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Abstract In this paper we consider the iteratively regularized Gauss–Newton method
(IRGNM) in its classical Tikhonov version as well as two further—Ivanov type and
Morozov type—versions. In these two alternative versions, regularization is achieved
by imposing bounds on the solution or by minimizing some regularization functional
under a constraint on the data misfit, respectively. We do so in a general Banach space
setting and under a tangential cone condition, while convergence (without source
conditions, thus without rates) has so far only been proven under stronger restrictions
on the nonlinearity of the operator and/or on the spaces. Moreover, we provide a
convergence result for the discretized problem with an appropriate control on the
error and show how to provide the required error bounds by goal oriented weighted
dual residual estimators. The results are illustrated for an inverse source problem for
a nonlinear elliptic boundary value problem, for the cases of a measure valued and of
an L∞ source. For the latter, we also provide numerical results with the Ivanov type
IRGNM.
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1 Introduction

In this paper we consider a nonlinear ill-posed operator equation

F(x) = y , (1)

where the possibly nonlinear operator F : D(F) ⊆ X → Y with domain D(F) maps
between real Banach spaces X and Y . We are interested in the ill-posed situation, i.e.,
F fails to be continuously invertible, and the data are contaminated with noise, thus
regularization has to be applied (see, e.g., [8,27], and references therein).

Throughout this paper we will assume that an exact solution x† ∈ D(F) of (1)
exists, i.e., F(x†) = y, and that the noise level δ in the (deterministic) estimate

‖y − yδ‖ ≤ δ (2)

is known.
Partially we will also refer to the formulation of the inverse problem as a system of

model and observation equation

A(x, u) = 0 (3)

C(u) = y . (4)

Here A : X × V → W ∗ and C : V → Y are the model and observation operator,
so that with the parameter-to-state map S : X → V satisfying A(x, S(x)) = 0 and
F = C ◦ S, (1) is equivalent to the all-at-once formulation (3), (4).

Newton typemethods for the solution of nonlinear ill-posed problems (1) have been
extensively studied in Hilbert spaces (see, e.g., [2,20] and the references therein) and
more recently also in a in Banach space setting. In particular, the iteratively regularized
Gauss–Newtonmethod [1] can be generalized to a Banach space setting by calculating
iterates xδ

k+1 in a Tikhonov type variational form as

xδ
k+1 ∈ argminx∈C ‖F ′(xδ

k )(x − xδ
k ) + F(xδ

k ) − yδ‖p + αkR(x) , (5)

see, e.g., [11,16,17,21,28] where p ∈ [1,∞), (αk)k∈N is a sequence of regularization
parameters, and R is some nonnegative regularization functional. Alternatively, one
might introduce regularization by imposing some bound ρk on the norm of x , or, again,
generally, on a regularization functional of x

xδ
k+1 ∈ argminx∈C ‖F ′(xδ

k )(x − xδ
k ) + F(xδ

k ) − yδ‖ such that R(x) ≤ ρk , (6)

which corresponds to Ivanov regularization or the method of quasi solutions, see, e.g.,
[7,13–15,22,24,26]. A third way of incorporating regularization in a Newton type
iteration is Morozov regularization, also called the method of the residuals, see, e.g.,
[9,22,23]
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Convergence and adaptive discretization of the IRGNM… 451

xδ
k+1 ∈ argminx∈C R(x) such that ‖F ′(xδ

k )(x−xδ
k )+F(xδ

k )− yδ‖ ≤ σ‖F(xδ
k )− yδ‖ ,

(7)
for some σ ∈ (0, 1), where the choice of the bound in the inequality constraint is very
much inspired by the inexact Newton type regularization parameter choice in [10].

We restrict ourselves to the norm inY as ameasure of the datamisfit, but the analysis
could as well be extended to more general functionals S satisfying certain conditions,
as e.g., in [11,28]. Here C is a set (possibly chosen with convenient properties for
carrying out the minimization) containing x† and being contained in D(F), such that
F satisfies additional conditions on C see (8), (10) below. If F is defined on all of X ,
then the minimization problem (5) can be posed in an unconstrained way C = X .

As a restriction on the nonlinearity of the forward operator F we impose the tan-
gential cone condition

‖F(x̃) − F(x) − F ′(x)(x̃ − x)‖ ≤ ctc‖F(x̃) − F(x)‖ for all x̃, x ∈ BR (8)

(also called Scherzer condition, cf. [25]) for some constant ctc < 1/3. Here, for any
r > 0,

Br = {x ∈ C : R(x) ≤ r} (9)

is a sublevel set of the regularization functional and R will be specified in the conver-
gence result Theorem 1.

Note that the convergence conditions imposed in [11,16,17,21,28] in the situation
without source condition, namely local invariance of the range of F ′(x)∗, are slightly
stronger, since this adjoint range invariance is sufficient for (8). However, most prob-
ably the gap is not very large, as in those application examples where (8) has been
verified, the proof of (8) is actually often done via adjoint range invariance. In (5), (6),
(7), the bounded linear operator F ′(x) is not necessarily a Gâteaux or Fréchet deriva-
tive of F , but just some local linearization (in the sense of (8)), satisfying additionally
the weak closedness condition

∀x ∈ C , (xn)n∈N ⊆ C :
(
xn

TX−→ x̂ , and F ′(x)xn
TY−→ y

)

⇒
(
x̂ ∈ C and F ′(x)x̂ = y

)
. (10)

In here, TX and TY are topologies on X and Y (e.g., just the weak or weak* topolo-
gies) such that bounded sets in Y are TY -compact and the norm in Y is TY -lower
semicontinuous.

The remainder of this paper is organized as follows. In Sect. 2 we state and prove
convergence results in the continuous and discretized setting. Section 3 shows how to
actually obtain the required discretization error estimates by a goal oriented weighted
dual residual approach and Sect. 4 illustrates the theoretical findings by an inverse
souce problem for a nonlinear PDE. In Sect. 5 we provide some numerical results for
this model problem and Sect. 6 concludes with some remarks.
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452 B. Kaltenbacher, M. L. P. de Souza

2 Convergence

In this section we will study convergence of the IRGNM iterates first of all in a con-
tinuous setting, then in the situation of having discretized for computational purposes.

The regularization parameters αk , ρk , σ are chosen a priori

αk = α0θ
k for some θ ∈

((
2cct
1−cct

)p
, 1

)
(11)

(note that ( 2cct
1−cct

)p < 1 for ctc < 1/3),

ρk ≡ ρ ≥ R(x†) , (12)

and

σ ≥ 1 + ctc
τ

+ ctc , σ < 1 − 2ctc , (13)

with τ as in (14), and the iteration is stopped according to the discrepancy principle

k∗ = k∗(δ, yδ) = min{k ∈ N0 : ‖F(xδ
k ) − yδ‖ ≤ τδ} (14)

with some fixed τ > 1 chosen sufficiently large but independent of δ.

Theorem 1 Let R : X → [0,∞] be proper, convex and TX lower semicontinuous
with R(x†) < ∞ and let, for all r ∈ [R(x†),∞) in case of (5), or for all r ∈
[R(x†), ρ] in case of (6), or for r = R(x†) in case of (7), the sublevel set (9) be
compact with respect to the topology TX on X.
Moroever, let F satisfy (8), (10).
Finally, let the family of data (yδ)δ>0 satisfy (2).

(i) Then for fixed δ, yδ , the iterates according to (5)–(7) are well-defined and satisfy

xδ
k ∈ BR with R

⎧
⎨
⎩

defined by (23), (19), (20) in case of (5)
= ρ in case of (6)
= R(x†) in case of (7)

(15)

for all k ≤ k∗(δ, yδ), which denotes the stopping index according to the discrep-
ancy principle (14) with τ sufficiently large, and this stopping indes k∗(δ, yδ) is
finite.

(ii) Moreover, for both methods we have TX -subsequential convergence as δ → 0
i.e., (xδ

k∗(δ,yδ)
)δ>0 has a TX -convergent subsequence and the limit of every TX -

convergent subsequence solves (1). If the solution x† of (1) is unique in BR, then

xδ
k∗(δ,yδ)

TX−→ x† as δ → 0.
(iii) Additionally, k∗ satisfies the asymptotics k∗ = O(log(1/δ)).

