w‖H1+αD (Γ ). Hence, with the Galerkin projection ΠV , we estimate

‖e‖H−1−αD (Γ ) = sup
w∈H1+αD (Γ )

〈e, w〉
‖w‖H1+αD (Γ )

� sup
ψ∈HαD (Γ )

|〈e, Vψ〉|
‖ψ‖HαD (Γ )

= sup
ψ∈HαD (Γ )

|〈Ve, ψ − ΠVψ〉|
‖ψ‖HαD (Γ )

� sup
ψ∈HαD (Γ )

‖Ve‖H1/2(Γ ) ‖ψ−ΠVψ‖H−1/2(Γ )

‖ψ‖HαD (Γ )

�h1/2+αD ‖e‖H−1/2(Γ )

� h1/2+α+αD ‖φ‖H−1/2+α(Γ ) .

Therefore, the term of slowest convergence is of order O(hmin{1/2+α+αD ,β}), which
proves the corollary. ��
Remark 4.5 The term of slowest convergence in the case of high local regularity is the
global error in the negative H−1−αD (Γ )-norm,which is treatedwith a duality argument
that uses the maximum amount of additional regularity on the polygonal/polyhedral
domain. Therefore, further improvements of the convergence rate cannot be achieved
with our method of proof. In fact, the numerical examples in the next section con-
firm the sharpness of this observation, i.e., that the best possible convergence is
O(h1/2+α+αD ).

The trivial estimate ‖ηe‖H−1/2(Γ ) � ‖ηe‖L2(Γ ) immediately implies that the local
convergence in the energy norm is at least of order O(h1/2+α+αD ) as well. Again,
analyzing the proof of Lemma 4.3, we observe that an improvement is impossible,
since the limiting term is once more the error in the negative H−1−αD (Γ )-norm. ��
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Remark 4.6 Remark 4.5 states that the local rate of convergence is limited by the shift
theorem of Assumption 2.1. If the geometry Ω is smooth, then elliptic shift theorems
for the Dirichlet problem hold in a wider range, e.g., if f ∈ H1/2(Ω), we may get
u ∈ H5/2(Ω). It can be checked that in this setting, an estimate of the form

‖φ − φh‖L2(Γ0)
� inf

χh∈S0,0(Th)
‖φ − χ‖L2(Γ̂ ) + ‖φ − φh‖H−2(Γ )

is possible since the commutator Cη5
η5 in (4.21) then maps H−2(Γ ) → H1(Γ ). If an

even better shift theorem holds, then the H−2-norm can be further weakened by using
commutators of higher order. The best possible achievable local rates are then O(hβ)

in L2(Γ0) for φ ∈ Hβ(Γ̂ ), β ∈ [0, 1] and O(h1/2+β) in the H−1/2(Γ0)-norm.
��

4.2 The hyper-singular integral equation (proof of Theorem 2.8)

We start with the Galerkin orthogonality

〈W (ϕ − ϕh), ψh〉 + 〈ϕ − ϕh, 1〉 〈ψh, 1〉 = 0 ∀ψh ∈ S1,1(Th) (4.32)

and a Caccioppoli-type estimate on D ⊂ R
d for functions characterized by the orthog-

onality

〈∂nu, ψh〉 + μ 〈ψh, 1〉 = 0 ∀ψh ∈ S1,1(Th), suppψh ⊂ D ∩ Γ (4.33)

for some μ ∈ R. Here, we define the space of discrete harmonic functionsHN
h (D, μ)

for an open set D ⊂ R
d and μ ∈ R as

HN
h (D, μ):={v ∈ H1(D\Γ ) : v is harmonic on D\Γ, [∂nv] = 0,

∃ṽ ∈ S1,1(Th) s.t. [γ0v]|D∩Γ = ṽ|D∩Γ , v satisfies (4.33)}. (4.34)

Proposition 4.7 [12, Lemma 3.8] For discrete harmonic functions u ∈ HN
h (B ′, μ),

we have the interior regularity estimate

‖∇u‖L2(B\Γ ) � h

d̂
‖∇u‖L2(B′\Γ ) + 1

d̂
‖u‖L2(B′\Γ ) + |μ| , (4.35)

where B and B ′ are nested boxes and d̂:= dist(B, ∂B ′) satisfies 8h ≤ d̂ . The hidden
constant depends only on Ω, d, and the γ -shape regularity of Th.

We use the Galerkin projection ΠW : H1/2(Γ ) → S1,1(Th), now defined by

〈W (ϕ − ΠWϕ), ψh〉 + 〈ϕ − ΠWϕ, 1〉 〈ψh, 1〉 = 0 ∀ψh ∈ S1,1(Th). (4.36)

The following lemma collects approximation properties of the Galerkin projection
that will be applied in both Lemmas 4.10 and 4.11 below.
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Lemma 4.8 Let ΠW be the Galerkin projection defined in (4.36), and let η, η̂ ∈
C∞
0 (Rd) be with η̂ ≡ 1 on

⋃{T ∈ Th : T ∩ supp η �= ∅}. For ϕ ∈ H1(Γ ), we have
for s ∈ [1/2, 1]

|ηϕ − ΠW (ηϕ)|Hs (Γ ) ≤ C |ηϕ|Hs (Γ ) . (4.37)

For ϕh ∈ S1,1(Th), we have for s ∈ [1/2, 1]

|ηϕh − ΠW (ηϕh)|Hs (Γ ) ≤ Ch ‖η̂ϕh‖Hs (Γ ) . (4.38)

The constant C > 0 depends only on Ω , the γ -shape regularity of Th, and
‖η‖W 2,∞(Rd ).

