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Abstract In this paper we analyze a fully discrete numerical scheme for solving
a parabolic PDE on a moving surface. The method is based on a diffuse interface
approach that involves a level set description of the moving surface. Under suitable
conditions on the spatial grid size, the time step and the interface width we obtain
stability and error bounds with respect to natural norms. Furthermore, we present test
calculations that confirm our analysis.
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1 Introduction

Let {Γ (t)}t∈[0,T ] be a family of closed hypersurfaces in R
n+1(n = 1, 2) evolving in

time. In this paper we consider a finite element approach for solving the parabolic
surface PDE equation

∂•
t u + u∇Γ · v − ΔΓ u = f on ST (1)

u(·, 0) = u0 on Γ (0), (2)
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whichmodels advection and diffusion of a surface quantity u with u(·, t) : Γ (t) → R.
Here, ST = ⋃

t∈(0,T )

(
Γ (t) × {t}) and v : ST → R

n+1 denotes a given velocity field.
Furthermore, ∇Γ is the tangential gradient, ΔΓ = ∇Γ · ∇Γ the Laplace Beltrami
operator and ∂•

t = ∂t + v · ∇ denotes the material derivative.
Parabolic surface PDEs of the form (1) have applications in fluid dynamics and

materials science, such as the transport and diffusion of surfactants on a fluid/fluid
interface, [25] or diffusion-induced grain boundary motion, [5]. In these as in several
other applications the velocity v is not given but determined through an additional
equation so that (1) becomes a subproblem of a more complicated system in which
the variable u is coupled to other variables. The analysis and the numerical solution
of such systems then naturally requires the development of corresponding methods
for (1). We refer to [13] for a comprehensive overview of finite element methods for
solving PDEs on stationary and evolving surfaces.

Concerning the numerical methods that have been proposed for (1) one may dis-
tinguish between Lagrangian and Eulerian type schemes. The first approach has been
pursued by Dziuk and Elliott within their evolving surface finite element method,
[8], which uses polyhedral approximations of the evolving hypersurfaces Γ (t). While
[8] contains an error analysis in the spatially discrete case, the fully discrete case is
investigated in [11,14] and [19]. Optimal L2-error bounds are obtained in [12] and
a corresponding finite volume approach is proposed and analyzed in [18]. Since the
mesh for the discretization of (1) is fitted to the hypersurface Γ (t), a coupling to a
bulk equation is not straightforward. This difficulty is not present in Eulerian type
schemes, in which Γ (t) is typically described via a level set function defined in an
open neighbourhood of Γ (t). In order to discretize the surface PDE in this setting it
has been proposed in [1,3] and [27] to extend the surface quantity u to a band around
Γ (t) and to solve a suitable (weakly) parabolic PDE in that bulk region using a finite
difference method. In [9] and [10], the same idea is used in a finite element context for
which the underlying variational formulation is derived with the help of a transport
identity. An Eulerian finite element approach that doesn’t use an extended PDE is
proposed and analyzed in [20] and [21]. The method is based on a weak formulation
on the space-time manifold and the finite element space is obtained by taking traces
of the corresponding bulk finite elements. The approximation of Γ (t) on which these
spaces are defined usually arises from a suitable interpolation of the given level set
function describing Γ (t). The resulting discrete hypersurface will in general cut arbi-
trarily through the background mesh and its location forms one of the main difficulties
in implementing the scheme. A different approach of generating the discrete hyper-
surfaces is pursued in [17], where a discretization of (4) below is combined with the
cut finite element technique. Finally, Section 5 in [7] proposes a hybrid method that
employs the above–mentioned idea of trace finite elements together with a narrow
band technique for the elliptic part of the PDE.

In this paper we are concerned with the diffuse interface approach for solving (1),
which was introduced in [22] for a stationary surface and in [16,23] and [26] for
evolving surfaces. As in some of the methods described above, the surface quantity u
is extended to a bulk quantity satisfying a suitable parabolic PDE in a neighbourhood of
Γ (t) and the bulk equation is then localized to a thin layer of thickness ε with the help
of a phase field function (see [15] for a corresponding convergence analysis). Since
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we are interested in using finite elements, the localized PDE needs to be written in a
suitable variational form. Following [16] this is achieved with the help of a transport
identity and results in a discretization by linear finite elements in space and a backward
Euler scheme in time. The detailed derivation along with an existence result for the
discrete solution will be given in Sect. 3. As the main new contribution of our paper
we shall derive conditions relating the interface width ε, the spatial grid size h and the
time step τ which allow for a rigorous stability and error analysis. More precisely, we
shall prove that the numerical solution is bounded uniformly in L∞(L2) and L2(H1)

over the diffuse interface (see Theorem 1 in Sect. 4) and that it converges with respect
to these norms both over the diffuse interface and on the sharp interface with an order
O(ε) provided that

h ≤ c1ε, τ ≤ c2ε
2,

see Theorem 2 and Corollary 1 in Sect. 5 respectively. In Sect. 6 we report on results
of numerical tests both for n = 1 and n = 2.

An advantage of our approach is that in the implementation the evolution of the
hypersurfaces is easily incorporated by evaluating the phase field function. We shall
employ a function with compact support, namely ρ(x, t) := g(φ(x,t)

ε
), where Γ (t) is

the zero level set of φ(·, t) and

g(r) =
{
cos2(r), |r | ≤ π

2 ,

0, |r | > π
2 .

In view of the evolution of the hypersurfaces the numerical scheme then naturally
contains terms in which ρ is evaluated at different times. One of the main challenges
in the analysis is to handle the corresponding differences, for which one has to bound
integrals that are multiplied by a negative power of ε (arising from derivatives of ρ)
as well as integrals that are not weighted with ρ. We shall deal with these difficulties
by introducing an additional stabilization term with extended support that is also used
for proving the well–posedness of the scheme.

Let us finally remark that a phase field approach involving a phase field function
with noncompact support and finite elements has been proposed in [4] for an elliptic
surface PDE. Theorem 7 in [4] provides an error estimate in terms of an approximation
error and an error due to the phase field representation. The latter decays at a rate O(ε p)

for some p < 1, while a coupling between ε and the grid size h is not discussed.

2 Preliminaries

2.1 Surface representation and surface derivatives

For each t ∈ [0, T ] letΓ (t) ⊂ R
n+1 (n = 1, 2)be a connected, compact andorientable

hypersurface without boundary. We suppose that v : ST → R
n+1 is a prescribed

velocity field of the form
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712 K. Deckelnick, V. Styles

v = V ν + vτ , with (vτ , ν) = 0. (3)

Here, ν is a unit normal and V the corresponding normal velocity of Γ (t) and (·, ·)
denotes the Euclidian scalar product in Rn+1. Note that the normal part V ν is respon-
sible for the geometric motion of Γ (t), while the tangential part vτ is associated with
the transport of material along the surface. We assume that there exists a smooth map
Ψ : Γ (0) × [0, T ] → R

n+1 such that Ψ (·, t) is a diffeomorphism from Γ (0) onto
Γ (t) for every t ∈ [0, T ] satisfying

∂Ψ

∂t
(P, t) = v(Ψ (P, t), t), P ∈ Γ (0), t ∈ (0, T ]; (4)

Ψ (P, 0) = P, P ∈ Γ (0). (5)

Let us next introduce the differential operators which are required to formulate
our PDE. To begin, for fixed t and a function η : Γ (t) → R we denote by
∇Γ η = (D1η, . . . , Dn+1η) its tangential gradient. If η̄ is an extension of η to an
open neighbourhood of Γ (t) then

∇Γ η(x) = (
I − ν(x, t) ⊗ ν(x, t)

)∇η̄(x), x ∈ Γ (t). (6)

Furthermore, ΔΓ η = ∇Γ · ∇Γ η = ∑n+1
i=1 Di Diη denotes the Laplace-Beltrami oper-

ator.
Next, for a smooth function η on ST we define the material derivative of η at

(x, t) = (Ψ (P, t), t) by ∂•
t η(x, t) := d

dt [η(Ψ (P, t), t)]. If η̄ is an extension of η to
an open space-time neighbourhood, then

∂•
t η(x, t) = η̄t (x, t) + (v(x, t),∇η̄(x, t)), (x, t) ∈ ST .

Our numerical approach will be based on an implicit representation of Γ (t), so that
we suppose in what follows that there exists a smooth function φ : Ω × [0, T ] → R

such that for 0 ≤ t ≤ T

Γ (t) = {x ∈ Ω | φ(x, t) = 0} and ∇φ(x, t) 	= 0, x ∈ Γ (t). (7)

Here, Ω ⊂ R
n+1 is a bounded domain with Γ (t) ⊂ Ω for all t ∈ [0, T ]. For later use

we introduce for t ∈ [0, T ], r > 0 the sets

Ur (t) := {x ∈ Ω | |φ(x, t)| < r} and Ur,T :=
⋃

t∈[0,T ]

(
Ur (t) × {t}).

In view of (7) there exist δ0 > 0, 0 < c0 ≤ c1, c2 > 0 such that Uδ0(t) ⊂ Ω, 0 ≤
t ≤ T and

c0 ≤ |∇φ(x, t)| ≤ c1, |D2φ(x, t)|, |φt (x, t)|, |φt t (x, t)| ≤ c2, (x, t) ∈ Uδ0,T .