Proof Existence of minimizers xδ
k+1 of (5)–(7) for fixed k, xδ

k and yδ follows by the
direct method of calculus of variations: In all three cases, the cost functional

Jk(x) = ‖F ′(xδ
k )(x − xδ

k ) + F(xδ
k ) − yδ‖p + αkR(x) in case of (5),

Jk(x) = 1

2
‖F ′(xδ

k )(x − xδ
k ) + F(xδ

k ) − yδ‖2 in case of (6),
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Jk(x) = R in case of (7),

is bounded from below and the admissible set

Xad = C in case of (5),

Xad = Bρ in case of (6),

Xad = {x ∈ C : ‖F ′(xδ
k )(x − xδ

k ) + F(xδ
k ) − yδ‖ ≤ σ‖F(xδ

k ) − yδ‖} in case of (7)

is nonempty (for (6) this follows from ρk ≥ R(x†) and for (7) from (8), (14) and (13),
see (16) below). Hence, there exists a minimizing sequence (xl)l∈N ⊆ Xad ∩ Br for

r = 1

αk
Jk(x

†) in case of (5), r = ρ in case of (6), r = R(x†) in case of (7),

with bounded linearized residuals ‖F ′(xδ
k )(x

l − xδ
k ) + F(xδ

k ) − yδ‖ ≤ s for

s = Jk(x
†)1/p in case of (5), (6), s = σ‖F(xδ

k ) − yδ‖ in case of (7),

and liml→∞ Jk(xl) = inf x∈Xad Jk(x). By TX -compactness of Br , the sequence
(xl)l∈N has a TX -convergent subsequence (xlm )m∈N with limit x̄ ∈ Br . Moroever,
TY -compactness of norm bounded sets in Y together with TX -TY -closedness of
F ′(xδ

k ) and lower TY semicontinuity of the norm in Y , implies that in all three cases
Jk(x̄) ≤ lim infm→∞ Jk(xlm ) = infx∈Xad Jk(x) and x̄ ∈ Xad, hence x̄ is a minimizer.

Note that (ii) follows from (i) by standard arguments and our assumption on T -
compactness of BR . Thus it remains to prove (i) and (iii) for the three versions (5),
(6), (7) of the IRGNM.

For this purpose we are going to show that for every δ > 0, there exists
k∗ = k∗(δ, yδ) such that k∗ ∼ log(1/δ), and the stopping criterion according to
the discrepancy principle ‖F(xδ

k∗(δ,yδ)
) − yδ‖ ≤ τδ is satisfied. For (5), we also need

to show thatR(xδ
k ) ≤ R for k ≤ k∗(δ, yδ), whereas in (6) this automatically holds by

(12). The same holds true for (7): If xδ
k ∈ BR , then by (8), (14) and (13) we have

‖F ′(xδ
k )(x

† − xδ
k ) + F(xδ

k ) − yδ‖ ≤ ctc‖F(xδ
k ) − yδ‖ + (1 + ctc)δ

≤
(
ctc + 1 + ctc

τ

)
‖F(xδ

k ) − yδ‖, (16)

so x† is admissible, hence R(xδ
k+1) ≤ R(x†), i.e., xδ

k+1 ∈ BR .
We start with the Tikhonov version (5) and carry out an induction proof of the

following statement: For all k ∈ {0, . . . , k∗(δ, yδ)}

R(xδ
k ) ≤ R and ∀ j ∈ {0, . . . , k−1} : d j+1+α jR j+1 ≤ qd j +α jR†+Cδ p , (17)

where

dk := 21−p(1 − ctc)
p‖F(xδ

k ) − yδ‖p, (18)
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454 B. Kaltenbacher, M. L. P. de Souza

q := 2p−1((1 + γ )p−1 + 1
) (

ctc
1 − ctc

)p

∈ (0, 1), (19)

Rk := R(xδ
k ), R† := R(x†),

C :=
(
1 + γ

γ

)p−1

(1 + ctc)
p, (20)

for some fixed small γ ∈ (0, 1). We will require q
θ

< 1, which by definition of q (19)

is achievable for γ > 0 sufficiently small, due to θ > ( 2cct
1−cct

)p, cf. (11). By Lemma 2
(see the “Appendix”) the right hand side estimate in (17) implies

dk + αk−1Rk < qkd0 +
(

1

1 − q
θ

)
αk−1R† +

(
1

1 − q

)
Cδ p. (21)

Using the minimality of xδ
k+1 and (2), (8) together with x†, xδ

k ∈ BR , we have

‖F ′(xδ
k )(x

δ
k+1 − xδ

k ) + F(xδ
k ) − yδ‖p + αkR(xδ

k+1)

≤ ‖F ′(xδ
k )(x

† − xδ
k ) + F(xδ

k ) − yδ‖p + αkR(x†)

≤
(
ctc‖F(xδ

k ) − yδ‖ + (1 + ctc)δ
)p + αkR(x†), (22)

From (21) and (14) we infer

(
21−p(1 − ctc)

p − C

(1 − q)τ p

)
‖F(xδ

k ) − yδ‖p ≤ qkd0 + θkα0
R†

θ − q

Using this and again (14) in (22) yields

R(xδ
k+1) ≤

(
cct + 1 + ctc

τ

)p (
21−p(1 − ctc)

p − C

(1 − q)τ p

)−1

×
((q

θ

)k d0
α0

+ R†

θ − q

)
+ R†

≤
(
1

3
+ 4

3τ

)p (
2

3p
− C

(1 − q)τ p

)−1

×
(
21−p ‖F(xδ

0) − yδ‖p

α0
+ R†

θ − q

)
+ R† =: R . (23)

On the other hand, since we have established xδ
k+1 ∈ BR , we can apply (8) to the left

hand side of (22) to obtain

‖F ′(xδ
k )(x

δ
k+1 − xδ

k ) + F(xδ
k ) − yδ‖p + αkR(xδ

k+1)

≥
∣∣∣(1 − ctc)‖F(xδ

k+1) − yδ‖ − ctc‖F(xδ
k ) − yδ‖

∣∣∣
p + αkR(xδ

k+1).
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see also [11, Lemma 5.2] and [21, proof of Theorem 3].
To handle the power p wemake use of the following inequalities that can be proven

by solving extremal value problems, see the “Appendix”

(a + b)p ≤ (1 + γ )p−1a p +
(
1 + γ

γ

)p−1

bp and

(a − b)p ≥ (1 − ε)p−1a p −
(
1 − ε

ε

)p−1

bp, (24)

for all a, b > 0, p ≥ 1 and γ, ε ∈ (0, 1), where for the right hand inequality to hold,
additionally a ≥ b is needed.

Hence, in case (1−ctc)‖F(xδ
k+1)− yδ‖ ≥ ctc‖F(xδ

k )− yδ‖ the following general
estimate holds

(1 − ε)p−1(1 − ctc)
p‖F(xδ

k+1) − yδ‖p + αkR(xδ
k+1)

≤
(

(1 + γ )p−1 +
(
1 − ε

ε

)p−1
)
cptc‖F(xδ

k ) − yδ‖p

+αkR(x†) +
(
1 + γ

γ

)p−1

(1 + ctc)
pδ p, (25)

for γ, ε ∈ (0, 1).
So in order for this recursion to yield geometric decay of ‖F(xδ

k ) − yδ‖, we need
to ensure

(1 − ε)p−1(1 − ctc)
p >

(
(1 + γ )p−1 +

(
1 − ε

ε

)p−1
)
cptc (26)

for a proper choice of ε, γ ∈ (0, 1). To obtain the largest possible (and therefore least
restrictive) bound on ctc, we rewrite the requirement above as

(
ctc

1 − ctc

)p

< sup
ε,γ∈(0,1)

(1 − ε)p−1

(
(1 + γ )p−1 +

(
1 − ε

ε

)p−1
)−1

= sup
ε∈(0,1)

(1 − ε)p−1

(
1 +

(
1 − ε

ε

)p−1
)−1

︸ ︷︷ ︸
=φ(ε)

= φ( 12 ) = 2−p,

as can be found out by evaluating the derivative of φ

φ′(ε) = −(p − 1)(1 − ε)p−2

(
1 +

(
1 − ε

ε

)p−1
)−2 (

1 −
(
1 − ε

ε

)p)
.
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Thus we will furtheron set ε = 1
2 and assume that γ > 0 is sufficiently small so that

(26) holds with ε = 1
2 , i.e., (19). Then, using (11), estimate (25) can be written as

dk+1 + αkRk+1 ≤ qdk + α0θ
kR† + Cδ p, (27)

which we first of all regard as a recursive estimate for dk .
To derive a similar estimate also in the complementary case (1 − ctc)‖F(xδ

k+1) −
yδ‖ < ctc‖F(xδ

k ) − yδ‖, we use that fact that, for dk as in (18), this inequality just
means

dk+1 <

(
ctc

1 − ctc

)p

dk

and, using (22) and the left hand part of (24),

αkRk+1 ≤ (1 + γ )p−1cptc‖F(xδ
k ) − yδ‖p + αkR† +

(
1 + γ

γ

)p−1

(1 + ctc)
pδ p,

hence after addition we again get (27) (even with a slightly smaller value of q :=
(1 + 2p−1(1 + γ )p−1)( ctc

1−ctc
)p).