Proof: Let Jh be a quasi-interpolation operator with approximation properties in the
Hs-seminorm, e.g., the Scott-Zhang-projection, [24]. We use super-approximation
similarly to (4.12). Since ϕh ∈ S1,1(Th), we have to use the piecewise H2-norm, and
an inverse inequality leads to

‖ηϕh − Jh(ηϕh)‖2L2(Γ )
� h4

∑

T∈Th ,
T∩supp η �=∅

|ηϕh |2H2(T )

� h4
∑

T∈Th ,
T∩supp η �=∅

‖η‖2W 2,∞(Rd )
‖ϕh‖2L2(T )

+ ‖η‖2W 1,∞(Rd )
‖∇ϕh‖2L2(T )

� h4
∑

T∈Th ,
T∩supp η �=∅

‖ϕh‖2L2(T )
+ h−2+2s |ϕh |2Hs (T ) � h2+2s ‖η̂ϕh‖2Hs (Γ ) ,

where, in the last step, the assumption on η̂ was used. Similarly, the H1-norm estimate
‖ηϕh − Jh(ηϕh)‖H1(Γ ) � hs ‖η̂ϕh‖Hs (Γ ) holds. Interpolation finally leads to a super-
approximation result in Hs

|ηϕh − Jh(ηϕh)|Hs (Γ ) � h ‖η̂ϕh‖Hs (Γ ) .

With an inverse inequality, see, e.g., [13, Thm. 3.2], aswell as Céa’s lemma this implies

|ηϕh − ΠW (ηϕh)|Hs (Γ ) � |ηϕh − Jh(ηϕh)|Hs (Γ ) + |Jh(ηϕh) − ΠW (ηϕh)|Hs (Γ )

� h ‖η̂ϕh‖Hs (Γ ) + h1/2−s |Jh(ηϕh) − ΠW (ηϕh)|H1/2(Γ )

� h ‖η̂ϕh‖Hs (Γ ) + h1/2−s |Jh(ηϕh) − ηϕh |H1/2(Γ )

+ h1/2−s |ηϕh − ΠW (ηϕh)|H1/2(Γ )

� h ‖η̂ϕh‖Hs (Γ ) + h1/2−s |Jh(ηϕh) − ηϕh |H1/2(Γ ) � h ‖η̂ϕh‖Hs (Γ ) .

A similar argument leads to

|ηϕ − ΠW (ηϕ)|Hs (Γ ) � |ηϕ|Hs (Γ ) ,

and consequently to the H1-stability of the Galerkin-projection. ��
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In the following, we need stability and approximation properties of the Scott-Zhang
projection Jh in the space H1+αN (Γ ) provided by the following lemma.

Lemma 4.9 Let Jh be the Scott-Zhang projection defined in [24]. Then, for s ∈
[0, 3/2) we have

‖Jhu‖Hs (Γ ) ≤ Cs‖u‖Hs (Γ ) ∀u ∈ Hs(Γ ), (4.39)

and therefore, for every 0 ≤ t ≤ s < 3/2

‖u − Jhu‖Ht (Γ ) ≤ Cs,t h
s−t‖u‖Hs (Γ ). (4.40)

The constants Cs, Cs,t > 0 depend only on Ω , the γ -shape regularity of Th, and s, t .

Proof: We start with the proof of (4.39). The stability for the case s = 1 is given in [24]
and the stability for the case s = 0 (note that Γ is a closed surface without boundary)
is discussed in [3, Lemma 7]. By interpolation, (4.39) follows for 0 < s < 1. The
starting point for the proof of (4.39) for s ∈ (1, 3/2) is that, by Remark 1.1, (iii),
we may focus on a single affine piece Γi of Γ and can exploit that the notion of
Hs(Γi ) coincides with the standard notion on intervals (in 1D) and polygons (in 2D).
In particular, Hs(Γi ) can be defined as the interpolation space between H1(Γi ) and
H2(Γi ). Since Jhu ∈ C0(Γ ), Remark 1.1, (iii) implies for s ∈ (1, 3/2)

‖Jhu‖Hs (Γ ) ∼
N∑

i=1

‖Jhu‖Hs (Γi ) and ‖u‖Hs (Γ ) ∼
N∑

i=1

‖u‖Hs (Γi ).

It therefore suffices to show ‖Jhu‖Hs (Γi ) ≤ C‖u‖Hs (Γi ). Since Hs(Γi ) is an inter-
polation space between H1(Γi ) and H2(Γi ), we can find (cf. [4]), for every t > 0, a
function ut ∈ H2(Γi ) with

‖ut‖H2(Γi )
� t s−2‖u‖Hs (Γi ), ‖ut‖Hs (Γi ) � ‖u‖Hs (Γi )

‖u − ut‖H1(Γi )
� t s−1‖u‖Hs (Γi ). (4.41)

Let I ′
h be an approximation operator with the simultaneous approximation property

‖ut − I ′
hut‖Hs (Γi ) + h−(s−1)‖ut − I ′

hut‖H1(Γi )
� h2−s‖ut‖H2(Γi )

, (4.42)

see, e.g., [4], [6, Thm. 14.4.2]. With an inverse inequality, cf. [8, Appendix], the
H1-stability of the Scott-Zhang projection, and (4.41), (4.42), we estimate

‖u − Jhu‖Hs (Γi )

� ‖u − ut‖Hs (Γi ) + ‖ut − I ′
hut‖Hs (Γi ) + ‖Jh(I

′
h(ut ) − ut )‖Hs (Γi )

+ ‖Jh(u − ut )‖Hs (Γi )

� ‖u − ut‖Hs (Γi ) + ‖ut − I ′
hut‖Hs (Γi ) + h−(s−1)‖ut − I ′

hut‖H1(Γi )
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+ h−(s−1)‖u − ut‖H1(Γi )

(4.42)

� ‖u − ut‖Hs (Γi ) + h2−s‖ut‖H2(Γi )
+ h−(s−1)‖u − ut‖H1(Γi )

(4.41)

� ‖u‖Hs (Γi ) + h2−s t s−2‖u‖Hs (Γi ) + h−(s−1)t s−1‖u‖Hs (Γi ).

Choosing t = O(h), we get the Hs(Γi )-stability of Jh and thus also the Hs(Γ )-
stability of Jh .