(8)

123



Diffuse interface approach to an advection–diffusion... 713

2.2 Extension

Our next aim is to extend functions defined on ST to a space-time neighbourhood. A
common approach which is well suited to a description of Γ (t) via the signed distance
function consists in extending constantly in the normal direction. In what follows we
shall introduce a suitable generalization to the case (7). Consider for P ∈ Γ (0) and
t ∈ [0, T ] the parameter-dependent system of ODEs

γ ′
P,t (s) = ∇φ(γP,t (s), t)

|∇φ(γP,t (s), t)|2 , γP,t (0) = Ψ (P, t). (9)

Using a compactness argument it can be shown that there exists 0 < δ < δ0 so that
the solution γP,t of (9) exists uniquely on (−δ, δ) uniformly in P ∈ Γ (0), t ∈ [0, T ].
Thus we can define the smooth mapping Ft : Γ (0) × (−δ, δ) → R

n+1 by

Ft (P, s) := γP,t (s), P ∈ Γ (0), |s| < δ. (10)

In view of the chain rule and (9) we immediately see that d
dsφ(γP,t (s), t) = 1, which

implies that φ(γP,t (s), t) = s, |s| < δ since γP,t (0) = Ψ (P, t) ∈ Γ (t). In particular,
x = Ft (P, s) yields that |φ(x, t)| < δ and it is not difficult to verify that Ft is a
diffeomorphism of Γ (0) × (−δ, δ) onto Uδ(t) for t ∈ [0, T ], whose inverse has the
form

F−1
t (x) = (p(x, t), φ(x, t)), x ∈ Uδ(t). (11)

Here, p : Uδ,T → R
n+1 satisfies p(x, t) ∈ Γ (0), x ∈ Uδ(t). Furthermore, since

φ(Ft (P, s), t) = s we deduce from (11) that

p(x, t) = P, if x = Ft (P, s) ∈ Uδ(t). (12)

The function p̃ : Uδ,T → R
n+1, p̃(x, t) := Ψ (p(x, t), t) then is smooth and satisfies

p̃(x, t) ∈ Γ (t), 0 ≤ t ≤ T . In addition we claim that

p̃(x, t) = x, x ∈ Γ (t). (13)

To see this, let x ∈ Γ (t), say x = Ψ (P, t) = γP,t (0) = Ft (P, 0) for some P ∈ Γ (0).
Using (12) with s = 0 we deduce that

p̃(x, t) = Ψ (p(x, t), t) = Ψ (P, t) = x,

proving (13). Let us next use p̃ in order to extend a function z : ST → R to Uδ,T by
setting

ze(x, t) := z( p̃(x, t), t), (x, t) ∈ Uδ,T . (14)

Clearly, ze(·, t) = z(·, t) on Γ (t) by (13). Moreover, (12) implies for P ∈ Γ (0), |s| <

δ

ze(Ft (P, s), t) = z
(
p̃(Ft (P, s), t), t

) = z
(
Ψ (p(Ft (P, s), t), t), t

) = z(Ψ (P, t), t),
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714 K. Deckelnick, V. Styles

from which we obtain by differentiating with respect to s and using (9), (10) that

(∇ze(x, t),∇φ(x, t)
) = 0, (x, t) ∈ Uδ,T . (15)

Lemma 1 Let ze be defined by (14). Then we have for t ∈ [0, T ], 0 < r < δ and
|α| = k ∈ {0, 1, 2}:

‖Dα
x z

e(·, t)‖L2(Ur (t)) ≤ C
√
r‖z(·, t)‖Hk (Γ (t)); (16)

‖Dα
x z

e
t (·, t)‖L2(Ur (t)) ≤ C

√
r
(‖∂•

t z(·, t)‖Hk (Γ (t)) + ‖z(·, t)‖Hk+1(Γ (t))

)
. (17)

Proof Let us recall that Ft is a diffeomorphism from Γ (0) × (−r, r) onto Ur (t)
while Ψ (·, t) is a diffeomorphism from Γ (0) onto Γ (t). We deduce from (12) and the
definition of p̃ that p̃(Ft (P, s), t) = Ψ (P, t), P ∈ Γ (0), |s| < r so that we obtain
with the help of the transformation rule

∫

Ur (t)
|ze(x, t)|2dx =

∫

Ur (t)
|z( p̃(x, t), t)|2dx ≤ c

∫ r

−r

∫

Γ (0)
|z(Ψ (P, t), t)|2doPds

≤ cr
∫

Γ (t)
|z(Q, t)|2doQ (18)

which is (16) for k = 0. Next, differentiating the identity φ( p̃(x, t), t) = 0 with
respect to xi we infer that (∇φ( p̃(x, t), t), p̃xi (x, t)) = 0, i = 1, . . . , n + 1. Hence
we obtain from (14) and (6) that

zexi (x, t) =
n+1∑

k=1

zexk ( p̃(x, t), t) p̃k,xi (x, t) =
n+1∑

k=1

Dkz( p̃(x, t), t) p̃k,xi (x, t), (19)

zexi x j (x, t) =
n+1∑

k,l=1

Dl Dkz( p̃(x, t), t) p̃k,xi (x, t) p̃l,x j (x, t)

+
n+1∑

k=1

Dkz( p̃(x, t), t) p̃k,xi x j (x, t). (20)

Similarly, (∇φ( p̃(x, t), t), p̃t (x, t)) = −φt ( p̃(x, t), t) = (∇φ( p̃(x, t), t), v( p̃(x, t),
t)) by (24) below, so that

zet (x, t) = zet ( p̃(x, t), t) + (∇ze( p̃(x, t), t), p̃t (x, t))

= ∂•
t z( p̃(x, t), t) +

n+1∑

k=1

Dkz( p̃(x, t), t)
(
p̃k,t (x, t) − vk( p̃(x, t), t)

)
. (21)

Combining (19), (20) with the argument in (18) we obtain (16). The estimate (17)
follows in a similar way if one starts from (21). 
�
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Let us next extend the surface differential operators ∇Γ and ∂•
t . By reversing the

orientation of Γ (t) if necessary we may assume that the functions ν : Uδ,T → R
n+1,

V : Uδ,T → R defined by

ν(x, t) := ∇φ(x, t)

|∇φ(x, t)| , V (x, t) := − φt (x, t)

|∇φ(x, t)| , (x, t) ∈ Uδ,T

are extensions of the unit normal and the normal velocity respectively. In particular,
we define for a function η ∈ C1(Uδ(t)) its Eulerian tangential gradient by

∇φη(x) := (
I − ν(x, t) ⊗ ν(x, t)

)∇η(x), x ∈ Uδ(t) (22)

and remark that (∇φη)|Γ (t) = ∇Γ [η|Γ (t)]. Furthermore, it follows from Lemma 2 in
[10] that for η ∈ C1

0(Ω) with suppη ⊂ Uδ(t)

∫

Ω

∇φη |∇φ| = −
∫

Ω

ηHν |∇φ|, where H = −∇ · ν. (23)

Note that H|Γ (t) is the mean curvature of Γ (t).
Let us also extend the velocity field v to Uδ,T . We first extend its tangential part by

setting

ṽτ (x, t) := (I − ν(x, t) ⊗ ν(x, t))vτ
e(x, t), (x, t) ∈ Uδ,T .

In view of (3) the function v(x, t) := V (x, t)ν(x, t) + ṽτ (x, t) extends the given
velocity field from ST to Uδ,T and satisfies

φt + (v,∇φ) = 0 in Uδ,T . (24)

In particular, we can use the extended velocity v to define the material derivative for
a function η on Uδ,T by setting

∂•
t η(x, t) := ηt (x, t) + (v(x, t),∇η(x, t)), (x, t) ∈ Uδ,T .

3 Weak formulation and numerical scheme

3.1 Phase field approach

Consider for 0 < ε < 2δ
π

the function

ρ(x, t) := g

(
φ(x, t)

ε

)

,
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where g ∈ C1,1(R) is given by

g(r) =
{
cos2(r), |r | ≤ π

2 ,

0, |r | > π
2 .

Note that supp[ρ(·, t)] = U επ
2

(t) ⊂ Uδ(t). Furthermore, we obtain from the definition
of ∇φ and (24)

∇φρ = 1

ε
g′

(
φ

ε

)

∇φφ = 0, (25)

∂•
t ρ = 1

ε
g′

(
φ

ε

)
(
φt + (v,∇φ)

) = 0. (26)

The phase field function ρ allows us to approximate the integration over a surface
Γ (t) in terms of a volume integral over the diffuse interface. More precisely, for fixed
t ∈ [0, T ], the coarea formula implies for η ∈ L1(Ω)

∫

Ω

η ρ(·, t) |∇φ(·, t)| dx =
∫ επ

2

− επ
2

g
( s

ε

) ∫

{φ(·,t)=s}
η dHnds ≈ επ

2

∫

{φ(·,t)=0}
η dHn

for small ε > 0, so that we can view 2
επ

∫
Ω

η ρ(·, t) |∇φ(·, t)| dx as an approximation
of

∫
Γ (t) η dHn . This formula explains the appearance of the weight ρ(·, t) |∇φ(·, t)|

in subsequent volume integrals.
In what follows we shall make use of the following continuity properties of ρ.

Lemma 2 Let s, t ∈ [0, T ] with |s − t | < π
4c2

ε, c2 as in (8). Then supp[ρ(·, s)] ⊂
U 3επ

4
(t) and

|ρ(·, t) − ρ(·, s)| ≤ C
|t − s|

ε

√
ρ(·, t) + C

(t − s)2

ε2
χU 3επ

4
(t) in Ω; (27)

|ρt (·, t) − ρt (·, s)| ≤ C
|t − s|

ε2
χU 3επ

4
(t) in Ω. (28)

Proof Let s, t ∈ [0, T ] with |s − t | < π
4c2

ε and x ∈ supp[ρ(·, s)] = U επ
2

(s). Using
the mean value theorem and (8) we then have

|φ(x, t)| ≤ |φ(x, s)| + |φt (x, ξ)| |t − s| ≤ επ

2
+ c2|t − s| <

3επ

4
,

i.e. x ∈ U 3επ
4

(t). In order to prove (27) and (28) we first observe that it is enough to
verify the estimates for x ∈ U 3επ

4
(t) in view of what we have just shown. There exists

ξ between s and t such that

|ρ(x, t) − ρ(x, s)| = |ρt (x, ξ)| |t − s| = 1

ε
|φt (x, ξ)|

∣
∣
∣
∣g

′
(

φ(x, ξ)

ε

)∣
∣
∣
∣ |t − s|
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≤ c2|t − s|
ε

∣
∣
∣
∣g

′
(

φ(x, ξ)

ε

)∣
∣
∣
∣ (29)

by (8). Furthermore, since

g′(r) =
{−2 sin(r) cos(r), |r | ≤ π

2 ,

0, |r | > π
2

we see immediately that

|g′(r)| ≤ 2
√
g(r), |g′(r) − g′(r̃)| ≤ 2|r − r̃ |, r, r̃ ∈ R. (30)

As a result,

∣
∣
∣
∣g

′
(

φ(x, ξ)

ε

)∣
∣
∣
∣ ≤

∣
∣
∣
∣g

′
(

φ(x, t)

ε

)∣
∣
∣
∣ + 2

ε
|φ(x, ξ) − φ(x, t)| ≤ 2

√
ρ(x, t) + 2c2|t − s|

ε
.