Thus in both cases, using Lemma 2 we can conclude that

dk+1 + αkRk+1 < qk+1d0 +
(

1

1 − q
θ

)
αkR† +

(
1

1 − q

)
Cδ p. (28)

This finishes the induction proof of (17) for all k ∈ {0, . . . , k∗(δ, yδ)}.
We next show that the discrepancy stopping criterion from (14), i.e., dk∗ ≤ τ̃ δ p

for τ̃ = 21−p(1 − ctc)pτ p, will be satisfied after finitely many, namely O(log(1/δ)),
steps. For this purpose, note that τ̃ > C

1−q , provided τ is chosen sufficiently large,
which we assume to be done. Thus, indeed, using (11), (21), we have

dk ≤ dk + αk−1Rk < θk
(
d0 + α0

θ − q
R†

)
+ C

1 − q
δ p, (29)

where the right hand side falls below τ̃ δ p as soon as

k ≥ (log 1/θ)−1
(
p log(1/δ) + log

(
d0 + α0

θ − q
R†

)
− log

(
τ̃ − C

1 − q

))

=: k̄(δ).

Thus we get the upper estimate k∗(δ, yδ) ≤ k̄(δ) = O(log(1/δ)).
For the Ivanov version (6), it only remains to show finiteness of the stopping index,

as boundedness of theR values by R = ρ holds by definition. Applying theminimality
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argument with x† being admissible [cf. (12)] to (6) leads to the special case p = 1,
αk = 0 in (25)

(1 − ctc)‖F(xδ
k+1) − yδ‖ ≤ 2ctc‖F(xδ

k ) − yδ‖ + (1 + ctc)δ.

Our notation becomes

dk := (1 − ctc)‖F(xδ
k ) − yδ‖,

q := 2ctc
1 − ctc

∈ (0, 1),

C := (1 + ctc),

which gives

dk+1 ≤ qdk + Cδ,

and by induction, one can conclude

dk < qkd0 +
(

1

1 − q

)
Cδ,

where the right hand side is smaller than τ̃ δ (with τ̃ = (1 − ctc)τ ) for all

k ≥ (log 1/q)−1
(
p log(1/δ) + log d0 − log

(
τ̃ − C

1 − q

))
=: k̄(δ),

so that we can again conclude k∗(δ, yδ) ≤ k̄(δ) = O(log(1/δ)).
Finally we consider (7), where boundedness of the R values by R = R(x†) holds

by minimality and the fact that x† is admissible, cf. (16). Geometric decay of the
residuals follows by the estimate

σ‖F(xδ
k ) − yδ‖ ≥ ‖F ′(xδ

k )(x
δ
k+1 − xδ

k ) + F(xδ
k ) − yδ‖

≥ (1 − ctc)‖F(xδ
k+1) − yδ‖ − ctc‖F(xδ

k ) − yδ‖ (30)

and (13), i.e.,

‖F(xδ
k+1) − yδ‖ ≤ q‖F(xδ

k ) − yδ‖

with

q = σ + ctc
1 − ctc

,

so that similarly to above we end up with a logarithmic estimate for k∗. ��
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458 B. Kaltenbacher, M. L. P. de Souza

Remark 1 Convergence of R(xδ
k∗(δ,yδ)

) to R(x†) as δ → 0 holds along the TX con-
vergent subsequence according to Theorem 1 (ii), first of all for the Morozov and the
Ivanov version of the IRGNM, with the choice ρ = R(x†) for the latter, since in both
cases R(xδ

k∗(δ,yδ)
) ≤ R(x†) holds for all δ and R is TX lower semicontinuous. The

same holds true also for the Tikhonov version with the alternative choice of αk such
that

σ ≤ ‖F ′(xδ
k )(x

δ
k+1(αk) − xδ

k ) + F(xδ
k ) − yδ‖

‖F(xδ
k ) − yδ‖ ≤ σ

for some constants σ , σ satisfying ctc + 1+ctc
τ

< σ < σ < 1 in place of (11), as can
be seen directly from (22). If R is defined by the norm on a space with the Kadets-
Klee property, and TX is the weak topology of this space, then this implies norm
convergence of xδ

k∗(δ,yδ)
to x† along the same subsequence.

Remark 2 The fact that xδ
k stays in BR [cf. (15)] is crucial for the applicability of

the tangential cone condition (8) in these iterates. If the functionalR quantifies some
distance to an a priori guess x0, (e.g., R = ‖x − x0‖q for some norm ‖ · ‖ and some
q > 0), then x ∈ BR with small R means closeness of x to x0 in a certain sense. Thus,
the smaller R is, the better (8) might get achievable with some ctc < 1

3 . On the other
hand, making R according to (15) small means closeness of x† to x0. Thus we deal
with local convergence, as typical for Newton type methods.

Nowwe consider the appearance of discretization errors in the numerical solution of
(5), (6) arising from restriction of the minimization to finite dimensional subspaces Xk

h
and leading to discretized iterates xδ

k,h and an approximate version Fk
h of the forward

operator i.e., we consider the discretized version of Tikhonov-IRGNM (5)

xδ
k+1,h ∈ argminx∈C∩Xk

h
‖Fk

h
′
(xδ

k,h)(x − xδ
k,h) + Fk

h (xδ
k,h) − yδ‖p + αkR(x), (31)

of Ivanov-IRGNM (6)

xδ
k+1,h ∈ argminx∈C∩Xk

h
‖Fk

h
′
(xδ

k,h)(x − xδ
k,h) + Fk

h (xδ
k,h) − yδ‖ such that R(x) ≤ ρ,

(32)
and of Morozov-IRGNM (7)

xδ
k+1,h ∈ argminx∈C∩Xk

h
R(x) such that ‖Fk

h
′
(xδ

k,h)(x − xδ
k,h) + Fk

h (xδ
k,h) − yδ‖

≤ σ‖Fk
h (xδ

k,h) − yδ‖, (33)

respectively. Moreover, also in the discrepancy principle, the residual is replaced by
its actually computable discretized version

k∗ = k∗(δ, yδ) = min{k ∈ N0 : ‖Fk
h (xδ

k,h) − yδ‖ ≤ τδ} . (34)
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We define the auxiliary continuous iterates

xδ
k+1 ∈ argminx∈C ‖F ′(xδ

k,h)(x − xδ
k,h) + F(xδ

k,h) − yδ‖p + αkR(x), (35)

xδ
k+1 ∈ argminx∈C ‖F ′(xδ

k,h)(x − xδ
k,h) + F(xδ

k,h) − yδ‖ such that R(x) ≤ ρ,

(36)

and

xδ
k+1 ∈ argminx∈C R(x) such that ‖F ′(xδ

k,h)(x − xδ
k,h) + F(xδ

k,h) − yδ‖
≤ σ‖F(xδ

k,h) − yδ‖, (37)

respectively in order to be able to use minimality, i.e., compare with the continuous
exact solution x†. For an illustration we refer to [18, Figure 1].

First of all, we assess how large the discretization errors can be allowed to still
enable convergence. Later on, in Sect. 3, we will describe how to really obtain such
estimates a posteriori and to achieve the prescribed accuracy by adaptive discretization.

Corollary 1 Let the assumptions of Theorem 1 be satisfied and assume that the dis-
cretization error estimates

‖F(xδ
k+1,h) − yδ‖ − ‖F(xδ

k+1) − yδ‖ ≤ ηk+1 (38)∣∣∣‖Fk
h (xδ

k,h) − yδ‖ − ‖F(xδ
k,h) − yδ‖

∣∣∣ ≤ ξk (39)

R(xδ
k,h) − R(xδ

k ) ≤ ζk (40)

(note that no absolute value is needed in (38), (40); moreover, (40) is only be needed
for (5) and (7)) hold with

ηk ≤ cη‖Fk
h (xδ

k,h) − yδ‖ ξk ≤ cξ‖Fk
h (xδ

k,h) − yδ‖, ζk ≤ ζ̄ . (41)

for all k ≤ k∗(δ, yδ) and constants cη, cξ > 0 sufficiently small, ζ̄ > 0.
Then the assertions of Theorem 1 remain valid for xδ

k∗(δ,yδ),h
in place of xδ

k∗(δ,yδ)

with (34) in place of (14) and (42) in place of (23).