We only prove the approximation property (4.40) for s ∈ (1, 3/2) as the case
s ∈ [0, 1] is covered by standard properties of the Scott-Zhang operator.

Case 1 ≤ t ≤ s < 3/2: we observe with the stability properties of Jh and the
approximation properties of I ′

h

‖u − Jhu‖Ht (Γ ) ∼
N∑

i=1

‖u − Jhu‖Ht (Γi ) � hs−t
N∑

i=1

‖u‖Hs (Γi ) ∼ hs−t‖u‖Hs (Γ ).

(4.43)

Case t = 0: we observe with the stability properties of Jh and the approximation
properties of I ′

h

‖u − Jhu‖L2(Γ ) ∼
N∑

i=1

‖u − Jhu‖L2(Γi )
� hs

N∑

i=1

‖u‖Hs (Γi ) ∼ hs‖u‖Hs (Γ ).

(4.44)

Case 0 < t < 1: The remaining cases are obtained with the aid of an interpolation
inequality:

‖u − Jhu‖Ht (Γ ) � ‖u − Jhu‖1−t
L2(Γ )

‖u − Jhu‖tH1(Γ )

(4.44),(4.43)

� hs(1−t)h(s−1)t‖u‖Hs (Γ ) = hs−t‖u‖Hs (Γ ),

which concludes the proof. ��
The following lemma is similar to Lemma 4.2. Here, we obtain an estimate for the

jump of the trace of a discrete harmonic double-layer potential.

Lemma 4.10 Let Assumption 2.7 hold and let B ⊂ B ′ ⊂ B ′′ be nested boxes
with d̂:= dist(B, ∂B ′) = dist(B ′, ∂B ′′) > 0. Let h be sufficiently small so that the
assumption of Proposition 4.7 holds. Let u:=K̃ ζh with ζh ∈ S1,1(Th) and assume
u ∈ HN

h (B ′′, μ) for the box B ′′ ⊂ BRΩ (0) and some μ ∈ R. Let Γ̂ ⊂ B ∩ Γ . Then,

|[γ0u]|H1(Γ̂ ) ≤ C
(
hαN |ζh |H1(Γ ) + ‖ζh‖H1/2(Γ ) + |μ|) . (4.45)

The constant C > 0 depends only on Ω, d̂ , the γ -shape regularity of Th, and the
constants appearing in Assumption 2.7.
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Proof: Step 1 (Splitting into near and far-field): Let η ∈ C∞
0 (Rd) satisfy η ≡ 1

on B ′ ∩ Γ and supp η ⊂ B ′′. Define the near-field unear and the far field ufar as

potentials unear:=K̃vh − K̃vh with K̃vh := 1
|Ω|

∫
Ω
K̃vh and ufar:=K̃νh − K̃νh , where

vh, νh ∈ S1,1(Th) are BEM solutions of

〈Wvh, ψh〉 = 〈ηWζh − ηz, ψh〉 ∀ψh ∈ S1,1(Th),
〈Wνh, ψh〉 = 〈(1 − η)Wζh + ηz, ψh〉 ∀ψh ∈ S1,1(Th),

with 〈vh, 1〉 = 0 = 〈νh, 1〉. Here, z is a function with z ≡ μ on Γ ∩ B ′ such that the
compatibility condition 〈ηWζh − ηz, 1〉 = 〈(η − 1)Wζh − ηz, 1〉 = 0 holds. Since
〈Wζh, 1〉 = 0 such a function exists. More precisely, we choose z ∈ L2(Γ ) to be the
piecewise constant function

z:=
{

μ on Γ ∩ B ′,
〈ηWζh ,1〉−μ

∫
Γ ∩B′ η

∫
(B′′\B′)∩Γ η

otherwise.

The function vh + νh solves

〈W (vh + νh), ψh〉 = 〈Wζh, ψh〉 ∀ψh ∈ S1,1(Th),

which implies vh + νh = ζh + c for a constant c. Therefore, v:=unear + ufar =
u + K̃ c − K̃ (vh + νh). Since [γ0 K̃ c] = c this implies

|[γ0u]|H1(Γ̂ ) = |[γ0v]|H1(Γ̂ ) � |[γ0unear]|H1(Γ̂ ) + |[γ0ufar]|H1(Γ̂ ) .

The definition of z and η ≡ 1 on B ′ ∩ Γ lead to

‖η(z − μ)‖2L2(Γ )
=

∫

(B′′\B′)∩Γ

η2

(
〈ηWζh, 1〉 − μ

∫
Γ ∩B′ η

∫
(B′′\B′)∩Γ

η
− μ

)2

=
∫

(B′′\B′)∩Γ

η2

(
〈η(Wζh − μ), 1〉

∫
(B′′\B′)∩Γ

η

)2

� |〈η(Wζh − μ), 1〉|2 .

Consequently, we obtain

‖η(z − μ)‖L2(Γ ) � |〈η(Wζh − μ), 1〉| � ‖η(Wζh − μ)‖H−1−αN (Γ )

� h1+αN
(‖Wζh‖L2(Γ ) + |μ|) . (4.46)

The last inequality follows from the orthogonality of Wζh to discrete functions in
S1,1(Th) on B ′′ and the arguments shown in (4.47) below (specifically: go through the
arguments of (4.47) with z ≡ μ).
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Step 2 (Approximation of the near field):
Let Jh denote the Scott–Zhang projection. The ellipticity ofW on H1/2(Γ )/R and

the orthogonality (4.33) of Wζh = −∂n K̃ ζh imply

‖vh‖H1/2(Γ ) � ‖ηWζh − ηz‖H−1/2(Γ ) = sup
w∈H1/2(Γ )

〈ηWζh − ηz, w〉
‖w‖H1/2(Γ )

= sup
w∈H1/2(Γ )

〈Wζh , ηw − Jh(ηw)〉 − 〈ηz, w〉 + μ 〈Jh(ηw), 1〉
‖w‖H1/2(Γ )

