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Abstract
Nicotine, a pervasive global environmental pollutant, is released throughout every phase of the tobacco’s life cycle. This 
study examined the probable ameliorative role of Chlorella vulgaris (ChV) extract against nicotine (NIC)-induced hepatic 
injury in Ehrlich ascites carcinoma (EAC) bearing female Swiss mice. Sixty female Swiss mice were assigned to four equal 
groups orally gavaged 2% saccharin 0.2 mL/mouse (control group), orally intubated 100 mg ChV /kg (ChV group), orally 
intubated 100 µg/mL NIC in 2% saccharin (NIC group), and orally intubated NIC + ChV as in group 3 and 2 (NIC+ChV 
group). The dosing was daily for 4 weeks. Mice from all experimental groups were then inoculated intraperitoneally with 
viable tumor cells 2.5 × 106 (0.2 mL/mouse) in the fourth week, and the treatments were extended for another 2 weeks. The 
results have shown that NIC exposure significantly altered the serum levels of liver function indices, lipid profile, LDH, and 
ALP in the NIC-exposed group. NIC administration significantly increased hepatic inflammation, lipid peroxidation, and 
DNA damage-related biomarkers but reduced antioxidant enzyme activities. NIC exposure downregulated SOD1, SOD2, 
CAT​, GPX1, and GPX2 but upregulated NF-κB hepatic gene expression. Notably, the presence of the EAC cells outside 
the liver was common in all mice groups. Liver tissue of the NIC-exposed group showed multifocal expansion of hepatic 
sinusoids by neoplastic cells. However, with no evidence of considerable infiltration of EAC cells inside the sinusoids or in 
periportal areas in the NIC + ChV groups. NIC significantly altered caspase-3, Bax, and BcL2 hepatic immune expression. 
Interestingly, ChV administration significantly mitigates NIC-induced alterations in hepatic function indices, lipid profile, 
and the mRNA expression of antioxidant and NF-κB genes and regulates the caspase-3, Bax, and BcL2 immunostaining. 
Finally, the in vivo protective outcomes of ChV against NIC-induced hepatic injury combined with EAC in female Swiss 
mice could suggest their helpful role for cancer patients who are directly or indirectly exposed to NIC daily.
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Abbreviations
NIC	� Nicotine
ChV	� Chlorella vulgaris
ROS	� Reactive oxygen species
EAC	� Ehrlich ascites carcinoma
TNF-α	� Tumor necrosis factors
NF-κB	� Nuclear factor-kappa B
NRT	� Nicotine replacement therapy
LPO	� Lipid peroxidation
Caspase-3	� Cysteine aspartate specific protease-3
Bax	� Bcl-2-associated X protein
Bcl-2	� B-cell lymphoma-2
MDA	� Malondialdehyde
PCO	� Protein carbonyl
8OH2dG	� 8-Hydroxy-2-deoxyguanosine
GAPDH	� Glyceraldehyde-3-phosphate dehydrogenase
SOD1	� Superoxide dismutase 1
SOD2	� Superoxide dismutase 2
CAT​	� Catalase
GPX1	� Glutathione peroxidase 1
GPX2	� Glutathione peroxidase 2

Introduction

Environmental risk factors, such as exposure to pollutants, 
contribute to the initiation, progression, and increase of the 
cancer severity (Esterhuizen et al. 2023). In terms of global 
public health, tobacco smoke is now at the top of the list of 
hazardous environmental pollutants (Zhou 2019). According 
to the Centers for Disease Control and Prevention, smoking 
is the greatest cause of mortality in Egypt and the United 
States, with more than 34,000 and 480,000 deaths each year, 
respectively (Abdel-Hady and El-Gilany 2020). Persistent 
tobacco smoking in cancer patients has several negative 
outcomes, including treatment failure, worse quality of life, 
lower survival rates, and an increased chance of second pri-
mary tumors (Warren et al. 2014; Jassem 2019). Aside from 
cancer type, stage, and site, persistent smoking is regarded 
as the best negative predictor of survival in cancer patients 
(Jassem 2019). The effects of nicotine (NIC) and cigarette 
smoke on several organ systems’ stem cell-associated path-
ways that are important for carcinogenesis are becoming 
more clear (Thong et al. 2019).

NIC is a major alkaloid that accounts for about 95% of 
the total alkaloid content in commercial tobacco (Nwosu 
and Krasowski 2023). Various stages of the tobacco life 
cycle contribute to environmental contamination with NIC. 
These stages include tobacco cultivation, cigarette produc-
tion, combustion of cigarettes, and the release of NIC and 
its metabolites into human wastewater streams (Beutel et al. 
2021). The toxic effects of NIC are most pronounced in the 
liver since it is responsible for most of NIC’s metabolism 

and biotransformation (Ateyya et al. 2017). Chronic NIC 
administration promotes activation of cytochrome P-450 and 
increased reactive oxygen species (ROS) generation (Yue 
et al. 2009). NIC promotes ROS production by activating 
the nicotinamide adenine dinucleotide phosphate-oxidase 
enzyme (NADPH oxidase/NOX1) (Asano et  al. 2012). 
NIC has further been implicated in hepatic oxidative stress, 
apoptosis, and lipid dysmetabolism (Chen et al. 2018; Hasan 
et al. 2019; Dangana et al. 2020). NIC exposure resulted in 
hepatic tissue inflammation chiefly via augmented expres-
sion of NADPH oxidase enzyme, inducible nitric oxide syn-
thase (iNOS), nuclear factor kappa B (NF-κB), and tumor 
necrosis factor-alpha (TNF-α) (Khaled et al. 2020). Thus, 
based on the information obtained from these studies, we 
have designed this experiment to appraise the impact of 
NIC exposure on cancer progression and liver function in 
an in vivo mice model bearing Ehrlich ascites carcinoma 
(EAC). Because of its similarities to human tumors, EAC is 
often used to assess the anticancer activity of different drugs 
or natural products using its ascetic forms (Hashem et al. 
2020; Oraby et al. 2023).

Research on microalgae has garnered significant inter-
est because of the potential health benefits they may offer 
(Lozoya-Pérez et al. 2024). Chlorella vulgaris (ChV) is a 
single-celled microalgae that grows in fresh water and is 
considered a safe dietary supplement by the United States 
Food and Drug Administration (USFDA) (Silva et al. 2019; 
Elif 2023). ChV is a high-nutrient dietary source compris-
ing 61.6% proteins, 12.5% fat, and 13.7% carbs and con-
sists of more than 20 minerals and vitamins (Perveen et al. 
2022). Furthermore, ChV contains numerous antioxidants 
such as chlorophyll, carotenoids, tocopherol, ascorbic acid, 
omega-6, and omega-3 polyunsaturated fatty acids, poly-
saccharides, essential amino acids, α- and β-carotene, and 
vitamins (Panahi et al. 2016). In ChV, alpha and β-carotene 
interact with different ROS and consequently suppress the 
oxidation processes in cellular and lipid compartments (Nass 
et al. 2022). Besides, chlorophylls found in ChV aid in low-
ering oxidative DNA damage and lipid peroxidation (LPO) 
through decreasing chelating ROS and metal ions (Queiroz 
et al. 2011). According to a study compromising 32 differ-
ent microalgae species, ChV has great antioxidant activity 
(Goiris et al. 2012). ChV has been shown to provide multiple 
potential benefits to human health such as antidiabetic (Ebra-
himi-Mameghani et al. 2017), hypo-cholesterolemic (Shera-
fati et al. 2022), cardio-protective (Barghchi et al. 2023), 
and antiparasitic (Melo et al. 2024). Besides, ChV has been 
shown to possess antioxidant, anti-inflammatory, and antipa-
poptotic activities (Abdel-Aziem et al. 2018; Mohamed et al. 
2023). In patients with non-alcoholic fatty liver disease, ChV 
has been suggested as an adjunctive therapy to improve liver 
function (Ebrahimi-Mameghani et al. 2017). ChV regulated 
antioxidant enzyme activity and malondialdehyde (MDA) 



