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Abstract We study a linearly transformed particle method for the aggregation equa-
tion with smooth or singular interaction forces. For the smooth interaction forces, we
provide convergence estimates in L1 and L∞ norms depending on the regularity of the
initial data. Moreover, we give convergence estimates in bounded Lipschitz distance
for measure valued solutions. For singular interaction forces, we establish the conver-
gence of the error between the approximated and exact flows up to the existence time
of the solutions in L1 ∩ L p norm.
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1 Introduction

In this work, we are interested in showing the convergence of approximated particle
schemes to the Cauchy problem for the so-called aggregation equation. This equation
determines the evolution of a probability density ρ(t, x) defined by

⎧
⎨

⎩

∂tρ(t, x) + ∇ · (ρu)(t, x) = 0, x ∈ R
d , t > 0,

u(t, x) = −(∇W ∗ ρ(t))(x), x ∈ R
d , t > 0,

ρ(0, x) = ρ0(x) ≥ 0, x ∈ R
d .

(1.1)

here −∇W (x − y) measures the interaction force that an infinitesimal particle located
at y ∈ R

d will exert on a particle located at x ∈ R
d . As a result, we will call W the

interaction potential. Since the total mass is preserved, without loss of generality, we
assume ∫

Rd
ρ(t, x) dx =

∫

Rd
ρ0(x) dx = 1 ∀t ≥ 0.

The microscopic dynamics of N particles Xi , i = 1, . . . ,N , interacting through the
potential W are given by

Ẋi = −
∑

j 	=i

m j ∇W (Xi − X j ), i = 1, . . . ,N , (1.2)

where the inertia term is assumed to be negligible compared to friction [63,64]. The
macroscopic dynamics (1.1) consists of a continuity equationwhere the velocity field is
given by u(t, x) = −(∇W ∗ρ(t))(x), which is the mean-field limit of the microscopic
system when N → ∞ under certain conditions on the potential [24,26,45,53].

Equation (1.1) has attracted lots of attention in the recent years for three rea-
sons: its gradient flow structure [2,32,33,61,73], the blow-up dynamics for fully
attractive potentials [12,14,26,31], and the rich variety of steady states and their
bifurcations both at the discrete (1.2) and the continuous (1.1) level of descriptions [3–
5,11,14,22,25,27,28,49,50,67,74,75]. Furthermore, these systems are ubiquitous in
mathematical modelling appearing in granular media models [10,61], swarming mod-
els for animal collective behavior [30,46,59], equilibrium states for self-assembly and
molecules [47,54,70,76], and mean-field games in socioeconomics [17,43] among
others.

We will focus the rest of the introduction on the well-posedness of the continuous
equation (1.1) and the numerical methods proposed for its approximation. Equation
(1.1) has the formal structure of being a gradient flow of a functional in the set of
probability measures. Indeed, defining the interaction energy as

F[μ] := 1

2

∫

Rd

∫

Rd
W (x − y) dμ(x) dμ(y)

for any probability measureμ, we find u = −∇ δF
δμ

where δF
δμ

is the formal variation of
the functional F[μ]. This observation leads to a natural formal Lyapunov functional
for the solutions of Eq. (1.1). In fact, we expect solutions to satisfy the identity
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d

dt
F[ρ(t)] = −

∫

Rd
|∇W ∗ ρ(t)|2ρ(t) dx

for all t ≥ 0. This structure can be rendered fully rigorous for C1-potentials [2] and it
allows for mildly singular potentials at the origin [26,27,31] provided the interaction
potential has some convexity property called λ-convexity.

On the other hand, global in time uniqueweakmeasure solutions can be constructed
for any probability measure as initial data under suitable smoothness assumptions on
the interaction potential. In this work, whenever we refer to smooth potentials, we
mean that the interaction potential satisfies ∇W ∈ W1,∞(Rd). For smooth potentials,
the approach introduced by Dobrushin for the Vlasov equation [45] using the bounded
Lipschitz distance between probability measures, see [21,24,53] for further details,
gives a well-posedness theory of weak measure solutions.

However, many of the interesting features related to blow-up dynamics and sta-
tionary states happen for potentials that are singular at the origin. Typical examples
to bear in mind are combinations of repulsive attractive power-law potentials of the

form W (x) = |x |a
a − |x |b

b with −d ≤ b < a and the convention |x |0
0 = log |x |, or fully

attractive potentials W (x) = |x |a
a with a > −d, suitably cut-off at infinity. In this

work, whenever we refer to singular potentials we mean that the interaction potential
is not smooth but satisfies

|∇W (x)| ≤ C

|x |α and |D2W (x)| ≤ C

|x |1+α
with − 1 < α < d − 1

for some constant C > 0, and in addition we assume that ∇W is bounded away
from the origin if α < 0. These conditions allow for singularities at the origin up
to Newtonian but not including it. In particular, our singular potentials are such that
∇W ∈ W1,q

loc (Rd) with a range depending on α: 1 ≤ q < d
α+1 . Note that the power-

law potentials satisfy locally the conditions of being a singular potential in the range
2 − d < b < 2 for repulsive-attractive and in the range 2 − d < a < 2 for fully
attractive. The various well-posedness theories for measure solutions fail as soon
as the potential becomes singular at the origin. However, weak solutions in Lebesgue
spaces can be obtained. A local-in-timewell-posedness theorywas obtained in [15,24]
for initial data in (L1 ∩ L p)(Rd) with p = q ′ the conjugate exponent of q, and in
[12,14] a local-in-time well-posedness theory for initial data in (L1 ∩ L∞)(Rd) was
developed for singularities up to and including a Newtonian singularity at the origin,
corresponding to α = d − 1. In this work, we will use the setting introduced in [24].
The Newtonian case is very specific because of the relation between the divergence
of the velocity field and the density becomes local.

Under the above assumptions of either smooth or singular potentials, the proofs
of the global-in-time well-posedness of weak measure solutions and the local-in-
time well-posedness of weak solutions for initial data in (L1 ∩ L p)(Rd) spaces are
essentially based on the fact that the velocity field is regular enough to havemeaningful
characteristics. It is proved in [15,24,45,53] that the velocity field of the constructed
solutions is continuous in time and Lipschitz continuous in space. Then, the flow map
�t (x), defined by the unique solution of the characteristic system
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746 M. Campos Pinto et al.

⎧
⎨

⎩

d X

dt
(t) = u(t, X (t)),

X (s) = x,

is a diffeomorphism for all times t ≥ 0. In all cases, the solution built in [15,24,45,53]
is obtained by characteristics and given by ρ(t) = �t#ρ0. Here, T #μ denotes the
push-forward of a measure through a measurable map T : R

d −→ R
d defined as

T #μ[K ] := μ[T −1(K )] for all Borel sets K ⊂ R
d , or equivalently

∫

Rd
ϕ d(T #μ) =

∫

Rd
(ϕ ◦ T ) dμ for all ϕ ∈ Cb(R

d).

A very interesting question is the rigorous derivation of the continuum descrip-
tion (1.1) starting from the microscopic dynamics (1.2) for both regular and singular
potentials. This is the so-called mean-field limit problem. The mean-field limit results
contain as a by-product convergence results for the classical particle method. More
precisely, proving that (1.1) is the mean-field limit of the system (1.2) as N → ∞ is
equivalent to show that the empirical measure

μN (t) = 1

N

N∑

i=1

δXi (t)

converges weakly in measure sense to the solution of (1.1) provided that this weak
convergence holds initially. Even if the particle method is proved to be convergent
of order 1

N , the convergence error is only controlled in the bounded Lipschitz or
Wasserstein-type distances between measures [24,26,45,53].

Smooth particlemethods are an extremely popular tool for the numerical simulation
of a large variety of problems, mostly due to their conceptual simplicity and their
automatic, mesh-free adaptation properties. They are usually referred to as Particle-In-
Cell (PIC)methods in the plasmaphysics communitywhere they are coupledwith grid-
based (FiniteDifferenceorFiniteElement) solvers for the electromagneticfield [16,42,
48], Vortex-Blob methods for incompressible Navier–Stokes and Euler equations, see
e.g. [37,40,62] and the references therein, and Smoothed Particle Hydrodynamics in
astrophysics, see e.g. [52,68].More recently they have been adapted to the aggregation
equation in [13] where the approximate densities are shown to converge with arbitrary
orders but only in negative Sobolev norms.

This weak convergence relates to a general feature of particle methods, namely that
the particle approximations to the transported density are less accurate than the approx-
imated trajectories. On a theoretical level this is supported by the classical analysis of
vortex-blob methods [7,66] and simplified PIC schemes [39], and it is also consistent
with the common observation that particle codes can provide a satisfactory description
of the problem dynamics despite “noisy”, i.e. oscillating, density reconstructions.

To mitigate these oscillations, several approaches have been developed over the
years. Extending the interaction radius of the smooth particles [68] (or the number of
particles per cell in PICmethods [16]) is a legitimate choice that is also consistent with
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the standard error estimates [7,39,66], but leads to numerically intensive simulations.
Another option is to resort to remapped or resampled particle methods where new
weighted particles are periodically used to approximate the transported density [44,
60]. The resulting schemes are sometimes referred to as forward semi-Lagrangian
[36,41,65] and their improved convergence properties can be explained by the fact that
the frequent reinitializations prevent the particles to become too irregularly distributed
over time. This also has a cost: reinitializing the particles can be computationally
expensive, it may hamper the natural adaptivity of the particle distribution and it
usually introduces numerical diffusion which may conflict with the low dissipative
essence of the method.

An interesting tool is then offered by using deformed particle shapes. In these
methods the particles are pushed on to discrete times according to an approximation
of the exact flow as in the standard case, but each particle has its own shape which is
transformed in the discrete evolution in order to better approach the local flow. Again
several methods have been developed in the respective communities, and examples
include transformed Gaussian shapes for plasma physics problems [6], Navier–Stokes
equations [71] and astrophysics [1]. Some methods have been studied for more gen-
eral transport problems, such as the spatially varying blob sizes based on appropriate
mappings [8,38,56], the Finite Mass method [51] and the Linearly Transformed Par-
ticle (LTP) method [18]. By carefully choosing the transformation parameters as time
evolves, these works obtain significant improvements in the accuracy, and mathemat-
ical proofs show that the strong convergence of the transported densities indeed holds
without requiring periodic remappings or extended overlapping for the particles, see
[18,35]. In practice it has been observed that periodic remappings were still necessary
to obtain satisfactory results for physically relevant problems, mostly because of the
elongation of the deformed shapes, however these remappings can be done at a much
lower rate than with the fixed-shape methods [18,20].

In this articlewepropose and study an extensionof theLTPmethod [18,20] to aggre-
gation equations. In this method each particle shape is transported by the linearized
flow around its trajectory. To our knowledge the convergence of the LTP method has
only been proved for a linear transport equation [18] and for a Vlasov-Poisson sys-
tem [19] involving measure-preserving characteristic flows. The technical difficulties
posed by the deformation of the flows in our present case have been overcome by
detailed estimates of the Jacobian matrices and determinants. These estimates have
allowed us to control the error on the densities via the errors of the flows to finally
obtain the convergence results. Certain Sobolev regularity is needed on the initial data
to obtain convergence of the LTP method in Lebesgue spaces for both smooth and sin-
gular potentials. However, a general result of convergence for weak measure solutions
is obtained in an appropriate distance for measures.

We also remark that particles methods have been combined with remeshing and
adaptive mesh refinement for transport and convection-diffusion equations, see [8,
9,69] and the references therein, which also require global transforms or mapping
functions related to the distortion of the flow.

Let us finally mention that other numerical methods have been proposed in the
literature for the aggregation equation. In [23], the authors proposed a finite volume
scheme which is shown to be energy preserving, i.e., it keeps the property that the
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energy functional is dissipated along the semidiscrete flow. Finite volume and finite
difference schemes have been shown to be convergent to weak measure solutions of
the aggregation equations for mildly singular potentials in [31,58].

In this work, we extend the LTP method to the aggregation equation seen as one of
the most important representatives of a class of nonlinear continuity equations with
non divergence free velocity fields in any dimensions. We start by summarizing the
basic ideas of the numerical LTP method in Sect. 2 together with the preliminaries
and notations used in this work. Section 3 is devoted to give convergence results for
smooth potentials in Lebesgue spaces. Depending on the regularity of the initial data,
we will be able for smooth potentials to control errors in L1 and L∞. For initial data
just being a probability measure, we will show in Sect. 4 the convergence in bounded
Lipschitz distance. In the case of singular potentials, we will control in Sect. 5 the
error up to the existence time of the solution of (1.1) in L1 and L p with p suitably
chosen. We finally show in Sect. 6 the performance of this method in one dimension
validating the numerical implementation with explicit solutions and making use of
it to study certain not well-known qualitative features of the evolution of (1.1) with
several smooth and singular potentials.

2 Preliminaries

2.1 Basic properties of the exact flow

In the setting of our main results, the velocity field of the exact solution to (1.1) is
always continuous in t and Lipschitz continuous in x . The solution of the characteristic
system ⎧

⎨

⎩

d X (t)

dt
= u(t, X (t)),

X (s) = x,

is well-defined and it has unique global in time solutions for all initial data x ∈ R
d .

Moreover, the general solution of the characteristic system is a diffeomorphism in R
d .

The general flow map will be denoted by Fs,t (x) for all t, s ∈ R and x ∈ R
d .

As discussed in the introduction, the solutions to (1.1) can always be expressed as
ρ(t) = F0,t#ρ0 or equivalently as

ρ(t, x) = ρ0
(

Ft,0(x)
)

j t,0(x) with j t,0(x) = det(J t,0(x)), J t,0(x) = DFt,0(x).