Proof For the Tikhonov version (31), in order to inductively estimate R(xδ
k+1,h),

given xδ
k ∈ BR , note that from (43) with k + 1 replaced by k, we get like in (23) that

R(xδ
k+1,h) ≤

(
1

3
+ 4

3τ

)p (
2

3p
− C

(1 − q)τ p

)−1

×
(
21−p ‖F(xδ

0) − yδ‖p

α0
+ R† + ζ̄

θ − q

)
+ R† =: R (42)
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where

dk,h := 21−p(1 − ctc)
p‖F(xδ

k,h) − yδ‖p,

q̃ := 2p−1((1 + γ )p−1 + (1 + γ̃ )p−1)
(

ctc
1 − ctc

)p

,

q = q̃ + D
cη

1 − cξ

∈ (0, 1),

Rk,h := R(xδ
k,h), R† := R(x†),

C :=
(
1 + γ

γ

)p−1

(1 + ctc)
p, D :=

(
1 + γ̃

γ̃

)p−1

(1 − ctc)
p,

for γ, γ̃ , cη ∈ (0, 1), which are chosen small enough so that q < θ . As before, from
the minimality of xδ

k+1 and (2), (8) as well as x† ∈ D(F), we have

(
(1 − ctc)‖F(xδ

k+1) − yδ‖ − ctc‖F(xδ
k,h) − yδ‖

)p + αkR(xδ
k+1)

≤
(
ctc‖F(xδ

k,h) − yδ‖ + (1 + ctc)δ
)p + αkR(x†),

then using (38), (40),

∣∣(1 − ctc)(‖F(xδ
k+1,h) − yδ‖ − ηk+1) − ctc‖F(xδ

k,h) − yδ‖∣∣p + αkR(xδ
k+1,h)

≤
(
ctc‖F(xδ

k,h) − yδ‖ + (1 + ctc)δ
)p + αkR(x†) + αkζk+1.

Hence, with the same technique as in the proof of Theorem 1, using (24) with
ε = 1

2 , we have

dk+1,h + αkRk+1,h ≤ q̃dk,h + α0θ
k(R† + ζk+1) + Cδ p + Dη

p
k+1

≤ qdk,h + α0θ
k(R† + ζk+1) + Cδ p ,

using (41). From this, by induction we conclude

dk+1,h + αkRk+1,h ≤ qk+1d0 +
(

1

1 − q
θ

)
αk(R† + ζ̄ ) +

(
1

1 − q

)
Cδ p (43)

Hence, by (39), (41), we have the following estimate

‖Fk
h (xδ

k,h) − yδ‖

≤
(

δ +
(

2p−1

(1 − ctc)p

(
θk

(
d0 + α0

θ − q
(R† + ζ̄ )

)
+ C

1 − q
δ p

))1/p
)

1

1 − cξ

,
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where the right hand side falls below τδ as soon as

k ≥ (log 1/θ)−1
(
p log(1/δ) + log

(
d0 + α0

θ − q
(R† + ζ̄ )

)
− log

(
τ̃ − C

1 − q

))

=: k̄(δ),

for τ̃ = 21−p(1 − ctc)p(τ (1 − cξ ))
p. Note that τ̃ > C

1−q , provided τ is chosen
sufficiently large, which we assume to be done. That is, we have shown that the
discrepancy stopping criterion from (34) will be satisfied after finitely many, namely
O(log(1/δ)), steps.

On the other hand, the continuous discrepancy at the iterate defined by the dis-
cretized discrepancy principle (34) by (39), (41) satisfies

‖F(xδ
k,h) − yδ‖ ≤ τ(1 + cξ )δ .

To estimate R(xδ
k∗(δ,yδ),h

), note that according to our notation, from (43), we get,

like in (23), that for all k ∈ {1, . . . , k∗(δ, yδ)}

Rk ≤ θ

(
d0
α0

+ R† + ζ̄

θ − q

) (
1 + C

1 − q

(
τ̃ − C

1 − q

)−1
)

=: R.

Now we show finiteness of the stopping index for the discretized Ivanov-IRGNM
(32). By minimality of xδ

k+1 and (38), for this problem we have

(1 − ctc)‖F(xδ
k+1,h) − yδ‖ ≤ 2ctc‖F(xδ

k,h) − yδ‖ + (1 + ctc)δ + (1 − ctc)ηk+1.

which with

dk,h := (1 − ctc)‖F(xδ
k,h) − yδ‖,

q̃ := 2ctc
1 − ctc

, q = q̃ + D
cη

1 − cξ

∈ (0, 1),

C := (1 + ctc), D := (1 − ctc),

by induction, (39) and (41) gives

‖Fk
h (xδ

k,h) − yδ‖ ≤ 1

1 − ctc
dk,h + ξk ≤ 1

1 − ctc

(
qkd0 + C

1 − q
δ

)
+ τ̂ δ,

where the right hand side is smaller than τδ for all

k ≥ (log 1/q)−1
(
log(1/δ) + log d0 − log

(
τ̃ − C

1 − q

))
=: k̄(δ),
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with τ̃ = (1 − ctc)τ (1 − cξ ), so that we can again conclude k∗(δ, yδ) ≤ k̄(δ) =
O(log(1/δ)).

It remains to show finiteness of the stopping index for the discretized Morozov-
IRGNM (33). By minimality of xδ

k+1 we have (30) with xδ
k replaced by xδ

k,h , thus the
inequalities (38) and (41) yield

‖F(xδ
k+1,h) − yδ‖ ≤ σ + ctc(

1 − cη
1−cξ

)
(1 − ctc)

‖F(xδ
k,h) − yδ‖

then, by (39) and induction

‖Fk
h (xδ

k,h) − yδ‖ ≤ qk‖F(xδ
0,h) − yδ‖ (44)

where

q := σ + ctc(
1 − cη

1−cξ

)
(1 − ctc)

∈ (0, 1),

and the right hand side of (44) falls below τδ for all

k ≥ (log 1/q)−1 (log(1/δ) + log d0 − log τ̃ ) =: k̄(δ),

where τ̃ = τ(1 − cξ ), and we can again conclude k∗(δ, yδ) ≤ k̄(δ) = O(log(1/δ)).
Boundedness of the R values for (33) by R(x†) + ζ̄ follows like in the proof of
Theorem 1 together with (40), (41). ��

3 Error estimators for adaptive discretization

The error estimators ηk , ξk and ζk can be quantified, e.g., by means of a goal oriented
dual weighted residual (DWR) approach [3], applied to the minimization problems

(xδ
k+1,h, v

δ
k,h, u

δ
k+1, u

δ
k,h) ∈ argmin(x,v,u,ũ)∈C×V 3‖C ′(ũ)v + C(ũ) − yδ‖p + αkR(x)

s.t. ∀w ∈ W : 〈A′
x (x

δ
k,h, ũ)(x − xδ

k,h) + A′
u(x

δ
k,h, ũ)v,w〉W ∗,W = 0,

〈A(xδ
k,h, ũ), w〉W ∗,W = 0, 〈A(x, u), w〉W ∗,W = 0,

(45)

(note that the last constraint is added in order to enable computation of I k2 below)

(xδ
k+1,h, v

δ
k,h, u

δ
k+1, u

δ
k,h) ∈ argmin(x,v,u,ũ)∈C×V 3

1

2
‖C ′(ũ)v + C(ũ) − yδ‖2

s.t. R(x) ≤ ρk,

and ∀w ∈ W : 〈A′
x (x

δ
k,h, ũ)(x − xδ

k,h) + A′
u(x

δ
k,h, ũ)v,w〉W ∗,W = 0,

〈A(xδ
k,h, ũ), w〉W ∗,W = 0, 〈A(x, u), w〉W ∗,W = 0,

(46)
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and

(xδ
k+1,h, v

δ
k,h, u

δ
k+1, u

δ
k,h) ∈ argmin(x,v,u,ũ)∈C×V 3R(x)

s.t. ‖C ′(ũ)v + C(ũ) − yδ‖ ≤ σ‖C(ũ) − yδ‖,
and ∀w ∈ W : 〈A′

x (x
δ
k,h, ũ)(x − xδ

k,h) + A′
u(x

δ
k,h, ũ)v,w〉W ∗,W = 0,

〈A(xδ
k,h, ũ), w〉W ∗,W = 0, 〈A(x, u), w〉W ∗,W = 0,

(47)

which are equivalent to (5), (6), and (7), respectively, with

I k1 (x, v, u, ũ) = ‖C(ũ) − yδ‖ , I k2 (x, v, u, ũ) = ‖C(u) − yδ‖ ,

I k3 (x, v, u, ũ) = R(x)

as quantities of interest [where I k3 is only needed for (5) and (7)]. We assume that
C,R and the norms can be evaluated without discretization error, so the discretized
versions of I ki only arise due to discreteness of the arguments. Indeed, it is easy to see
that the left hand sides of (38) and (39) can be bounded (at least approximately) by
combinations of I k1 and I k2 , using the triangle inequality:

‖F(xδ
k+1,h) − yδ‖ − ‖F(xδ

k+1) − yδ‖
= I k+1

1 (xδ
k+2, v

δ
k+1, u

δ
k+2, ũ

δ
k+1) − I k+1

1 (xδ
k+2,h, v

δ
k+1,h, u

δ
k+2,h, ũ

δ
k+1,h)

− (I k2 (xδ
k+1, v

δ
k , u

δ
k+1, ũ

δ
k) − I k2 (xδ

k+1,h, v
δ
k,h, u

δ
k+1,h, ũ

δ
k,h)) + Rk+1

η ; (48)

‖Fk
h (xδ

k,h) − yδ‖ − ‖F(xδ
k,h) − yδ‖

= I k1 (xδ
k+1,h, v

δ
k,h, u

δ
k+1,h, ũ

δ
k,h) − I k1 (xδ

k+1, v
δ
k , u

δ
k+1, ũ

δ
k) , (49)

where we will neglect Rk+1
η = ‖Fk+1

h (xδ
k+1,h) − yδ‖ − ‖Fk

h (xδ
k+1,h) − yδ‖.

It is important to note that I k+1
1,h is not equal to I k2,h , see [18].

The computation of the a posteriori error estimators ηk, ξk, ζk is done as in [18].
These error estimators can be used within the following adaptive algorithm for error
control and mesh refinement: We start on a coarse mesh, solve the discretized opti-
mization problem and evaluate the error estimator. Thereafter, we refine the current
mesh using local information obtained from the error estimator, reducing the error
with respect to the quantity of interest. This procedure is iterated until the value of the
error estimator is below the given tolerance (41), cf. [3].

In this case, all the variables x, v, u, ũ are subject to a new discretization. For better
readability we will partially omit the iteration index k and the discretization index h.
The previous iterate xδ

k is fixed and not subject to a new discretization.
Consider now the cost functional for (45)

J (x, v, ũ) = ‖C ′(ũ)v + C(ũ) − yδ‖p + αkR(x)
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and define the Langrangian functional

L(x, v, u, ũ, λ, μ̃, μ) :=J (x, v, ũ) + 〈A′
x (x

δ
k , ũ)(x − xδ

k ) + A′
u(x

δ
k , ũ)v, λ〉W ∗,W

+ 〈A(xδ
k , ũ), μ̃〉W ∗,W + 〈A(x, u), μ〉W ∗,W , (50)

neglecting for simplicity (cf. Remark 2) the constraints defined by C. The first-order
necessary optimality conditions for (45) are given by stationarity for the Lagrangian
L . Setting z = (x, v, u, ũ, λ, μ̃, μ), they read

L ′(z)(dz) = 0,∀dz ∈ Z = X × V × V × V × W × W × W

and for the discretized problem,

L ′(zh)(dzh) = 0,∀dzh ∈ Zh = Xh × Vh × Vh × Vh × Wh × Wh × Wh .

To derive a posteriori error estimators for the error with respect to the quantities of
interest (I1, I2, I3), we introduce auxiliary functionals Mi :

Mi (z, z̄) = Ii (z) + L ′(z)z̄, z, z̄ ∈ Z , i = 1, 2, 3,

Let z̃ = (z, z̄) ∈ Z̃ = Z × Z and z̃h = (zh, z̄h) ∈ Z̃h = Zh × Zh be continuous and
discrete stationary points of Mi satisfying

M ′(z̃)(dz̃) = 0,∀dz̃ ∈ Z M ′(z̃h)(dz̃h) = 0,∀dz̃h ∈ Zh ,

respectively. Then, z, zh are continuous and discrete stationary points of L and there
holds Ii (z) = Mi (z̃), i = 1, 2, 3. Thus the z part, as computed already during the
numerical solution of the minimization problem (45) (or (46)) remains fixed for all
i ∈ {1, 2, 3, }. Moreover, after computing the discrete stationary point zh for L (e.g.,
by applying Newton’s method), it requires only one more Newton step to compute the
z̄ coordinate of the stationary point for M from

L ′′(zh)(z̄i,h, dz̄) = −I ′
i (zh)dz̄,∀dz̃h ∈ Zh .

According to [3], there holds

Ii (x, v, ũ) − Ii (xh, vh, ũh) = 1

2
M ′(z̃h)(z̃ − ẑh) + R, ∀ẑh ∈ Zh i = 1, 2, 3,

with a remainder term R of order O(‖z̃ − z̃h‖3) that is therefore neglected. Thus we
use

I ki (z) − I ki (zh) ≈ 1

2
M ′

i (zh, z̄i,h)(πh z̃i,h − z̃i,h) = εki ,
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whereπh is an operator defined such that (πh z̃i,h−z̃i,h) approximates the interpolation
error as in [18], typically defined by local averaging, to define the estimators ηk , ξk ,
ζk according to the rule

ηk+1 = εk+1
1 + εk2 , ξk = εk1 , ζk = εk3; (51)

cf. (48), (49). The estimators obtained by this procedure can be used to trigger local
mesh refinement until the requirements (41) are met cf. [3].

Explictly, for p = 2 (for simplicity) such a stationary point z = (x, v, u, ũ, λ, μ̃)

can be computed by solving the following system of equations (analogously for the
discrete stationary point of L)

−(A
′
x (x, u)∗μ + A

′
x (x

δ
k , ũ)∗λ) ∈ αk∂R(x); (52)

2〈C ′
(ũ)(dv),C

′
(ũ)v + C(ũ) − yδ〉 + 〈A′

u(x
δ
k , ũ)(dv), λ〉 = 0, ∀dv ∈ V ; (53)

〈A′
u(x, u)(du), μ〉 = 0, ∀du ∈ V ; (54)

〈A′′
xu(x

δ
k , ũ)(x − xδ

k , dũ) + A
′′
uu(x

δ
k , ũ)(v, dũ), λ〉 + 〈A′

u(x
δ
k , ũ)(dũ), μ̃〉

+ 2〈C ′′
(ũ)(dũ, v) + C

′
(ũ)(dũ),C

′
(ũ)v + C(ũ) − yδ〉 = 0, ∀dũ ∈ V ; (55)

〈A′
x (x

δ
k , ũ)(x − xδ

k ) + A
′
u(x

δ
k , ũ)v, dλ〉 = 0, ∀dλ ∈ W ; (56)

〈A(xδ
k , ũ), dμ̃〉 = 0, ∀dμ̃ ∈ W ; (57)

〈A(x, u), dμ〉 = 0, ∀dμ ∈ W. (58)

Note that (58) is decoupled from the other equations and that if A
′
u(x, u)∗ is injective,

Eq. (54) implies μ = 0.
Summarizing, since we have a convex minimization problem, after solving a non-

linear system of seven equations to find theminimizer, we need only onemore Newton
step to compute the error estimators to check whether we need a refinement on the
mesh or not.

Regarding the problem (46) related to the Ivanov-IRGNM, we have the Lagrangian
functional (50) with the cost functional defined by

J (x, v, ũ) = 1

2
‖C ′(ũ)v + C(ũ) − yδ‖2 + I(−∞,0](R(x) − ρ) ,

and the indicator functional I(−∞,0](R(x) − ρ) takes the role of a regularization
functional. The resulting optimality system is the same as above, cf. (52)-(58), just
with (52) replaced by

− (A
′
x (x, u)∗μ + A

′
x (x

δ
k , ũ)∗λ) ∈ ∂ I(−∞,0](R(x) − ρ). (59)

Similarly for (47) for Morozov-IRGNM, with the cost function

J (x, v, ũ) = R(x) + I(−∞,0]
(
‖C ′(ũ)v + C(ũ) − yδ‖ − σ‖C(ũ) − yδ‖

)
︸ ︷︷ ︸

=:Q(ũ,v)

,
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we end up with an optimality system by setting αk = 1 and replacing (53), (55) in
(52)–(58) by

−A
′
u(x

δ
k , ũ)∗λ ∈ ∂vQ(ũ, v) (60)

−(A
′′
xu(x

δ
k , ũ)(x − xδ

k ) + A
′′
uu(x

δ
k , ũ)v)∗λ − A

′
u(x

δ
k , ũ)∗μ̃ ∈ ∂ũQ(ũ, v) (61)

respectively.
Note that the bound on I2 only appears—via (51)—in connection to the assumption