Naunyn-Schmiedeberg's Archives of Pharmacology	

levels and decreased tumor numbers in ethionine-induced 
liver cancer in rats (Sulaiman et al. 2006). Supplementation 
with ChV for 6 weeks in Iranian chronic cigarette smok-
ers significantly improved antioxidant status and reduced 
LPO (Panahi et al. 2013). ChV also exhibited its antioxi-
dant competencies in the liver in numerous modes: from 
suppression of ROS release to augmentation of antioxidant 
enzymes (superoxide dismutase (SOD) and catalase (CAT)) 
activities and upregulation of main antioxidant genes (Sikiru 
et al. 2019). Furthermore, ChV supplementation in carbon 
tetra chloride (CCL4)-exposed rats slows liver fibrosis devel-
opment by blocking the TGF signaling pathway (Mohseni 
et al. 2021).

Although many studies on ChV have been undertaken, 
there is still insufficient knowledge concerning the hepato-
protective effect of ChV against NIC. Therefore, the present 
trial aimed to evaluate the possible ameliorating role of ChV 
against hepatotoxicity induced by NIC oral intoxication in 
female Swiss mice combined with EAC induction through 
biochemical, molecular, histopathological, and immunohis-
tochemical analyses.

Material and methods

Tested compounds

NIC and saccharin were provided from Sigma-Aldrich Che-
mie GmbH and (CAS Name: 54–11-5; 81–07-2) and prod-
uct numbers N3876-5ML and 109,185, respectively. The 
ChV ethanolic extract 80% used in this investigation was a 
kind gift of Dr. Mohamed A.A.R., Department of Forensic 
Medicine and Toxicology, Faculty of Veterinary Medicine, 
Zagazig University, which was prepared according to Elsawi 
et al. (2018), and evaluated using HPLC (Agilent 1100, 
Merck KGaA, Darmstadt, Germany). The extract contains 
numerous flavonoids, phenolic, and polysaccharide com-
pounds, including quercetin, rutin, hesperidin, 7-OH flavone, 
ellagic, cinnamic, glucuronic acid, catechol, and Rhamnose 
(Mohamed et al. 2022). The EAC parent line was graciously 
given by Egypt’s National Cancer Institute at Cairo Univer-
sity. The viability of the parent EAC line was investigated 
according to Scheid et al. (1972). EAC was maintained in 
Swiss mice by serialized intraperitoneal transplantations of 
EAC 2.5 × 106 tumor cells/0.2 mL in female Swiss albino 
mice.

Animals and experimental design

A total of sixty Swiss female mice (24 ± 2 g average body 
weight) were provided from the veterinary medicine lab-
oratory animal farm at Zagazig University (El-Sharkia, 
Egypt). Mice complied with conventional laboratory hygiene 

settings, including a temperature range of 22–28 °C, a 12-h 
light/dark cycle, and a relative humidity range of 50–60%. 
The animals were accustomed to the laboratory conditions 
for 2 weeks before the trial, freely allowed to obtain water 
and balanced feed during the acclimatization and experimen-
tal periods. The experimental measures were approved by 
the Institutional Animal Care and Use Committee (IACUC) 
of the Faculty of Veterinary Medicine, Zagazig University, 
Egypt (ZU-IACUC/2f/ 278/2022). Mice were separated 
into four groups (n = 15): the first control group (C, orally 
received 2% saccharin dissolved in distilled water 0.2 mL/
mouse), the second ChV group (ChV, orally intubated 100 
mg/kg ChV BW dissolved in distilled water according to 
Justo et al. (2001), the third NIC group (NIC, were orally 
gavaged with 100 µg/ml NIC in 2% saccharin according 
to Sparks and Pauly (1999), the fourth NIC + ChV group 
(orally co-administered NIC and ChV by the same doses 
and routes in groups 3 and 2). The dosing was orally and 
daily for the whole experimental period of 4 weeks using 
a bent stainless steel stomach tube. Then, mice from all 
experimental groups were inoculated intraperitoneally (i.p) 
with 2.5 × 106 viable tumor cells in 0.2 mL per mouse. The 
Trypan blue dye exclusion method was used to determine 
viability, which was always determined to be at least 95%. 
Then, mice were dosed daily for another 2 weeks.

Sampling

Blood samples were taken from the retro-orbital plexus of 
each mouse from all experimental groups. Blood was col-
lected in a plain tube, left for coagulation, and centrifuged at 
3000 rpm for 10 min. The serum samples were kept at − 20 
°C for the biochemical analysis of hepatic enzymes and lipid 
profile. Additionally, for the determination of hepatic mRNA 
expression levels of inflammatory and oxidative stress-
related genes, a small portion of liver tissues (30 mg) was 
dissected from the euthanized mice from all experimental 
groups and was immersed in about five volumes of RNAl-
ater® solution. The samples were stored at − 80 °C for fol-
lowing RT-PCR procedures. For the assessment of oxidative 
stress and inflammatory-related biomarkers, hepatic tissue 
(0.5 g) was dissected and homogenized (WiseTis HG-15D 
homogenizer, Daihan Scientific Co., Seoul, Korea). Finally, 
liver specimens were immediately post-fixed in 10% neutral-
buffered formalin for histopathological and immunohisto-
chemical assessment.

Biochemical estimations of serum levels of lipid 
profile and hepatic enzyme activities

Triglycerides, total cholesterol, low-density lipoproteins 
(LDL-C), high-density lipoproteins (HDL-C), total pro-
teins, albumin, alkaline phosphatase (ALP), aspartate 
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aminotransferase (AST), and alanine aminotransferase 
(ALT) level in the serum were determined by colorimetric 
kits of Bio-diagnostic CO (Dokki, Giza, Egypt) with the 
following catalog number: TR 20 30, CH 12 20, CH 12 30, 
CH 12 31, TP 20 20, AB 10 10, AP 10 21, AS 10 61, and AL 
10 31, respectively. Serum globulin level was estimated by 
deducting the albumin level obtained from the total protein. 
The Spinreact Co. (Santa Coloma, Spain) lactate dehydro-
genase (LDH) kit was used to determine LDH levels. Also, 
very low-density lipoprotein (VLDL-C) was calculated 
according to the method of (Friedewald et al. 1972).