The flow map satisfies

Fs,t (x) = x +
∫ t

s
u(τ, Fs,τ (x))dτ = x −

∫ t

s
(∇W ∗ ρ(τ))(Fs,τ (x))dτ, (2.1)
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and the Jacobian matrix and its determinant satisfy the differential equations

d

dt
J s,t (x) = Du(t, Fs,t (x))J s,t (x) and

d

dt
j s,t (x) = ∇ · u(t, Fs,t (x)) j s,t (x).

(2.2)
Using u(τ, y) = −(∇W ∗ ρ(τ))(y), this yields

J s,t (x) − Id =
∫ t

s
Du(τ, Fs,τ (x))J s,τ (x)dτ

= −
∫ t

s
(D2W ∗ ρ(τ))(Fs,τ (x))J s,τ (x)dτ (2.3)

and

j s,t (x) = exp

(

−
∫ t

s
∇ · u(τ, Fs,τ (x)dτ

)

= exp

(

−
∫ t

s
(
x W ∗ ρ(τ))(Fs,τ (x))dτ

)

. (2.4)

Estimates are then easily derived when u ∈ L∞(0,∞;W1,∞(Rd)). We will write
L := supt∈[0,∞) ‖u(t, ·)‖W1,∞ . For instance, using (2.2) and J s,s(x) = Id we find

sup
x∈Rd

|J s,t (x)| ≤ exp (C L|t − s|) , (2.5)

and in particular the characteristic flow is Lipschitz (relative to any norm in R
d ),

|Fs,t |Lip ≤ exp (C L|t − s|) . (2.6)

Furthermore, we derive from (2.3) and (2.5) that

sup
x∈Rd

|Id − J s,t (x)| ≤ (t − s) exp (C L|t − s|) (2.7)

and using (2.4) we also find

exp (−C L|t − s|) ≤ j s,t (x) ≤ exp (C L|t − s|) for x ∈ R
d (2.8)

and
‖ j s,t − 1‖L∞ ≤ C L|t − s| exp (C L(t − s)) . (2.9)

Let us remark that the previous estimates (2.5)–(2.9) can also be obtained in a time
interval [0, T ] for locally Lipschitz velocity fields u ∈ L∞(0, T ;W1,∞(Rd)) for some
T > 0, with constant LT := supt∈[0,T ] ‖u(t, ·)‖W1,∞ . These estimates will be used in
Sect. 5, where the dependence on T of the Lipschitz constant will be omitted for the
sake of simplicity.
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2.2 Linearly transformed particles

As in standard particle methods, the density ρ is represented with weighted macro-
particles, and as in smooth particle methods, particles have here a finite and smooth
shape. Thus, we approximate the initial density ρ0 on a Cartesian grid of size h > 0
by

ρ0
h(x) =

∑

k∈Zd

ωkϕ
0
h,k(x) (2.10)

with particle shapes obtained by scaling and translating a reference function, i.e.

ϕ0
h,k(x) = 1

hd
ϕ

(
x − x0k

h

)

, x0k = kh. (2.11)

Here the reference shape is assumed to have a compact support supp(ϕ) ⊂ B(0, Ro),
be bounded and satisfy

∑

k∈Zd

ϕ(x − k) = 1 for x ∈ R
d and

∫

Rd
ϕ = 1.

In this work we will require that the shape functions are Lipschitz, and we can either
consider for the reference shape the tensor-product hat function

ϕ(x) =
∏

1≤i≤d

max(1 − |xi |, 0). (2.12)

or the B3-spline

ϕ(x) = 1

6

⎧
⎨

⎩

(2 − |x |)3 if 1 ≤ |x | < 2,
4 − 6x2 + 3|x |3 if 0 ≤ |x | < 1,
0 otherwise.

(2.13)

As for the weights ωk = ωk(h, ρ0), they are usually defined as

ωk =
∫

x0k +
[
− h

2 , h
2

]d ρ0(x)dx, (2.14)

however this will not be sufficient to prove the convergence of our particle scheme
without additional smoothness assumptions on the initial density ρ0. Indeed, using
standard arguments (see e.g. [18,34]) based on the fact that the approximation ρ0 �→
ρ0

h = ∑
k∈Zd ωkϕ

0
h,k is local, bounded in any L p space and preserves the affine

functions, one easily verifies the following estimate.
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Proposition 1 If ρ0
h is initialized as in (2.10) with weights and shape function given

by (2.14) and (2.11), respectively, then we have

‖ρ0 − ρ0
h‖L p ≤ Chs‖ρ0‖Ws,p (2.15)

for s ∈ {0, 1, 2}, 1 ≤ p ≤ ∞ and a constant C independent of ρ0.

In our analysis we will need second-order estimates which are then available for
ρ0 ∈ W2,p(Rd). However, if we allow negative weights then second-order estimates
are also available in a dual norm, as follows. Consider weights defined as

ωk =
∫

Rd
ϕ̃0

h,k(x)ρ0(x)dx (2.16)

with integration kernels bi-orthogonal to the shape functions in the sense that

∫

Rd
ϕ0

h,k ϕ̃
0
h,k′ = δk,k′ (2.17)

holds with δk,k′ the Kronecker symbol. Similar to the shape functions, they can be
obtained by scaling and translating a reference ϕ̃ (assumed again compactly supported,
bounded and satisfying (2.12)) with a different normalization, namely

ϕ̃0
h,k(x) = ϕ̃

(
x − x0k

h

)

. (2.18)

For instance if ϕ is the above tensor-product hat function (2.12) then for the integration
kernel we may take ϕ̃(x) = ∏

i≤d

( 3
21[− 1

2 , 12 ] − 1
21[−1,− 1

2 ]∪[ 12 ,1]
)
(xi ), see Fig. 1.

Notice that estimate (2.15) still holds with these weights. Now, from the duality
(2.17) we can derive a convenient second-order estimate which only relies on the
first-order smoothness of ρ0. It is expressed in the dual norm

‖w‖W−1,p := sup
v∈W1,q (Rd )

〈w, v〉/‖v‖W1,q ,

where q is the conjugate exponent of p and 〈w, v〉 is the duality pair that coincides
with the integral of the product wv as soon as the latter is integrable.

Proposition 2 If ρ0
h is initialized as in (2.10) with shape functions and weights satis-

fying properties (2.11) and (2.12) and (2.16)–(2.18), we have

‖ρ0 − ρ0
h‖W−1,p ≤ Ch2‖ρ0‖W1,p (2.19)

for 1 ≤ p ≤ ∞, with a constant C independent of h.
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Fig. 1 A piecewise affine shape function and its bi-orthogonal kernel (dotted line). Both functions vanish
outside [−1, 1]

Proof It follows from the duality relation (2.17) that 〈ρ0 − ρ0
h , ϕ̃0

h,k〉 = 0 for all k. In

particular, given v ∈ W1,∞(Rd) we have

〈ρ0 − ρ0
h , v〉 = 〈ρ0 − ρ0

h , v − ṽh〉

with ṽh := ∑
k∈Zd 〈v, ϕ0

h,k〉ϕ̃0
h,k and standard arguments show that the approximation

v �→ ṽh satisfies an error estimate similar to (2.15) for s = 1. Using the Hölder
inequality this gives

〈ρ0 − ρ0
h , v〉 ≤ ‖ρ0 − ρ0

h‖L p‖v − ṽh‖Lq ≤ Ch2‖ρ0‖W1,p‖v‖W1,q

and the proof is completed due to the definition of theW−1,p(Rd) norm. ��
We observe that both the above initializations yield

sup
k∈Zd

|ωk | ≤ Chd/q‖ρ0‖L p where 1
q + 1

p = 1, (2.20)

and since the shape functions are assumed to be non-negative, (2.12) gives

‖ρ0
h‖L1 ≤

∑

k∈Zd

|ωk | ≤ C‖ρ0‖L1 ≤ C, (2.21)

with a constant depending only on ϕ̃.
We now describe the LTP method. As mentioned in the introduction, compared

to standard particle methods, the LTP method follows the shape of smooth particles.
Therefore we need to track not only the particle positions but also their deformations
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Convergence of a linearly transformed particle method for… 753

given by the Jacobian matrices. Given discrete trajectories xn
k approximating the exact

ones F0,tn (x0k ) on the discrete times

tn := n
t, n = 0, 1, . . . , N := T/
t,

and non singular approximations J n
k of the forward Jacobian matrices J tn ,tn+1(xn

k ),
the particle shapes ϕn+1

h,k are recursively defined as the push-forward of ϕn
h,k along the

affine flow
Fn

h,k : x �→ xn+1
k + J n

k (x − xn
k ), (2.22)

which approximates the exact flow Ftn ,tn+1 around xn
k . Here xn+1

k can also be seen as
an approximation to Ftn ,tn+1(xn

k ), as will be specified below. In short, we define

ϕn+1
h,k := Fn

h,k#ϕ
n
h,k = 1

jn
k

ϕn
h,k ◦ (Fn

h,k)
−1,

where jn
k := det(J n

k ) > 0. Starting from ϕ0
h,k defined as in (2.11), this gives particles

of the form

ϕn
h,k(x) := 1

hn
k
ϕ

(
Dn

k (x − xn
k )

h

)

, (2.23)

where the deformation matrix Dn
k and the particle volume hn

k are defined by

{
Dn+1

k := Dn
k

(
J n

k

)−1

hn+1
k := jn

k hn
k = det(J n

k )hn
k

with

{
D0

k := Id

h0
k := hd . (2.24)

It follows from the above process that Dn
k is an approximation to the backward Jacobian

matrix J tn ,0(xn
k ), whereas hn

k approximates the elementary volume hd multiplied by
the Jacobian determinant of the forward flow F0,tn at x0k . Moreover, the particle shape
ϕn

h,k is the push-forward of ϕ0
h,k along the integrated flow

F
n
h,k := Fn−1

h,k ◦ · · · ◦ F0
h,k : x �→ xn

k + J
n
k (x − x0k ) where J

n
k := (Dn

k )−1 (2.25)

which can be seen as a linearization of F0,tn around x0k (for n = 0 we set F
0
h,k = I

since D0
k = Id ). Indeed, it follows from the above definitions that

ϕn
h,k = F

n
h,k#ϕ

0
h,k, (2.26)

and we easily verify that

hn
k = hd det(J n−1

h,k ) · · · det(J 0
h,k) = hd

det(Dn
h,k)

≈ hd det(J 0,tn (x0k )).
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Finally, the LTP approximation of the density at time tn is defined as

ρn
h (x) :=

∑

k∈Zd

ωkϕ
n
h,k(x) (2.27)

with weights ωk constant in time and computed as in (2.14) or (2.16). According to
(2.26), we have

∫
ϕn

h,k = ∫
ϕ0

h,k = ∫
ϕ, and thus the conservation of mass (

∫
ρn

h =
∫

ρ0
h ) holds at the discrete level. Moreover, using the fact that the particle shapes are

non-negative, we find as in (2.21)

‖ρn
h ‖L1 ≤

∑

k∈Zd

‖ωkϕ
n
h,k‖L1 =

∑

k∈Zd

|ωk | ≤ C‖ρ0‖L1 = C, n ≥ 0. (2.28)

2.3 Approximated Jacobian matrices and particle positions

To complete the description of the numerical method (2.23) and (2.24), (2.27), we
are left to specify how to compute the particle center xn+1

k and the discrete Jacobian
matrix J n

k involved in the affine flow (2.22). Before doing so we observe that if the
matrices D2W (x) and D2W (y) commute for all x and y, then the exact solution to
the ODE (2.2) takes an exponential form. However, in the general case the matrix
J tn ,tn+1(x) is not equal to

J̃ tn ,tn+1(x) := exp

(

−
∫ tn+1

tn
(D2W ∗ ρ(τ))(Ftn ,τ (x))dτ

)

(2.29)

but the difference is small, as shown next.

Proposition 3 If u ∈ L∞(0, T ;W1,∞(Rd)), then we have

| J̃ tn ,tn+1(x) − J tn ,tn+1(x)| ≤ C(
t)2 for x ∈ R
d ,

with a constant C independent of n ≤ N − 1 and 
t .

Proof Given n ≤ N − 1 and x ∈ R
d , we denote for simplicity

B(τ ) = B(τ, tn, x) := (D2W ∗ ρ(τ))(Ftn ,τ (x))

and we observe that |B(τ )| ≤ L = supt≤T |u(t)|W1,∞ for all τ ∈ [tn, tn+1]. From
(2.3) we have J tn ,tn+1(x) = Id − ∫ tn+1

tn
B(τ )dτ + ∫ tn+1

tn
B(τ )(Id − J tn ,τ (x))dτ , hence

the difference E(x) := J̃ tn ,tn+1(x) − J tn ,tn+1(x) can be decomposed into

E(x) =
∞∑

m=2

(−1)m

m!
(∫ tn+1

tn
B(τ )dτ

)m

︸ ︷︷ ︸
=:(a)

+
∫ tn+1

tn
B(τ )(Id − J tn ,τ (x))dτ

︸ ︷︷ ︸
=:(b)

.
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From the above bound for B we readily find (a) ≤ ∑∞
m=2

1
m! (C
t)m ≤ C(
t)2.

Turning to (b), we use again (2.3) to write

|(b)| =
∣
∣
∣
∣

∫ tn+1

tn
B(τ )

(∫ τ

tn
B(t)J tn ,t (x)dt

)

dτ

∣
∣
∣
∣ ≤ C

∫ tn+1

tn

∫ τ

tn
|J tn ,t (x)|dtdτ ≤ C(
t)2

where we have used (2.5) in the last inequality. The result follows. ��
At time tn+1, xn+1

k is an approximation of Ftn ,tn+1(xn
k )which is the solution at time

tn+1 of the ODE

⎧
⎪⎨

⎪⎩

d X̃k(t)

dt
= u(t, X̃k(t)) = −(∇W ∗ ρ(t))(X̃k(t)),

X̃k(tn) = xn
k .