Inserting this bound into (29) yields (27). Finally, using again (30) and (8) we obtain
for x ∈ U 3επ

4
(t)

|ρt (x, t) − ρt (x, s)| ≤ 1

ε

∣
∣
∣
∣g

′
(

φ(x, t)

ε

)

− g′
(

φ(x, s)

ε

)∣
∣
∣
∣ |φt (x, t)|

+1

ε

∣
∣
∣
∣g

′
(

φ(x, s)

ε

)∣
∣
∣
∣ |φt (x, t) − φt (x, s)|

≤ C

ε2
|φ(x, t) − φ(x, s)| + C

ε
|φt (x, t) − φt (x, s)| ≤ C

ε2
|t − s|.


�

Remark 1 Our analysis will work for other profile functions g than the one chosen
above as long as they satisfy g ∈ C1,1(R) and g(r) > 0 if |r | < R, g(r) = 0 if
|r | ≥ R as well as |g′(r)| ≤ C

√
g(r) for suitable R,C > 0. Profile functions with

noncompact support have been used in [4,22] and [26]. However it is not obvious how
to extend the analysis presented below to that setting.

3.2 Discretization

Suppose that u is a smooth solution of (1). It is shown in Lemma 8 of the “Appendix”
that its extension ue satisfies the strictly parabolic PDE

∂•
t u

e + ue ∇φ · v − 1

|∇φ|∇ · (|∇φ| ∇ue
) = f e + φ R in Uδ,T , (31)
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718 K. Deckelnick, V. Styles

where

R(x, t) =
n+1∑

k,l=1

blk(x, t)Dl Dku( p̃(x, t), t) +
n+1∑

k=1

ck(x, t)Dku( p̃(x, t), t)

+ d(x, t)u( p̃(x, t), t) (32)

and blk, ck, d are smooth functions depending on φ and v.
In order to associate with (31) a suitable variational formulation we adapt an idea

from [16], which uses an Eulerian transport identity. More precisely, we infer with the
help of Lemma 3 in [10], (26) and (31) that for every η ∈ H1(Ω)

d

dt

∫

Ω

ueη ρ |∇φ| =
∫

Ω

(
∂•
t (u

eηρ) + ueηρ ∇φ · v
)|∇φ|

=
∫

Ω

η
(
∂•
t u

e + ue ∇φ · v
)
ρ |∇φ| +

∫

Ω

ue∂•
t η ρ |∇φ|

=
∫

Ω

η ∇ · (|∇φ| ∇ue
)
ρ +

∫

Ω

η
(
f e + φR

)
ρ |∇φ|

+
∫

Ω

ue∂•
t η ρ |∇φ| = −

∫

Ω

(∇ue,∇η)ρ |∇φ| +
∫

Ω

f eη ρ |∇φ|

+
∫

Ω

ue(v,∇η)ρ |∇φ| +
∫

Ω

φ R η ρ |∇φ|. (33)

Here, the last equality follows from integration by parts together with the fact that

(∇ue,∇ρ) = 1
ε
g′

(
φ
ε

)
(∇ue,∇φ) = 0 in view of (15).

Let us first discretize with respect to time and denote by 0 = t0 < t1 < · · · < tM =
T a partioning of [0, T ] with time steps τm := tm − tm−1 and τ := maxm=1,...,M τm .
For a function f = f (x, t) we shall write f m(x) = f (x, tm). Integrating (33) with
respect to t ∈ (tm−1, tm) we obtain for η ∈ H1(Ω)

∫

Ω

ue,mηρm |∇φm | −
∫

Ω

ue,m−1ηρm−1|∇φm−1| +
∫ tm

tm−1

∫

Ω

(∇ue,∇η)ρ |∇φ|

−
∫ tm

tm−1

∫

Ω

ue(v,∇η)ρ |∇φ| =
∫ tm

tm−1

∫

Ω

f e η ρ |∇φ| +
∫ tm

tm−1

∫

Ω

φ R η ρ |∇φ|.
(34)

Under a suitable regularity assumption on u we have that |φ R| ≤ Cε on suppρ so
that we neglect the corresponding term when now deriving the spatial discretization
from (34).

In what follows we assume that Ω is polyhedral and consider a family (Th)0<h≤h0
of triangulations of Ω with mesh size h = maxT∈Th hT , hT = diam(T ). We assume
that the family is regular in the sense that there exists σ > 0 with

rT ≥ σhT ∀T ∈ Th ∀0 < h ≤ h0, (35)
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where rT is the radius of the largest ball contained in T . Let us denote byNh the set of
vertices of the triangulation Th . In order to formulate our scheme we require a second
phase field function with a slightly larger support, namely

ρ̃(x, t) = g

(
φ(x, t)

2ε

)

, 0 < ε <
δ

π
.

For 0 ≤ m ≤ M we then define

T m
h := {T ∈ Th | ρ̃m(x) > 0 for some x ∈ T ∩ Nh} and Dm

h :=
⋃

T∈T m
h

T

as well as the finite element space

Vm
h := {vh ∈ C0(Dm

h ) | vh|T is a linear polynomial on each T ∈ T m
h }.

We denote by Imh : C0(Dm
h ) → Vm

h the standard Lagrange interpolation operator, i.e.
[Imh f ](x) = f (x), x ∈ Dm

h ∩ Nh . Note that Dm
h = suppImh ρ̃m .

Lemma 3 Suppose that

h ≤ cos2
( 3π

8

)

2c1
ε, τ ≤ cos2

( 3π
8

)

2c2
ε. (36)

Then

a) U 3επ
4

(t) ⊂ Dm
h ⊂ U 3επ

2
(s) for all s, t ∈ [max(tm−1, 0),min(tm+1, T )], 0 ≤ m ≤

M;
b) [Imh ρ̃m](x) ≥ 1

2 cos
2
( 3π

8

)
, x ∈ U 3επ

4
(tm), 0 ≤ m ≤ M.

Proof a) Let x ∈ Dm
h , so that there exists y ∈ Nh such that |y − x | ≤ h and

ρ̃m(y) > 0. Hence |φm(y)| < επ and the mean value theorem together with (8)
yields for s ∈ [max(tm−1, 0),min(tm+1, T )]

|φ(x, s)| ≤ |φ(x, s) − φm(x)| + |φm(x) − φm(y)| + |φm(y)|
< |φt (x, ξ)| |s − tm | + |∇φm(η)| |x − y| + επ

≤ c2τ + c1h + επ ≤ cos2
(
3π

8

)

ε + επ ≤ 3επ

2

in view of (36). Hence, x ∈ U 3επ
2

(s). Next, let x ∈ U 3επ
4

(t) for some t ∈
[max(tm−1, 0),min(tm+1, T )]. Then ρ̃(x, t) ≥ cos2( 3π8 ) and we obtain similarly as
above

[Imh ρ̃m](x) ≥ ρ̃(x, t) − |ρ̃(x, t) − ρ̃m(x)| − |ρ̃m(x) − [Imh ρ̃m](x)|
≥ cos2

(
3π

8

)

− |ρ̃t (x, ξ)| |t − tm | − h max
y∈Uδ(tm)

|∇ρ̃m(y)|
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≥ cos2
(
3π

8

)

− c2
τ

2ε
− c1

h

2ε
≥ 1

2
cos2

(
3π

8

)

.

In particular, [Imh ρ̃m](x) > 0, so that x ∈ Dm
h . Using the above inequality for t = tm

implies b). 
�
Our finite element approximation of (1), (2) now reads: For m = 1, 2, . . . , M find

umh ∈ Vm
h such that for all vh ∈ Vm

h

∫

Ω

umh vh ρm |∇φm | −
∫

Ω

um−1
h vh ρm−1 |∇φm−1| + τm

∫

Ω

(∇umh ,∇vh) ρm |∇φm |

−τm

∫

Ω

umh (vm,∇vh) ρm |∇φm | + γ τ 2m

∫

Ω

Imh ρ̃m(∇umh ,∇vh)

= τm

∫

Ω

f e,m vh ρm |∇φm |. (37)

Here, u0h ∈ V 0
h is defined as an L2 projection of ue0(x) := u0( p̃(x, 0)), x ∈ Uδ(0),

more precisely ∫

D0
h

u0h vh =
∫

D0
h

ue0 vh ∀vh ∈ V 0
h . (38)

Furthermore, f e,m(x) := f ( p̃(x, tm), tm), x ∈ Uδ(tm), 1 ≤ m ≤ M . The parameter
γ > 0 will be chosen in such a way as to ensure existence and stability for the scheme,
see Lemma 5 and Theorem 1 below.

Remark 2 a) Lemma 3 a) implies that suppρm, suppρm−1 ⊂ Dm
h = suppImh ρ̃m , so

that all integrals appearing in (37) are taken only over Dm
h . In particular, if f ≡ 0 we

see from the choice vh ≡ 1 on Dm
h that the scheme is mass conserving in the sense

that
∫

Ω

umh ρm |∇φm | =
∫

Ω

u0h ρ0 |∇φ0|, m = 1, . . . , M.

b) The term γ τ 2m
∫
Ω
Imh ρ̃m(∇umh ,∇vh) introduces artificial diffusion into the scheme

and will play a crucial role in our analyis. A different form of stabilization is used in
[16], Section 2.5.
c) Unlike the schemes introduced in [16] our method is not fully practical because
we assume that the integrals are evaluated exactly. In Sect. 6 we shall follow [16] in
using numerical integration to obtain a fully practical scheme. A nice feature of the
resulting method is that the evolution of the hypersurfaces is tracked in a simple way
via the evaluation of ρ.

In what follows we shall be concerned with the existence, stability and error bounds
for (37). The extension of our analysis to the fully practical method mentioned above
is currently out of reach and left for future research. However, the test calculations in
Sect. 6 show that the parameter choices suggested by the analysis work well also for
the fully practical scheme.
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Lemma 4 There exists 0 < h1 ≤ h0 such that Dm
h is connected for all 0 < h ≤ h1

and 0 ≤ m ≤ M.