Biochemical assessments of inflammation 
and oxidative stress‑related indices in hepatic tissue

The hepatic levels of reduced glutathione (GSH), nitric 
oxide (NO), and MDA, together with the activities of glu-
tathione peroxidase (GPX), SOD, and CAT, were measured 
via using the kit of Bio-diagnostic CO (Dokki, Giza, Egypt) 
with CAT. No. GR 25 11, NO. 25 33, MD 25 29, GP 2524, 
SD 25 21, and CA 25 17, respectively. Meanwhile, TNF-
α, IL-6, interleukin-1 (IL-1), 8-hydroxy-deoxyguanosine 
(8-OHdG), and protein carbonyl (PCO) were determined by 
specific mouse ELISA kits of MyBioSource Co. (San Diego, 
CA, USA) with Cat. Nos. MBS825075, MBS2508516, 
MBS036031, MBS700097, and MBS2600846, respectively.

Real‑time quantitative PCR (RT‑qPCR) investigation 
of hepatic oxidative stress and inflammation‑related 
genes

TRIzolTM (Invitrogen; Thermo Fisher Scientific, Inc. 
Waltham, MA, USA) was used to extract total RNA. cDNA 
was synthesized using the HiSenScript™ RH (-) cDNA Syn-
thesis Kit (iNtRON Biotechnology Co., South Korea) (Ari-
sha and Moustafa 2019). The RT-PCR was accomplished in 
an Mx3005P Real-Time PCR System (Agilent Stratagene, 
USA) by TOPreal™ qPCR 2X PreMIX (SYBR Green with 
low ROX) following the manufacturer’s guidelines. An 

initial denaturation at 95 °C for 15 min was followed by 
40 cycles of denaturation for 30 s at 95 °C under the PCR 
cycling conditions, annealing at 60 °C for 60 s, and exten-
sion for 60 s at 72 °C. The oligonucleotide-specific prim-
ers are shown in Table 1 in line with Dong et al. (2008), 
Nguyen et al. (2016), and Ying et al. (2019). The 2−ΔΔCT 
comparative technique was used to calculate the relative 
fold changes in gene expression after normalizing the target 
genes’ expression levels to Gapdh (Livak and Schmittgen 
2001).

Histopathological and immunohistochemical 
investigations of Bax, caspase‑3, and Bcl2

The formalin-fixed liver specimens were rinsed, dehydrated 
in escalating degrees of ethyl alcohol, clarified in xylene, 
and further processed for the paraffin technique (Layton 
et al. 2018). A microtome (Leica RM 2155, England) was 
used to slice three successive paraffin sections with a thick-
ness of five microns. Before the microscopical examination, 
the sections were stained with hematoxylin and eosin as per 
protocol, mounted in DPX, and covered with a glass slide 
(Suvarna and Layton 2013).

For immunohistochemical workup, the previously 
obtained tissue, ten slides per biomarker per group (5 µm 
paraffin sections) were managed for immunohistochemical 
staining following the ABC technique described by Hsu 
et al. (1981) using the following primary antibodies: (a) for 
caspase-3, rabbit monoclonal (EPR18297) to anti-mice cas-
pase-3 (Abcam, Cat. no. ab184787, dilution 1;1000); (b) for 
Bax, rabbit polyclonal anti-Bax antibody (Abcam, Cat. no. 
ab53154, dilution 1; 50); (c) for BcL-2, rabbit monoclonal 
(EP10625) to anti-mice BcL-2 (Abcam, cat. no. ab203516, 
dilution 1;500). (ABCAM Inc., Cambridge, UK). Also, 
negative sections from the control were obtained by incu-
bating with phosphate buffer saline to replace the primary 
antibodies.

To measure positive reactivity, images of different 
sections stained with antibodies were examined under a 

Table 1   Primer sequences used for RT-PCR analysis

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; NF-κB, nuclear factor kappa B; SOD1, superoxide dismutase 1; SOD2, superoxide dis-
mutase 2; CAT​, catalase; GPX1, glutathione peroxidase 1; GPX2, glutathione peroxidase 2

Gene Forward primer (5′–3′) Reverse primer (5′–3′) Reference

GAPDH CGT​GTT​CCT​ACC​CCC​AAT​GA-3 ATG​TCA​TCA​TAC​TTG​GCA​GGT​TTC​T (Ying et al. 2019)
NF-κB CAC​TGA​GGA​GAC​CAC​CCA​AG GTA​AAC​GCC​GAA​GAT​GAT​GG (Ying et al. 2019)
SOD1 GTG​ATT​GGG​ATT​GCG​CAG​TA TGG​TTT​GAG​GGT​AGC​AGA​TGAGT​ (Dong et al. 2008)
SOD2 TTA​ACG​CGC​AGA​TCA​TGC​A GGT​GGC​GTT​GAG​ATT​GTT​CA (Dong et al. 2008)
CAT​ TGA​GAA​GCC​TAA​GAA​CGC​AATTC​ CCC​TTC​GCA​GCC​ATGTG​ (Dong et al. 2008)
GPX1 CAC​CGA​GAT​GAA​CGA​TCT​G CAG​GTC​GGA​CGT​ACT​TGA​G (Nguyen et al. 2016)
GPX2 ACC​GAT​CCC​AAG​CTC​ATC​AT CAA​AGT​TCC​AGG​ACA​CGT​CTGA​ (Dong et al. 2008)
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microscope powered by an Olympus BX-50 in Tokyo, 
Japan, with a 1/2 × photo adapter and a 40 × objective. The 
images were captured using an Olympus LC20 digital cam-
era, which was put on an Olympus microscope. The images 
were analyzed using a computer with an Intel® Core I3® 
and the Russian program Video Test Morphology 5.2, which 
has a dedicated method for immunohistochemical analysis 
and stain quantification. The system determined caspase-3, 
Bax, and Bcl2 expression percentages in a certain region. 
For quantitative analysis, we selected five representative 
areas in total with both positive cell areas and areas without 
expression. If a tissue section had areas with both low abun-
dance and high abundance of stained cells, both areas were 
selected as representative areas and included in the analy-
sis. Individual cells were identified by strong brown stain 
and Image analysis software (JID801D) assessed positive 
cells. We counted the number of positive expressed cells per 
mm2 and converted them into area %. The cell counting was 
repeated three times for each area. All images were analyzed 
in a blinded fashion.

Statistical method

The statistical data was analyzed using IBM SPSS, version 
21, with a one-way analysis of variance (ANOVA). Tuk-
ey’s multiple range test was used for pairwise comparisons 
between the experimental groups. The data is displayed as 
the average with or without the standard error. Statistical 
significance was defined as a probability level lower than 
0.05. GraphPad Prism 8 from GraphPad Software Inc. in San 
Diego, CA, USA, was used to generate every graph.