(2.30)

Then we can define xn+1
k as the approximation given by a numerical scheme discretiz-

ing (2.30) when replacing the exact density ρ at discrete times in [tn, tn+1] by its LTP
approximation ρn

h . In the convergence analysis, we consider particle trajectories xn
k

and approached Jacobian matrices J n
k defined by an explicit Euler scheme:

⎧
⎪⎪⎨

⎪⎪⎩

xn+1
k := xn

k − 
t (∇W ∗ ρn
h )(xn

k ),

J n
k := e−
t (D2W∗ρn

h )(xn
k ) =

∞∑

m=0

(−1)m

m!
[

t ((D2W ∗ ρn

h )(xn
k )
]m

.
(2.31)

Note that this expression can be seen as an approximation to (2.29) using a rectangular
rule in the time integral (here will not take into account the approximation error of
convolution products). Accordingly, we set

jn
k = det(J n

k ) = exp
(−
t (
x W ∗ ρn

h )(xn
k )
)
. (2.32)

Using (3.1) and the L1 bound (2.28) on ρn
h , we see that this approximation yields

|J n
k − Id | =

∣
∣
∣
∣
∣

∞∑

m=1

(−1)m

m! (
t)m((D2W ∗ ρn
h )(xn

k ))m

∣
∣
∣
∣
∣
≤

∞∑

m=1

1

m! (C
t)m ≤ C
teC
t .

We note that higher-order time discretizations are also possible. To avoid extensive
technicalities we will not consider them here, as this article focuses on the space
discretization.

Remark 1 When d > 1, computing the exponential of a d×d matrix is costly. Another
possibility is to approximate J tn ,tn+1(xn

k ) by

J̃ n
k = Id − 
t (D2W ∗ ρn

h )(xn
k ).
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It is easily verified that the difference between these approximations satisfies

sup
0≤n≤ T


t

sup
k∈Z

∥
∥
∥ J̃ n

k − J n
k

∥
∥
∥ = O

(

t2

)

as long as we have ∇W ∈ W1,q(Rd) and sup0≤n≤ T

t

‖ρn
h ‖L p ≤ C with p = q ′.

2.4 General strategy of the convergence proofs

In order to establish error estimates for the approximation of the density ρ(tn) by ρn
h

we will use Gronwall arguments that involve errors on the flows and on the Jacobian
determinants. Since the velocity fields depend nonlinearly on the densities, we need to
couple these errors with the density approximation error, and since the k-th particle is
pushed forward by the approximated flow Fn

h,k during the time interval [tn, tn+1], we
need to control the local error between this approximation and the exact flow Ftn ,tn+1 .
To this end we define a first error term on the support of the smooth particles,

en
F := sup

k∈Zd
‖Ftn ,tn+1 − Fn

h,k‖L∞(Sn
h,k)

with Sn
h,k := supp

(
ϕn

h,k

)
. (2.33)

In our analysis, we shall also need to track the error on an extended domain which
accounts for the deformation of the particle support by the exact flow, namely

ẽn
F := sup

k∈Zd
‖Ftn ,tn+1 − Fn

h,k‖L∞(S̃n
h,k )

with S̃n
h,k := Sn

h,k ∪ Ftn+1,tn (Sn+1
h,k ). (2.34)

The error corresponding to the integrated flow (2.25) is then defined as

eF
n := sup

k∈Zd
‖F0,tn − F

n
h,k‖L∞(S0h,k )

.

Using the fact that the exact flow is Lipschitz, see (2.6), it is easy to bound this term
by accumulating the local flow errors, eF

n ≤ C exp(CT )(e0F + · · · + en−1
F ), but in

the analysis we will need a finer control, see Lemma 4 below. We will also need to
control the error of the Jacobian determinants for each particle, thus we define

en
j := sup

k∈Zd

∥
∥
∥
∥

1

j tn ,tn+1(x)
− 1

jn
k

∥
∥
∥
∥

L∞(Sn
h,k)

. (2.35)

Finally we will need to track carefully the particles that affect the local value of the
approximated density. For this purpose, we let

Kn(x) := {k ∈ Z
d : x ∈ Sn

h,k}.
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3 L1 and L∞ convergence for smooth potentials

In this section we assume that the potential is smooth, as defined in the introduction.
This means that ∇W ∈ W1,∞(Rd). In this case, the Lipschitz norm of u is bounded
by ‖∇W‖W1,∞ : indeed letting |·| denote the Euclidean norm in R

d as well as its
associated matrix norm, we have for all x ∈ R

d , t ∈ [0, T ],

|Du(t, x)| = |(D2W ∗ ρ(t))(x)|
≤ C max

1≤i, j≤d
|(∂i j W ∗ ρ(t))(x)| ≤ C‖ρ0‖L1‖∇W‖W1,∞ .

(3.1)

and similarly for u, so that estimates (2.5)–(2.9) hold with L = C‖∇W‖W1,∞ .
However, to obtain convergence rates in L p-spaces we need more regularity on the
solutions. In turn we assume that ρ0 ∈ W1,1

+ (Rd) in this section and we compute the
weights with the formula (2.16) involving the dual kernels. According to the propaga-
tion of regularity of solutions to (1.1) in Proposition 9 in the “Appendix”, this ensures
that the unique solution to (1.1) satisfies ρ ∈ L∞(0, T ;W1,1(Rd)) for all T > 0.

Given the solution ρ to (1.1), we will use the shortcut notation, ρn(x) := ρ(tn, x)

for x ∈ R
d . From now on, C denotes a generic constant independent of h and 
t ,

depending only on L = supt≤T |u(t)|W1,∞ , d and the exact solution.
Moreover, we assume that both h and 
t are bounded by an absolute constant. We

denote by

θn := ‖ρn − ρn
h ‖L1 , θ̃n := max

0≤m≤n
θm, and εn := ‖ρn − ρn

h ‖L∞ (3.2)

the errors in L1 and L∞ norms.
In the table below, we list the most important notation used in the proofs below at

both the discrete and the continuum levels together with the errors relating continuum
and discrete levels.

Concept Continuum Discrete Error

Density ρ(t, x) ρn
h (x) = ∑

k∈Zd ωkϕn
h,k (x) θn : L1-error

εn : L∞-error
�n

h : L1 ∩ L p-error

Local flow map Fs,t (x) Fn
h,k (x) = xn+1

k + J n
k (x − xn

k ) en
F , ẽn

F : L∞-errors

Iterated flow map F0,t (x) F
n
h,k (x) = xn

k + (Dn
k )−1(x − x0k ) eF

n : L∞-error
Jacobian matrix J s,t (x) J n

k –

Deformation matrix – Dn+1
k = Dn

k (J n
k )−1 –

Jacobian determinant j s,t (x) jn
k en

j : L∞-error

Particle volume – hn+1
k = jn

k hn
k –

Particle shape – ϕn
h,k (x) = 1

hn
k
ϕ

(
Dn

k (x−xn
k )

h

)

–
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3.1 Estimates on the flows and related terms

We first control the particle overlapping from the approximation error on the flow.

Lemma 1 There exists a constant C independent on h and 
t such that

κn := sup
x∈Rd

#Kn(x) ≤ C

(

1 + eF
n

h

)d

. (3.3)

Proof Given x ∈ R
d and k ∈ Kn(x), we denote z = Ftn ,0(x) and zk = (

F
n
h,k

)−1
(x).

From (2.25) we see that zk ∈ S0
h,k . Using the Lipschitz bound (2.6) we then write

|z − kh| ≤ |z − zk | + |zk − kh| ≤
∣
∣
∣Ftn ,0

(
F

n
h,k(zk)) − F0,tn (zk)

)∣
∣
∣+ |zk − x0k |

≤
∣
∣
∣Ftn ,0

∣
∣
∣
Lip

eF
n + Ch ≤ C(eF

n + h).

This gives
∣
∣k − z

h

∣
∣ ≤ C

(
1 + eF

n

h

)
, and the result follows. ��

Using the formulas (2.31), (2.32) and the a priori L1 bound (2.28) on the approxi-
mated densities ρn

h we easily derive uniform estimates for the approximated Jacobian
matrices and the particle supports.

Lemma 2 The approximated Jacobian determinants satisfy

e−C‖
x W‖L∞
t ≤ jn
k ≤ eC‖
x W‖L∞
t ,

J n
k is always invertible and

e−C‖
x W‖L∞ T ≤ hn
k

hd
≤ eC‖
x W‖L∞ T . (3.4)

As for the deformation matrices Dn
k = (J n−1

k · · · J 0
k )−1, they satisfy

max(|Dn
k |, |(Dn

k )−1|) ≤ eC‖D2W‖L∞ T . (3.5)

Here, the constant C is uniform in k and n ≤ N, depending only on the L1-norm of
the initial data ρ0.

We next show that the support of the particle approximation is of order h.

Lemma 3 If ∇W ∈ W1,∞(Rd), then we have

|x − xn
k | ≤ Ch for x ∈ Sn

h,k (3.6)

and
|x − xn

k | ≤ C(h + 
t) for x ∈ S̃n
h,k (3.7)

with constants C independent of 
t and h.
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Proof From supp(ϕ) ⊂ B(0, c), we easily infer that
∣
∣Dn

k (x − xn
k )
∣
∣ ≤ ch holds on

supp(ϕn
h,k), see (2.23), thus (3.6) holds for n ≤ N , using (3.5). To complete the proof

we then observe that (2.1) gives

|xn+1
k − Ftn ,tn+1(xn

k )| = |
∫ tn+1

tn
(∇W ∗ ρn

h )(xn
k ) − (∇W ∗ ρ(τ))(Ftn ,τ (xn

k ))dτ | ≤ C
t,

so that if x is such that Ftn ,tn+1(x) ∈ supp(ϕn+1
h,k ), we have

|x − xn
k | = |Ftn+1,tn (Ftn ,tn+1(x)) − Ftn+1,tn (Ftn ,tn+1(xn

k ))|
≤ |Ftn ,tn+1 |Lip

(|Ftn ,tn+1(x) − xn+1
k | + |xn+1

k − Ftn ,tn+1(xn
k )|)

≤ C(h + 
t),

by using the Lipschitz estimate (2.6) and the bound (3.6) on Sn+1
h,k . ��

To control the approximation errors for the velocity and the Jacobian matrices, we
next introduce the generic error

ξ̃n(K ) := sup
τ∈[tn ,tn+1]

sup
k∈Zd

sup
x∈S̃n

h,k

∣
∣(K ∗ ρ(τ))(Ftn ,τ (x)) − (K ∗ ρn

h ) (xn
k )
∣
∣ , (3.8)

for some given K ∈ W1,∞(Rd) and 0 ≤ n ≤ N = T/
t .

Proposition 4 The discrete velocity un
k := −(∇W ∗ ρn

h )(xn
k ) satisfies

|u(τ, Ftn ,τ (xn
k )) − un

k | ≤ C(h2‖ρ0‖W1,1 + 
t + eF
n) (3.9)

for τ ∈ [tn, tn+1], 0 ≤ n ≤ N − 1 and with a constant C independent of 
t and h.

Proof Using that u(τ, y) = −(∇W ∗ ρ(τ))(y) = −(∇W ∗ (F0,τ#ρ0))(y), we write

u(τ, Ftn ,τ (xn
k )) = −

∫

Rd
∇W (Ftn ,τ (xn

k ) − y)ρ(τ, y)dy

= −
∫

Rd
∇W (Ftn ,τ (xn

k ) − F0,τ (z))ρ0(z)dz

= (a) + (b) + (c) −
∫

Rd
∇W (xn

k − y)ρn
h (y)dy

with

(a) := −
∫

Rd

[
∇W (Ftn ,τ (xn

k ) − F0,τ (z)) − ∇W (xn
k − F0,tn (z))

]
ρ0(z)dz

(b) := −
∫

Rd
∇W (xn

k − F0,tn (z))
[
ρ0(z) − ρ0

h(z)
]

dz

(c) := −
∑

l∈Zd

ωl

∫

Sn
h,l

[
∇W (xn

k − F0,tn ((F
n−1
h,l )−1(y))) − ∇W (xn

k − y)
]
ϕn

h,l(y)dy,
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so that
∣
∣u(τ, Ftn ,τ (xn

k )) − un
k

∣
∣ ≤ |(a)| + |(b)| + |(c)|. For the first term we write

|(a)| ≤ ‖∇W‖W1,∞
∫

Rd
|A(z)|ρ0(z)dz ≤ C‖A‖L∞

with A(z) := (Ftn ,τ (xn
k )− F0,τ (z))− (xn

k − F0,tn (z)). Using the expression (2.1) for
the exact flow, estimate (3.7) and the equality ‖ρ(s)‖L1 = 1 gives then

|A(z)| ≤
∫ τ

tn

∣
∣
∣(∇W ∗ ρ(s))(Ftn ,s(xn

k )) + (∇W ∗ ρ(s))(F0,s(z))
∣
∣
∣ ds ≤ 2
t‖∇W‖L∞

so that |(a)| ≤ C
t . For (b), using the Lipschitz regularity of the flow (2.6) and the
error bound (2.19) on the initial data we find

|(b)| ≤ eCT ‖∇W‖W1,∞‖ρ0
h − ρ0‖W−1,1 ≤ Ch2‖ρ0‖W1,1 .