ηk ≤ cη‖Fk
h (xδ

k,h) − yδ‖, for k ≤ k∗(δ, yδ) in (41). This may be satisfied in practice
without refining explicitly with respect to ηk , but simply by refining with respect to
the other error estimators ξk (and ζk in the Tikhonov or Morozov case). The fact
that I k1,h and I k−1

2,h only differ in the discretization level, motivates the assumption

that for small h, we have I k1,h ≈ I k−1
2,h and ηk−1 ≈ ξk . Thefore, the algorithm used

in actual computations will be built neglecting I2 and hence skipping the constraint
〈A(x, u), w〉W ∗,W = 0, ∀w ∈ W in (45), (46), (47), which implies a modification
of the Lagrangian (50) accordingly. Therefore, the corresponding optimality systems
for p = 2 in the Tikhonov case is given by

− A
′
x (x

δ
k , ũ)∗λ ∈ αk∂R(x); (62)

2〈C ′
(ũ)(dv),C

′
(ũ)v + C(ũ) − yδ〉 + 〈A′

u(x
δ
k , ũ)(dv), λ〉 = 0, ∀dv ∈ V ; (63)

〈A′′
xu(x

δ
k , ũ)(x − xδ

k , dũ) + A
′′
uu(x

δ
k , ũ)(v, dũ), λ〉 + 〈A′

u(x
δ
k , ũ)(dũ), μ̃〉

+ 2〈C ′′
(ũ)(dũ, v) + C

′
(ũ)(dũ),C

′
(ũ)v + C(ũ) − yδ〉 = 0, ∀dũ ∈ V ; (64)

〈A′
x (x

δ
k , ũ)(x − xδ

k ) + A
′
u(x

δ
k , ũ)v, dλ〉 = 0, ∀dλ ∈ W ; (65)

〈A(xδ
k , ũ), dμ̃〉 = 0, ∀dμ̃ ∈ W. (66)

Note that Eq. (66) is decoupled from the others. Therefore, the strategy is to solve (66)
for ũ first, then solve the linear system (62), (63), (65) for (x, v, λ), and finally compute
μ̃ via the linear equation (64). Here, the system (62), (63), (65) can be interpreted as
the optimality conditions for the following problem

(xδ
k+1,h, v

δ
k,h) ∈ argmin(x,v)∈C×V ‖C ′(ũ)v + C(ũ) − yδ‖2 + αkR(x)

s.t. ∀w ∈ W : 〈A′
x (x

δ
k,h, ũ)(x − xδ

k,h) + A′
u(x

δ
k,h, ũ)v,w〉W ∗,W = 0.

For the Ivanov case, we have to solve (63)–(66) with

− A
′
x (x

δ
k , ũ)∗λ ∈ ∂ I(−∞,0](R(x) − ρ) (67)

in place of (62), hence again (66) is decoupled from the other equations, (64) is linear
with respect to μ̃, once (x, v, λ) has been computed, and the remaining system for
(x, v, λ) can be interpreted as the optimality conditions for the following problem
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(xδ
k+1,h, v

δ
k,h) ∈ argmin(x,v)∈C×V

1

2
‖C ′(ũ)v + C(ũ) − yδ‖2

s.t. R(x) ≤ ρk,

and ∀w ∈ W : 〈A′
x (x

δ
k,h, ũ)(x − xδ

k,h) + A′
u(x

δ
k,h, ũ)v,w〉W ∗,W = 0.

The Morozov case requires solution of (62) (with αk = 1), (65), (66), (60), (61).
Thus again, we first solve (66) for ũ, then the system (62) (with αk = 1), (65), (60),
which is the first order optimality condition for

(xδ
k+1,h, v

δ
k,h) ∈ argmin(x,v)∈C×VR(x)

s.t. ‖C ′(ũ)v + C(ũ) − yδ‖ ≤ σ‖C(ũ) − yδ‖,
and ∀w ∈ W : 〈A′

x (x
δ
k,h, ũ)(x − xδ

k,h) + A′
u(x

δ
k,h, ũ)v,w〉W ∗,W = 0,

with Lagrange multiplier λ for the equality constraint, and finally the (now possibly
nonlinear) inclusion (61) for μ̃.

Remark 3 Since DWR estimators are based on residuals which are computed in the
optimization process, the additional costs for estimation are very low, which makes
this approach attractive for our purposes. However, although these error estimators
are known to work efficiently in practice (see [3]), they are not reliable, i.e., the
conditions I ki (z) − I ki (zh) ≤ εki , i = 1, 2, 3 can not be guaranteed in a strict sense in
the computations, since we neglect the remainder term R and use an approximation
for z̃ − ẑh . As our analysis in Theorem 1 is kept rather general, it is not restricted to
DWR estimators and would also work with different (e.g., reliable) error estimators.

4 Model examples

We present a model example to illustrate the abstract setting from the previous section.
Consider the following inverse source problem for a semilinear elliptic PDE, where
the model and observation equations are given by

− Δu + κu3 = χωc x in Ω ⊂ R
d , (68)

u = 0 on ∂Ω, (69)

C(u) = u |ωo , ‖y − yδ‖L2(ωo)
≤ δ, (70)

where χωc denotes the extension by zero of a function on ωc to a function on all of Ω .
We first of all consider Tikhonov regularization and, aiming for a sparsely supported
source, therefore use the space of Radon measures M(ωc) as a preimage space X .

Thus we define the operators A : M(ωc) × W 1,q
′

0 (Ω) −→ W−1,q(Ω), A(x, u) =
−Δu+κu3 −χωc x , κ ∈ R and the injection C : W 1,q

′
0 (Ω) −→ L2(ωo) = Y , q > d,

where Ω is a bounded domain in R
d with d = 2 or 3, with Lipschitz boundary ∂Ω

and ωc, ωo ⊂ Ω are the control domain and the observation domain, respectively.
A monotonicity argument yields well posedness of the above semilinear boundary

value problem, i.e., well-definedness of u ∈ W 1,q
′

0 (Ω) as a solution to the elliptic
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boundary value problem (68), (69), as long as we can guarantee that u3 ∈ W−1,q(Ω)

for any u ∈ W 1,q
′

0 (Ω), i.e., the embeddings W 1,q
′

0 (Ω) → L3r (Ω) and Lr (Ω) →
W−1,q(Ω) are continuous for some r ∈ [1,∞], which (by duality) is the case iff

W 1,q
′

0 (Ω) embeds continuously both into L3r (Ω) and Lr ′
(Ω). By Sobolev’s Embed-

ding Theorem, this boils down to the inequalities

1 − d

q ′ ≥ − d

3r
and 1 − d

q ′ ≥ − d

r ′ ,

which by elementary computations turns out to be equivalent to

dq

q + d
≤ r ≤ dq

3(dq − q − d)
, (71)

where the left hand side is larger than one and the denominator on the right hand side
is positive due to the fact that for d ≥ 2 we have q > d ≥ d ′ = d

d−1 . Taking the
extremal bounds for q > d—note that the lower bound is increasing and the upper
bound is decreasing with q—in (72) we get

d

2
< r <

d

3(d − 2)
. (72)

Thus, as a by-product, we get that for any t ∈ [1, t̄) there exists q > d such that

W 1,q
′

0 (Ω) continuously embeds into Lt , with

t̄ = ∞ in case d = 2 and t̄ = 3 in case d = 3 . (73)

For the regularization functional R(x) = ‖x‖M(ωc), the IRGNM-Tikhonov mini-
mization step is given by (ignoring h in the notation)

(xδ
k+1, v

δ
k , u

δ
k) ∈ argmin

(x,v,ũ)∈M(ωc)×(W 1,q
′

0 (Ω))2
‖v + ũ − yδ‖2L2(ωo)

+αk‖x‖M(ωc)

s.t. ∀w ∈ W 1,q
′

0 (Ω) :
∫

Ω

(∇v∇w + 3κ ũ2vw)dΩ =
∫

ωc

wd(x − xδ
k ),

∫

Ω

(∇ũ∇w + κ ũ3w)dΩ =
∫

ωc

wdxδ
k .

Here and below
∫
Ω

dΩ and
∫
ωc

dx denote the integrals with respect to the Lebesgue
measure and with respect to the measure x , respectively.