Proof To begin, we remark that there exists 0 < h1 ≤ h0 and μ > 0 only depending
on σ, c0, c1, c2 such that for every a ∈ Nh ∩ Uδ(t) there exists a neighbour b ∈ Nh

with
|φ(a, t) − φ(b, t)| ≥ μhT where a, b,∈ T (39)

for all t ∈ [0, T ], 0 < h ≤ h1. Since Γ (tm) is connected it is sufficient to show that
for every y ∈ Dm

h there exists z ∈ Γ (tm) and a path in Dm
h connecting y to z. Let us

fix y ∈ Dm
h , say y ∈ T , where ρ̃m(x) > 0 for some x ∈ T ∩ Nh . We assume w.l.o.g.

that 0 < φm(x) < επ . In view of (39) there exists a neighbour x1 ∈ Nh of x such that
φm(x1) ≤ φm(x) − μhT̃ , where x, x1 ∈ T̃ . If φm(x1) ≤ 0 then there is z ∈ [x, x1]
with φm(z) = 0. Hence, z ∈ Γ (tm) and the union of the segments [y, x] and [x, z] is
a path in Dm

h connecting y to z. If φm(x1) > 0, then ρ̃m(x1) > 0 so that [x, x1] ⊂ Dm
h

and we may repeat the above argument with x replaced by x1 and so on, until we reach
Γ (tm) in a finite number of steps. 
�
Lemma 5 (Existence) Let 0 < h ≤ h1. There exists τ0 > 0 such that the scheme (37)
has a unique solution umh ∈ Vm

h provided that 0 < τ ≤ τ0.

Proof Since (37) is equivalent to solving a linear system with a quadratic coefficient
matrix, it is sufficient to prove that the following problem only has the trivial solution:
find uh ∈ Vm

h such that for all vh ∈ Vm
h

∫

Ω

uh vh ρm |∇φm | + τm

∫

Ω

(∇uh,∇vh) ρm |∇φm | − τm

∫

Ω

uh (vm,∇vh) ρm |∇φm |

+γ τ 2m

∫

Ω

Imh ρ̃m(∇uh,∇vh) = 0.

Inserting vh = uh we infer

∫

Ω

(uh)
2ρm |∇φm | + τm

∫

Ω

|∇uh |2 ρm |∇φm | + γ τ 2m

∫

Ω

Imh ρ̃m |∇uh |2

= τm

∫

Ω

uh (vm,∇uh) ρm |∇φm | ≤ τm max
x∈Uδ(tm )

|vm(x)|
∫

Ω

|uh | |∇uh | ρm |∇φm |

≤ 1

2

∫

Ω

(uh)
2 ρm |∇φm | + 1

2
τ

(

max
x∈Uδ(tm)

|vm(x)|
)2

τm

∫

Ω

|∇uh |2 ρm |∇φm |.

If we choose τ0 > 0 so small that 1
2τ

(
maxx∈Uδ(tm) |vm(x)|)2 ≤ 1 we deduce that

∫

Ω

(uh)
2 ρm |∇φm | =

∫

Ω

Imh ρ̃m |∇uh |2 = 0,

which implies that uh ≡ 0 on Γ (tm) and ∇uh ≡ 0 in Dm
h . According to Lemma 4,

Dm
h is connected, so that we conclude that uh ≡ 0. 
�
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4 Stability bound

The following lemma will be useful in estimating L2-integrals that are not weighted
by ρ.

Lemma 6 There exists C ≥ 0 such that for t ∈ [0, T ]:
∫

U 3επ
4

(t)
f 2 ≤ C

∫

Ω

f 2ρ(·, t)|∇φ(·, t)|+Cε2
∫

U 3επ
4

(t)
|∇ f |2 for all f ∈ H1(Ω).

(40)

Remark 3 Note that Lemma 3 b) implies that

∫

U 3επ
4

(tm )

|∇ f |2 ≤ 2

cos2( 3π8 )

∫

Ω

Imh ρ̃m |∇ f |2, f ∈ H1(Ω),m = 0, . . . , M. (41)

Proof Wemay assume that f is smooth, the general case then follows with the help of
an approximation argument. Since Ft is a diffeomorphism from Γ (0) × (− 3επ

4 , 3επ
4 )

onto U 3επ
4

(t), the transformation rule yields

c1

∫

U 3επ
4

(t)
f (x)2dx ≤

∫ 3επ
4

− 3επ
4

∫

Γ (0)
f (Ft (P, s))2doPds ≤ c2

∫

U 3επ
4

(t)
f (x)2dx .

(42)
The definition of Ft together with (9) implies for |s| ≤ 3επ

4 , |s̃| ≤ επ
4

f (Ft (P, s)) = f (Ft (P, s̃)) +
∫ s

s̃

(

∇ f (Ft (P, r)),
∂Ft
∂r

(P, r)

)

dr

= f (Ft (P, s̃)) +
∫ s

s̃

(

∇ f (Ft (P, r)),
∇φ(Ft (P, r), t)

|∇φ(Ft (P, r), t)|2
)

dr

and therefore

f (Ft (P, s))2 ≤ 2 f (Ft (P, s̃))2 + Cε

∫ 3επ
4

− 3επ
4

|∇ f (Ft (p, r))|2dr

≤ C f (Ft (P, s̃))2ρ(Ft (P, s̃), t) + Cε

∫ 3επ
4

− 3επ
4

|∇ f (Ft (p, r))|2dr,

since ρ(Ft (P, s̃), t) = cos2
(φ(Ft (P,s̃),t)

ε

) = cos2( s̃
ε
) ≥ cos2(π

4 ), |s̃| ≤ επ
4 . Integrat-

ing with respect to P ∈ Γ (0), s ∈ (− 3επ
4 , 3επ

4 ) and recalling (42) we obtain for
|s̃| ≤ επ

4

∫

U 3επ
4

(t)
f (x)2dx ≤ Cε

∫

Γ (0)
f (Ft (P, s̃))2ρ(Ft (P, s̃), t)doP
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+Cε2
∫ 3επ

4

− 3επ
4

∫

Γ (0)
|∇ f (Ft (p, r))|2doPdr

≤ Cε

∫

Γ (0)
f (Ft (P, s̃))2ρ(Ft (P, s̃), t)doP

+Cε2
∫

U 3επ
4

(t)
|∇ f (x)|2dx .

If we integrate with respect to s̃ ∈ (− επ
4 , επ

4 ), divide by ε and recall (8) we obtain the
assertion. 
�

It follows from Theorem 4.4 in [8] (extended in a straightforward way to the case
of a nontrivial f ) that (1), (2) has a unique solution u which satisfies

sup
(0,T )

‖u(·, t)‖2L2(Γ (t)) +
∫ T

0
‖∇Γ u(·, t)‖2L2(Γ (t))dt ≤ c

(
‖u0‖2L2(Γ (0))

+
∫ T

0
‖ f (·, t)‖2L2(Γ (t))dt

)

.

The following theorem gives a discrete version of this estimate in the phase field
setting.

Theorem 1 Suppose that (36) holds. There exist γ1 > 0 and τ1 ≤ τ0 such that

max
m=1,...,M

2

επ

∫

Ω

(umh )2 ρm |∇φm | +
M∑

m=1

τm
2

επ

∫

Ω

|∇umh |2ρm |∇φm |

≤ C

(∫

Γ (0)
(u0)

2 +
M∑

m=1

τm

∫

Γ (tm)

( f m)2

)

,

provided that γ ≥ γ1 and τ ≤ min
(
τ1, ε

2
)
.

Proof Setting vh = umh in (37) we find after a straighforward calculation

1

2

∫

Ω

(umh )2 ρm |∇φm | − 1

2

∫

Ω

(um−1
h )2 ρm−1 |∇φm−1|

+1

2

∫

Ω

(umh − um−1
h )2 ρm−1 |∇φm−1|

+τm

∫

Ω

|∇umh |2 ρm |∇φm | + γ τ 2m

∫

Ω

Imh ρ̃m |∇umh |2

= −1

2

∫

Ω

(umh )2 (ρm − ρm−1) |∇φm−1| + 1

2

∫

Ω

(umh )2 ρm (|∇φm−1| − |∇φm |)

+τm

∫

Ω

umh (vm,∇umh ) ρm |∇φm | + τm

∫

Ω

f e,mumh ρm |∇φm |
:= I + I I + I I I + I V . (43)
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Clearly,

I = −1

2

∫ tm

tm−1

∫

Ω

(umh )2 ρt (·, s) |∇φm−1|ds, (44)

while

I I = −1

2
τm

∫

Ω

(umh )2 ρm (∇φm
t , νm)

+1

2

∫

Ω

(umh )2 ρm (|∇φm−1| − |∇φm | + τm(∇φm
t , νm)

) = I I1 + I I2. (45)

Integrating by parts and abbreviating Hm = −∇ · νm we obtain

I I1 = 1

2
τm

∫

Ω

(umh )2 (∇ρm, νm) φm
t + τm

∫

Ω

umh (∇umh , νm)ρm φm
t

+1

2
τm

∫

Ω

(umh )2 ∇ · νm ρm φm
t

= 1

2
τm

∫

Ω

(umh )2 ρm
t |∇φm | + τm

∫

Ω

umh (∇umh , νm)ρm φm
t

−1

2
τm

∫

Ω

(umh )2Hm ρm φm
t ,

since

(∇ρm, νm)φm
t = 1

ε
g′

(
φm

ε

)

φm
t (∇φm, νm) = ρm

t |∇φm |.