Finally, we observe that for y ∈ Sn
h,l we have (F

n
h,l)

−1(y) ∈ S0
h,l from (2.25), and

∣
∣
∣F0,tn

(
(F

n
h,l)

−1(y)
)

− y
∣
∣
∣ ≤

∣
∣
∣F0,tn

(
(F

n
h,l)

−1(y)
)

− F
n
h,l

(
(F

n
h,l)

−1(y)
)∣
∣
∣ ≤ eF

n,

and arguing as in (2.28) this gives

|(c)| ≤ ‖∇W‖W1,∞
∑

l∈Zd

|ωl |
∫

Sn
h,l

∣
∣
∣F0,tn

(
(F

n
h,l)

−1(y)
)

− y
∣
∣
∣ϕ

n
h,l(y)dy

≤ CeF
n
∑

l∈Zd

|ωl | ≤ CeF
n .

By gathering the above estimates, we complete the proof. ��
Proposition 5 If the initial density satisfies ρ0 ∈ W1,1

+ (Rd), then the estimate

ξ̃n(D2W ) ≤ C (θn + 
t + h)

holds with a constant C depending only on d, T , L, and ‖ρ0‖W1,1 for 
t small enough.
Moreover, at x = xn

k , we have

sup
k∈Zd

sup
τ∈[tn ,tn+1]

∣
∣
∣(D2W ∗ ρ(τ))(Ftn ,τ (xn

k )) − (D2W ∗ ρn
h ) (xn

k )

∣
∣
∣ ≤ C (θn + 
t) .

Proof Given x ∈ S̃n
h,k and τ ∈ [tn, tn+1], we write

∣
∣
∣(D2W ∗ ρ(τ))(Ftn ,τ (x)) − (D2W ∗ ρn

h ) (xn
k )

∣
∣
∣

=
∫

Rd
D2W (y)

[
ρ(τ, Ftn ,τ (x) − y) − ρn

h (xn
k − y)

]
dy = (a) + (b),
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with

(a) :=
∫

Rd
D2W (y)

[
ρ(τ, Ftn ,τ (x) − y) − ρ(tn, xn

k − y)
]

dy,

(b) :=
∫

Rd
D2W (y)

[
ρ(tn, xn

k − y) − ρn
h (xn

k − y)
]

dy.

The second term is estimated by

|(b)| ≤ ‖D2W‖L∞‖ρ(tn, ·) − ρn
h ‖L1 ≤ Lθn .

And using ρ(τ) = Ftn ,τ#ρ(tn) we rewrite the first term as (a) = (c) + (d) with

(c) :=
∫

Rd
D2W (y)ρ(tn, Fτ,tn (Ftn ,τ (x) − y))

[
jτ,tn (Ftn ,τ (x) − y) − 1

]
dy

(d) :=
∫

Rd
D2W (y)[ρ(tn, Fτ,tn (Ftn ,τ (x) − y)) − ρ(tn, xn

k − y)] dy.

For (c) we use the one-to-one mapping � : y �→ Fτ,tn (Ftn ,τ (x) − y) with Jacobian
determinant |det�(y)| = jτ,tn (Ftn ,τ (x) − y). The change of variable formula yields

∫

Rd
ρ(tn, Fτ,tn (Ftn ,τ (x) − y))dy ≤ C

∫

Rd
ρ(tn, �(y))|det�(y)|dy = C‖ρ(tn)‖L1 ≤ C

where we have used (2.8) in the first inequality. Using (2.9) this allows to bound

|(c)| ≤ C
t‖D2W‖L∞
∫

Rd
ρ(tn, Fτ,tn (Ftn ,τ (x) − y))dy ≤ C
t.

Turning next to the (d) term, we introduce

�α : y �→ α(Fτ,tn (Ftn ,τ (x) − y)) + (1 − α)(xn
k − y) for α ∈ [0, 1],

so that

|(d)| ≤ ‖D2W‖L∞
∫

Rd
|ρ(tn, �1(y)) − ρ(tn, �0(y))|dy

≤ C
∫

Rd

∫ 1

0
|∇ρ(�α(y))||Fτ,tn (Ftn ,τ (x) − y) − (xn

k − y)| dαdy

≤ C(h + 
t)
∫

Rd

∫ 1

0
|∇ρ(�α(y))| dαdy
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where in the last inequality we have used (see (2.1) and Lemma 3)

|Fτ,tn (Ftn ,τ (x) − y) − (xn
k − y)|

=
∣
∣
∣
∣F

tn ,τ (x) − xn
k −

∫ tn

τ

(∇W ∗ ρ(s))(Fτ,s(Ftn ,τ (x) − y))ds

∣
∣
∣
∣

≤ (|x − xn
k | + 2
t‖∇W‖L∞) ≤ C(h + 
t).

To end the proof we will show that up to a sign and a translation, �α is uniformly
close to the identity mapping. Let G(y) := (Fτ,tn − I )(Ftn ,τ (x)− y) so that�α(y) =
−y + αG(y) + (1 − α)xn

k + αFtn ,τ (x). From (2.7) we infer

|DG(y)| = |Id − J τ,tn (Ftn ,τ (x) − y)| ≤ C
t

hence there exists a constant γ independent of h, 
t and n, such that

|G(y) − G(y′)| ≤ γ
t |y − y′|.

This shows that �α is injective for 
t small enough, indeed if �α(y) = �α(y′) for
y 	= y′ then y − y′ = α(G(y) − G(y′)) leads to a contradiction for γ
t < 1.
Moreover, using D�α(y) = −Id +αDG(y) and the Jacobi formula for ∂α det(D�α)

we find

|det(D�α)(y) + 1| ≤ C
t,

which shows that for 
t small enough, |det(D�α)| is bounded from below by a
positive constant γ̃ . Using again the change of variable theorem this gives

γ̃

∫

Rd
|∇ρ(�α(y))|dy ≤

∫

Rd
|∇ρ(�α(y))||det(D�α)(y)|dy ≤

∫

Rd
|∇ρ(z)|dz ≤ ‖ρ‖W1,1 .

The desired bound |d| ≤ C(h + 
t) follows by gathering the above steps. ��
We can now compute an estimate for the error of the Jacobian determinants.

Corollary 1 Assume that ρ0 ∈ W1,1
+ (Rd), then the following estimate holds

en
j ≤ C
t (θn + 
t + h) for all 0 ≤ n ≤ N , (3.10)

for 
t small enough, where C is a positive constant depending only on T , L, and
‖ρ‖L∞(0,T :W1,1).

Proof According to (2.4) and (2.32), we have

1

jn
k

− 1

j tn ,tn+1(x)
= exp(βn

k ) − exp(βn(x))

= (βn
k − βn(x))

∫ 1

0
exp

(
rβn

k + (1 − r)βn(x)
)
dr
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with βn
k := 
t (
x W ∗ρn

h )(xn
k ) and βn(x) := ∫ tn+1

tn
(
x W ∗ρ(τ))(Ftn ,τ (x))dτ . Since

en
j involves the above difference for x ∈ Sn

h,k ⊂ S̃n
h,k , see (2.35), we infer from (3.8)

that |βn
k − βn(x)| ≤ C
t ξ̃n(D2W ). Using the L1 bound (2.28) on ρn

h this yields

en
j ≤ C
t ξ̃n(D2W ) exp (C
t‖
x W‖L∞),

so that Proposition 5 gives the desired result. ��
From Proposition 5 we also derive an estimate for the error between Jacobian

matrices.

Corollary 2 If ρ0 ∈ W1,1
+ (Rd), then for 0 ≤ n ≤ N the following estimate holds

|J n
k − J tn ,tn+1(x)| ≤ C
t (θn + h + 
t) for x ∈ Sn

h,k,

for 
t small enough, with a constant C independent of 
t and h. At x = xn
k , we have

|J n
k − J tn ,tn+1(xn

k )| ≤ C
t (θn + 
t) . (3.11)

Proof Using the matrix J̃ tn ,tn+1(x) defined by (2.29), Proposition 3 gives

|J n
k − J tn ,tn+1(x)| ≤ |J n

k − J̃ tn ,tn+1(x)| + C(
t)2

and to bound the remaining error we proceed as in the proof of Corollary 1: denoting
Bn

k := −
t (D2W ∗ ρn
h )(xn

k ) and Bn(x) := − ∫ tn+1
tn

(D2W ∗ ρ(τ))(Ftn ,τ (x))dτ , we
use the exponential matrix expressions (2.31) and (2.29) to compute

J n
k − J tn ,tn+1(x) = exp(Bn

k ) − exp(Bn(x))

= (Bn
k − Bn(x))

∫ 1

0
exp

(
r Bn

k + (1 − r)Bn(x)
)
dr.

For x ∈ Sn
h,k we have |Bn

k − Bn(x)| ≤ C
t ξn(D2W ) and using (2.28) this yields

|J n
k − J tn ,tn+1(x)| ≤ C
t ξn(D2W ) exp

(
C
t‖D2W‖L∞

)

so that the desired result follows again from Proposition 5. ��
Remark 2 If ρ0 is only assumed to be an L1(Rd) function (or a Radon measure), then
ξn(D2W ) can be bounded by a constant using the L1 bound on ρn

h , see (2.28), and the
W1,∞(Rd) smoothness of ∇W . Arguing as in the proof above we then find an error
estimate for the Jacobian matrices on the order of 
t .

We next turn to the approximation errors involving the forward characteristic flows
and we establish a series of estimates.
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Lemma 4 For 0 ≤ n ≤ N − 1, the following estimate holds

eF
n+1 ≤ eC
t eF

n + ẽn
F (3.12)

with a constant C independent of 
t and h.

Proof Given x ∈ S0
k,h we write y = F0,tn (x) and ỹk = F

n
h,k(x) ∈ Sn

h,k . We have

∣
∣
∣F

n+1
h,k (x) − F0,tn+1(x)

∣
∣
∣ = ∣

∣Fn
h,k(ỹk) − Ftn ,tn+1(y)

∣
∣

≤ ∣
∣Ftn ,tn+1(ỹk) − Ftn ,tn+1(y)

∣
∣+ ∣

∣Ftn ,tn+1(ỹk) − Fn
h,k(ỹk)

∣
∣

≤ ∣
∣Ftn ,tn+1

∣
∣
Lip |ỹk − y| + ‖Ftn ,tn+1 − Fn

h,k‖L∞(Sn
h,k )

≤ eC
t eF
n + ẽn

F

by using Sn
h,k ⊂ S̃n

h,k and the Lipschitz bound (2.6) on the exact flow. ��

Proposition 6 If ρ0 ∈ W1,1
+ (Rd), then the following estimate holds

ẽn
F ≤ C
t (
t + h2 + (h + 
t)θn + eF

n) for 0 ≤ n ≤ N , (3.13)

for 
t small enough, with a constant C independent of 
t and h.

Proof Given x ∈ S̃n
h,k , we rewrite the linearized flow (2.22) as follows,

Fn
h,k(x) = Fn

h,k(xn
k ) + J n

k (x − xn
k ) = (a) + (b) + (c) + Ftn ,tn+1(x)

with

(a) := Fn
h,k(xn

k ) − Ftn ,tn+1(xn
k )

(b) := (
J n

k − J tn ,tn+1(xn
k )
)
(x − xn

k )

(c) := Ftn ,tn+1(xn
k ) + J tn ,tn+1(xn

k )(x − xn
k ) − Ftn ,tn+1(x).

Using (2.31) and the expression (2.1) for the exact flow, we then compute

|(a)| =
∫ tn+1

tn

∣
∣(∇W ∗ ρn

h )(xn
k ) + u(τ, Ftn ,τ (xn

k ))
∣
∣ dτ ≤ C
t

(
h2 + 
t + eF

n
)

where the inequality follows from (3.9) (note that here C depends on ‖ρ0‖W1,1 ). For
(b), we easily get using estimate (3.11) in Corollary 2 and Lemma 3 that

|(b)| ≤ |J n
k − J tn ,tn+1(xn

k )||x − xn
k | ≤ C
t (θn + 
t)(h + 
t).

123



Convergence of a linearly transformed particle method for… 765

Turning to (c) we next differentiate (2.3) and obtain for 1 ≤ i, j, m ≤ d,

∂m
(
J tn ,tn+1

)

i j = −
d∑

l=1

∫ tn+1

tn
(∂il W ∗ ∇ρ(τ))(Ftn ,τ (x))∂m Ftn ,τ (x)

(
J tn ,τ (x)

)

l j dτ

−
d∑

l=1

∫ tn+1

tn
(∂il W ∗ ρ(τ))(Ftn ,τ (x))∂m

(
J tn ,τ (x)

)

l j dτ.

This yields

|∂m J tn ,tn+1(x)| ≤ C
t + C
∫ tn+1

tn
|∂m J tn ,τ (x)|dτ,

where we used that ρ ∈ L∞(0, T ;W1,1(Rd)), ∇W ∈ W1,∞(Rd) and |∂m Ftn ,τ | ≤ C
for some C , see (2.5). Invoking the Gronwall Lemma, we then obtain

|∂m J tn ,tn+1(x)| ≤ C
teC
t , m = 1, · · · , d,

where C only depends on d, T , L and ‖ρ0‖W1,1 . With a Taylor expansion this gives

|(c)| ≤ 1

2

∣
∣
∣D2Ftn ,tn+1(ηn

k )

∣
∣
∣ |x − xn

k |2 ≤ C
t (h + 
t)2

for some ηn
k between x and xn

k and a constant C that only depends on d, T , L and
‖ρ0‖W1,1 . Combining the above estimates yields the desired result. ��

We finally provide estimates for eF
n and ẽn

F .