Results

Effect of ChV and/or NIC exposure combined 
with EAC on liver function and lipid profile

The observed changes in liver function and lipid profile 
in the serum of EAC-bearing female Swiss mice exposed 
to ChV and/or NIC are shown in Table 2. Administration 
of ChV resulted in a significant decrease in ALT, AST, 
ALP, and LDH levels by 30.13%, 21.73%, 12.07%, and 
12.45%, respectively, relative to the C group. Besides, 
ChV exposure significantly decreased TGs, TC, LDL-C, 
and VLDL-C by 31.48%, 8.79%, 22.75%, and 13.96%, 
respectively, but resulted in a non-significant increase 
in HDL-C by 18.84% than the C group. Moreover, ChV 
exposure induced a significant increase in total proteins, 
albumin, and A/G ratio by 15.37%, 27.20%, and 22.13%, 
respectively, while serum levels of globulins and HDL-C 
were non-significantly increased by 1.24% and 18.84%, 
respectively, than the C group.

NIC exposure significantly increased ALT, AST, ALP, 
and LDH serum levels by 93.18%, 34.36%, 50%, and 
38.81%, respectively, but significantly reduced the serum 
content of total proteins, albumin, and globulins by 30.75%, 
34.97%, and 25.70%, respectively, while A/G ratio was 
non-significantly decreased by 9.84% when matched with 
the C group. Also, NIC exposure significantly increased 
serum levels of TG, TC, VLDL-C, and LDL-C by 6.17%, 
42.58%, 44.17%, and 89.59%, respectively, and significantly 
decreased HDL-C serum levels by 47.40% than the C group.

Table 2   Effect of Chlorella 
vulgaris (ChV) and/or nicotine 
(NIC) exposure on liver 
function and lipid profile 
indices in serum of Ehrlich 
ascites carcinoma (EAC)-
bearing female Swiss mice

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; LDH, lactate 
dehydrogenase; A/G ratio, albumin/globulin ratio; HDL-C, high-density lipoproteins; LDL-C, low-density 
lipoproteins; VLDL-C, very low-density lipoproteins. Values are mean ± SEM of six mice per experimental 
group. *P < 0.05 vs control, #P < 0.05 vs NIC

Parameters Groups

Control ChV NIC NIC + ChV

ALT(U/L) 24.33 ± 0.71 17.00 ± 0.73 * 47.00 ± 1.63 * 30.00 ± 1.07 * # 
AST (U/L) 38.33 ± 0.84 30.00 ± 0.86 * 51.50 ± 1.05 * 44.83 ± 1.66 * #

ALP (IU/L) 58.00 ± 1.59 51.00 ± 0.76 * 87.00 ± 1.69 * 70.33 ± 0.84 * #

LDH (U/L) 362.83 ± 7.53 317.66 ± 8.48 * 503.66 ± 12.47 * 420.33 ± 10.81 #

Total proteins (g/dl) 7.09 ± 0.06 8.18 ± 0.22 * 4.92 ± 0.07 * 6.46 ± 0.22 #

Albumin (g/dl) 3.86 ± 0.17 4.91 ± 0.19 * 2.52 ± 0.02 * 3.55 ± 0.16 #

Globulins (g/dl) 3.23 ± 0.14 3.27 ± 0.02 2.40 ± 0.07 * 2.91 ± 0.08 #

A/G ratio 1.22 ± 0.09 1.49 ± 0.05 * 1.10 ± 0.06 1.22 ± 0.05
Cholesterol (mg/dl) 170.66 ± 2.23 155.66 ± 2.43* 243.33 ± 2.13 * 192.66 ± 2.69*#

Triglycerides (mg/dl) 126.00 ± 1.67 111.00 ± 2.98 * 172.00 ± 4.57 * 145.33 ± 2.07* #

HDL-C (mg/dl) 51.33 ± 1.05 61.00 ± 4.11 27.00 ± 2.22 * 37.33 ± 1.28* #

LDL-C (mg/dl) 95.96 ± 1.84 74.13 ± 3.76 * 181.93 ± 2.49 * 126.26 ± 3.39* #

VLDL-C (mg/dl) 23.86 ± 0.62 20.53 ± 0.36 * 34.40 ± 0.91* 29.06 ± 0.41* #
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ChV oral dosing in the NIC + ChV group significantly 
reestablished the increased ALT, AST, and ALP serum 
levels by 23.30%, 16.96%, and 21.26%, respectively, while 
LDH serum levels non-significantly restored by 15.85% than 
the C group. Additionally, ChV administration non-signifi-
cantly regenerated the NIC-induced decrease of serum levels 
of total protein, albumin, and globulin to (8.89%, 8.03%, and 
9.91% decrease) compared with the C group. Also, ChV 
dosing in the NIC + ChV group significantly restored the 
increased serum levels of TG, TC, LDL-C, and VLDL-C 
to 10.29%, 12.89%, 31.58%, and 21.79%, respectively, and 
significantly reinstated the NIC-induced decrease in HDL-C 
serum levels to 27.27% than the C group.

Effect of ChV and/or NIC exposure combined 
with EAC on inflammatory and oxidative 
stress‑associated indices in hepatic tissue

The observed changes in oxidative stress and inflammation-
related biomarkers in the liver of EAC-bearing Swiss female 
mice exposed to ChV and/or NIC are shown in Figs. 1 and 
2. The ChV-treated group showed a significant decrease 
of NO, TNF-α, IL6, IL1, MDA, and 8-OHdG by 18.57%, 
6.20%, 16.00%, 20.36%, 36.05%, and 30.56%, respectively, 
but exhibited a non-significant decrease by 31.53% in the 
PCO levels than the C group. ChV administration induced a 

significant increase in CAT, SOD, GSH, and GPx levels by 
21.05%, 18.93%, 12.21%, and 9.07%, respectively, compared 
to the C group.

NIC exposure in the NIC group significantly increased 
levels of NO, TNF-α, IL6, IL1, MDA, PCO, and 8-OHdG 
by 45.28%, 39.83%, 39.47%, 77.28, onefold%, twofold, and 
twofold%, respectively, and produced a significant decrease 
in CAT, SOD, GSH, and GPX levels by 63.16%, 48.59%, 
49.77%, and 30.12%, respectively, than the C group. Yet, 
ChV dosing in the NIC + ChV group significantly decreased 
the NIC-induced elevation of NO, TNF-α, IL6, IL1, MDA, 
PCO, and 8-OHdG hepatic levels to 24.83%, 20.34%, 
20.00%, 26.08%, 44.69%, 78.19%, and 93.52%, respec-
tively, than the C group. Also, ChV administration in the 
NIC + ChV group significantly restored the NIC-induced 
decrease of SOD, CAT, GSH, and GPX hepatic levels to 
31.36%, 23.68%, 17.37%, and 10.64%, respectively, than the 
C group.

Effect of ChV and/or NIC exposure combined 
with EAC on hepatic relative mRNA expression levels 
of oxidative stress‑related genes

The effect of ChV and/or NIC exposure on hepatic rela-
tive mRNA expression levels of SOD2, SOD1, CAT, GPX2, 
GPX1, and NF-κB of EAC-bearing female Swiss mice is 

Fig. 1   Effect of Chlorella vulgaris (ChV) and/or nicotine (NIC) expo-
sure on hepatic oxidative stress and lipid peroxidation indices of Ehr-
lich ascites carcinoma (EAC) bearing female Swiss mice. A Superox-
ide dismutase (SOD). B Catalase (CAT). C Glutathione peroxidase 1 

(GPX). D Reduced glutathione (GSH). E Malondialdehyde (MDA). 
Values are shown as mean ± SEM of 6 mice per experimental group. 
*P < 0.05 vs control, #P < 0.05 vs NIC
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shown in Fig. 3. The mRNA levels of SOD2, SOD1, CAT, 
GPX2, and GPX1 were upregulated in the ChV administered 
group by 65.20%, 39.00%, 94%, 29.10%, and 95%, respec-
tively, the upregulation was significant in the SOD1, CAT, 
and GPX2 genes expressions. In the meantime, there was 
a 24% decrease in NF-κB mRNA levels compared to the C 
group, which was not statistically significant.