In order to rewrite I I I we first observe that in view of (22) and (24)

(vm,∇umh ) = (vm,∇φmumh ) + (∇umh , νm)(vm, νm)

= (vm,∇φmumh ) − (∇umh , νm)
φm
t

|∇φm | ,

so that (23), (25) and again (24) imply

I I I = 1

2
τm

∫

Ω

(vm,∇φm (umh )2)ρm |∇φm | − τm

∫

Ω

umh (∇umh , νm)ρm φm
t

= −1

2
τm

∫

Ω

∇φm · vm(umh )2 ρm |∇φm | − 1

2
τm

∫

Ω

Hm(vm, νm)(umh )2 ρm |∇φm |

−τm

∫

Ω

umh (∇umh , νm)ρm φm
t = −1

2
τm

∫

Ω

∇φm · vm(umh )2 ρm |∇φm |

+1

2
τm

∫

Ω

(umh )2Hm ρm φm
t − τm

∫

Ω

umh (∇umh , νm) ρm φm
t . (46)
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Inserting (44)–(46) into (43) we infer that

1

2

∫

Ω

(umh )2 ρm |∇φm | − 1

2

∫

Ω

(um−1
h )2 ρm−1 |∇φm−1| + τm

∫

Ω

|∇umh |2 ρm |∇φm |

+γ τ 2m

∫

Ω

Imh ρ̃m |∇umh |2 ≤ 1

2

∫ tm

tm−1

∫

Ω

(umh )2
(
ρm
t |∇φm | − ρt (., s)|∇φm−1|

)

−1

2
τm

∫

Ω

∇φm · vm(umh )2 ρm |∇φm | + 1

2

∫

Ω

(umh )2 ρm (|∇φm−1|

−|∇φm | + τm(∇φm
t , νm)

) + τm

∫

Ω

f e,mumh ρm |∇φm |. (47)

We deduce from (28), Lemma 6, (41) and the assumption τ ≤ ε2 that

∣
∣
∣
∣
1

2

∫ tm

tm−1

∫

Ω

(umh )2(ρm
t |∇φm | − ρt (., s)|∇φm−1|)

∣
∣
∣
∣

≤ C
∫ tm

tm−1

∫

Ω

(umh )2
(|ρm

t − ρt (., s)| + |ρt (., s)| ||∇φm | − |∇φm−1||)

≤ C
τ 2m

ε2

∫

U 3επ
4

(tm)

(umh )2 ≤ C
τ 2m

ε2

∫

Ω

(umh )2 ρm |∇φm | + Cτ 2m

∫

U 3επ
4

(tm )

|∇umh |2

≤ Cτm

∫

Ω

(umh )2 ρm |∇φm | + (γ − 1)τ 2m

∫

Ω

Ih ρ̃
m |∇umh |2

if we choose γ ≥ γ1 := C + 1. Finally, using Taylor expansion and (8) we infer that

∣
∣
∣
∣−

1

2
τm

∫

Ω

∇φm · vm(umh )2 ρm |∇φm |

+1

2

∫

Ω

(umh )2 ρm (|∇φm−1| − |∇φm | + τm(∇φm
t , νm)

)
∣
∣
∣
∣

≤ Cτm

∫

Ω

(umh )2 ρm |∇φm | + Cτ 2m

∫

(umh )2ρm ≤ Cτm

∫

Ω

(umh )2ρm |∇φm |.

Inserting the above estimates into (47) we find

1

2

∫

Ω

(umh )2 ρm |∇φm | + τm

∫

Ω

|∇umh |2 ρm |∇φm | + τ 2m

∫

Ω

Imh ρ̃m |∇umh |2

≤ 1

2

∫

Ω

(um−1
h )2 ρm−1 |∇φm−1| + Cτm

∫

Ω

(umh )2 ρm |∇φm |

+τm

∫

Ω

( f e,m)2 ρm |∇φm |. (48)
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If τ1 ≤ τ0 is sufficiently small we therefore deduce for τ ≤ τ1

∫

Ω

(umh )2 ρm |∇φm | + τm

∫

Ω

|∇umh |2 ρm |∇φm |

≤ (1 + Cτm)

∫

Ω

(um−1
h )2 ρm−1 |∇φm−1| + Cτm

∫

Ω

( f e,m)2 ρm |∇φm |,

from which we obtain after summation from m = 1, . . . , l and division by ε that

1

ε

∫

Ω

(ulh)
2 ρl |∇φl | +

l∑

m=1

τm
1

ε

∫

Ω

|∇umh |2 ρm |∇φm |

≤ 1

ε

∫

Ω

(u0h)
2 ρ0 |∇φ0| + C

l−1∑

m=0

τm+1
1

ε

∫

Ω

(umh )2 ρm |∇φm |

+C
l∑

m=1

τm
1

ε

∫

Ω

( f e,m)2 ρm |∇φm |.

Using Lemma 3 a), (38) and (16) we may estimate

1

ε

∫

Ω

(u0h)
2 ρ0 |∇φ0| ≤ C

ε

∫

D0
h

(u0h)
2 ≤ C

ε

∫

D0
h

(ue0)
2 ≤ C

ε

∫

U 3επ
2

(0)
(ue0)

2

≤ C
∫

Γ (0)
(u0)

2.

Arguing in a similar way for the term involving f e,m we derive

1

ε

∫

Ω

(ulh)
2 ρl |∇φl | +

l∑

m=1

τm
1

ε

∫

Ω

|∇umh |2 ρm |∇φm |

≤ C
l−1∑

m=0

τm+1
1

ε

∫

Ω

(umh )2 ρm |∇φm | + C

(∫

Γ (0)
(u0)

2

+
l∑

m=1

τm

∫

Γ (tm )

( f m)2

)

. (49)

The discrete Gronwall inequality yields the bound on maxm=1,...,M
1
ε

∫
Ω

(umh )2 ρm

|∇φm |, which combined with (49) implies the second inequality. 
�

5 Error estimate

Beforewe formulate our error boundwe derive interpolation estimates that are adapted
to our setting.

123



Diffuse interface approach to an advection–diffusion... 727

Lemma 7 Suppose that (36) holds and let ze be defined by (14). Then we have for
m = 1, . . . , M and t ∈ [tm−1, tm]:

∫

Dm
h

|(ze − Imh ze)(·, t)|2 + h2
∫

Dm
h

|∇(ze − Imh ze)(·, t)|2 ≤ Cεh4‖z(·, t)‖2H2(Γ (t)),

∫

Dm
h

|(zet − Imh zet )(·, t)|2 ≤ Cεh4
(‖∂•

t z(·, t)‖2H2(Γ (t)) + ‖z(·, t)‖2H3(Γ (t))

)
.

Proof Let t ∈ [tm−1, tm]. Standard interpolation theory together with Lemma 3 a) and
(16) implies that

∫

Dm
h

|(ze − Imh ze)(·, t)|2 + h2
∫

Dm
h

|∇(ze − Imh ze)(·, t)|2

≤ ch4
∫

Dm
h

|D2ze(·, t)|2 ≤ ch4
∫

U 3επ
2

(t)
|D2ze(·, t)|2 ≤ Cεh4‖z(·, t)‖2H2(Γ (t)).

The second bound follows in the same way using (17). 
�
Theorem 2 Suppose that the solution of (1), (2) satisfies

max
t∈[0,T ] ‖u(·, t)‖2W 2,∞(Γ (t)) +

∫ T

0

(‖u(·, t)‖2H3(Γ (t)) + ‖∂•
t u(·, t)‖2H2(Γ (t))

)
dt < ∞.

(50)
Then there exists 0 < τ2 ≤ τ1 and a constant C ≥ 0 such that

max
m=1,...,M

2

επ

∫

Ω

|ue,m − umh |2 ρm |∇φm |

+
M∑

m=1

τm
2

επ

∫

Ω

|∇(ue,m − umh )|2ρm |∇φm | ≤ Cε2,

provided that τ ≤ min(ε2, τ2), γ ≥ γ1 and (36) hold.

Proof Let us write

ue,m − umh = (ue,m − Imh ue,m) + (Imh ue,m − umh ) =: dm + emh .

If we combine (34) for η = vh ∈ Vm
h with (37) we find

∫

Ω

emh vh ρm |∇φm | −
∫

Ω

em−1
h vh ρm−1|∇φm−1| + τm

∫

Ω

(∇emh ,∇vh)ρ
m |∇φm |

−τm

∫

Ω

emh (vm,∇vh)ρ
m |∇φm | + γ τ 2m

∫

Ω

Imh ρ̃m(∇emh ,∇vh)

=
[

−
∫

Ω

dmvh ρm |∇φm | +
∫

Ω

dm−1vh ρm−1|∇φm−1|
]

123



728 K. Deckelnick, V. Styles

−τm

∫

Ω

(∇dm,∇vh)ρ
m |∇φm | + τm

∫

Ω

dm(vm,∇vh)ρ
m |∇φm |

+γ τ 2m

∫

Ω

Imh ρ̃m(∇ Ihu
e,m,∇vh) +

∫ tm

tm−1

∫

Ω

[
(∇ue,m,∇vh)ρ

m |∇φm |

−(∇ue,∇vh)ρ |∇φ|]+
∫ tm

tm−1

∫

Ω

[
ue(v,∇vh)ρ |∇φ| −ue,m(vm,∇vh)ρ

m |∇φm |]

+
∫ tm

tm−1

∫

Ω

[
f evh ρ |∇φ| − f e,mvh ρm |∇φm |] +

∫ tm

tm−1

∫

Ω

φ R vh ρ |∇φ|

=:
8∑

i=1

〈Smi , vh〉.

Inserting vh = emh and following the argument in the proof of Theorem 1 leading to
(48) we obtain

1

2

∫

Ω

(emh )2ρm |∇φm | + τm

∫

Ω

|∇emh |2ρm |∇φm | + τ 2m

∫

Ω

Imh ρ̃m |∇emh |2

≤ 1

2

∫

Ω

(em−1
h )2ρm−1|∇φm−1| + Cτm

∫

Ω

(emh )2ρm |∇φm | +
8∑

i=1

〈Smi , emh 〉.

(51)

We now deal individually with the terms 〈Smi , emh 〉, i = 1, . . . , 8 in (51). Clearly,

|〈Sm1 , emh 〉| ≤ C
∫

Ω

|dm − dm−1| |emh | ρm + C
∫

Ω

|dm−1| |emh | |∇(φm − φm−1)| ρm

+C
∫

Ω

|dm−1| |emh | |ρm − ρm−1| ≡ I + I I + I I I.

In order to estimate I we first deduce from Lemma 3 a) that every T ∈ Th with
T ∩ suppρm 	= ∅ satisfies T ∈ T m−1

h ∩ T m
h . Therefore Im−1

h ue,m−1 = Imh ue,m−1 on
suppρm , which yields

dm − dm−1 = [ue,m − ue,m−1] − Imh [ue,m − ue,m−1]
=

∫ tm

tm−1

(uet − Imh uet )(·, t) on suppρm .