= sup
w∈H1/2(Γ )

〈Wζh , ηw − Jh(ηw)〉 − 〈η(z − μ), w〉 − μ 〈ηw − Jh(ηw), 1〉
‖w‖H1/2(Γ )

� sup
w∈H1/2(Γ )

(‖Wζh‖L2(Γ ) + |μ|) ‖ηw − Jh(ηw)‖L2(Γ ) + ‖η(z − μ)‖H−1/2(Γ ) ‖w‖H1/2(Γ )

‖w‖H1/2(Γ )

� h1/2
(‖Wζh‖L2(Γ ) + |μ|) + ‖η(z − μ)‖H−1/2(Γ )

(4.46)

� h1/2
(‖Wζh‖L2(Γ ) + |μ|) . (4.47)

With the same arguments and Lemma 4.9 we may estimate

‖ηWζh − ηz‖H−1−αN (Γ ) � h1+αN
(‖Wζh‖L2(Γ ) + |μ|) + ‖η(z − μ)‖H−1−αN (Γ ) .

(4.48)

Let ψ solve Wψ = w − w for w ∈ HαN (Γ ). Then ψ ∈ H1+αN (Γ ). Together with
the mapping properties of W from Lemma 3.5, 〈vh, 1〉 = 0, the definition of vh , and
the stability and approximation properties of Jh from Lemma 4.9, we obtain

‖Wvh‖H−1−αN (Γ ) � ‖vh‖H−αN (Γ ) = sup
w∈HαN (Γ )

〈vh , w〉
‖w‖HαN (Γ )

= sup
w∈HαN (Γ )

〈vh , w − w〉
‖w‖HαN (Γ )

≤ sup
ψ∈H1+αN (Γ )

|〈vh ,Wψ〉|
‖ψ‖H1+αN (Γ )

= sup
ψ∈H1+αN (Γ )

|〈Wvh , ψ − Jhψ〉 + 〈Wvh ,Jhψ〉|
‖ψ‖H1+αN (Γ )

= sup
ψ∈H1+αN (Γ )

|〈Wvh , ψ − Jhψ〉 + 〈η(Wζh − z),Jhψ〉|
‖ψ‖H1+αN (Γ )

� sup
ψ∈H1+αN (Γ )

‖Wvh‖H−1/2(Γ ) ‖ψ − Jhψ‖H1/2(Γ ) + ‖η(Wζh − z)‖H−1−αD (Γ ) ‖Jhψ‖H1+αD (Γ )

‖ψ‖H1+αN (Γ )

(4.47),(4.48),(4.46)

� h1+αN
(‖Wζh‖L2(Γ ) + |μ|) . (4.49)

With the mapping properties of W from Lemma 3.5, an inverse estimate, and (4.47)
we obtain for 0 ≤ ε ≤ αN

‖Wvh‖H ε(Γ ) � ‖vh‖H1+ε(Γ ) � h−ε−1/2 ‖vh‖H1/2(Γ )

(4.47)

� h−ε
(‖Wζh‖L2(Γ ) + |μ|) � h−ε

(‖ζh‖H1(Γ ) + |μ|) . (4.50)

We first consider γ int
0 unear; the case γ ext

0 unear is treated analogously. By construction
of unear, we have
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628 M. Faustmann, J. M. Melenk

〈∂nunear, ψh〉 = 〈−Wvh, ψh〉 = 〈−ηWζh + ηz, ψh〉
= 〈∂nu, ψh〉 + μ 〈ψh, 1〉 = 0 ∀ψh ∈ S1,1(Th), suppψh ⊂ B ′ ∩ Γ

(4.51)

since z ≡ μ, η ≡ 1 on suppψh . Therefore, unear ∈ HN
h (B ′, 0).

Let η̂ be another cut-off function satisfying η̂ ≡ 1 on Γ̂ and supp η̂ ⊂ B. The
multiplicative trace inequality, see, e.g., [16, Thm. A.2], implies for any ε ≤ 1/2 that

∣
∣
∣γ int

0 unear
∣
∣
∣
H1(Γ̂ )

� ‖∇ (̂ηunear)‖L2(B∩Γ ) � ‖∇ (̂ηunear)‖2ε/(1+2ε)
L2(Ω)

‖∇ (̂ηunear)‖1/(1+2ε)
H1/2+ε(Ω)

� ‖∇ (̂ηunear)‖2ε/(1+2ε)
L2(B)

‖η̂unear‖1/(1+2ε)
H3/2+ε(B)

. (4.52)

Since unear ∈ HN
h (B ′, 0), we may use the interior regularity estimate (4.35) with

μ = 0 for the first term on the right-hand side of (4.52). The second factor of (4.52)
can be estimated using (3.16) of Lemma 3.4. In total, we get for ε ≤ αN < 1/2 that

‖∇ (̂ηunear)‖2ε/(1+2ε)
L2(B)

‖η̂unear‖1/(1+2ε)
H3/2+ε(B)

�
(
h ‖∇unear‖L2(B′)+‖unear‖L2(B′)

)2ε/(1+2ε) ·(‖unear‖H1(B′)+‖∂nunear‖H ε(Γ )

)1/(1+2ε)

� h2ε/(1+2ε) ‖unear‖H1(B′) + ‖unear‖2ε/(1+2ε)
L2(B′) ‖unear‖1/(1+2ε)

H1(B′)

+ ‖unear‖2ε/(1+2ε)
L2(B′) ‖Wvh‖1/(1+2ε)

H ε(Γ ) + h2ε/(1+2ε) ‖∇unear‖2ε/(1+2ε)
L2(B′) ‖Wvh‖1/(1+2ε)

H ε(Γ )

=: T1 + T2 + T3 + T4. (4.53)

The mapping properties of K̃ imply with (4.47) and (4.50)

T1 = h2ε/(1+2ε) ‖unear‖H1(B′) � h2ε/(1+2ε) ‖vh‖H1/2(Γ )

(4.47)