The data showed that NIC exposure stimulated a sig-
nificant downregulation of SOD1, SOD2, CAT, GPX1, 
and GPX2 expression levels by 62.80%, 65.10%, 61.40%, 
72.2%, and 43.6%, respectively. On the contrary, mRNA 
levels of NF-κB were significantly upregulated by a two-
fold% increase in the NIC-exposed group if compared with 
the C group. ChV administration in the NIC + ChV group 
non-significantly modulated the NIC-induced downregula-
tion of SOD1, SOD2, CAT, and GPX1 to 21.00%, 15.00%, 
18.10%, and 24.00% reduction, respectively, while signifi-
cantly modulated the GPX2 regulation by 21.00% reduction 
as compared with the C group. Additionally, ChV co-admin-
istration significantly triggered a significant modulation of 
the NIC up-regulated NF-κB mRNA expression levels in 
the NIC + ChV group to a 67.80% decline compared to the 
C group.

Histopathological findings

Figure 4A–D shows serial sections from the livers of mice 
from all experimental groups. Microscopically, it is worth 
mentioning that the presence of the EAC cells outside the 
liver was a common finding in all mice groups, either in 
aggregates or as single cells resting in the liver capsule. 
The liver sections of the mice from the C group showed 
aggregates of EAC cells adhered to the hepatic capsule. The 
neoplastic cells had pleomorphic features with fine fibrin 
threads among them. Further, there are widely distributed 
areas of degenerative changes within hepatic cells besides 
randomly distributed focal necrotic areas that are invaded 
mostly with leukocytic infiltrates. The noticed inflammatory 
cells were mostly neutrophils and lymphocytes (Fig. 4A). 
The liver of mice from the ChV group exhibited few round 
cells within the hepatic capsule. In addition, degenerated 
hepatocytes, primarily hydropic and fatty degeneration, 
were seen. Moreover, scattered minute lymphocyte aggre-
gates within sinusoids or replaced the necrotic cells were 
also noticed. Aggregates of EAC cells were observed above, 
but not attached to the liver capsule. Figure 4B displayed 
large areas of EAC cells attached to the hepatic capsule. The 

Fig. 2   Effect of Chlorella vulgaris (ChV) and/or nicotine (NIC) expo-
sure on hepatic inflammatory, DNA damage, and protein oxidative 
damage indices of Ehrlich ascites carcinoma (EAC) bearing female 
Swiss mice. A Nitric oxide (NO). B Tumor necrosis factor α (TNFα). 

C Interleukin-6 (IL-6). D Interleukin-1 (IL-1). E Protein carbonyl 
(PCO). F 8-hydroxy-deoxyguanosine (8-OHdG). Values are shown as 
mean ± SEM of 6 mice per experimental group. *P < 0.05 vs control, 
#P < 0.05 vs NIC
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EAC cells were admixed with intense hemorrhages and a 
marked number of lymphocytes. The latter was also present 
within hepatic sinusoids of the NIC group with degenerative 
changes within most hepatic cells (Fig. 4C). The neoplastic 
cells were also seen inside the blood vessels and infiltrating 
the periportal triads, sometimes associated with leukocytic 
infiltration. The NIC + ChV group examined sections of liver 
tissue that declared a hyalinized hepatic capsule. Moreover, 
the subcapsular hepatic cells revealed intense degenerative 
changes that were mixed with accidental cell deaths and 
programmed cell deaths. However, few possible neoplas-
tic cells were infrequently detected inside the blood vessels 
(Fig. 4D).

Immunohistochemical findings

The scoring of the positive area of different immune-stained 
sections of hepatocytes is shown in Table 3. The immu-
nostaining for caspase-3 is shown in Fig. 5A–D for differ-
ent experimental groups. The examined liver sections of 
mice from the ChV group revealed mild cytoplasmic stain-
ing reactivity reaction for caspase-3% area of 5.33 ± 1.45 
(Fig. 5B). On the contrary, examined liver sections of mice 

from the C and NIC groups revealed a significant increase 
of % area (12.00 ± 1.73 and 37.33 ± 2.60, respectively) of 
the hepatocytes exhibiting moderate to strong cytoplasmic 
staining reactivity for caspase-3 (Fig. 5 A and C). Examined 
liver sections of mice from the NIC + ChV group revealed 
that all the hepatocytes were mildly stained for caspase-3, 
% area (29.00 ± 3.78) (Fig. 5D).

Regarding immunostaining for Bax, as shown in 
Fig. 6A–D, examined liver sections of mice from the ChV 
group revealed few positive cytoplasmic staining for Bax in 
their hepatic tissue with a % area of 9.00 ± 1.73 (Fig. 6B). In 
contrast, examined liver sections of mice from the from the 
C and NIC groups revealed a significant increase of % area 
(14.66 ± 2.40 and 42.00 ± 2.08, respectively) of the hepato-
cytes exhibiting moderate to strong cytoplasmic reactivity 
for Bax (Fig. 6 A and C). Examined liver sections of mice 
from the NIC + ChV group revealed a significant decrease 
of % area (27.00 ± 4.16) of the hepatocytes exhibiting weak 
cytoplasmic reactivity for Bax (Fig. 6D).

The immunostaining for Bcl2 is displayed in Fig. 7A–D. 
Examined liver sections of mice from the ChV group 
revealed hepatocytes with strong cytoplasmic brownish 
staining reactivities for Bcl2, with % area of 17.66 ± 2.33 

Fig. 3   Effect of Chlorella vulgaris (ChV) and/or nicotine (NIC) on 
hepatic relative mRNA expression levels of SOD1, SOD2, CAT, 
GPx1, GPx2, and NF-κB of Ehrlich ascites carcinoma (EAC) bear-
ing female Swiss mice. A Hepatic mRNA expression of superoxide 
dismutase 1 (SOD1). B Hepatic mRNA expression of superoxide dis-
mutase 2 (SOD2). C: Hepatic mRNA expression of catalase (CAT). 

D Hepatic mRNA expression of glutathione peroxidase 1 (GPx1). 
E Hepatic mRNA expression of glutathione peroxidase 1 (GPx2). F 
Hepatic mRNA expression of nuclear factor kappa B (NF-κB). Val-
ues are shown as mean ± SEM of 3 mice per experimental group. 
*P < 0.05 vs control, #P < 0.05 vs NIC
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(Fig.  7B). Examined liver sections of mice from the C 
and NIC groups revealed a significant decrease of % area 
(10.00 ± 1.15 and 2.66 ± 0.88, respectively) of the hepato-
cytes exhibiting mild to very weak cytoplasmic reactiv-
ity for Bcl2 (Fig. A and C). Examined liver sections of 

mice from the NIC + ChV group revealed that hepatocytes 
showed moderate cytoplasmic reactivity for Bcl2% area of 
6.33 ± 1.76 (Fig. 7D).