Therefore, to compute thisGauss–Newton step, onefirst needs to solve the nonlinear
equation

− Δũ + κ ũ3 = χωc x
δ
k (74)
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for ũ = uδ
k , then solve the following optimality systemwith respect to (x, v, λ) (written

in a strong formulation)

‖λ‖Cb(ωc) ≤ αk and
∫

Ω

(x∗ − λ)dx ≤ 0,∀x∗ ∈ BCb(ωc)
αk

−Δλ + 3κ(uδ
k)

2λ + 2v + 2uδ
k = 2χωo y

δ

−Δv + 3κ(uδ
k)

2v = χωc (x − xδ
k ),

which can be interpreted as the optimality system for the minimization problem

(xδ
k+1, v

δ
k) ∈ argmin

(x,v)∈M(ωc)×W 1,q
′

0 (Ω)
‖uδ

k + v − yδ‖2L2(ωo)
+ αk‖x‖M(ωc)

s.t. −Δv + 3κ(uδ
k)

2v = χωc (x − xδ
k ), (75)

with Lagrange multiplier λ for the equality constraint, and finally, compute μ̃ by
solving

− Δμ̃ + 3κ(uδ
k)

2μ̃ = −6κuδ
kvλ − 2(v + uδ

k − χωo y
δ). (76)

For carrying out the IRGNM iteration, μ̃ is not required, but we need it for evaluating
the error estimators.

For the Ivanov case, we consider the same model and observation equations (68),
(69), (70) but now we intend to regularize by imposing L∞ bounds and thus use
the slightly different function space setting, A : L∞(ωc) × H1

0 (Ω) −→ H−1(Ω),
A(x, u) = −Δu + κu3 − x , κ ∈ R and the injection C : H1

0 (Ω) −→ L2(ωo).
The IRGNM-Ivanov minimization step with the regularization functional R(x) =

‖x‖L∞(ωc) is given by

(xδ
k+1, v

δ
k , u

δ
k) ∈ argmin(x,v,ũ)∈L∞(ωc)×(H1

0 (Ω))2‖v + ũ − yδ‖2L2(ωo)

s.t. ‖x‖L∞(ωc) ≤ ρ

and ∀w ∈ H1
0 (Ω) :

∫

Ω

(∇v∇w + 3κ ũ2vw)dΩ =
∫

ωc

w(x − xδ
k )dΩ,

∫

Ω

(∇ũ∇w + κ ũ3wdΩ =
∫

ωc

wxδ
k dΩ.

For the Gauss–Newton step, one needs to first solve the nonlinear equation (74) for
ũ = uδ

k , and then solve the following optimality system with respect to (x, v, λ)

‖x‖L∞(ωc) ≤ ρ and
∫

ωc

(x∗ − x)λdΩ ≤ 0,∀x∗ ∈ BL∞(ωc)
ρ

−Δλ + 3κ(uδ
k)

2λ + 2v + 2uδ
k = 2χωo y

δ

−Δv + 3κ(uδ
k)

2v = χωc (x − xδ
k ),

123



470 B. Kaltenbacher, M. L. P. de Souza

which can be interpreted as the optimality system for the minimization problem

(xδ
k+1, v

δ
k) ∈ argmin(x,v)∈L∞(ωc)×H1

0 (Ω)

1

2
‖uδ

k + v − yδ‖2L2(ωo)

s.t. ‖x‖L∞(ωc) ≤ ρ

−Δv + 3κ(uδ
k)

2v = χωc(x − xδ
k ) (77)

with Lagrange multiplier λ for the equality constraint. Finally, μ̃ is computed from
(76).

For the IRGNM-Morozov case, using for simplicity the regularization functional
R(x) = 1

2‖x‖2L2(ωc)
, and leaving the rest of the setting as in the IRGNM-Ivanov case,

the step is defined by

(xδ
k+1, v

δ
k , u

δ
k) ∈ argmin(x,v,ũ)∈L∞(ωc)×(H1

0 (Ω))2
1

2
‖x‖2L2(ωc)

s.t. ‖v + ũ − yδ‖2L2(ωo)
≤ σ‖ũ − yδ‖2L2(ωo)

and ∀w ∈ H1
0 (Ω) :

∫

Ω

(∇v∇w + 3κ ũ2vw)dΩ =
∫

ωc

w(x − xδ
k )dΩ,

∫

Ω

(∇ũ∇w + κ ũ3wdΩ =
∫

ωc

wxδ
k dΩ.

So again we first solve (74) for ũ = uδ
k , then the minimization problem

(xδ
k+1, v

δ
k) ∈ argmin(x,v)∈L∞(ωc)×H1

0 (Ω)

1

2
‖x‖2L2(ωc)

s.t. ‖v + uδ
k − yδ‖2L2(ωo)

≤ σ‖uδ
k − yδ‖2L2(ωo)

−Δv + 3κ(uδ
k)

2v = χωc (x − xδ
k ) ,

or actually its first order optimality system

λ|ωc = x

φ ≥ 0 , ‖v + uδ
k − yδ‖2L2(ωo)

≤ σ‖uδ
k − yδ‖2L2(ωo)

,

φ
(‖v + uδ

k − yδ‖2L2(ωo)
− σ‖uδ

k − yδ‖2L2(ωo)

) = 0

−Δv + 3κ(uδ
k)

2v = χωc (x − xδ
k ),

for (xδ
k+1, v

δ
k , φ, λ), and finally,

−Δμ̃ + 3κ(uδ
k)

2μ̃ = −6κuδ
kvλ − φ(v + (1 − σ)(uδ

k − χωo y
δ)).

for μ̃.
For numerically efficient methods to solve theminimization problems (75) and (77)

we refer to e.g., [4–6] and the references therein.
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We finally check the tangential cone condition in case ωo = Ω and, for simplicity
also ωc = Ω , in both settings

X = M(ωc) , V = W 1,q ′
0 (Ω) , W = W 1,q

0 (Ω)

(where we will have to restrict ourselves to d = 2) and

X = L∞(ωc) or X = L2(ωc) , V = W = H1
0 (Ω) .

For this purpose, we use the fact that with the notation F(x̃) = ũ|ωo , F(x) = u|ωo ,
F(x̃) − F(x) = v|ωo and F(x̃) − F(x) − F ′(x)(x̃ − x) = w|ωo , the functions

v,w ∈ W 1,q
′

0 (Ω) satisfy the homogeneous Dirichlet boundary value problems for the
equations

−Δv + κ(ũ2 + ũu + u2) v = x̃ − x

−Δw + κu2w = −κ(ũ + 2u) v2 .

Using an Aubin-Nitsche type duality trick, we can estimate the L2 norm of w via the
adjoint state p ∈ W 1,n

0 (Ω), which solves

−Δp + κu2 p = w ,

with homogeneous Dirichlet boundary conditions, so that by Hölder’s inequality

‖w‖2L2(Ω)
= 〈w, (−Δ + κu2id)p〉 = 〈(−Δ + κu2id)w, p〉

= −κ〈(ũ + 2u) v2, p〉 ≤ κ‖v‖L2(Ω)‖ũ + 2u‖Lm (Ω)‖v‖Lm (Ω)‖p‖
L

2m
m−4 (Ω)

≤ ˜̃Cκ‖v‖L2(Ω)‖ũ + 2u‖Lm (Ω)‖v‖Lm (Ω)‖w‖L2(Ω) ,

where we aim at choosing m ∈ [4,∞], n ∈ [1,∞] such that indeed

‖p‖W 1,n
0 (Ω)

≤ C‖w‖W−1,n(Ω) ≤ C̃‖w‖L2(Ω)

and the embeddings V → Lm(Ω), W 1,n(Ω) → L
2m
m−4 (Ω), L2(Ω) → W−1,n(Ω)

are continuous. If we succeed in doing so, we can bound ˜̃Cκ‖ũ + 2u‖Lm (Ω)‖v‖Lm (Ω)

by some constant ctc, which will be small provided ‖x̃ − x‖X and hence ‖v‖Lm (Ω) is
small. Thus, the numbers n,m are limited by the requirements

V ⊆ Lm(Ω) and W 1,n(Ω) ⊆ L
2m
m−4 (Ω) and m ≥ 4 , (78)

L2(Ω) ⊆ W−1,n(Ω), i.e., by duality,

W 1,n′
0 (Ω) ⊆ L2(Ω) , (79)
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and the fact that κu2 p ∈ Lo(Ω) should be contained in W−1,n′
(Ω) for u ∈ V ⊆

Lt (Ω), and p ∈ W 1,n(Ω), which via Hölder’s inequality in

(∫

Ω

(u2 p)o dΩ

)1/o

≤ ‖u‖2Lt (Ω)‖p‖L ot
t−2o (Ω)

and duality leads to the requirements

W 1,n
0 (Ω) ⊆ Lo′

(Ω) and V ⊆ Lt (Ω) and W 1,n
0 (Ω) ⊆ L

ot
t−2o (Ω) and o ≤ t

2
(80)

In case V = W 1,q ′
0 (Ω) with q > d and d = 3, (78) will not work out, since according

to (73), m cannot be chosen larger or equal to four.