Corollary 3 If ρ0 ∈ W1,1
+ (Rd), then the following estimates hold for 0 ≤ n ≤ N,

eF
n ≤ C(h2 + 
t + hθ̃n−1) and ẽn

F ≤ C
t (h2 + 
t + hθ̃n−1),

for 
t small enough, with θ̃n := maxm≤n θm, see (3.2), and a constant C independent
of 
t and h.

Proof Using (3.12), (3.13) and the fact that eC
t + C
t ≤ e2C
t , we find

eF
n+1 ≤ e2C
t eF

n + C
t (h2 + 
t + hθ̃n),

hence

eF
n+1 ≤ e2C N
t (eF

0 + N
t (h2 + 
t + hθ̃n)) ≤ C(h2 + 
t + hθ̃n), n ≤ N − 1,

follows by a summation using eF
0 = 0. The bound on ẽn

F is obtained with (3.13). ��
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3.2 Proof of L1 and L∞ convergence results

Theorem 1 Assume 
t = O(h) and 
t small enough. If ρ0 ∈ W1,1
+ (Rd) and ∇W ∈

W1,∞(Rd), then

max
0≤n≤N

‖ρ(tn) − ρn
h ‖L1 ≤ C

(

‖ρ0 − ρ0
h‖L1 + 
t

h
+ h

)

holds with a constant C depending only on d, T , L, and ‖ρ0‖W1,1 .

Remark 3 From this result, it is clear thatwe need a restrictive constraint on
t = o(h)

for convergence. This is a consequence of the low order time discretization considered
in Sect. 2.3, implying the need of small time stepping. As for the factor 1

h , it comes
from the Lipschitz constant of the particle shape functions, and it is classical in the
analysis of particle methods. It is not clear how to improve these error estimates even
if high order time integrators are used to improve the ODE solver for the particle
positions.

Proof Let y ∈ R
d . Using the relation ρ(tn) = Ftn ,tn−1#ρ(tn−1) and the form (2.27) of

the approximate solution together with the fact that hn
k = hn−1

k jn−1
k , we decompose

the error ρ(tn, y) − ρn
h (y) into three parts as

ρ(tn, y) − ρn
h (y) =

[
ρ
(
tn−1, Ftn ,tn−1(y)

)− ρn−1
h

(
Ftn ,tn−1(y)

)]
j tn ,tn−1(y)

︸ ︷︷ ︸
An(y)

+
∑

k∈Zd

ωk

hn−1
k

ϕ

(
Dn−1

k
h

(
Ftn ,tn−1(y) − xn−1

k

)
)[

j tn ,tn−1(y) − 1

jn−1
k

]

︸ ︷︷ ︸
Bn(y)

+
∑

k∈Zd

ωk

hn
k

[

ϕ

(
Dn−1

k
h

(Ftn ,tn−1(y) − xn−1
k )

)

− ϕ

(
Dn

k
h

(y − xn
k )

)]

︸ ︷︷ ︸
Cn(y)

.

(3.14)
� Estimate of ‖An‖L1 : Using the one-to-one change of variable x = Ftn ,tn−1(y), we
easily find that

∫

Rd
|An(y)|dy =

∫

Rd
|ρ(tn−1, x) − ρn−1

h (x)|dx = θn−1.

� Estimate of ‖Bn‖L1 : By means of the same change of variable and the relation
j tn ,tn−1(y) = ( j tn−1,tn (x))−1, we obtain

∫

Rd
|Bn(y)|dy ≤

∫

Rd

∑

k∈Zd

|ωk |ϕn−1
h,k (x)

∣
∣
∣
∣
∣

1

j tn−1,tn (x)
− 1

jn−1
k

∣
∣
∣
∣
∣

j tn−1,tn (x)dx

≤ en−1
j ‖ j tn−1,tn ‖L∞

∫

Rd

∑

k∈Zd

|ωk |ϕn−1
h,k (x)dx ≤ Cen−1

j ,
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due to (2.5), (2.28) and (2.35), indeed x can be taken in Sn−1
h,k in the k-th term.

� Estimate of ‖Cn‖L1 : Writing again x = Ftn ,tn−1(y), we observe that in the k-th
term, we must consider the cases where y ∈ Sn

h,k and those where x ∈ Sn−1
h,k . Thus, x

must be taken in the extended particle support S̃n−1
h,k , see (2.34). Using the incremental

relation (2.24) we then estimate

|Dn−1
k (x − xn−1

k ) − Dn
k (y − xn

k )| = |Dn
k (xn

k + J n−1
k (x − xn−1

k ) − Ftn−1,tn (x))|
≤ |Dn

k |ẽn−1
F

see (2.22), (2.33). To obtain a global bound we next observe that the measure of S̃n−1
h,k

is of order (h + 
t)d ≤ Chd according to Lemma 3 and the assumption 
t ≤ Ch,
as well as that of Ftn−1,tn (S̃n−1

h,k ) according to (2.8). Using the above observations and
the fact that the reference shape ϕ is assumed to be Lipschitz, we find

∫

Rd
|Cn(y)|dy ≤ Chd

∑

k∈Zd

|ωk |
hn

k

|Dn
k |

h
ẽn−1

F ≤ C
ẽn−1

F

h
, (3.15)

where the last inequality follows from the uniform bounds on the matrices Dn
k and

their determinants (Lemma 2), and from the estimates inside (2.28).
� Conclusion: We now combine all the estimates above and (3.10) in Corollary 1 to
obtain

θn ≤ θn−1 + Cen−1
j + C

ẽn−1
F

h
≤ (1 + C
t)θn−1 + C
t (
t + h) + C

ẽn−1
F

h
.

Using Corollary 3 to estimate the flow error yields

θ̃n ≤ (1 + C
t)θ̃n−1 + C
t

(


t + h + 
t

h

)

.

Since h ≤ 1, we conclude that

θ̃n ≤ eC N
tθ0 + eC N
t
(

h + 
t

h

)

≤ C

(

h + θ0 + 
t

h

)

.

��
We next derive L∞-estimates. Here the required regularity propagates in time.

As proved in the “Appendix”, Proposition 9, the unique solution to (1.1) belongs to
ρ ∈ L∞(0, T ; (W1,1

+ ∩ L∞)(Rd)) provided that ρ0 ∈ (W1,1
+ ∩ L∞)(Rd).

Theorem 2 If 
t = O(h) and 
t small enough, ρ0 ∈ W1,1
+ (Rd) ∩ L∞(Rd) and

∇W ∈ W1,∞(Rd), then

max
0≤n≤N

‖ρ(tn) − ρn
h ‖L∞ ≤ C

(

h + ‖ρ0 − ρ0
h‖L∞ + ‖ρ0 − ρ0

h‖L1 + 
t

h

)
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holds with a constant independent of h and 
t .

Proof Given y ∈ R
d , we decompose ρ(tn, y) − ρn

h (y) into three terms as in (3.14).

� Estimate of ‖An‖L∞ : Using the bound (2.8) on the exact Jacobian determinant, we
find

‖An‖L∞ ≤ eC
tεn−1.

� Estimate of ‖Bn‖L∞ : Writing again x = Ftn ,tn−1(y), we observe that the k-th
term vanishes if x /∈ Sn−1

h,k . In particular, the sum can be restricted to the indices
k in the set Kn−1(x). Gathering the bounds (3.4) on hn

k , (2.20) on ωk and (3.3) on
κn := supx∈Rd #(Kn−1(x)), we compute

|Bn(y)| ≤ C#(Kn−1(x))‖ρ0‖L∞‖ϕ‖L∞en−1
j ≤ C

(

1 + eF
n

h

)d

en−1
j .

� Estimate of ‖Cn‖L∞ : Similarly as in the proof of Theorem 1, we observe that the
k-th summand in Cn(y) must be considered when y ∈ Sn

h,k or when x ∈ Sn−1
h,k (or

both). Clearly the cardinality of the corresponding index set satisfies

#({k ∈ Z
d : y ∈ Sn

h,k or x ∈ Sn−1
h,k }) ≤ #(Kn(y)) + #(Kn−1(x)) ≤ κn + κn−1.

Using the Lipschitz smoothness of the reference shape function ϕ as in (3.15), and
again the bounds (3.4) on hn

k , (2.20) on ωk and (3.3) on κn , we write

|Cn(y)| ≤ C(κn + κn−1)
ẽn−1

F

h
≤ C

⎛

⎝

(

1 + eF
n

h

)d

+
(

1 + eF
n−1

h

)d
⎞

⎠
ẽn−1

F

h
.

� Conclusion: Combining the estimates above, we have

εn ≤ eC
tεn−1 + C

(

1 + eF
n−1

h

)d

en−1
j + C

(

1 + eF
n + eF

n−1

h

)d
ẽn−1

F

h
. (3.16)

Now, with the assumptions made here Theorem 1 applies, hence Corollaries 1 and 3
provide error estimates for the Jacobian and flow errors. Specifically, we have

en−1
j ≤ C
t (
t + h), eF

n ≤ C(h2 + 
t + hθ0), ẽn−1
F ≤ C
t (h2 + 
t + hθ0).

Plugging these estimates into (3.16) yields then

εn ≤ eC
tεn−1 + C
t

(

h + θ0 + 
t

h

)

,

due to
t � h � 1 and θ0 ≤ 2.We again concludewith the discrete Gronwall Lemma.
��
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4 Convergence for measure solutions with smooth potentials

In this part,we considermeasure valued solutions to the system (1.1) using the bounded
Lipschitz distance.More precisely, let ρ1, ρ2 ∈ M(Rd) be twoRadonmeasures. Then
the bounded Lipschitz distance dBL(ρ1, ρ2) between ρ1 and ρ2 is given by

dBL (ρ1, ρ2) := sup

{∣
∣
∣
∣

∫

Rd
ψdρ1 −

∫

Rd
ψdρ2

∣
∣
∣
∣ : ψ ∈ W1,∞(Rd ) and ‖ψ‖W1,∞ ≤ 1

}

.

Since the interaction potential W satisfies∇W ∈ W1,∞(Rd), a well-posedness theory
for measure valued solutions to (1.1) can be developed by using the classical results
of Dobrushin [45], see [24,53] for related results.

To estimate the error between the exact flow and its local linearizations we now
revisit some results from the previous section, namely Proposition 6, given the low
regularity of the solutions. As in the previous section, we denote ρn = ρ(tn).

Proposition 7 Let ρ0 be an initial Radon measure on R
d , and ρn

h be the approximation
constructed in (2.27). If W satisfies ∇W ∈ W1,∞(Rd), then the flow error defined on
the particles support (2.33)

en
F ≤ C
t

(
dBL(ρn, ρn

h ) + h + 
t
)

holds for 0 ≤ n ≤ N with a constant C independent of h and 
t .

Proof Let x ∈ Sn
h,k . We decompose the linearized flow as in Proposition 6,

Fn
h,k(x) = Fn

h,k(xn
k ) + J n

k (x − xn
k ) = (a) + (b) + (c) + Ftn ,tn+1(x)

with

(a) := Fn
h,k(xn

k ) − Ftn ,tn+1(xn
k )

(b) := (
J n

k − J tn ,tn+1(xn
k )
)
(x − xn

k )

(c) := Ftn ,tn+1(xn
k ) + J tn ,tn+1(xn

k )(x − xn
k ) − Ftn ,tn+1(x).

We next rewrite (a) = ∫ tn+1
tn

(
(∇W ∗ ρn

h )(xn
k ) − (∇W ∗ ρ(τ))(Ftn ,τ (xn

k ))
)

dτ using
(2.31) and (2.1), and estimate the integrand by

(∇W ∗ ρn
h )(xn

k ) − (∇W ∗ ρ(τ))(Ftn ,τ (xn
k ))

=
∫

Rd
∇W (xn

k − y)ρn
h (y) − ∇W (Ftn ,τ (xn

k ) − y)ρ(τ, y) dy

=
∫

Rd
∇W (xn

k − y)
(
ρn

h (y) − ρn(y)
)

dy

+
∫

Rd
∇W (xn

k − y)ρn(y) − ∇W (Ftn ,τ (xn
k ) − y)ρ(τ, y) dy

=: (d) + (e).
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From ∇W ∈ W1,∞(Rd), we infer |(d)| ≤ CdBL(ρn, ρn
h ). Using next a change of

variable and the relation ρ(τ) = Ftn ,τ#ρn we get

(e) =
∫

Rd

(∇W (xn
k − y) − ∇W (Ftn ,τ (xn

k ) − Ftn ,τ (y))ρn(y)
)

dy

≤
∫

Rd
‖D2W‖L∞

∣
∣xn

k − y − (Ftn ,τ (xn
k ) − Ftn ,τ (y))

∣
∣ ρn(y) dy ≤ C
t.

Combining the estimates above, we obtain

|(a)| ≤ C
t
(
dBL(ρn, ρn

h ) + 
t
)
.

For the estimate of (b), we easily get from Remark 2 that |(b)| ≤ Ch
t . Finally, we
observe that (c) cannot be estimated as in the proof of Proposition 6, due to the lesser
regularity of the densities. We then proceed as follows,

|(c)| =
∣
∣
∣
∣(xn

k − x)
(
Id − J tn ,tn+1(xn

k )
)+

∫ tn+1

tn

[
u(τ, Ftn ,τ (xn

k )) − u(τ, Ftn ,τ (x))
]

dτ

∣
∣
∣
∣

≤ |xn
k − x |‖Id − J tn ,tn+1(·)‖L∞ + ‖D2W‖L∞

∫ tn+1

tn

∣
∣Ftn ,τ (xn

k ) − Ftn ,τ (x)
∣
∣ dτ

≤ Ch 
t + C
∫ tn+1

tn

∣
∣Ftn ,τ

∣
∣
Lip |xn

k − x |dτ ≤ Ch 
t,

where we used estimate (3.6) for x ∈ Sn
h,k , and the estimates (2.6) and (2.7). ��

We now show that our LTP method is unconditionally stable in the weak norm
between measures dBL .