Discussion

The current study aimed to assess the ameliorative role of 
ChV administration against the detrimental effects induced 
by sub-chronic oral NIC exposure combined with EAC 
induction in female Swiss mice. The current research’s 
findings revealed that ChV significantly regulates the NIC-
induced alterations in hepatic function, lipid profile, oxida-
tive and inflammatory status, enhancing the mRNA expres-
sion pattern of antioxidant enzymes and pro-inflammatory 
cytokine-encoding genes and regulating the altered immune 
expression of caspase-3, Bax, and BcL2. EAC cells outside 
the liver were common in all mice groups, either in aggre-
gates or as single cells resting on the liver capsule. Aggre-
gates of EAC cells were observed above but not attached to 
the liver capsule in the ChV group, while multifocal expan-
sion of hepatic sinusoids and inside the blood vessels by 

Fig. 4   Photomicrograph of H&E-stained mice liver sections of mice 
from Ehrlich ascites carcinoma (EAC) bearing female Swiss mice of 
different groups (scale bar = 20 µm) showing A aggregates of Ehrlich 
ascites carcinoma cells adhered with hepatic capsule (arrow) and ran-
domly distributed focal necrotic area invaded with leukocytic infil-
trates (arrowheads) of the C group. B Hydropic degeneration (arrow) 
and scattered minute lymphocyte aggregates replaced the necrotic 

cells (arrowhead) of the ChV group. C Attached carcinoma cells to 
the hepatic capsule and admixed with intense hemorrhages and a 
marked number of lymphocytes (star) beside lymphocytosis within 
hepatic sinusoids (arrow) of the NIC group. D Intense accidental cell 
deaths (arrowhead) and programmed cell deaths (arrows), especially 
within subcapsular hepatocytes of the NIC + ChV group

Table 3   Scoring of the positive area of different immune-stained sec-
tions of hepatocytes with positive staining reactivity for caspase-3, 
Bax, and BcL2 in the liver of Ehrlich ascites carcinoma (EAC)-bear-
ing female Swiss mice exposed to nicotine (NIC) and/or Chlorella 
vulgaris (ChV)

Caspase-3, cysteine aspartate specific protease-3; Bax, Bcl-2-asso-
ciated X protein; Bcl-2, B-cell lymphoma-2. Values mean ± SEM of 
three animals per experimental group. Values mean ± SEM of three 
mice per experimental group. *P < 0.05 vs control, #P < 0.05 vs NIC

Markers Groups

C ChV NIC NIC + ChV

Caspase-3 12.00 ± 1.73 5.33 ± 1.45 37.33 ± 2.60 * 29.00 ± 3.78 *

Bax 14.66 ± 2.40 9.00 ± 1.73 42.00 ± 2.08 * 27.00 ± 4.16 
*#

BcL2 10.00 ± 1.15 17.66 ± 2.33 * 2.66 ± 0.88 * 6.33 ± 1.76 #
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neoplastic cells was comparable to EAC cells detected out-
side the liver in the other mice groups. However, few pos-
sible neoplastic cells were infrequently detected inside the 
blood vessels with no evidence of considerable infiltration 
of EAC cells inside the sinusoids or in periportal areas in 

the NIC + ChV administered group, indicating the protective 
role of ChV.

Serum levels of AST, ALP, ALT, and LDH enzymes 
were considerably higher in the NIC group compared to the 
C group. Increased serum enzyme levels appear to reflect 

Fig. 5   Representative pho-
tomicrograph for the hepatic 
immunostaining of caspase-3 
(A–D) for the protective effect 
of Chlorella vulgaris (ChV) 
on nicotine (NIC) induced 
liver injury of Ehrlich ascites 
carcinoma (EAC) bearing 
female Swiss mice. A C group 
showing moderate cytoplasmic 
staining reaction for caspase-3 
in hepatic tissue. B ChV group 
showing mild cytoplasmic 
staining reaction for caspase-3 
in hepatic tissue. C NIC group 
showing strong cytoplasmic 
staining reactivity for caspase-3 
in hepatic tissue. D NIC + ChV 
group showing a large number 
of mildly stained hepatocytes 
for caspase-3 in hepatic tis-
sue. IHC counterstaining with 
Mayer’s hematoxylin. Arrows 
indicate positively stained cells 
(scale bar = 20 µm)

Fig. 6   Representative pho-
tomicrograph for the hepatic 
immunostaining of Bax (A–D) 
for the protective effect of 
Chlorella vulgaris (ChV) 
on nicotine (NIC) induced 
liver injury of Ehrlich ascites 
carcinoma (EAC) bearing 
female Swiss mice. A C group 
showing moderate cytoplasmic 
labeling for Bax in hepatic tis-
sue. B ChV group showing few 
positive cytoplasmic staining 
for Bax in hepatic tissue. C NIC 
group showing strong hepatic 
cytoplasmic labeling for Bax 
in hepatic tissue, D NIC + ChV 
group showing weak cytoplas-
mic labeling for Bax in hepatic 
tissue. IHC counterstaining with 
Mayer’s hematoxylin. Arrows 
indicate positively stained cells 
(scale bar = 20 µm)
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cellular leakage, structural damage, and membrane marker 
performance malfunction in the liver as a result of NIC treat-
ment (Kolure et al. 2024). The observed abnormalities in 
NIC-treated mice could be explained by NIC-induced oxi-
dative stress. Free radicals produced by NIC metabolism 
appear to attack polyunsaturated fatty acids and promote 
LPO. Also, they react with DNA and alkylating groups 
of membrane proteins and other cellular macromolecules, 
causing hepatic cell membrane damage, change in mem-
brane permeability, and releases of hepatocyte cytozomal 
enzymes in serum. On the other hand, the serum levels of 
these enzymes are linked to liver function (Asante et al. 
2016). Thus, free radicals appear to alter the enzymatic 
function and induce necrosis (Kolure et al. 2024). Moreo-
ver, the alterations in biochemical-related indices aligned 
with the liver histological injuries reported previously by 
Chen et al. (2016). It is also possible that it is due to hepatic 
damage caused by cancer cells invading the liver (Sannappa 
Gowda et al. 2022), which is evidenced in the current study 
by a multifocal expansion of hepatic sinusoids and inside 
the blood vessels by neoplastic cells comparable to EAC 
cells detected outside the liver in the NIC-exposed mice 
groups. On the contrary, liver function–related enzymes 
were reduced in the ChV-received groups; which could be 
suggestive of ChV’s protective effects on the liver because of 
its antioxidant activities and drop of oxidative stress induced 
by NIC toxicity. This was achieved by increasing the activ-
ity of enzymatic antioxidants and decreasing the hepatic 
CYP2E1 level. Our results are in line with those of Panahi 

et al. (2012a), who found that ChV treatment reduced AST, 
ALT, TG, and body weight in NAFLD patients. Addition-
ally, Elsheikh et al. (2018) found that ChV extracts signifi-
cantly reduced serum ALT activity by inhibiting deltame-
thrin-induced hepatotoxicity in rats.