Hence, Lemma 3 a), Lemma 7 and (8) imply that

|I | ≤ C
∫

Ω

∫ tm

tm−1

|uet − Imh uet | |emh | ρm

≤ C
√

τm

(∫

Ω

(emh )2ρm
) 1

2
(∫ tm

tm−1

∫

Dm
h

|uet − Imh uet |2
) 1

2
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≤ τm

∫

Ω

(emh )2ρm |∇φm | + Cεh4
∫ tm

tm−1

(
‖∂•

t u(·, t)‖2H2(Γ (t))

+‖u(·, t)‖2H3(Γ (t))

)
dt

and similarly,

|I I | ≤ Cτm

∫

Ω

|dm−1| |emh | ρm ≤ Cτm

(∫

Ω

(emh )2ρm
) 1

2
(∫

Dm−1
h

|dm−1|2
) 1

2

≤ τm

∫

Ω

(emh )2ρm |∇φm | + Cεh4τm‖um−1‖2H2(Γ (tm−1))
.

Next, we deduce from (27), Lemma 3 a), (8), Lemma 7, Lemma 6 and (41) that

|I I I | ≤ C
τm

ε

∫

Ω

|dm−1 |emh | √ρm + C
τ 2m

ε2

∫

U 3επ
4

(tm )

|dm−1| |emh |

≤ τm

∫

Ω

(emh )2ρm + C
τm

ε2
‖dm−1‖2

L2(Dm−1
h )

+C
τ 2m

ε2

⎛

⎝
∫

U 3επ
4

(tm )

(emh )2

⎞

⎠

1
2

‖dm−1‖L2(Dm−1
h )

≤ Cτm

∫

Ω

(emh )2ρm |∇φm | + C
τmh4

ε
‖um−1‖2H2(Γ (tm−1))

+C
τ 2mh

2

ε
3
2

‖um−1‖H2(Γ (tm−1))

⎛

⎝
∫

Ω

(emh )2ρm |∇φm |+ε2
∫

U 3επ
4

(tm )

|∇emh |2
⎞

⎠

1
2

≤ Cτm

∫

Ω

(emh )2ρm |∇φm | + τ 2m

8

∫

Ω

Imh ρ̃m |∇emh |2+C
τmh4

ε
‖um−1‖2H2(Γ (tm−1))

,

where we used that τ ≤ ε2. Again by Lemma 7 we have

|〈Sm2 , emh 〉| ≤ τm

(∫

Ω

|∇emh |2ρm |∇φm |
) 1

2
(∫

Dm
h

|∇dm |2
) 1

2

≤ 1

8
τm

∫

Ω

|∇emh |2ρm |∇φm | + Cτmεh2‖um‖2H2(Γ (tm ))
,

while

|〈Sm3 , emh 〉| ≤ Cτm

∫

Ω

|dm | |∇emh | ρm |∇φm |
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≤ Cτm

(∫

Ω

|∇emh |2ρm |∇φm |
) 1

2
(∫

Dm
h

|dm |2
) 1

2

≤ 1

8
τm

∫

Ω

|∇emh |2ρm |∇φm | + Cτmεh4‖um‖2H2(Γ (tm ))
.

Lemma 3 a), (16) and Lemma 7 yield

|〈Sm4 , emh 〉| ≤ Cτ 2m

(∫

Ω

Imh ρ̃m |∇emh |2
) 1

2
(∫

Dm
h

|∇ Imh ue,m |2
) 1

2

≤ τ 2m

8

∫

Ω

Imh ρ̃m |∇emh |2 + Cτ 2m

∫

Dm
h

(|∇ue,m |2 + |∇dm |2)

≤ τ 2m

8

∫

Ω

Imh ρ̃m |∇emh |2 + Cτ 2mε‖um‖2H2(Γ (tm ))
.

We deduce from (27), Lemma 3 a), Lemma 1 and (41) that

|〈Sm5 , emh 〉| ≤ C
∫ tm

tm−1

∫

Ω

[|∇(ue,m − ue)| ρm

+|∇ue| |∇(φm − φ)| ρm + |∇ue| |ρm − ρ|] |∇emh |
≤ Cτm

∫ tm

tm−1

∫

Ω

|∇uet | |∇emh |ρm + Cτm

∫ tm

tm−1

∫

Ω

|∇ue| |∇emh |ρm

+C
τm

ε

∫ tm

tm−1

∫

Ω

|∇ue| |∇emh |√ρm + C
τ 2m

ε2

∫ tm

tm−1

∫

U 3επ
4

(tm)

|∇ue| |∇emh |

≤ C

[

τ
3
2
m

(∫ tm

tm−1

‖uet (·, t)‖2H1(U 3επ
4

(t))

) 1
2

+τ 2m

ε
max

tm−1≤t≤tm
‖ue(·, t)‖H1(U 3επ

4
(t))

] (∫

Ω

|∇emh |2ρm
) 1

2

+C
τ 3m

ε2
max

tm−1≤t≤tm
‖ue(·, t)‖H1(U 3επ

2
(t))

⎛

⎝
∫

U 3επ
4

(tm )

|∇emh |2
⎞

⎠

1
2

≤ τm

8

∫

Ω

|∇emh |2ρm |∇φm | + Cτ 2mε

∫ tm

tm−1

(‖∂•
t u(·, t)‖2H1(Γ (t))

+‖u(·, t)‖2H2(Γ (t))

)
dt+ τ 2m

8

∫

Ω

Imh ρ̃m |∇emh |2+Cτ 2mε max
tm−1≤t≤tm

‖u(·, t)‖2H1(Γ (t)).
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Here we have used again that τm ≤ τ ≤ ε2. In a similar way we obtain

|〈Sm6 , emh 〉| ≤ C
∫ tm

tm−1

∫

Ω

[|ue,m − ue| ρm + |ue| |vm |∇φm |

−v|∇φ|| ρm + |ue| |ρm − ρ|] |∇emh | ≤ τm

8

∫

Ω

|∇emh |2ρm |∇φm |

+Cτ 2mε

∫ tm

tm−1

(
‖∂•

t u(·, t)‖2L2(Γ (t)) + ‖u(·, t)‖2H1(Γ (t))

)
dt

+τ 2m

8

∫

Ω

Imh ρ̃m |∇emh |2 + Cτ 2mε max
tm−1≤t≤tm

‖u(·, t)‖2L2(Γ (t))

as well as

|〈Sm7 , emh 〉| ≤ C
∫ tm

tm−1

∫

Ω

[| f e|∇φ| − f e,m |∇φm | | |emh | ρm + | f e,m | |emh | |ρ − ρm |]

≤ Cτ 2m

∫

Ω

|emh | ρm + C
τ 2m

ε

∫

Ω

|emh | √ρm + C
τ 3m

ε2

∫

U 3επ
4

(tm )

|emh |

≤ τm

∫

Ω

(emh )2ρm+C
τ 3m

ε
+ C

τ 3m

ε
3
2

⎛

⎝
∫

Ω

(emh )2ρm + ε2
∫

U 3επ
4

(tm )

|∇emh |2
⎞

⎠

1
2

≤ Cτm

∫

Ω

(emh )2ρm |∇φm | + τ 2m

8

∫

Ω

Imh ρ̃m |∇emh |2 + C
τ 3m

ε
,

where we have used that |U 3επ
4

(tm)| ≤ Cε and again the fact that τ ≤ ε2. Finally, (32)
and the definition of ρ imply that

|R(·, t)| ≤ C‖u(·, t)‖W 2,∞(Γ (t)) and |φ(·, t)| ≤ cε a.e. on suppρ(·, t), t ∈ [tm−1, tm]

so that we may estimate with the help of (27), (50) and Lemma 6

|〈Sm8 , emh 〉| ≤ C
∫ tm

tm−1

∫

Ω

[|φ| |emh | ρm + |φ| |emh | |ρ − ρm |]

≤ Cετm

∫

Ω

|emh | ρm + Cτ 2m

∫

Ω

|emh | √ρm + C
τ 3m

ε

∫

U 3επ
4

(tm )

|emh |

≤ τm

∫

Ω

(emh )2ρm + Cτmε3 + Cτ 3mε

+C
τ 3m√

ε

⎛

⎝
∫

Ω

(emh )2ρm + ε2
∫

U 3επ
4

(tm)

|∇emh |2
⎞

⎠

1
2

≤ Cτm

∫

Ω

(emh )2ρm |∇φm | + τ 2m

8

∫

Ω

Imh ρ̃m |∇emh |2 + Cτmε3 + Cτ 3mε.
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Inserting the above estimates into (51) we obtain

1

2

∫

Ω

(emh )2ρm |∇φm | + τm

2

∫

Ω

|∇emh |2ρm |∇φm | + τ 2m

4

∫

Ω

Imh ρ̃m |∇emh |2

≤ 1

2

∫

Ω

(em−1
h )2ρm−1|∇φm−1| + Cτm

∫

Ω

(emh )2ρm |∇φm | + C

(
τ 3m

ε
+ τmε3

)

+Cτm ε

(

h2 + h4

ε2
+ τ

)

max
tm−1≤t≤tm

‖u(·, t)‖2H2(Γ (t))

+Cε
(
h4 + τ 2

)
∫ tm

tm−1

(
‖∂•

t u(·, t)‖2H2(Γ (t)) + ‖u(·, t)‖2H3(Γ (t))

)
dt.

Choosing τ2 ≤ τ1 small enough and using (36) as well as τ ≤ ε2 we infer

∫

Ω

(emh )2ρm |∇φm | + τm

∫

Ω

|∇emh |2ρm |∇φm |

≤ (1 + Cτm)

∫

Ω

(em−1
h )2ρm−1|∇φm−1| + Cε3τm max

tm−1≤t≤tm
‖u(·, t)‖2H2(Γ (t))

+Cε5
∫ tm

tm−1

(‖∂•
t u(·, t)‖2H2(Γ (t)) + ‖u(·, t)‖2H3(Γ (t))

)
dt + Cτmε3.

Summing from m = 1, . . . , l, dividing by ε and recalling (50) we derive

1

ε

∫

Ω

(elh)
2ρl |∇φl | +

l∑

m=1

τm
1

ε

∫

Ω

|∇emh |2ρm |∇φm |

≤ 1

ε

∫

Ω

(e0h)
2ρ0 |∇φ0| + C

l−1∑

m=0

τm+1
1

ε

∫

Ω

(emh )2ρm |∇φm | + Cε2.