Theorem 3 Let ρ0 be an initial probability measure on R
d , and ρn

h be the approx-
imation constructed in (2.27). Assume that the interaction potential W satisfies
∇W ∈ W1,∞(Rd), then the estimate

max
0≤n≤ T


t

dBL(ρn, ρn
h ) ≤ C(dBL(ρ0, ρ0

h) + h + 
t)

holds, where C depends only on d, L and T .

Remark 4 Observe that a convergence condition on the approximation of the initial
data in Theorem 3 such as dBL(ρ0, ρ0

h) � h is easily achieved by using a uniform
quadrangular mesh of size hd and approximating the initial data ρ0 by a sum of Dirac
deltas via transporting the mass of ρ0 inside each d-dimensional cube to its center. A
cut-off procedure to leave small mass outside a large ball allows us to reduce to a finite
number of Dirac deltas in this approximation. Finally, the error produced between
smoothed particles and Dirac deltas is obviously of order h in the dBL distance.
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Proof of Theorem 3 Since ρn = Ftn−1,tn#ρn−1 and ϕn
h,k = Fn−1

h,k #ϕn−1
h,k , we obtain

∫

Rd
ψ(x)dρn(x) =

∫

Rd
ψ(Ftn−1,tn (x))dρn−1(x),

and
∫

Rd
ψ(x)dρn

h (x) =
∑

k∈Zd

ωk

∫

Rd
ψ(x)ϕn

h,k(x) dx =
∑

k∈Zd

ωk

∫

Rd
ψ(Fn−1

h,k (x))ϕn−1
h,k (x) dx,

for ψ ∈ W1,∞(Rd) with ‖ψ‖W1,∞ ≤ 1. Thus, we deduce

∫

Rd
ψ(x)

(
dρn(x) − dρn

h (x)
)

=
∫

Rd
ψ(Ftn−1,tn (x))

(
dρn−1(x) − dρn−1

h (x)
)

+
∑

k∈Zd

ωk

∫

Rd

(
ψ(Ftn−1,tn (x)) − ψ(Fn−1

h,k (x))
)

ϕn−1
h,k (x) dx

=: (a) + (b).

Using ‖∇(ψ ◦ Ftn−1,tn )‖L∞ ≤ ‖(J tn−1,tn )T‖L∞‖∇ψ‖L∞ , it next follows from (2.5)
that |(a)| ≤ dBL(ρn−1, ρn−1

h )eL
t and we estimate (b) with

|(b)| ≤
∑

k∈Zd

|ωk |
∫

Sn−1
h,k

∣
∣
∣ψ(Ftn−1,tn (x)) − ψ(Fn−1

h,k (x))

∣
∣
∣ϕ

n−1
h,k (x) dx

≤ en−1
F

∑

k∈Zd

|ωk |
∫

Sn−1
h,k

ϕn−1
h,k (x) dx ≤ Cen−1

F

where the last inequality uses the estimates inside (2.28). This leads to

dBL(ρn, ρn
h ) ≤ dBL(ρn−1, ρn−1

h )eL
t + Cen−1
F

and using Proposition 7 we obtain

dBL(ρn, ρn
h ) ≤ dBL(ρn−1, ρn−1

h )eC
t + C
t (h + 
t)

with constants independent of
t and h. The proof is then completed using Gronwall’s
inequality as in Theorem 1. ��

5 L1 and L p convergence for singular potentials

In this part, we are interested in L p-convergence between the solution and its approxi-
mation allowing for more singular potentials. With this aim, we consider the solutions
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of the Eq. (1.1) in L∞(0, T ; L∞(Rd) ∩ W1,1(Rd) ∩ W1,p(Rd)) with 1 ≤ p ≤ ∞
to be determined depending on the singularity of the potential. Since we are dealing
with both attractive and repulsive potentials, we can only expect local in time exis-
tence and uniqueness of solutions as in [15,24]. In those references, a local in time
well-posedness theory in L∞(0, T ; L1(Rd) ∩ L p(Rd)) was developed under suitable
assumptions on the potentials. The solutions are constructed by characteristics since
the velocity fields are still Lipschitz continuous in x . However, to prove convergence
rates we need more regularity on the solutions. For the existence of solutions to (1.1)
in L∞(0, T ; L∞(Rd) ∩ W1,1(Rd) ∩ W1,p(Rd)), we provide a priori estimates in
“Appendix A”, Proposition 10. These estimates combined with the existing literature
[15,24] show the well-posedness of solutions in the desired class. In our presentation
we will follow the setting of local existence introduced in [24].

Let us remind the set of hypotheses on the interaction potential called singular
potentials in the introduction. We assume that there exists L̃ > 0 such that

|∇W (x)| ≤ L̃

|x |α and |D2W (x)| ≤ L̃

|x |1+α
with 0 ≤ α < d − 1, (5.1)

and for −1 ≤ α < 0

|∇W (x)| ≤ L̃ min

{
1

|x |α , 1

}

and |D2W (x)| ≤ L̃

|x |1+α
. (5.2)

In particular, singular potentials satisfy ∇W ∈ W1,q
loc (Rd) for all 1 ≤ q < d

α+1 . Note
that (5.1) implies (see [24,55])

|∇W (x) − ∇W (y)| ≤ C |x − y|
min(|x |, |y|)α+1 . (5.3)

We remind the reader that these assumptions are enough to guarantee that the velocity
fields are bounded and Lipschitz continuous with respect to x locally in time for
densities in (L1 ∩ L p)(Rd) where p is the conjugate exponent of q. Note that q =
p′ < d

α+1 is equivalent to α < −1+ d
p′ , giving us the condition on the initial data for

the well-posedness theory. Indeed, it follows from (5.1) that

‖Du(t, ·)‖L∞ ≤
∫

Rd
|D2W (x − y)|ρ(y) dy ≤

∫

Rd

L̃ρ(y)

|x − y|α+1 dy

≤
(∫

|x−y|≥1
+
∫

|x−y|≤1

)
L̃ρ(y)

|x − y|α+1 dy ≤ C(‖ρ(t, ·)‖L1 + ‖ρ(t, ·)‖L p ),

(5.4)

for some constant C depending on L̃ , q and d, and a similar estimate holds for u using
(5.2) and the fact that ∇W is bounded away from the origin.

Let T ∗ be the maximal time of existence of weak solutions ρ ∈ L∞(0, T ; (L1 ∩
L p)(Rd)) with T < T ∗ constructed in [24]. Additional regularity will be needed on
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these solutions ensured by Proposition 10 of “Appendix A” under suitable initial data
assumptions. In this section we consider T < T ∗, and we denote again tn = n
t
with 0 ≤ n ≤ N and 
t = T/N for some given positive integer N . We introduce the
following notations:

‖ · ‖ := ‖ · ‖L1 + ‖ · ‖L p , �n
h := ‖ρn − ρn

h ‖, and �̃n
h := sup

0≤m≤n
�m

h .

As for the convergence analysis, we point out that the proof of Sect. 3 cannot be
directly applied. Indeed, it is not obvious to obtain an a piori bound on

sup
0≤n≤N

‖ρn
h ‖L p

uniformly in h and 
t , which we need to estimate (∇W ∗ ρn
h ) and (D2W ∗ ρn

h ). In
order to do that, we will prove by induction that there is some h∗ > 0 for which

sup
0<h≤h∗

�̃N
h = sup

0<h≤h∗
sup

0≤n≤N
�n

h ≤ 1.

We remind the reader that our error analysis between exact and approximated solutions
for singular potentials requires non-negative weights for the particles, and this imposes
us to give higher regularity on the initial data ρ0 ∈ W2,p(Rd), see Proposition 1. Using
the results in [24] and “Appendix A”, we can obtain the existence and uniqueness of a
solution ρ ∈ L∞(0, T ; (L1 ∩ W 2,p)(Rd)). However, in the next results we need less
regularity in the solutions than on the initial data. Therefore, we prefer to keep both
the assumptions stating the needed properties on the solution ρ and the initial data ρ0

to emphasize this fact.
Under the (induction) assumption that �̃n

h is bounded uniformly in h and 
t , we
can derive the following estimates.

Lemma 5 If M > 0 and n ≤ N are such that �̃n
h ≤ M, and if the solution to (1.1)

satisfies ρ ∈ L∞(0, T ; (L1 ∩ L p)(Rd)), then we have

sup
0≤m≤n

‖ρm
h ‖ ≤ CM and sup

0≤m≤n

⎛

⎝ sup
x∈S̃m

h,k

|x − xm
k |
⎞

⎠ ≤ CM (h + 
t),

with a constant CM depending on M but not on h and 
t .

Proof A straightforward computation yields

sup
0≤m≤n

‖ρm
h ‖ ≤ �̃n

h + sup
0≤t≤T

‖ρ(t)‖ ≤ CM .

In a similar way to (5.4), we also bound products like ‖D(i)W ∗ ρm
h ‖L∞ by CW ‖ρm

h ‖
with CW = max(‖D(i)W‖Lq (B(0,1)), ‖D(i)W‖L∞(Rd\B(0,1))), i ∈ {1, 2}, from which
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we derive estimates similar to those of Lemma 2. In particular, following the proof of
Lemma 3 we find that for x ∈ Sm

h,k ,

|x − xm
k | ≤ L̃h|(Dm

k )−1| ≤ L̃h exp

(


t
m−1∑

l=0

∣
∣
∣(D2W ∗ ρl

h)(xl
k)

∣
∣
∣

)

≤ CM h, (5.5)

and for x ∈ S̃m
h,k we find |x − xm

k | ≤ CM (h + 
t). Note that this latter estimate

involves bounding (5.5) on Sm+1
h,k which only requires the norm ‖ρl

h‖ for l ≤ m, so
that the resulting estimate indeed involves a constant depending on M . ��

We next give the estimates of u(τ, Ftm ,τ ) − um
k for τ ∈ [tm, tm+1] and ξ̃m(D2W )

for 0 ≤ m ≤ n − 1. The proof can be obtained by using similar arguments as in
Proposition 5 with the help of Lemma 5 and a second-order estimate provided either
by Proposition 2 or by a standard L p error estimate as described in Proposition 1. We
omit its proof, but point out that the crucial point is the smoothness assumptions (5.3)
on the singular potential and the Lipschitz bound (5.4) on the velocity field.

Lemma 6 If M > 0 and n ≤ N are such that �̃n
h ≤ M, and if the solution ρ ∈

L∞(0, T ;W1,1(Rd) ∩W1,p(Rd)) to (1.1) with initial data ρ0 ∈ W2,p(Rd), then we
have

sup
τ∈[tm ,tm+1]

|u(τ, Ftm ,τ (xm
k )) − um

k | ≤ CM

(
h2 + 
t + ēn

F

)

and

ξ̃m(D2W ) ≤ CM
(
h + 
t + �m

h

)

for 0 ≤ m ≤ n and 
t small enough, with constants CM depending on M but not on
h and 
t .

We can also adapt the proof of Corollary 1, Lemma 6, and Proposition 6 to obtain
the following result.

Lemma 7 If M > 0 and n ≤ N are such that �̃n
h ≤ M, and if the solution ρ ∈

L∞(0, T ;W1,1(Rd) ∩W1,p(Rd)) to (1.1) with initial data ρ0 ∈ W2,p(Rd), then we
have

em
j ≤ CM
t (h + 
t + �m

h )

and
ẽm

F ≤ CM
t
(

h2 + 
t + eF
m + (h + 
t)�m

h

)
(5.6)

for 0 ≤ m ≤ n and 
t small enough, with constants CM depending on M but not on
h and 
t .

We finally connect the errors to the L1 ∩ L p bounds on the densities.
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Lemma 8 If M > 0 and n ≤ N are such that �̃n
h ≤ M, and if the solution ρ ∈

L∞(0, T ;W1,1(Rd) ∩W1,p(Rd)) to (1.1) with initial data ρ0 ∈ W2,p(Rd), then we
have

eF
m+1 ≤ CM (h2 + 
t + h�̃m

h ),

and

ẽm
F ≤ CM
t

(
h2 + 
t + (h + 
t)�̃m

h

)

for all 0 ≤ m ≤ n and 
t small enough, with constants CM depending on M but not
on h and 
t .

Proof Since Lemma 4 only relies on the Lipschitz smoothness of the exact flow, we
have

eF
m+1 ≤ eC
t eF

m + ẽm
F

for all m. Then from (5.6) we derive

eF
m+1 ≤ e(C+CM )
t eF

m + CM
t
(

h2 + 
t + h�m
h

)

for m ≤ n, so that Gronwall’s inequality (together with �̃m
h = maxm′≤m �m′

h ) yields

eF
m+1 ≤ CM (h2 + 
t + h�̃m

h )

due to eF
0 = 0. Using this together with (5.6) completes the proof. ��

We are now in a position to show the uniform L1 ∩ L p bounds on the density.

Proposition 8 Assume that the interaction potential W is singular in the sense of
(5.1) and (5.2), and let ρ be a solution to the Eq. (1.1) up to time T > 0, such
that ρ ∈ L∞(0, T ; (W1,1 ∩ W1,p ∩ L∞)(Rd)) with initial data ρ0 ∈ W2,p(Rd),
−1 ≤ α < −1+ d/p′, and 1 < p ≤ ∞. Assume in addition that 
t � h2 ≤ 1. Then
for all M > 0, there exists h∗(M) > 0 such that

sup
0<h≤h∗(M)

sup
0≤n≤N

�n
h ≤ M.