The TC, TG, and LDL-C serum levels of the NIC-
exposed group were significantly increased, but HDL-C 
was decreased considerably reflecting the dyslipidemic 
effect of NIC. In this respect, NIC augmented lipolysis in 
adipose tissue by combining with NIC-acetylcholine recep-
tors (Andersson and Arner 2001), releasing free fatty acids. 
Consecutively, this resulted in an enhanced synthesis of 
TGs and VLDL-C in the liver. Moreover, the exposure of 
hepatocytes to generated free fatty acids and dyslipidemia 
resulted in the injury of mitochondria and ROS overproduc-
tion (Tian et al. 2023). Ateyya et al. (2017) reported that NIC 
has been shown to induce hepatic synthesis of TC, LDL-C, 
TGs, and VLDL-C, adversely affecting lipid profile, which 
matched with the current study findings. On the other hand, 
in the ChV-administered mice, a substantial improvement in 
the lipid profile was observed. Our results corroborate those 
of Li et al. (2013), who stated that ChV dosing decreased 
hepatic lipid accumulation from CCl4 exposure in mice. 
This may be attributed to hepatic inflammation and lipid 
metabolism modulation. Similarly, Cherng and Shih (2006) 
reported that ChV administration in high-fat diet–induced 
models corrected dyslipidemia via reducing TG, TC, and 
LDL cholesterol levels in the serum. ChV has been shown 
to have hypoglycemic and hypolipidemic effects (Barghchi 

Fig. 7   Representative pho-
tomicrograph for the hepatic 
Immunostaining of Bcl2 (A–D) 
for the protective effect of Chlo-
rella vulgaris (ChV) on nicotine 
(NIC) induced liver injury 
of Ehrlich ascites carcinoma 
(EAC) bearing female Swiss 
mice. A C group showing mild 
cytoplasmic brownish staining 
reactivities for Bcl2 in hepatic 
tissue. B ChV group showing 
strong cytoplasmic brownish 
staining reactivities for Bcl2 
in hepatic tissue. C NIC group 
showing very weak hepatic 
cytoplasmic staining reactiv-
ity for Bcl2 in hepatic tissue. 
D NIC + ChV group showing 
moderate cytoplasmic reactivity 
for Bcl2 in hepatic tissue. (Scale 
bar = 20 µm)
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et al. 2023). In rats, chlorella powder consumption resulted 
in a considerable reduction in serum and liver cholesterol 
and TG (Lee et al. 2009). Finally, Panahi et al. (2012b) 
established that 600 mg/day of ChV supplementation low-
ered TC, LDL-C, and TGs in dyslipidemic patients. TG 
lowering effects of ChV are possibly related to the lower-
ing effect in plasma non-esterified fatty acid (NEFA) level 
because plasma NEFA is stored as TG in the liver (Barghchi 
et al. 2023).

Herein, NIC exposure decreased SOD, GPX, CAT, and 
GSH in liver tissues as well as increased LPO in the liver 
indicating oxidative stress in the NIC-exposed group. SOD 
is the first enzyme implicated in the detoxifying process and 
considered the most sensitive enzyme index in the hepato-
cellular injury. While CAT’s primary function is to scav-
enge H2O2 produced by free radicals or by SOD during the 
elimination of superoxide anions, it also converts H2O2 to 
H2O and O2. Because of its broad substrate requirements 
and great affinity for H2O2, the GPX is an effective ROS 
scavenger. Due to the antioxidant defense’s inefficiency in 
countering ROS-induced damage, these antioxidant enzymes 
are drastically reduced in the liver. The increased superox-
ide generation during NIC metabolism could explain the 
decrease in SOD activity in NIC-exposed animals (Kolure 
et al. 2024). The reduction of GPX activity in NIC-treated 
mice as obtained in this research indicated oxidative injury 
in the investigated tissues. Previous studies reported ROS 
production throughout NIC metabolism, such as hydroxyl 
radical, H2O2, superoxide anion, and NO (Hritcu et  al. 
2017). Therefore, the antioxidant enzyme inhibition in NIC-
treated mice could promote LPO, alter gene expression, and 
lead to cell death.

Herein, hepatic NO level significantly increases in NIC-
exposed mice, while ChV decreases NO. Moreover, the 
absorption of NIC in the body is accompanied by the trig-
gering of serum NO and oxidative stress levels (Lallemand 
et al. 2006). Similarly, Khaled et al. (2020) showed that 
NIC enhanced iNOS protein levels in lung and liver tissues, 
implying that iNOS mediated the high amounts of NO. Inter-
estingly, in the previous study, the ChV supplementation 
resulted in a hepatoprotective effect through suppressing the 
hepatic oxidative stress. In CCl4-induced acute liver dam-
age, Li et al. (2013) found that treating animals with ChV 
daily for 4 weeks significantly reduced MDA levels. Sur-
prisingly, compared to the control group, the ChV group 
showed a decrease in total oxidative stress and MDA levels 
and an increase in TAC. Consequently, under typical cir-
cumstances, the oxidative stress status decreased after ChV 
feeding. Additionally, ChV extracts raised GPx, CAT, and 
SOD activity in liver tissue while decreasing hepatic MDA 
and NO levels. Consistent with our results, Elsheikh et al. 
(2018) observed that administering 50 mg/kg BW of ChV 
powder to rats for 2 months raised CAT and SOD activity 

and decreased MDA levels. These results could be attribut-
able to the antioxidants included in the ChV extract, includ-
ing ascorbic acid, α and b carotenes, tocopherol, and lutein 
(Mohamed et al. 2022). Furthermore, ChV can directly and 
indirectly reduce free radical-induced damage via scaveng-
ing free radicals or stimulating antioxidant enzyme activity 
(Abdel-Khalek et al. 2023). ChV has chlorophylls, which 
reduce ROS production and hence prevent LPO (Pérez-
Gálvez et al. 2020). Furthermore, ChV exhibits strong scav-
enging action for superoxide anion radicals and NO owing 
to its phytochemical compounds like carotenoids and terpe-
noids (Safafar et al. 2015). Similarly, ChV protective and 
antioxidant effects are related to their content of phenolic 
compounds, which play a crucial role in free radicals scav-
enging, oxygen inhibition, and peroxide decomposition 
(Martins et al. 2016; Renugadevi et al. 2018). Additionally, 
Abu-Serie et al. (2018) found that ChV extracts significantly 
reduced LPO and TBARS amounts in leukocytes.