In order to estimate the first term on the right hand side we write e0h = (I 0h u
e
0 − ue0) +

(ue0 − u0h) and recall the definition (38) of u0h as an L2 projection:

∫

Ω

(e0h)
2ρ0 |∇φ0| ≤ C

∫

D0
h

(e0h)
2 ≤ C

∫

D0
h

|ue0 − I 0h u
e
0|2 ≤ Cεh4‖u0‖2H2(Γ (0))

by Lemma 7. Thus

1

ε

∫

Ω

(elh)
2ρl |∇φl | +

l∑

m=1

τm
1

ε

∫

Ω

|∇emh |2ρm |∇φm |

≤ C
l−1∑

m=0

τm+1
1

ε

∫

Ω

(emh )2ρm |∇φm | + Cε2 (52)
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and the discrete Gronwall lemma gives

max
m=1,...,M

1

ε

∫

Ω

(emh )2ρm |∇φm | ≤ Cε2. (53)

The remainder of the proof follows from (52) and Lemma 7. 
�
Using the result of Theorem 2we can now also derive an error bound on the surface.

Corollary 1 In addition to the assumptions of Theorem 2 suppose that there exists
α > 0 such that hT ≥ αε for all T ∈ Th with |T ∩ Γ (t)| > 0, t ∈ [0, T ]. Then

max
m=1,...,M

∫

Γ (tm )

|um − umh |2 +
M∑

m=1

τm

∫

Γ (tm )

|∇Γ (um − umh )|2 ≤ Cε2.

Proof Let us fix m ∈ {1, . . . , M} and define T m
Γ,h := {T ∈ Th | |T ∩ Γ (tm)| > 0}.

Hence, given T ∈ T m
Γ,h , there exists xT ∈ Γ (tm) with φm(xT ) = 0. We infer from (8)

and (36) that for arbitrary x ∈ T

|φm(x)| = |φm(x) − φm(xT )| ≤ c1|x − xT | ≤ c1hT ≤ ε

2
cos2

(
3π

8

)

≤ επ

4
,

and therefore

ρm(x) ≥ 1

2
for all x ∈ T, T ∈ T m

Γ,h . (54)

We now argue in a similar way as in [6], page 368. Using an interpolation inequality
and an inverse estimate we infer that
∫

Γ (tm )

|um − umh |2 =
∑

T∈T m
Γ,h

∫

T∩Γ (tm )

|um − umh |2

≤ 2
∑

T∈T m
Γ,h

|T ∩ Γ (tm)|
(
‖dm‖2L∞(T ) + ‖emh ‖2L∞(T )

)

≤ C
∑

T∈T m
Γ,h

|T ∩ Γ (tm)| h2T ‖∇ue,m‖2W 1,∞(T )

+C
∑

T∈T m
Γ,h

hnT h
−(n+1)
T ‖emh ‖2L2(T )

≤ Ch2|Γ (tm)|‖um‖2W 1,∞(Γ (tm ))
+ Cε−1

∑

T∈T m
Γ,h

∫

T
|emh |2ρm |∇φm |,

where the last inequality follows from (54), (8) and the assumption that hT ≥ αε, T ∈
T m

Γ,h . In a similar way we obtain

∫

Γ (tm)

|∇Γ (um − umh )|2 ≤ Ch2|Γ (tm)|‖um‖2W 2,∞(Γ (tm ))
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+Cε−1
∑

T∈T m
Γ,h

∫

T
|∇emh |2ρm |∇φm |.

Thus,

max
m=1,...,M

∫

Γ (tm )

|um − umh |2 +
M∑

m=1

τm

∫

Γ (tm )

|∇Γ (um − umh )|2

≤ Ch2 max
t∈[0,T ] ‖u(·, t)‖2W 2,∞(Γ (t))

+Cε−1 max
m=1,...,M

∫

Ω

|emh |2ρm |∇φm |+Cε−1
M∑

m=1

τm

∫

Ω

|∇emh |2ρm |∇φm | ≤ Cε2,

by (36), (53) and (52). 
�

6 Numerical results

As already mentioned in Remark 2 c), the scheme (37), (38) is not fully practical.
Therefore, our implementation uses the following modification: Find umh ∈ Vm

h , such
that

∫

Ω

umh vh I
m
h ρm |∇ Imh φm | −

∫

Ω

um−1
h vh I

m−1
h ρm−1 |∇ Im−1

h φm−1|

+τm

∫

Ω

(∇umh ,∇vh) I
m
h ρm |∇ Imh φm | − τm

∫

Ω

umh (Imh v̂
m
,∇vh) I

m
h ρm |∇ Imh φm |

+γ τ 2m

∫

Ω

Imh ρ̃m(∇umh ,∇vh) = τm

∫

Ω

Imh f̂ m vh I
m
h ρm |∇ Imh φm | (55)

for all vh ∈ Vm
h and 1 ≤ m ≤ M . Here, v̂

m
(x) := v( p̂(x, tm), tm), f̂ m(x) =

f ( p̂(x, tm), tm), where p̂(x, t) denotes the closest point projection of a point x onto
Γ (t). Setting û0(x) = u0( p̂(x, 0)) we define the initial data û0h ∈ V 0

h by

∫

D0
h

û0h vh =
∫

D0
h

I 0h û0 vh ∀vh ∈ V 0
h . (56)

Let us remark that the evaluation of p̂(x, t) is easier compared to p̃(x, t), which has
been used to extend the data for the scheme (37), (38). However, we claim that

p̃(x, t) − p̂(x, t) = O(φ(x, t)2). (57)

To see this, we first observe that p̂(x, t) is characterized by the conditions

φ( p̂(x, t), t) = 0 and x − p̂(x, t) ⊥ Γ (t) at p̂(x, t).
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Therefore, it is not difficult to verify with the help of Taylor expansion that

x− p̂(x, t)=λ(x, t)∇φ( p̂(x, t), t), with λ(x, t)= φ(x, t)

|∇φ( p̂(x, t), t)|2 +O(φ(x, t)2).

Combining this relation with (58) in the “Appendix” we find that

p̃(x, t) − p̂(x, t) = φ(x, t)

[ ∇φ( p̂(x, t), t)

|∇φ( p̂(x, t), t)|2 − ∇φ(x, t)

|∇φ(x, t)|2
]

+O(φ(x, t)2) = O(φ(x, t)2).

In particular, we infer from (57) that replacing p̃ by p̂ in the extension of v, f and
u0 will not affect the result of Theorem 2. In contrast, it is not straightforward to
handle the interpolation terms Imh ρm and Im−1

h ρm−1 in (55). Applying a standard

interpolation estimate to ρm − Imh ρm will result in a term of the form h2‖ρm‖H2 ≈ h2

ε2
,

which we are currently not able to analyze. The results of our test calculations below
however show that the use of the interpolation operator in (55), (56) does not lead to
reduced convergence rates. More precisely we investigate the experimental order of
convergence (eoc) for the following errors:

E1 = max
m=1,...,M

2

επ

∫

Ω

|Imh ûm − umh |2 Imh ρm |∇ Imh φm |,

E2 = 2

επ

M∑

m=1

τm

∫

Ω

|∇(Imh ûm − umh )|2 Imh ρm |∇ Imh φm |,

where ûm(x) = u( p̂(x, tm), tm). We use the finite element toolbox Alberta 2.0, [24],
and implement a similar mesh refinement strategy to that in [2] with a fine mesh
constructed in Dm

h and a coarser mesh in Ω\Dm
h . The linear systems appearing in

each time step were solved using GMRES together with diagonal preconditioning.
The values of h given below are such that h := maxT∈Dm

h
hT , hT = diam(T ).

Remark 4 Although the analysis requires γ > 0, the method works with γ = 0 and
produces very similar eocs to the ones displayed in the tables below for γ = 0.01.

6.1 2D examples

We set Ω = (−2.4, 2.4)2, T = 0.1, and choose γ = 0.01, ε = 85.33 h as well as
a uniform time step τm = 0.0025ε2,m = 1, . . . , M . In all our examples below Γ (t)
will be a circle Γ (t) = {x ∈ R

2 | |x − m(t)| = 1} of radius 1 with center m(t) ∈ R
2.

In addition to E1, E2 we shall also investigate the errors appearing in Corollary 1. To
do so we choose L > 0 and define the following quadrature points

xl(t) := m(t) +
(

cos

(
2πl

L

)

, sin

(
2πl

L

))T

, l = 0, . . . , L − 1
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Table 1 Errors and experimental orders of convergence for Example 1

h ε E1 eoc1 E2 eoc2

4.6875e−03 0.4 2.0565e−04 – 1.0763e−03 –

3.3146e−03 0.2
√
2 3.2822e−05 5.295 2.7030e−04 3.987

2.3437e−03 0.2 6.5608e−06 4.645 6.7864e−05 3.988

1.6573e−03 0.1
√
2 1.4513e−06 4.353 1.7017e−05 3.991

1.1719e−03 0.1 3.4022e−07 4.186 4.2668e−06 3.991

Table 2 Errors and experimental orders of convergence for Example 1

h ε E3 eoc3 E4 eoc4

4.6875e−03 0.4 2.7651e−05 – 4.3137e−06 –

3.3146e−03 0.2
√
2 8.1077e−06 3.540 1.6031e−06 2.856

2.3437e−03 0.2 2.1848e−06 3.784 5.9541e−07 2.858

1.6573e−03 0.1
√
2 5.6637e−07 3.895 2.3962e−07 2.626

1.1719e−03 0.1 1.4412e−07 3.949 9.6590e−08 2.622

as well as

E3 = max
m=1,...,M

L−1∑

l=0

2π

L
|u(xl(tm), tm) − umh (xl(tm))|2,

E4 =
M∑

m=1

τm

L−1∑

l=0

2π

L
|∇Γ u(xl(tm), tm) − ∇Γ u

m
h (xl(tm))|2.

In our computations L = 200 turned out to be sufficient.

Example 1 For our first example we consider the stationary unit circle Γ (t) = Γ =
S1, t ∈ [0, T ] described as the zero level set of the function φ(x) := x21 + x22 − 1.