Proof We use an induction argument on n. Since �̃0
h = �0

h � h2, clearly there exists
h0(M) such that �0

h ≤ M for all h < h0(M). We then assume that n < N and
hn(M) > 0 are such that

sup
0<h≤hn(M)

�̃n
h ≤ M.
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For the remaining of the proof we then consider m ≤ n and h ≤ hn(M). In particular,
we observe that the Lemmas above can be used with this value of M . Decomposing
the error as in Theorem 1, we write

ρm+1(y) − ρm+1
h (y)

= [
ρ
(
tm, Ftm+1,tm (y)

)− ρm
h

(
Ftm+1,tm (y)

)]
j tm+1,tm (y)

︸ ︷︷ ︸
Am+1(y)

+
∑

k∈Zd

ωk

hm
k

ϕ

(
Dm

k

h

(
Ftm+1,tm (y) − xm

k

)
) [

j tm+1,tm (y) − 1

jm
k

]

︸ ︷︷ ︸
Bm+1(y)

+
∑

k∈Zd

ωk

hm+1
k

[

ϕ

(
Dm

k

h
(Ftm+1,tm (y) − xm

k )

)

− ϕ

(
Dm+1

k

h
(y − xm+1

k )

)]

︸ ︷︷ ︸
Cm+1(y)

.

Using arguments similar than in Theorem 1 we find

‖Am+1‖L p ≤ eC
t‖ρm
h − ρm‖L p and ‖Bm+1‖L p ≤ Cem

j ‖ρm
h ‖L p ≤ CM em

j .

For the estimate of Cm+1(y), we use the interpolation inequality and the estimates in
Theorems 1 and 2 to get

‖Cm+1‖L p ≤ ‖Cm+1‖1/p
L1 ‖Cm+1‖1/q

L∞

≤ CM
(ẽm

F )1/p

h1/p

(

1 + eF
m + eF

m+1

h

)d/q
(ẽm

F )1/q

h1/q

= CM

(

1 + eF
m + eF

m+1

h

)d/q
ẽm

F

h
.

Using Lemma 8 and the fact that �̃m
h ≤ M and 
t � h we find that both eF

m and
eF

m+1 are bounded by CM h, thus

‖Cm+1‖L p ≤ CM
ẽm

F

h
,

and the above estimates yield

‖ρm+1 − ρm+1
h ‖L p ≤ eC
t‖ρm − ρm

h ‖L p + CM

(

em
j + ẽm

F

h

)

.
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We also observe that in the proof of Theorem 1, all the steps leading to the estimate

θm+1 ≤ θm + CM

(

em
j + ẽm

F

h

)

(where we remind that θm = ‖ρm −ρm
h ‖L1 ) are valid in the case of singular potentials.

This yields

�m+1
h ≤ eC
t�m

h + CM

(

em
j + ẽm

F

h

)

.

On the other hand, it follows from Lemmas 7 and 8 that

em
j ≤ CM
t (h + 
t + �m

h ) ≤ CM
t
(
h + �m

h

)
,

and

ẽm
F

h
≤ CM
t

(

h + 
t

h
+
(

1 + 
t

h

)

�̃m
h

)

≤ CM
t (h + �̃m
h ),

where we used the assumption 
t � h2. Thus we find

˜
�m+1

h ≤ e(C+CM )
t �̃m
h + CM h
t.

Since this is valid for all m ≤ n, it follows from Gronwall’s lemma that ˜
�n+1

h ≤ CM h
holds for some constantCM > 0.We remind the reader thatCM is the generic constant
depending on M but independent of h and 
t . In particular, setting hn+1(M) :=
min(hn(M), M/CM ) allows to write

sup
0<h≤hn+1(M)

˜
�n+1

h ≤ M.

This ends the induction argument and the proof, by taking h∗(M) = hN (M). ��
Putting together all the results in this section, we obtain themain convergence result

in (L1 ∩ L p)(Rd). We note that, as above, the condition on the time step is a result of
the low order time discretization (see Remark 3).

Theorem 4 Assume that the interaction potential W is singular in the sense of (5.1)
and (5.2), and let ρ be a solution to the Eq. (1.1) up to time T > 0, such that
ρ ∈ L∞(0, T ; (W1,1 ∩ W1,p ∩ L∞)(Rd)) with initial data ρ0 ∈ W2,p(Rd), −1 ≤
α < −1 + d/p′, and 1 < p ≤ ∞. Assume in addition that 
t � h2 ≤ 1. Then

sup
0<h≤h∗

sup
0≤n≤N

‖ρn
h − ρn‖ ≤ Ch

holds with h∗ = h∗(1) given by Proposition 8 and a constant C independent of h and

t .
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6 Numerical results

We will present in this Section some numerical examples in one dimension, with
different interaction potentials and initial densities to showcase some of the features
already observed in numerical and theoretical analysis of the aggregation equation
(1.1) in [4,11,14,49,50,57]. In this way, we first validate our numerical implementa-
tion in order to explore some less-known properties about the behavior of its solutions
in one dimension. A further more complete numerical study in 2D of this method
will be reported elsewhere. These examples already show the wide range of different
behaviors of solutions to the aggregation equation.

6.1 Numerical method: computation of the velocity field

In (2.31) we see that we need to compute at each time step the velocity field on the
particles,

un
k := −∇W ∗ ρn

h (xn
k ) = −

∫

Rd
∇W (xn

k − y)ρn
h (y)dy for k ∈ Z

d . (6.1)

In practice these products need to be approximated, and several strategies can be used
for that purpose in one dimension or more. The simplest one actually consists of
replacing the linearly-transformed particle shapes involved in the density (2.27) by a
fixed blob shape ζε = ε−dζ( ·

ε
), leading to

un
blob,k = −

∑

k′∈Zd

ωk′∇Wε(xn
k − xn

k′)

where Wε = W ∗ ζε is the corresponding smoothed kernel and ωk′ is the weight of
the particle k′. Here the velocities are computed as in a standard particle method,
however the approximated density (2.27) is more accurate as it still involves the LTP
shapes (2.23). If the latter is used to occasionally resample new weighted particles,
as successively carried out e.g. in [20] for the Vlasov-Poisson system, the resulting
scheme effectively differs from a standard one.

A second strategy consists of computing first the values (ρn
h, j ) j∈G on a grid (χ j ) j∈G

and then using a classical quadrature formula for the product (6.1) on each particle.
This leads to an approximed velocity of the form

un
quad,k = −

∑

j∈G
α j∇W (xn

k − χ j )ρ
n
h, j .

A variant of this second approach would be to compute the velocity field on the grid,

un
grid,i = −

∑

j∈G
α j∇W (χi − χ j )ρ

n
h, j , for i ∈ G,
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which can then be interpolated on the particles. We note that discrete convolution
products can be computed using standard library routines based on the fast Fourier
transform, which effectively reduces the computational cost of this approach.

Obviously, the cost of the above strategies depends on the numbers of particles and
grid points. The first one scales like N 2

parts, the second one like NpartsNgrid and the third
one like Ngrid log(Ngrid). For our simulations we have tried these three strategies (with
Ngrid ∼ Nparts) and have observed no significant differences in the resulting densities.

It is worth mentioning that the vortex method for the 2D Euler equations is studied
in [72], where the vorticity is approximated by a piecewise interpolation polynomial
on a triangulation of the vortices and the vertices of the triangulation move with
the fluid velocity. In our case, the particles could have a piecewise affine shape, but
their supports can intersect as mentioned before. Thus our method of computing the
velocity fields in general cannot be reduced to a P1-finite element discretization of
the velocity fields as in [72], see also [37] for other remeshed particle methods and
general convergence proofs.

6.2 Numerical method: validation and comparison to classical particle methods

We have implemented the numerical method described in Sect. 2.2 using Python. We
use different initial conditions depending on the behaviors we would like to show.
Specifically, we consider as initial densities

ρ0
1 (x) = (e−30(x−0.5)2 + 2e−50(x+0.3)2)1[−1,1](x), (6.2)

ρ0
2 (x) = 1[−1,1](x), (6.3)

ρ0
3 (x) = (1 − x2)201[−1,1](x), (6.4)

ρ0
4 (x) = e(x2−1)−1

1[−1,1](x), (6.5)

in order to have asymmetric, discontinuous symmetric and compactly supported
smooth initial data. Shape functions for the particle method are here B3-splines given
by (2.13). We first examine the validation of our code by comparison of the numerical
solution and the exact solution of (1.1) with W (x) = x2. Due to the conservation of
the center of mass,

∀t ≥ 0,
∫

R

xρ(t, x)dx =
∫

R

xρ0(x)dx := λ,

the solution is explicitly given by the method of characteristics,

ρ(t, x) = ρ0
(
(x − λ)e2t + λ

)
e2t . (6.6)

The left plot of Fig. 2 compares this exact solution with the LTP approximation at
time t = 0.5, both with initial data (6.2), and several error curves are shown in
Fig. 3(left), namely L1, L∞ errors and an error curve in the bounded Lipschitz distance
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Fig. 2 Comparisons for W (x) = x2, at t = 0.5 with initial data (6.2) and 
t = 10−4. Left: comparison
between the exact solution ρ(t, x), see (6.6), and the LTP approximation ρn

h , for two values of the average
particle distance h. Right: approximated values ρn

S P,h,ε
obtained with a classical smooth particle (SP)

method for h = 0.01 and different values for the constant particle size ε

dBL(ρn
h , ρ(tn)). In dimension 1, this distance is computed according to

dBL(ρ1, ρ2) = ‖F1 − F2‖1, where Fi (x) =
∫ x

−∞
ρi (u)du, i = 1, 2.

In the right plot of Fig. 2 we compare the exact solution with several approximations
using a classical Smooth Particle (SP) method, in which the density is reconstructed
with shape functions of uniform size ε,

ρn
S P,h,ε(x) =

∑

k∈Z
ωk

1

ε
ϕ

(
x − xn

k

ε

)

.

One difficulty of such methods lies in the choice of an adequate value for the particle
size ε. If this value is too small compared to the average distance h between two par-
ticles, the reconstructed density will oscillate or even vanish between nearby particles
and thus become inaccurate; if ε is too large the reconstructed density will be too
spread out and the results will again lack accuracy, as demonstrated in Fig. 2(right).

In Figs. 3 and 4 we further compare the Smooth Particle (SP) and the LTP approx-
imations by showing L1, L∞ and dBL error curves, using several values of h and ε.
Again the potential is W (x) = x2 and the exact solution is given by (6.6).

Together with Fig. 2, these error curves show not only the higher accuracy reached
by the LTP method but also the sensitivity of the final error with respect to the particle
size ε. An interesting feature of the LTP approach is the automatic adaptation of
the particle size, and for the cases considered here, Figs. 3 and 4 show that such an
approach outperforms any uniform choice of ε. In Fig. 5 some comparisons are shown
with B1 and B3 spline shape functions, and again the gain of accuracy reached by the
LTP method is clear.

A further advantage of the LTP method lies in the time and space adaptation of
the particle size. Indeed as particles aggregate, the average particle distance evolves in
time andmay also depend on the spatial position x . In the case of potential W (x) = x2,
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Fig. 4 Log–log plot of the L1 and L∞ errors of the LTP and SP methods, with h = 0.01 and various
values of ε. Here W , ρ0, 
t and t are the same as in Fig. 2

the explicit expression of the density (6.6) shows that j0,t (x) = e−2t , and thus the
average distance between two particles decreases exponentially in time. Consequently,
the optimal size ε for reconstruction in classical particle method is not the same during
the whole simulation: An evolution in time of ε may be better adapted. A similar issue
may also appear regarding the space dependency. In fact for the potential W (x) = x2

considered in Figs. 2, 3 and 4, the Jacobian determinant j0,t was constant with respect
to x and all the particles in the LTPmethod had the same size at a given time t . However

in general this is not the case: with the potential W (x) = x4
4 − |x |2.5

2.5 considered in
Figs. 6 and 10 with various initial densities, we see that the Smooth Particle method
with ε = h leads to solutions that seem accurate in some regions but strongly oscillate
in some others. And in this case, Fig. 10 (bottom) shows that the size of the LTP
particles evolves in space, thus giving a hint that an optimal particle size is indeed
space-dependent.

6.3 Numerical simulations: singular potentials and qualitative properties of
steady states

We now take advantage of the method to explore the behavior for other attractive
potentials of type W (x) = |x |a

a , a > 1. Notice that for a ≥ 2 the potential is smooth
while for 1 < a < 2 it is singular once W is cut-off at infinity or if the initial data
is compactly supported since the effective values of the potential lie on a bounded
set and W can be cut-off at infinity without changing the solution. Figure 7 presents
the numerical results obtained by the LTP method in the case of a = 1.5 and a =
2.5. We represent the approximate density ρn

h , the reconstructed velocity un
h and the

reconstructed particles sizes hn using piecewise linear interpolation such that
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Fig. 5 Comparisons between exact, LTP and SP solutions at t = 0.5. Here W (x) = x2/2, ρ0 is (6.2),
h = 1/25 and 
t = 10−3. On the left the shape function ϕ is a hat function, and on the right it is a cubic
B3-spline

Fig. 6 Comparisons ofLTPandSP solutions at time t = 2.0,withW (x) = x4/4−|x |2.5/2.5, ε = h = 0.01
and 
t = 10−2. Here ρ0 is (6.4) on the left and (6.5) on the right. The localization of the oscillations in
the SP solutions gives a hint that the optimal particle size is space-dependent. See also Fig. 10 below

un
h(xn

k ) = −∇W ∗ ρn
h (xn

k ) and hn(xn
k ) = h

n−1∏

m=0

jm
k .