� h2ε/(1+2ε)+1/2 (‖ζh‖H1(Γ ) + |μ|) ,

T4 = h2ε/(1+2ε) ‖∇unear‖2ε/(1+2ε)
L2(B′) ‖Wvh‖1/(1+2ε)

H ε(Γ )

(4.50)

� h2ε/(1+2ε) (‖ζh‖H1(Γ ) + |μ|) . (4.54)

We apply (3.15) (note: unear has mean zero) and since K̃vh is smooth on ∂BRΩ (0),
we can estimate

∥
∥K̃vh

∥
∥
H−αN (∂BRΩ

(0)) � ‖vh‖H−αN (Γ ). Together with (4.50), (4.49),

and Young’s inequality this leads to

T3 = ‖unear‖2ε/(1+2ε)
L2(B′) ‖Wvh‖1/(1+2ε)

H ε(Γ )

(3.15),(4.50)

� h−ε/(1+2ε)
(
‖Wvh‖H−1−αN (Γ ) + ∥

∥K̃vh
∥
∥
H−αN (∂BRΩ

(0))

)2ε/(1+2ε)

· (‖ζh‖H1(Γ ) + |μ|)1/(1+2ε)
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� h−1
(
‖Wvh‖H−1−αN (Γ ) + ‖vh‖H−αN (Γ )

)
+ hε

(‖ζh‖H1(Γ ) + |μ|)

(4.49)

�
(
hαN + hε

) (‖ζh‖H1(Γ ) + |μ|) .

Similarly, with (4.54) we get for the second term in (4.53)

T2 = ‖unear‖2ε/(1+2ε)
L2(B′) ‖unear‖1/(1+2ε)

H1(B′)
(3.15)

� h−ε/(1+2ε)
(
‖Wvh‖H−1−αN (Γ ) + ∥

∥K̃vh
∥
∥
H−αN (∂BRΩ

(0))

)2ε/(1+2ε)

· h(ε+1/2)/(1+2ε) (‖ζh‖H1(Γ ) + |μ|)1/(1+2ε)

� h−1/2
(
‖Wvh‖H−1−αN (Γ ) + ‖vh‖H−αN (Γ )

)
+ h1/2+ε

(‖ζh‖H1(Γ ) + |μ|)

�
(
h1/2+αN + h1/2+ε

) (‖ζh‖H1(Γ ) + |μ|) .

Inserting everything in (4.53) and choosing ε = αN gives

∣
∣
∣γ int

0 unear
∣
∣
∣
H1(Γ̂ )

� (h2αN /(1+2αN )+1/2 + h1/2+αN + hαN

+ h2αN /(1+2αN ))
(‖ζh‖H1(Γ ) + |μ|)

� hαN
(‖ζh‖H1(Γ ) + |μ|) .

Applying the same argument for the exterior trace leads to an estimate for the jump
of the trace

|[γ0unear]|H1(Γ̂ ) � hαN
(‖ζh‖H1(Γ ) + |μ|) .

Step 3 (Approximation of the far field):
We define the function ν ∈ H1/2(Γ ) as the solution of

Wν = (1 − η)Wζh + ηz, 〈ν, 1〉 = 0.

Then, we have
〈W (ν − νh), ψh〉 = 0 ∀ψh ∈ S1,1(Th).

Let ûfar:=K̃ν − K̃ν where K̃ν:= 1
|Ω|

〈
K̃ν, 1

〉
L2(Ω)

and η̂ be another cut-off function

with η̂ ≡ 1 on Γ̂ and supp η̂ ⊂ B. Then, with the Galerkin projectionΠW , the triangle
inequality and the jump conditions of K̃ imply

|[γ0ufar]|H1(Γ̂ ) = |̂ηνh |H1(Γ̂ ) ≤ |̂ηνh − ΠW (̂ην)|H1(Γ̂ ) + |ΠW (̂ην)|H1(Γ̂ ) . (4.55)

The smoothness of K̃ν on ∂BRΩ (0) and the coercivity of W on H1/2(Γ )/R lead to

∥
∥
∥K̃ν − K̃ν

∥
∥
∥
H1/2(∂BRΩ

(0))
� ‖ν‖H1/2(Γ ) � ‖Wν‖H−1/2(Γ ) .
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We apply Lemma 3.4 with a cut-off function η̃ satisfying η̃ ≡ 1 on B ∩ Γ and
supp η̃ ⊂ B ′. Then η ≡ 1 and z ≡ μ on B ′ ∩ Γ imply η̃(1 − η) ≡ 0 and η̃ηz = η̃μ.
The H1-stability of theGalerkin projection fromLemma4.8, a facewise trace estimate,
and similar estimates as for the near field imply

|ΠW (̂ην)|H1(Γ̂ ) � |̂ην|H1(Γ ) � ‖ûfar‖H3/2+αN (B\Γ )

(3.16)

� ‖ûfar‖H1(B′\Γ ) + ‖η̃((1 − η)Wζh + ηz)‖HαN (Γ )

� ‖ûfar‖H1(B′\Γ ) + |μ| ‖η̃‖HαN (Γ )

� ‖(1 − η)Wζh + ηz‖H−1/2(Γ ) +
∥
∥
∥K̃ν − K̃ν

∥
∥
∥
H1/2(∂BRΩ

(0))
+|μ|

� ‖(1 − η)Wζh + ηz‖H−1/2(Γ ) + |μ|
� ‖ζh‖H1/2(Γ ) + ‖η(z − μ)‖H−1/2(Γ ) + |μ|
(4.46)

� ‖ζh‖H1/2(Γ ) + |μ| . (4.56)

It remains to estimate the first term on the right-hand side of (4.55). With an inverse
estimate and Lemma 4.8 we get

|̂ηνh − ΠW (̂ην)|H1(Γ̂ ) � |̂ηνh − ΠW (̂ηνh)|H1(Γ̂ ) + h−1/2 |ΠW (̂ηνh − η̂ν)|H1/2(Γ )