Smoking induces oxidative stress linked with LPO, lead-
ing to stellate cell activation and fibrosis. Smoking also 
boosts the pro-inflammatory cytokines (IL-1, IL-6, and 
TNF-α) generation, which has been linked to pathophysi-
ological problems, including organ damage (Andersen et al. 
2021). TNF-α is a well-known factor that causes liver injury 
(Chen and Ma 2019). As a result, the higher serum levels 
of pro-inflammatory cytokines IL-1 and TNF-α in NIC-
exposed animals could elucidate the histological changes 
in hepatic tissue and raised liver function enzyme activ-
ity seen in this group. The current study suggests that the 
increased oxidative stress might influence the elevated 
levels of pro-inflammatory cytokines, such as TNF-α and 
IL-1β (Elsherbiny et al. 2017). Measured levels of NFκB 
in liver homogenates by Khaled et al. (2020) have reported 
that NIC-induced tissue inflammation primarily by boosted 
NF-κB and TNF-α cytokine expression. It has been con-
veyed that NIC initiates α7 nicotinic acetylcholine receptors 
on macrophages, which in turn initiate the pro-inflammatory 
mediators, resulting in the production of free radicals and 
inflammatory cytokines that are involved in systemic inflam-
mation and tissue damage (Zahran and Emam 2018). NFκB 
is a crucial transcription factor that stimulates a great gene 
number accused in inflammation, like TNF-α (Boisson et al. 
2020). NIC has been shown to increase NF-κB protein lev-
els in liver, lung, and kidney tissues (Cooper and Magwere 
2008; Martins et al. 2016; Zahran and Emam 2018).

According to the findings of this study, giving rodents 
the ChV caused a drop in TNF-α and IL1-β levels. ChV’s 
anti-inflammatory properties could explain why it protects 
against NIC-induced liver damage. This finding is consist-
ent with Abu-Serie et al. (2018), who suggested that ChV’s 
anti-inflammatory action could be attributed to specific 
phenolic compounds such as gallates, which are powerful 
NO and TNF inhibitors. Finally, ChV extract reduced the 
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pathological lesions caused by nitrite in hepatic tissues. 
These findings resembled those of Abd-Elmoneim and Dar-
wish (2016), who found that giving mice an aqueous extract 
of ChV at a concentration of 500 mg/kg BW for 28 days 
improved antioxidant activities and reduced LPO, resulting 
in hepato-protection against monosodium glutamate.

The toxic effects of NIC are attributable, at least in 
part, to an increase in the generation of free radicals and 
ROS (Kolure et al. 2024). Another known mechanism by 
which NIC damages the system is by inducing inflamma-
tion. NF-κB activates over 200 genes that have been found 
to decrease apoptosis induce cell transformation, invasion, 
metastasis, chemo-resistance, and radio-resistance (Bois-
son et al. 2020). Smokeless tobacco extract promotes the 
expression of NF-κB in oral premalignant and cancer cells 
(Li et al. 2018). The specific mechanism by which NIC 
induces NF-κB is unknown. However, previous reports 
showed that NIC, even at the physiological level of 0.8 
µM, increases oxidative stress and the redox-sensitive tran-
scription factor, NF-κB (Crowley-Weber et al. 2003). As 
far as we know, there is no published data regarding the 
NIC-induced alterations in the antioxidants and inflamma-
tion‐related gene expression levels in different tissues such 
as the liver, kidneys, and lungs. Our findings, based on an 
RT-PCR gene expression approach, validated the findings 
of Ivey et al. (2014), which indicated the involvement of 
caspase-2 and iNOS-mediated apoptotic pathway in NIC 
plus high-fat diet–induced hepatocellular apoptosis. They 
discovered a considerable increase in the amount of active 
caspase-2 protein. El-Sherbeeny et al. (2016) found that NIC 
treatment boosted caspase-3 activity and lowered NO levels 
in liver cells. Furthermore, the presence of NIC created OS, 
which damaged the arteries and caused inflammation in the 
liver. NIC and cotinine have been proven to cause apop-
tosis in the liver either directly or immunologically. NIC-
induced ROS generation can enhance caspase-2 activity as 
well as NO synthesis. NO production, on the other hand, has 
been linked to cell death and damage (Yeo et al. 2022). NIC 
can encourage an existing tumor that was started by other 
variables through its genotoxic effects, as well as by aiding 
tumor cell survival, growth, metastasis, and resistance to 
chemotherapy (Grando 2014). NIC can thus be pro or anti-
apoptotic, depending on the quantity of the drug, species-
specific changes in NIC metabolism, and the target cells.

Members of the Bcl-2 family, pro-apoptotic proteins 
(Bak, Bid, Bax), and anti-apoptotic proteins (Bcl-XL, Bcl-2) 
strictly control the balance between cell life and cell death. 
By binding to Bax, Bcl-2 shields cells against apoptosis 
prevents oligomerization and translocation to mitochondria, 
triggers permeability transition, and, as a result, activates 
the caspase cascade (Elkon and Oberst 2025). Different 
groups have investigated the unique apoptotic effects of NIC 
in vitro and in vivo, finding a link between NIC exposure 

and apoptosis. NIC has been reported to induce apoptosis in 
some earlier reports (Galitovsky et al. 2004; Zhao and Reece 
2005), whereas others found that NIC prevents apoptosis 
(Wielgus et al. 2004; Copeland et al. 2005; Zhao and Reece 
2005). The current investigation examined the apoptotic 
effect of NIC exposure on the liver of female Swiss mice in 
light of the conflicting data regarding the consequences of 
NIC toxicity. The results of real-time PCR demonstrated that 
the hazardous dose of NIC induced apoptosis in the liver via 
the caspase-3 apoptotic pathway. Because the liver is the key 
site of NIC metabolism, apoptosis is triggered in the liver. 
Assuming that the liver metabolizes the majority of NIC, 
each transit through the liver extracts roughly 70% of the 
drug from the blood. Furthermore, ChV treatment reduced 
caspase-3 activation in hepatic tissues, according to our find-
ings. This could be because of ChV’s antioxidant proper-
ties. This outcome is consistent with past research findings 
(Saberbaghi et al. 2013; Abd-Elmoneim and Darwish 2016).

Our study has some limitations that should be considered 
when interpreting the results. Although our study examined 
various hepatic function indices, gene expressions, and 
immunostaining, further studies, such as molecular investi-
gations or pathway analyses, are necessary to elucidate the 
other probable mechanisms involved in NIC-induced hepatic 
injury and the ameliorative effects of ChV extract. Moreo-
ver, while our findings suggest the potential benefits of ChV 
extract in mitigating NIC-induced hepatic injury, it is impor-
tant to note that additional research is needed to determine 
the therapeutic efficacy and safety of ChV in human cancer 
patients. Clinical trials and further preclinical studies are 
required to validate our findings and establish appropriate 
dosage regimens for human use.

Conclusion

The current study found that ChV protects female Swiss 
mice livers from the harmful effects of sub-chronic oral NIC 
exposure combined with EAC induction by regulating NIC-
induced changes in hepatic function, lipid profile, oxidative 
and inflammatory injury, enhancing the mRNA expres-
sion pattern of antioxidant enzymes, and pro-inflammatory 
cytokine-encoding genes, and regulating the altered immu-
nostaining of caspase-3, Bax, and BcL2. Furthermore, ChV 
protects against EAC cell metastasis, with no indication of 
significant EAC cell infiltration in the sinusoids or periportal 
areas of the liver. Overall, the findings of this work highly 
recommended further human studies to assess the efficacy 
of ChV in its administration to cancer patients who are con-
suming NIC daily, whether from smoking or exposure to 
secondhand smoke.
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