Potentials and their derivatives are also represented. In both cases, we observe that the
density converges to a Dirac mass. Figure 7 also shows that for a = 2.5, W ′′ ∈ L∞

loc,
no finite-time blow-up in L∞ appears, opposite to the case a = 1.5 in agreement with
the results proved in [12]. Notice also the different qualitative behavior in their trend
to blow-up as studied in [57].

Next we further analyze the blow-up behavior by looking at the case of attractive-

repulsive potentials W (x) = |x |a
a − |x |b

b , 1 < b < a. Notice again that for b ≥ 2 the
potential is smooth while for 1 < b < 2 it is singular once W is cut-off at infinity
or if the initial data is compactly supported as discussed above. Figure 8 presents
the approximate density ρn

h , the reconstructed velocity un
h and the particles sizes hn

obtained by the LTP method in the case of the attractive-repulsive potentials with
(a, b) = (3, 1.5) and (a, b) = (3, 2.5). In this case ρ0 is given by (6.3).
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a = 1.5 a = 2.5

Potential W

Density ρn
h

Velocity
∇W ∗ ρn

h

Size of
particles hn

k

Fig. 7 Approximate densities, reconstructed velocities and particles sizes computed by the LTP method

for W (x) = |x |a
a with a = 1.5 or a = 2.5. Here h = 0.01, 
t = 0.01 and ρ0 is (6.3)

We observe that the long time asymptotics for b = 2.5 are characterized by the
concentration of mass equally onto Dirac deltas at two points in infinite time, while for
b = 1.5we obtain a convergence in time towards a steady L1 density profile seemingly
diverging at the boundary of the support. This last behavior has been reported in several
simulations and related problems [11]. However, it has not been rigorously proven yet.
Let us point out that the set of stationary stateswhere the interaction potential is analytic
in 1D consists of a finite number of Dirac deltas as proven in [49,50]. This result also

holds for W (x) = |x |a
a − |x |b

b , 2 < b < a, as it will be reported in [29].
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b = 1.1 b = 1.5 b = 2.5

Potential W

Density ρnh

Velocity
∇W ∗ ρnh

Size of
particles hn

k

Fig. 8 Approximate densities, reconstructed velocities and particles sizes computed by the LTP method

for W (x) = |x |a
a − |x |b

b , with a = 3 and b = 1.5 or b = 2.5. As in Fig. 7, h = 0.01, 
t = 0.01 and ρ0 is
(6.3)

Figure 9 also represents the time evolution of the approximated density for (a, b) =
(3, 2.5), with ρ0 given by (6.3). Solutions in the range 2 < b < a for initial data
in L1 ∩ L∞ exist globally in time, see [53]. The numerical evidence shows that all
solutions converge towards stationary states consisting of finite number ofDiracDeltas
as t → ∞ in this range.

Finally, we show in Fig. 10 the results of the stationary state of the SP method
versus the LTP method for the potential (a, b) = (4, 2.5) with N = 100. We observe
how the good local adaption of the size of the particles makes our approximation
much better with no oscillations with respect to the SP method showing the good
performance of the LTP method in this case and its good properties at work. As
mentioned in the introduction, vortex-blob type methods have been shown to converge
for the aggregation equation (1.1). Convergence estimates in suitable L p norms have
been shown for the velocity fields and the associated characteristics fields, while the
density errors have been controlled in suitable W −1,p-norms in [13, Th. 3.8]. The
error estimates for vortex-blob and SP methods depend as usual on the regularization
of particles and the fixed particle size related in a suitable way to get convergence. We
have proven that the LTPmethod has in contrast direct error estimates for the densities
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Fig. 9 Time evolution of the LTP density ρn
h corresponding to W (x) = |x |a

a − |x |b
b with a = 3 and

b = 2.5, ρ0 given by (6.3) and h = 0.01, 
t = 0.01, as in Fig. 8 (right)

in L p depending on the initial mesh size showing that the local adaptation of the shape
has this benefit on the error estimates too.
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Appendix A: A priori estimates on the regularity of solutions

In this part, we deduce a priori estimates on the regularity of Eq. (1.1) that combined
with the global/local in time well posedness theory obtained in [15,24,45,53], leads to
the existence of solutions with the desired properties to apply the convergence results
of previous sections.

As we remind the reader in the introduction and in several places along the text,
there are two different well-posedness settings: for smooth and for singular potentials.
In both cases under the assumptions on the initial data the velocity fields are continuous
in time and Lipschitiz continuous in space. In the smooth potential case, this property
holds globally in time leading to unique global in time measure solutions [45,53]. In
the singular potential case, this property holds locally in time only since there exist
blowing-up of solutions for fully atractive potentials, see [12,15,24]. In both cases,
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Fig. 10 Densities at steady state for W (x) = |x |a
a − |x |b

b , with a = 4, b = 2.5 and ρ0 given by (6.3). Top
left: SP method (solid line), top right: LTP method (dotted line), bottom: particles size (SP and LTP) using
h = 0.01 and 
t = 0.01

the flowmap associated to the velocity field is well-defined and solutions are obtained
by pushing forward the initial data through the flow map.

In this Appendix, we present first a global-in-time propagation of regularity result
in the smooth potential case adapted to our hypotheses on the convergence results. On
the other hand, we show a local-in-time propagation of regularity result in the singular
potential case.

Proposition 9 Assume that the interaction potential W satisfies ∇W ∈ W1,∞(Rd).
Let T > 0 be given and ρ be the unique weak solution to the system (1.1) with initial
data ρ0 ∈ W1,1

+ (Rd) obtained in [45,53], then

sup
0≤t≤T

‖ρ(t, ·)‖W1,1
+

≤ C,

where C is a positive constant depending only on T , L, and ‖ρ0‖W1,1
+

. Furthermore,

if we assume that the initial data ρ0 ∈ (L∞ ∩ W1,1
+ )(Rd), then

sup
0≤t≤T

‖ρ(t, ·)‖L∞∩W1,1
+

≤ C,
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where C is a positive constant depending only on T , L, and ‖ρ0‖L∞∩W1,1
+

.

Proof It follows from the conservation of mass and our assumption on the initial data
ρ0 that

∫

Rd
ρ(t, x) dx =

∫

Rd
ρ0(x) dx = 1.

For the estimate of ‖ρ‖L∞(0,T ;Ẇ1,1), we take ∇ to (1.1) to get

∂t∇ρ(t, x) + D2ρ(t, x)u(t, x) + ∇u(t, x)∇ρ(t, x)

+ ∇(∇ · u(t, x))ρ(t, x) + ∇ · u(t, x)∇ρ(t, x) = 0.
(A.1)

We next multiply (A.1) by ∇ρ(t, x)/|∇ρ(t, x)| to obtain

∂t |∇ρ| + u · ∇|∇ρ(t, x)| + ∇ · u|∇ρ(t, x)|
= −∇u∇ρ · ∇ρ

|∇ρ| − ∇(∇ · u)ρ · ∇ρ

|∇ρ| ,
(A.2)

due to the symmetry of D2ρ. By integrating (A.2) over R
d and using integration by

parts, we deduce

d

dt

∫

Rd
|∇ρ| dx = −

∫

Rd
∇u∇ρ · ∇ρ

|∇ρ| dx

−
∫

Rd
∇(∇ · u)ρ · ∇ρ

|∇ρ| dx ≤ 2L|∇ρ| dx,

(A.3)

where we used ‖∇u(t, x)‖L∞ ≤ ‖∇W‖W1,∞ = L and

‖∇(∇ · u)‖L∞ ≤ L
∫

Rd
|∇ρ| dx .

Thus we have

sup
0≤t≤T

‖∇ρ(t, ·)‖L1 ≤ ‖∇ρ0‖L1 exp (2LT ) .

Finally, we estimate ‖ρ‖L∞ . For this, we recall that the flow map F0,t (x) satisfies

d F0,t (x)

dt
= u(t, F0,t (x)) with F0,0(x) = x .

Using that ρ(t) = F0,t#ρ0, we can write

∂

∂t
ρ(t, F0,t (x)) = −∇ · u(t, F0,t (x))ρ(t, F0,t (x)),
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and this yields

ρ(t, F0,t (x)) = ρ0(x) exp

(

−
∫ t

0
∇ · u(s, F0,s(x)) ds

)

.

Since u ∈ W1,∞(Rd), we obtain

sup
0≤t≤T

‖ρ(t, ·)‖L∞ ≤ ‖ρ0‖L∞ exp (LT ) . (A.4)

This completes the proof. ��
Remark 5 If we further assume that ρ0 ∈ W1,∞

+ (Rd), we have

sup
0≤t≤T

‖ρ(t, ·)‖W1,∞ ≤ C,

where C is a positive constant depending only on T , L , and ‖ρ0‖W1,∞
+

. Indeed, we

can similarly find from (A.1) that for i = 1, · · · , d

∂

∂t
∂i ρ(t, F0,t (x)) = −∂i u(t, F0,t (x))∇ρ(t, F0,t (x)) − ∇ · u(t, F0,t (x))∂i ρ(t, F0,t (x))

− ρ(t, F0,t (x))∇ · ∂i u(t, F0,t (x)).

This implies

‖∇ρ(t, ·)‖L∞ ≤ ‖∇ρ0‖L∞ exp

(

C
∫ t

0
‖∇u(s, ·)‖L∞ ds

)

+ exp

(

C
∫ t

0
‖∇u(s, ·)‖L∞ ds

)∫ t

0
‖ρ(s, ·)‖L∞‖D2u(s, ·)‖L∞ ds,

≤ C‖∇ρ0‖L∞ + C
∫ t

0
‖D2u(s, ·)‖L∞ ds

where we used u ∈ W1,∞(Rd) and the estimate (A.4). On the other hand,
‖D2u(s, ·)‖L∞ can be estimated by

‖D2u(s, ·)‖L∞ ≤ ‖∇W‖W1,∞‖∇ρ(s, ·)‖L∞ .

Hence, we have

‖∇ρ(t, ·)‖L∞ ≤ C‖∇ρ0‖L∞ + C
∫ t

0
‖∇ρ(s, ·)‖L∞ ds,

and by applying Gronwall’s inequality to conclude the desired result. Similar argu-
ments were used in [3] to construct classical solutions.
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We next provide the a priori estimate of solutions to the system (1.1) inW1,1
+ (Rd)∩

W1,p(Rd). For notational simplicity, we set

W̃k,p
+ (Rd) := Wk,1

+ (Rd) ∩ Wk,p(Rd) for k ≥ 0.

Proposition 10 Assume that the interaction potential W satisfies (5.1) for some 1 ≤
q ≤ d

α+1 . Let ρ be the unique local-in-time solution to (1.1) constructed in [24] with

initial data ρ0 satisfying ρ0 ∈ (L∞ ∩ W̃1,p
+ )(Rd) where p is the Sobolev conjugate

of q. Then there exists a T ∗ > 0 such that

sup
0≤t≤T ∗

‖ρ(t, ·)‖W̃1,p
+

≤ C,

where C is a positive constant depending only on T ∗, α, p, and ‖ρ0‖W̃1,p
+

.

Proof The local-in-time well-posedness theory in [24] that

d

dt
‖ρ‖W̃0,p

+
≤ C‖ρ‖2W̃0,p

+
. (A.5)

It also follows from (A.1)–(A.3) that

d

dt
‖∇ρ‖L1 � ‖ρ‖W̃0,p

+
‖∇ρ‖L1 + ‖∇ρ‖W̃0,p

+
≤ ‖ρ‖2W̃1,p

+
,

where we used ‖Dku(t, x)‖L∞ ≤ C‖Dk−1ρ‖W̃0,p
+

for k ≥ 1 and ‖ρ‖W̃0,p
+

≥ 1. For

the estimate of ‖∇ρ‖L p , we obtain

d

dt

∫

Rd
|∇ρ|pdx = −p

∫

Rd
|∇ρ|p−2∇ρ ·

(
D2ρu + ∇u∇ρ + ∇(∇ · u)ρ + ∇ · u∇ρ

)
dx

= (a) + (b) + (c) + (d),

where (a), (b), (c), and (d) are estimated as follows.

(a) = −
∫

Rd
u · ∇|∇ρ|pdx =

∫

R

∇ · u|∇ρ|pdx � ‖ρ‖W̃0,p
+

‖∇ρ‖p
L p ,

(b) ≤ p
∫

Rd
|∇u||∇ρ|pdx � ‖ρ‖W̃0,p

+
‖∇ρ‖p

L p ,

(c) ≤ p‖∇2u‖L∞‖ρ‖L p ‖∇ρ‖p−1
L p � ‖∇ρ‖W̃0,p

+
‖ρ‖L p ‖∇ρ‖p−1

L p ,

(d) ≤ p
∫

Rd
|∇ · u||∇ρ|pdx � ‖ρ‖W̃0,p

+
‖∇ρ‖p

L p .

Thus, we get
d

dt
‖∇ρ‖L p ≤ C‖ρ‖2W̃1,p

+
. (A.6)
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Now, we combine (A.5) and (A.6) to deduce

d

dt
‖ρ‖W̃1,p

+
≤ C‖ρ‖2W̃1,p

+
,

and this concludes that there exists a T ∗ > 0 such that

sup
0≤t≤T

‖ρ(t, ·)‖W̃1,p
+

≤ C,

where C is a positive constant depending only on T ∗, α, p, and ‖ρ0‖W̃1,p
+

. ��
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