� h |νh |H1(Γ ) + h−1/2 |ΠW (̂ηνh − η̂ν)|H1/2(Γ )

� h1/2 ‖νh‖H1/2(Γ ) + h−1/2 |ΠW (̂ηνh − η̂ν)|H1/2(Γ ) . (4.57)

We use the abbreviation eν :=ν − νh . The ellipticity of W on H1/2(Γ )/R and the
definition of the Galerkin projection ΠW imply

‖ΠW (̂ηeν)‖2H1/2(Γ )
� 〈W (ΠW (̂ηeν)),ΠW (̂ηeν)〉 + |〈ΠW (̂ηeν), 1〉|2

= 〈W (ΠW (̂ηeν) − η̂eν),ΠW (̂ηeν)〉 + 〈W (̂ηeν),ΠW (̂ηeν)〉 + |〈ΠW (̂ηeν), 1〉|2
(4.36)= 〈W (̂ηeν),ΠW (̂ηeν)〉 + 〈̂ηeν, 1〉 〈ΠW (̂ηeν), 1〉

� |〈W (̂ηeν),ΠW (̂ηeν)〉| + ‖η̂eν‖H−1/2(Γ ) ‖ΠW (̂ηeν)‖H1/2(Γ ) .

With the commutator Cη̂ we get

〈W (̂ηeν),ΠW (̂ηeν)〉 = 〈
η̂W (eν) + Cη̂eν,ΠW (̂ηeν)

〉
. (4.58)

The definition of the Galerkin projection and the super-approximation properties of
the Scott-Zhang projection Jh lead to

〈W (eν), η̂ΠW (̂ηeν)〉 = 〈W (eν), η̂ΠW (̂ηeν) − Jh (̂ηΠW (̂ηeν))〉
� ‖W (eν)‖H−1/2(Γ ) ‖η̂ΠW (̂ηeν) − Jh (̂ηΠW (̂ηeν))‖H1/2(Γ )

� h ‖ν − νh‖H1/2(Γ ) ‖ΠW (̂ηeν)‖H1/2(Γ ) .
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For the term involving Cη̂ in (4.58), we get with Lemma 3.6

∣
∣
〈
Cη̂(eν),ΠW (̂ηeν)

〉∣
∣ �

∥
∥Cη̂(ν − νh)

∥
∥
H−1/2(Γ )

‖ΠW (̂ηeν)‖H1/2(Γ )

� ‖ν − νh‖H−αN (Γ ) ‖ΠW (̂ηeν)‖H1/2(Γ ) .

A duality argument implies ‖eν‖H−αN (Γ ) � h1/2+αN ‖ν‖H1/2(Γ ), for details we refer
to the proof of Corollary 2.9. Inserting everything in (4.57) leads to

|̂ηνh − ΠW (̂ην)|H1(Γ̂ ) � h1/2 ‖νh‖H1/2(Γ ) + h1/2 ‖ν − νh‖H1/2(Γ ) + hαN ‖ν‖H1/2(Γ )

� hαN ‖(1−η)Wζh+ηz‖H−1/2(Γ ) � hαN
(‖ζh‖H1/2(Γ )+|μ|) .

Finally, this implies with (4.55) and (4.56) that

|[γ0ufar]|H1(Γ̂ ) � (1 + hαN )
(‖ζh‖H1/2(Γ ) + |μ|) ,

which proves the lemma. ��
Lemma 4.11 Let ϕ, ϕh be solutions of (2.8), (2.9) and let Γ0, Γ̂ be subsets of Γ

with Γ0 ⊂ Γ̂ � Γ and R:= dist(Γ0, ∂Γ̂ ) > 0. Let h be such that h
R ≤ 1

12 , and let
η ∈ C∞

0 (Rd) satisfy η ≡ 1 on Γ0, supp η ∩ Γ ⊂ Γ̂ . Then, we have

‖ϕ − ϕh‖H1(Γ0)
≤ C

(
inf

χh∈S1,1(Th)
‖ϕ − χh‖H1(Γ̂ ) + hαN |ϕ − ϕh |H1(Γ̂ ) +

+‖η(ϕ − ϕh)‖H1/2(Γ ) + ‖ϕ − ϕh‖H−αN (Γ )

)

with a constant C > 0 depending only on Γ, Γ0, Γ̂ , d, R, and the γ -shape regularity
of Th.

Proof: We define e:=ϕ − ϕh , subsets Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ Γ3 ⊂ Γ4 ⊂ Γ̂ , and volume
boxes B0 ⊂ B1 ⊂ B2 ⊂ B3 ⊂ B4 ⊂ R

d , where Bi ∩ Γ̂ = Γi . Throughout the proof,
we use cut-off functions ηi ∈ C∞

0 (Rd), i = 1, . . . , 4. These smooth functions ηi

should satisfy ηi ≡ 1 onΓi−1, supp ηi ⊂ Bi , supp ηi∩Γ ⊂ Γi and ‖∇ηi‖L∞(Bi ) � 1
R .

We want to use Lemma 4.10. Since [γ0 K̃ ζh] = ζh ∈ S1,1(Th) for any discrete
function ζh ∈ S1,1(Th), we need to construct a discrete function satisfying the orthog-
onality (4.33). Using theGalerkin orthogonalitywith test functionswith suppψh ⊂ Γ2
and noting that η3 ≡ 1 on suppψh , we obtain with the commutator Cη3 defined in
(3.18), the abbreviation η3Cη3e = 1

|Γ |
〈
η3Cη3e, 1

〉
, and the Galerkin projection ΠW

from (4.36)

0 = 〈We, η3ψh〉 + 〈e, 1〉 〈ψh, 1〉 = 〈η3We, ψh〉 + 〈e, 1〉 〈ψh, 1〉
= 〈

W (η3e) − Cη3e, ψh
〉 + 〈e, 1〉 〈ψh, 1〉

= 〈
W (η3e) − (η3Cη3e − η3Cη3e), ψh

〉 − 〈
η3Cη3e, ψh

〉 + 〈e, 1〉 〈ψh, 1〉
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=
〈
W (η3e − W−1(η3Cη3e − η3Cη3e)), ψh

〉

− 1

|Γ |
〈
η3Cη3e, 1

〉 〈ψh, 1〉 + 〈e, 1〉 〈ψh, 1〉

=
〈
W (ΠW (η3e) − ΠW (W−1(η3Cη3e − η3Cη3e))), ψh

〉

− 1

|Γ |
〈
η3Cη3e, 1

〉 〈ψh, 1〉 + 〈e, 1〉 〈ψh, 1〉 − 〈η3e − ΠW (η3e), 1〉 〈ψh, 1〉 .