In case V = W 1,q ′
0 (Ω)with q > d and d = 2, we can choose, e.g., t = m = n = 6,

o = 2 to satisfy (78), (79), (80) as well as t,m < t̄ as in (73).
The same choice is possible in case V = H1

0 (Ω) with d ∈ {2, 3}.

5 Numerical tests

In this section, we provide some numerical illustration of the IRGNM Ivanov method
applied to the example from Sect. 4, i.e., each Newton step consists of solving (74)
and subsequently (77). For the numerical solution of (74) we apply a damped Newton
iteration to the equation Φ(ũ) = 0 where

Φ : H1
0 (Ω) → H−1(Ω) , Φ(ũ) = −Δũ + κ ũ3 − xδ

k ,

ũl+1 = ũl −
(
−Δũ + 3κ(ũl)2

)−1(−Δũ + κ(ũl)3 − xδ
k

)
,

which is stopped as soon as ‖Φ(ũl)‖H−1(Ω) has been reduced by a factor of 1.e−4.
The sources x and states u are discretized by piecewise linear finite elements, hence
after elimination of the state via the linear equality constraint, (77) becomes a box
constrained quadratic program for the dicretized version of x , which we solve with
the method from [12] using the Matlab code mkr_box provided to us by Philipp
Hungerländer, Alpen-Adria Universität Klagenfurt. All implementations have been
done in Matlab.

We performed test computations on a 2-d domain ωo = ωc = Ω = (−1, 1)2,
on a regular computational finite element grid consisting of 2 · N · N triangles, with
N = 32.We first of all consider κ = 1 (belowwewill also show results with κ = 100)
and the piecewise constant exact source function

xex = −10 + 20 · 1B , (81)

where B is the ball of radius 0.2 around (−0.4,−0.3) cf. Fig. 1, and correspondingly
set ρ = 10. In order to avoid an inverse crime, we generated the synthetic data on a
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Fig. 1 Left: exact source xex ; right: locations of spots for testing weak * L∞ convergence

Table 1 Convergence as
δ → 0: averaged errors of five
test runs with uniform noise

δ errspot1 errspot2 errspot3 errL1(Ω)

0.1000 0 4.0818 8.0043 0.0627

0.0667 0.1558 3.6454 7.8451 0.0541

0.0333 0 3.0442 6.5726 0.0370

0.0100 0 0 3.9091 0.0188

finer grid and, after projection of uex onto the computational grid, we added normally
distributed random noise of levels δ ∈ {0.001, 0.01, 0.1} to obtain synthetic data yδ .

In all tests we start with the constant function with value zero for x0. Moreover,
we always set τ = 1.1. According to our convergence result Theorem 1 with R =
‖ · ‖L∞(Ω), we can expect weak * convergence in L∞(Ω) here. Thus we computed
the errors in certain spots within the two homogeneous regions and on their interface,

spot1 = (0.5, 0.5) , spot2 = (−0.4,−0.3) , spot3 = (−0.4,−0.5) ,

cf. Fig. 1, more precisely, on 1
N × 1

N squares located at these spots, corresponding to
the piecewise constant L1 functions with these supports in order to exemplarily test
weak * L∞ convergence. Additionally we computed L1 errors.

Table 1 provides an illustration of convergence as δ decreases. For this purpose, we
performed five runs on each noise level for each example and list the average errors.

In Fig. 2 we plot the reconstructions for κ = 1 and κ = 100. For κ = 1,
the noise levels δ ∈ {0.1, 0.667, 0.333, 0.01} correspond to a percentage of p ∈
{5.6, 18.5, 37.1, 55.6} of the L2 deviation of the exact state from the background state
u0 = −101/3. In case of κ = 100, where the background state is u0 = −0.11/3 the
corresponding percentages are p ∈ {17.9, 59.7, 119.4, 179.2}. For an illustration of
the noisy data as compared to the exact ones, see Figs. 3 and 4. Indeed, the box con-
straints enable to cope with relatively large noise levels, even in the rather nonlinear
regime with κ = 100.
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Fig. 2 Reconstructions from noisy data with δ ∈ {0.1, 0.667, 0.333, 0.01} (top to bottom) for κ = 1 (left)
and κ = 100 (right)
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Fig. 3 Exact and noisy data (δ = 0.1) for κ = 1

Fig. 4 Exact and noisy data (δ = 0.1) for κ = 100

6 Conclusions and remarks

In this paper we have studied convergence of the Tikhonov type, the Ivanov type, and
the Morozov type IRGNM with a stopping rule based on the discrepancy principle
type. To the best of our knowledge, the Ivanov and Morozov IRGNMs have not
been studied so far and in all three Tikhonov, Ivanov, and Morozov type IRGNMs,
convergence results without source conditions so far use stronger assumptions than
the tangential cone condition used here. We also consider discretized versions of
the methods and provide discretization error bounds that still guarantee convergence.
Moroever, we discuss goal oriented dual weighted residual error estimators that can
be used in an adaptive discretization scheme for controlling these discretization error
bounds. An inverse source problem for a nonlinear elliptic boundary value problems
illustrates our theoretical findings in the special situations of measure valued and L∞
sources. We also provide some computational results with the Ivanov IRGNM for the
case of an L∞ source. Numerical implementations and tests for a measure valued
source, together with adaptive discretization is subject of ongoing work, based on
the approaches from [4–6,18,19]. Future research in this context will be concerend
with convergence rates results for the Ivanov and Morozov IRGNMs under source
conditions.
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Appendix

Lemma 1 For all a, b > 0, p ≥ 1 and γ, ε ∈ (0, 1)

(a + b)p ≤ (1 + γ )p−1a p +
(
1 + γ

γ

)p−1

bp (82)

and, if additionally a ≥ b, also

(a − b)p ≥ (1 − ε)p−1a p −
(
1 − ε

ε

)p−1

bp. (83)

Proof The estimate in (82) can be done by solving the following extremal value
problems

Cγ = max
x>0

φ(x) , Cε = max
x>0

Φ(x) ,

where

φ(x) := ((1 + x)p − (1 + γ )p−1)x−p and Φ(x) := ((1 − ε)p−1 − (1 − x)p)x−p,

since for any γ, ε ∈ (0, 1),

φ(x) ≤ Cγ and Φ(x) ≤ Cε for all x > 0

with x := b/a, a, b > 0 is equivalent to (24).
Solving for Cγ , we have

φ′(x) = px−(p+1)((1 + γ )p−1 − (1 + x)p−1)

⎧
⎨
⎩

= 0 ⇐⇒ x = γ,

< 0 for x > γ,

> 0 for x < γ,

which means that

max φ(x) = φ(γ ) =
(
1 + γ

γ

)p−1

,
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so defining Cγ :=
(
1+γ
γ

)p−1
and writing the resulting inequality in terms of a and b

we have the desired formula.
The formula in (83) is derived analogously. ��

Lemma 2 Let k ∈ N, (d j )1≤ j≤k+1 ⊆ [0,∞), (R j )1≤ j≤k+1 ⊆ [0,∞), α0,R†, c, q
�= θ ∈ (0,∞). Then

∀ j ∈ {0, . . . , k} : d j+1 + α0θ
jR j+1 ≤ qd j + α0θ

jR† + c , (84)

implies that

dk+1 + α0θ
kRk+1 < qk+1d0 +

(
1

1 − q
θ

)
α0θ

kR† +
(

1

1 − q

)
c. (85)

Proof We first show by induction that for all l ∈ {0, . . . , k}

dk+1+α0θ
kRk+1 ≤ ql+1dk−l+

(
1 + q

θ
+ · · · +

(q
θ

)l)
α0θ

kR†+(1+q+· · ·+ql)c.

(86)
Indeed, for l = 0, (86) is just (84) with j = k. Suppose that (86) holds for l, then
using (84) with j = k − (l + 1), we obtain the formula for l + 1

dk+1 + αkRk+1

≤ ql+1
(
qdk−(l+1) + α0θ

k−(l+1)R† + c
)

+
(
1 + q

θ
+ · · · +

(q
θ

)l)
α0θ

kR† + (1 + q + · · · + ql)c

= q(l+1)+1dk−(l+1) +
(
1 + q

θ
+ · · · +

(q
θ

)l +
(q

θ

)l+1
)

α0θ
kR†

+ (1 + q + · · · + ql + ql+1)c,

and the induction proof is complete.

Hence, setting l = k in (86) and using the geometric series formula, we get the
assertion (85).
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