The function u(x, t) := e−4t
[
x1x2 cos(π t) + 1

2 (x
2
1 − x22 ) sin(π t)

]
is a solution

of (1), (2) for the velocity field v(x) = π
2 (x2,−x1)T , f = 0 and the initial data

u0(x) = x1x2. A similar choice of velocity appears in Example 3 in [10]. In Tables 1
and 2 we display the values of Ei , i = 1 → 4, together with the eocs.

Example 2 (cf. [16, Section 3.1], [26], Example 5.2) We consider the family of unit
circles Γ (t) = {x ∈ R

2 | (x1 + 1
2 − 2t)2 + x22 = 1} described as the zero level set of

φ(x, t) = (x1 + 1
2 − 2t)2 + x22 − 1. The function u : ST → R, u(x, t) = e−4t (x1 +

1
2 − 2t)x2 is a solution of (1), (2) for the velocity field v(x, t) = (2, 0)T , f = 0 and
the initial data u0(x) = (x1 + 1

2 )x2. The results are displayed in Tables 3 and 4 where
we see eocs that are similar to the ones in Tables 1 and 2.
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Table 3 Errors and experimental orders of convergence for Example 2

h ε E1 eoc1 E2 eoc2

4.6875e−03 0.4 1.5537e−04 – 9.3201e−04 –

3.3146e−03 0.2
√
2 2.5206e−05 5.248 2.3280e−04 4.002

2.3437e−03 0.2 4.8726e−06 4.742 5.8500e−05 3.985

1.6573e−03 0.1
√
2 1.0558e−06 4.413 1.4776e−05 3.970

1.1719e−03 0.1 2.4507e−07 4.214 3.7865e−06 3.929

Table 4 Errors and experimental orders of convergence for Example 2

h ε E3 eoc3 E4 eoc4

4.6875e−03 0.4 1.8431e−05 – 3.0082e−06 –

3.3146e−03 0.2
√
2 5.6312e−06 3.421 1.2489e−06 2.537

2.3437e−03 0.2 1.5443e−06 3.733 4.8015e−07 2.758

1.6573e−03 0.1
√
2 4.0396e−07 3.869 1.9389e−07 2.616

1.1719e−03 0.1 1.0350e−07 3.929 8.1747e−08 2.492

We see that the eoc for E1 is reducing towards 4, the eocs for E2 and E3 are close to
4 and the eoc for E4 is between 2 and 3 which is better than Theorem 2 predicts.
Since E1 and E3 approximate L2–errors, higher eocs can be expected although a
corresponding proof is by no means straightforward and beyond the scope of this
paper. The higher eoc for E2 presumably reflects a superconvergence effect because
we consider ∇(Imh ûm − umh ) rather than ∇(ûm − umh ). We expect that E4 will tend
towards 2 if ε, h and τ are reduced further.

6.2 3D example

Example 3 Herewe consider the first example in Section 7 of [18] in which a family of
expanding and collapsing spheres is considered such thatΓ (t) = {x ∈ R

2 | |x | = r(t)}
where r(t) = 1+sin2(π t), described as the zero level set of φ(x, t) = x21 + x22 + x23 −
r(t)2. The function u : ST → R, u(x, t) = 2

r(t)2|x |2 e
−6

∫ t
0

1
r2(t) x1x3 is a solution of (1),

(2) for the velocity field v(x, t) = r ′(t)
|x | x, f = 0 and the initial data u0(x) = 2

|x |2 x1x3.
We setΩ = (−4, 4)3, T = 0.1 and choose γ = 0.01, ε = 1.85 h as well as a uniform
time step τm = 0.5h2,m = 1, . . . , M . For this example we only display the errors on
the surfaces which are in this case approximated by the quadrature rules

E3 = max
m=1,...,M

2L−1∑

k=0

L−1∑

l=0

(π

L

)2 |u(xk,l(tm), tm) − umh (xk,l(tm))|2 sin

(
lπ

L

)

,

E4 =
M∑

m=1

τm

2L−1∑

k=0

L−1∑

l=0

(π

L

)2 |∇Γ u(xk,l(tm), tm) − ∇Γ u
m
h (xk,l(tm))|2 sin

(
lπ

L

)

,
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Table 5 Errors and experimental orders of convergence for Example 3

h ε E3 eoc3 E4 eoc4

2.1651e−01 0.4 5.2016e−05 – 2.5203e−03 –

1.5309e−01 0.2
√
2 1.1008e−05 4.481 1.3058e−03 1.897

1.0825e−01 0.2 2.8535e−06 3.896 6.8447e−04 1.864

7.6547e−02 0.1
√
2 6.9422e−07 4.079 3.4543e−04 1.973

Fig. 1 Computational results from Example 3: umh at times tm = 0, 0.2, 0.4 plotted on the zero level
surface of φm

h

where

xk,l(t) = r(t)

(

cos

(
kπ

L

)

sin

(
lπ

L

)

, sin

(
kπ

L

)

sin

(
lπ

L

)

, cos

(
lπ

L

))T

,

k = 0, . . . , 2L − 1, l = 0, . . . , L − 1.

For the choice L = 200 the results are displayed in Table 5, where we see eocs close
to 4 for E3 and eocs close to 2 for E4.

We conclude with Fig. 1 in which we present the approximate umh at times tm =
0, 0.2, 0.4 plotted on the zero level surface of φm

h .
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Appendix

Lemma 8 Suppose that u is a smooth solution of (1) and denote by ue the extension
defined in (14). Then ue is a solution of (31) with R satisfying (32).
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Proof We use the notation introduced in Sect. 2.2 and begin by deriving a formula for
p̃(x, t) for x ∈ Uδ(t), t ∈ [0, T ]. Define

η(τ) := Ft (p(x, t), (1 − τ)φ(x, t)), τ ∈ [0, 1].

Recalling (9) and the definition of Ft we have

η′(τ ) = −φ(x, t)
∇φ(γp(x,t),t ((1 − τ)φ(x, t)), t)

∣
∣∇φ(γp(x,t),t ((1 − τ)φ(x, t)), t)

∣
∣2

.

Observing that γp(x,t),t (φ(x, t)) = Ft (p(x, t), φ(x, t)) = x and using similar argu-
ments to calculate η′′(τ ) we find for k = 1, . . . , n + 1 that

η′
k(0) = −φ(x, t)

φxk (x, t)

|∇φ(x, t)|2 ,

η′′
k (0) = φ(x, t)2

n+1∑

l,r=1

(

δkr − 2φxk (x, t)φxr (x, t)

|∇φ(x, t)|2
)

φxl (x, t)φxl xr (x, t)

|∇φ(x, t)|4 .

Since η(1) = Ft (p(x, t), 0) = Ψ (p(x, t), t) = p̃(x, t), η(0) = x we deduce with the
help of Taylor’s theorem that for k = 1, . . . , n + 1

p̃k(x, t) = xk − φ(x, t)
φxk (x, t)

|∇φ(x, t)|2 + 1

2
φ(x, t)2

n+1∑

l,r=1

(
δkr

−2φxk (x, t)φxr (x, t)

|∇φ(x, t)|2
)φxl (x, t)φxl xr (x, t)

|∇φ(x, t)|4 + φ(x, t)3rk(x, t), (58)

where rk are smooth functions. Starting from (58) it is not difficult to derive formulae
for p̃xi , p̃xi x j (cf. (2.9), (2.10) in [7]) and hence to deduce from (19) and (20) that

∇ue(x, t) = (I + φ(x, t)A(x, t))∇Γ u( p̃(x, t), t) (59)
1

|∇φ(x, t)|∇ · (|∇φ(x, t)|∇ue(x, t)
) = (ΔΓ u)( p̃(x, t), t)

+φ(x, t)

⎛

⎝
n+1∑

k,l=1

blk(x, t)Dl Dku( p̃(x, t), t) +
n+1∑

k=1

c̃k(x, t)Dku( p̃(x, t), t)

⎞

⎠ ,

(60)

where A = (aik), blk and c̃k are smooth. Furthermore, differentiating (58) with respect
to t we find that

p̃t (x, t) = − φt (x, t)

|∇φ(x, t)|2∇φ(x, t) + φ(x, t)q(x, t)

= V (x, t)ν(x, t) + φ(x, t)q(x, t), q smooth
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so that we infer from (59), (21) and (6) that

∂•
t u

e(x, t) = uet (x, t) + (
v(x, t),∇ue(x, t)

) = uet (x, t)

+(
v(x, t), (I + φ(x, t)A(x, t))∇Γ u( p̃(x, t), t)

)

= ∂•
t u( p̃(x, t), t) + (

(v(x, t) − v( p̃(x, t), t)),∇Γ u( p̃(x, t), t)
)

+ V (x, t)
(
(ν(x, t) − ν( p̃(x, t), t)),∇Γ u( p̃(x, t), t)

)

+φ(x, t)
(
q(x, t) + A(x, t)T v(x, t),∇Γ u( p̃(x, t), t)

)
. (61)

The fundamental theorem of calculus together with (58) implies that

v(x, t) − v( p̃(x, t), t) =
∫ 1

0
Dv(sx + (1 − s) p̃(x, t), t)ds (x − p̃(x, t))

= φ(x, t) q̃(x, t)

for some smooth q̃ .Arguing in the sameway for the correspondingdifference involving
ν we infer from (61)

∂•
t u

e(x, t) = ∂•
t u( p̃(x, t), t) + φ(x, t)

n+1∑

k=1

ĉk(x, t)Dku( p̃(x, t), t), (62)

where ĉk are smooth. Finally, since ∇φ · v( p̃(x, t), t) = ∇Γ · v( p̃(x, t), t) we have

ue(x, t)∇φ · v(x, t) = u( p̃(x, t), t)∇φ · v( p̃(x, t), t)

+u( p̃(x, t), t)
(∇φ · v(x, t) − ∇φ · v( p̃(x, t), t)

)

= u( p̃(x, t), t)∇Γ · v( p̃(x, t), t) + u( p̃(x, t), t)φ(x, t)r̄(x, t).

(63)

Here, the second term has been rewritten in a similar way as above for some smooth
r̄ . Combining (60)–(63) we deduce that the extension ue of a function u solving (1)
satisfies (31), where R has the form (32). 
�
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