(4.59)

Here and below, we understand the inverseW−1 as the inverse of the bijective operator
W : H1/2∗ (Γ ):={v ∈ H1/2(Γ ) : 〈v, 1〉 = 0} → H−1/2∗ (Γ ):={v ∈ H−1/2(Γ ) :
〈v, 1〉 = 0}. Since W−1 maps into H1/2∗ (Γ ) no additional terms in the orthogonality
(4.59) appear. Thus, defining

ζh :=ΠW (η3e) − ξh with ξh :=ΠW (W−1(η3Cη3e − η3Cη3e)),

we get on a volume box B2 ⊂ R
d a discrete harmonic function

u:=K̃ ζh ∈ HN
h (B2, μ),

where μ = 〈e, 1〉 − 1
|Γ |

〈
η3Cη3e, 1

〉 − 〈η3e − ΠW (η3e), 1〉.
With the Galerkin projection ΠW from (4.36) and η3 ≡ 1 on supp η1, we write

‖e‖H1(Γ0)
� ‖η1e‖H1(Γ )

� ‖η1(η3e − ΠW (η3e))‖H1(Γ ) + ‖η1ζh‖H1(Γ ) + ‖η1ξh‖H1(Γ ) . (4.60)

Lemma 4.8 leads to

‖η3e − ΠW (η3e)‖H1(Γ ) � h ‖η4ϕh‖H1(Γ ) + ‖η4ϕ‖H1(Γ )

� h ‖η4e‖H1(Γ ) + (h + 1) ‖η4ϕ‖H1(Γ ) . (4.61)

Using the H1-stability of the Galerkin projectionΠW , the mapping properties ofW−1

and Cη3 as well as Lemma 3.6, the correction ξh can be estimated by

∥
∥
∥ΠW (W−1(η3Cη3e − η3Cη3e))

∥
∥
∥
H1(Γ )

�
∥
∥
∥W−1(η3Cη3e − η3Cη3e)

∥
∥
∥
H1(Γ )

�
∥
∥η3Cη3e − η3Cη3e

∥
∥
L2(Γ )

�
∥
∥η3Cη3e

∥
∥
L2(Γ )

�
∥
∥Cη3(η3e)

∥
∥
L2(Γ )

+
∥
∥
∥Cη3

η3
e
∥
∥
∥
L2(Γ )

� ‖η3e‖L2(Γ ) + ‖e‖H−αN (Γ ) . (4.62)
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For the second term on the right-hand side of (4.60) we have ‖η1ζh‖H1(Γ ) �
‖η1∇ζh‖L2(Γ ) + ‖ζh‖L2(Γ ). We apply Lemma 4.10 to u = K̃ ζh ∈ HN

h (B2, μ) and
obtain

‖η1∇ζh‖L2(Γ ) � |ζh |H1(Γ1)
= |[γ0u]|H1(Γ1)

� hαN |ζh |H1(Γ ) + ‖ζh‖H1/2(Γ ) + |μ| . (4.63)

The H1-stability of the Galerkin-projection from Lemma 4.8 and (4.62) lead to

‖ζh‖H1(Γ ) � ‖η3e‖H1(Γ ) + ‖e‖H−αN (Γ ) (4.64)

as well as
‖ζh‖H1/2(Γ ) � ‖η3e‖H1/2(Γ ) + ‖e‖H−αN (Γ ) . (4.65)

With the estimate |〈e, 1〉| � ‖e‖H−αN (Γ ) and previous arguments (using (4.62),
Lemma 4.8, and Lemma 3.6), we get

|μ| � ‖e‖H−αN (Γ ) + ‖η3e‖H1/2(Γ ) + ‖η3e‖L2(Γ ) . (4.66)

Inserting (4.64)–(4.66) in (4.63), we arrive at

‖η1ζh‖H1(Γ ) � ‖η1∇ζh‖L2(Γ ) + ‖ζh‖L2(Γ )

� hαN
(‖η3e‖H1(Γ ) + ‖e‖H−αN (Γ )

) + ‖η3e‖H1/2(Γ ) + ‖e‖H−αN (Γ )

� hαN |e|H1(Γ̂ ) + ‖η4e‖H1/2(Γ ) + ‖e‖H−αN (Γ ) . (4.67)

Combining (4.61), (4.62), and (4.67) in (4.60), we finally obtain

‖e‖H1(Γ0)
� h ‖η4e‖H1(Γ ) + ‖η4ϕ‖H1(Γ ) + hαN |e|H1(Γ̂ )

+‖η4e‖H1/2(Γ ) + ‖e‖H−αN (Γ )

� ‖ϕ‖H1(Γ̂ ) + hαN |e|H1(Γ̂ ) + ‖η4e‖H1/2(Γ ) + ‖e‖H−αN (Γ ) .

Since we only used the Galerkin orthogonality as a property of the error e, we may
write ϕ − ϕh = (ϕ − χh) + (χh − ϕh) for arbitrary χh ∈ S1,1(Th) with suppχh ⊂ Γ̂

and we have proven the claimed inequality. ��
Proof (of Theorem 2.8): Starting from Lemma 4.11, it remains to estimate the terms
hαN |ϕ − ϕh |H1(Γ̂ ) and ‖η(ϕ − ϕh)‖H1/2(Γ̂ ). The terms are treated as in the proof of
Theorem 2.3. Rather than using the operator Ih ◦ Jch we may use the Scott-Zhang
projection. ��
Proof (of Corollary 2.9): The assumption ϕ ∈ H1/2+α(Γ ) ∩ H1+β(Γ̃ ) leads to

inf
χh∈S1,1(Th)

‖ϕ − χh‖H1(Γ̂ ) � hβ ‖ϕ‖H1+β(Γ̃ ) ,

‖e‖H1/2(Γ ) � hα ‖ϕ‖H1/2+α(Γ ) ,
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where the second estimate is the standard global error estimate for the Galerkin BEM
applied to the hyper-singular integral equation, see [22].

For the remaining term in Theorem 2.8, we use a duality argument. Let ψ solve
Wψ = w −w ∈ HαN (Γ ), 〈ψ, 1〉 = 0, where w = 1

|Γ | 〈w, 1〉. Then ψ ∈ H1+αN (Γ ),
and since 〈e, 1〉 = 0, we get with the Scott-Zhang projection Jh and Lemma 4.9

‖e‖H−αN (Γ ) = sup
w∈HαN (Γ )

〈e, w〉
‖w‖HαN (Γ )

= sup
w∈HαN (Γ )

〈e, w − w〉
‖w‖HαN (Γ )

� sup
ψ∈H1+αN (Γ )

|〈e,Wψ〉|
‖ψ‖H1+αN (Γ )

= sup
ψ∈H1+αN (Γ )

|〈We, ψ − Jhψ〉|
‖ψ‖H1+αN (Γ )

� sup
ψ∈H1+αN (Γ )

‖We‖H−1/2(Γ ) ‖ψ − Jhψ‖H1/2(Γ )

‖ψ‖H1+αN (Γ )

� h1/2+αN ‖e‖H1/2(Γ )

� h1/2+α+αN ‖ϕ‖H1/2+α(Γ ) .

Therefore, the term of slowest convergence is of order O(hmin{1/2+α+αN ,β}), which
proves the corollary. ��

5 Numerical examples

In this section we provide numerical examples to illustrate the theoretical results of
Sect. 2 and indicate their sharpness. We only consider Symm’s integral equation on
quasi-uniform meshes. Provided the right-hand side and the geometry are sufficiently
smooth, it is well-known that the lowest order boundary elementmethod in two dimen-
sions converges in the energy norm as O(N−3/2), where N denotes the degrees of
freedom. In our examples we will consider problems, where the rate of convergence
with uniform refinement is reduced due to singularities.

In order to compute the error between the exact solution and the Galerkin approxi-
mation, we prescribe the solution u(r, θ) = rα cos(αθ) of Laplace’s equation in polar
coordinates. Then, the normal derivative φ = ∂nu of u is the solution of

Vφ = (K + 1/2)γ0u.

The regularity of φ is determined by the choice of α. In fact, we have φ ∈
H−1/2+α−ε(Γ ), ε > 0, and locally φ ∈ H1(Γ̃ ) for all subsets Γ̃ ⊂ Γ that are a
positive distance away from the singularity at the origin.

The lowest order Galerkin approximation to φ is computed using the MATLAB-
library HILBERT [2], where the errors in the L2-norm are computed using two point
Gauss-quadrature. The error in the local H−1/2-norm is computed as ‖χe‖2H−1/2(Γ )

∼
〈V (χe), χe〉, where χ is the characteristic function for a union of elements Γ0 ⊂ Γ .

5.1 Example 1: L-shaped domain

On the L-shaped domain depicted in Fig. 1 (left), the dual problem permits solutions
of regularity H1/6−ε(Γ ) for arbitrary ε > 0; that is, we have αD = 1

6 − ε.
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Fig. 1 L-shaped and Z-shaped domain, local error computed on fat, red part
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Fig. 2 Local and global convergence of Galerkin-BEM for Symm’s equation, L-shaped domain, left:
α = 1

3 , right: α = 1
8 , loc = 19

24

Figure 2 shows the global convergence in the energy norm (blue squares) as well
as the local convergence on the fat, red part of the boundary (Γ0, union of elements)
in the L2-norm (red stars) as well as the H−1/2-norm (brown triangles). The black
dotted lines mark the reference curves of order N−β for various β > 0.

In the left plot of Fig. 2 we chose α = 1
3 , which leads to α+αD = 1

2 −ε and, indeed,
we observe convergence in the local L2-norm of almost order 1, which coincides with
the theoretical rate obtained in Corollary 2.4. The error in the local H−1/2-norm is
smaller than the error in the L2-norm, but does converge with the same rate, i.e., an
improvement of Theorem 2.3 in the energy norm is not possible. The right plot in
Fig. 2 shows the same quantities for the choice α = 1

8 . Obviously, in this case the
rates of convergence are lower, and the local L2-error does not converge with the best
possible rate of one, but rather with the expected rate of N−19/24 = N−1/2−α−αD , as
predicted by Corollary 2.4.

5.2 Example 2: Z-shaped domain

We consider the Z-shaped geometry depicted in Fig. 1 (right). Here, the dual problem
permits solutions of regularity HαD (Γ ) with αD = 1

14 − ε. Again, we observe the
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Fig. 3 Local and global convergence of Galerkin-BEM for Symm’s equation, Z-shaped domain, left:
α = 1

3 , loc = 19
21 , right: α = 1

8 , loc = 39
56

expected convergence O(N−α) for the global error in the energy norm in Fig. 3. How-
ever, in contrast to the previous example on the L-shaped domain, we do not obtain
a rate of 1 for the local error in the L2-norm for the case α = 1

3 , but rather a rate of
−19/21, since 1

2 + αD + α = 19
21 − ε. For the choice α = 1

8 , we observe conver-
gence O(N−1/2−1/14−1/8) = O(N−39/56), which once more matches the theoretical
convergence N−1/2−α−αD .
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