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Abstract
Cardiotoxicity is a significant adverse effect of cisplatin (CIS) that necessitates extensive medical care. The current study 
examines the cardioprotective effects of edaravone (EDV), obeticholic acid (OCA), and their combinations on CIS-induced 
cardiac damage. Rats were allocated into five groups: the normal control group, the remaining four groups received CIS 
(7.5 mg/kg, i.p.) as a single dose on the fifth day and were assigned to CIS, OCA (10 mg/kg/day) + CIS, EDV (20 mg/kg/
day) + CIS, and the (EDV + OCA) + CIS group. Compared to the CIS-treated group, co-treating rats with EDV, OCA, or their 
combinations significantly decreased ALP, AST, LDH, CK-MB, and troponin-I serum levels and alleviated histopathologi-
cal heart abnormalities. Biochemically, EDV, OCA, and EDV plus OCA administration mitigated cardiac oxidative stress 
as indicated by a marked decrease in heart MDA content with a rise in cardiac antioxidants SOD and GSH associated with 
upregulating Nrf2, PPARγ, and SIRT1 expression. Besides, it dampened inflammation by decreasing cardiac levels of TNF-
α, IL-1β, and IL-6, mediated by suppressing NF-κB, JAK1/STAT3, and TLR4/p38MAPK signal activation. Notably, rats 
co-administered with EDV plus OCA showed noticeable protection that exceeded that of EDV and OCA alone. In conclu-
sion, our study provided that EDV, OCA, and their combinations effectively attenuated CIS-induced cardiac intoxication 
by activating Nrf2, PPARγ, and SIRT1 signals and downregulating NF-κB, JAK1/STAT3, and TLR4/p38MAPK signals.
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Introduction

Cisplatin (CIS) is a well-known chemotherapy drug used to 
remedy various cancers, such as breast, testicular, ovarian, 
and others (Ghosh 2019; Dasari and Tchounwou 2014). Nev-
ertheless, the therapeutic use of CIS is restricted by multiple 
organ toxicities, including renal toxicity, cardiotoxicity, bone 
marrow suppression, and others (Qi et al. 2019). Notably, free 
radicals have been involved in CIS-induced multiple organ 
injury, as reactive oxygen species (ROS) can activate enor-
mous output of proinflammatory cytokines such as tumor 
necrosis factor-alpha (TNF-α) and interleukin (IL)-1β and 
IL-6 (Miller et al. 2010; Barabas et al. 2008; El-Awady el 
et al. 2011). These proinflammatory cytokines and free radi-
cals significantly harm the heart (El-Awady el et al. 2011). 
However, the exact mechanism of toxicity is still obscure.

Oxidative stress induces the alteration of different signal-
ing pathways. The antioxidant response element (ARE) medi-
ated by the activation of transcription factor nuclear factor 
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erythroid 2–related factor 2 (Nrf2) protects the cells from the 
harmful effect of oxidative stress and potently mitigates the 
cytotoxic effect caused by diverse free radicals and inflam-
matory signals (Hassanein et al. 2020b; Loboda et al. 2016). 
In addition, a protein named silent information regulator T1 
(SIRT1), an NAD + -dependent histone deacetylase, plays 
diverse roles in oxidative stress, apoptosis, inflammation, and 
aging (Singh and Ubaid 2020). Many investigations docu-
mented that the SIRT1 signal possesses a valuable function 
against cardiac damage and can represent a therapeutic target 
for inflammation-related problems (Packer 2020). Moreover, 
a nuclear receptor called peroxisome proliferation-activated 
receptor gamma (PPARγ) controls the transcription of several 
genes primarily involved in fatty acid and energy metabo-
lism. The activation of PPARγ influences a wide range of 
biological processes, including the regulation of metabolism, 
the suppression of inflammation, the control of immune cell 
balance, the inhibition of apoptosis and oxidative stress, and 
the enhancement of endothelial function (Ivanova et al. 2015).

Studies indicate that most mechanisms behind the progres-
sion of structural heart disease include inflammation, and anti-
inflammatory medications can decrease cardiovascular events 
because inflammation is a major contributing factor to cardio-
vascular disorders (Kalogeropoulos et al. 2012). Additionally, 
free radicals activate inflammatory signals such as stimulation 
of mitogen-activated protein kinases (MAPKs) and nuclear 
factor-κappa B (NF-κB) (Al-Kahtani et al. 2014). Besides, the 
Janus kinase/signal transducers and activators of transcription 
(JAK/STAT) signal are an intracellular signal transduction 
pathway ubiquitously expressed and involved in numerous 
biological functions. It offers a direct mechanism for regulat-
ing gene expression by external stimuli. Strong evidence sug-
gests several inflammatory and immunological disorders are 
intimately linked to the prolonged and excess activation of the 
JAK/STAT signaling pathway (Xin et al. 2020). Side by side, 
the innate inflammatory process is significantly influenced 
by toll-like receptors (TLR). TLR4 is emerging as the most 
well-known of TLR members (Moresco et al. 2011). TLR4 
stimulation triggered the inflammatory cascade and medi-
ated inflammatory responses through the crucial downstream 
effector NF-κB (Dou et al. 2013).

Obeticholic acid (OCA), a semisynthetic derivative of 
chenodeoxycholic acid, is selective and potent farnesoid X 
receptor (FXR) agonist (Abenavoli et al. 2020). Many investi-
gations reported that FXR receptors are important in regulat-
ing cardiovascular biology (Li et al. 2020). OCA possesses 
antioxidant and anti-inflammatory effects in different models 
(Guo et al. 2021; Pellicciari et al. 2002). Edaravone (EDV) is 
a potent free radical scavenger used for amyotrophic lateral 
sclerosis (Watanabe et al. 2008; Rothstein 2017). Previous 
studies reported that EDV has promising protective effects 
in different animal models, such as myocardial injury (Iguchi 
et al. 2004), CIS-activated acute renal toxicity (Zhang et al. 

2003), and others. As mentioned before, the scope of this 
work was to inspect the potential protective effect of EDV 
and OCA against CIS-induced cardiac injury in rats, pointing 
out the role of Nrf2, PPARγ, SIRT1, NF-κB, JAK/STAT, and 
TLR4/p38MAPK signals.

Materials and methods

Reagents and chemicals

Cisplatin MYLAN® (50 mg/50 ml) vial was used in the present 
study: EDV and OCA (Sigma Aldrich, St. Louis, MO, USA). 
All the remaining chemicals and reagents were of analytical 
category and obtained from standard mercantile provisions.

Animals

The ethical use of laboratory animals was carried out accord-
ing to the National Institute of Health (NIH) Guide for Care 
and Use of Laboratory Animals and approved from the Fac-
ulty of Pharmacy Ethical Committee et al.-Azhar University 
(approval number: ZA-AS/PH/5/C/2022). Forty male Wistar 
rats (180–200 g) were used in this work. Rats were acclimatized 
for 1 week before the experiments, under standard laboratory 
conditions, free water, and diet under a temperature of 25 ± 2 
°C and humidity of 60 ± 10% and 12-h light and dark cycles.

Experimental groups and treatment protocol

After determining the effective dose of CIS, EDV, and OCA, 
the experimental design of the study has been summarized 
as follows (Fig. 1):

In brief, the animals were assigned into five groups (n = 8/group):

Group 1: Normal control received saline daily for 10 days.
Group 2: Received CIS (7.5 mg/kg, i.p.) single dose 
(Sherif 2021) on the 5th day of the study.
Group 3: Received OCA (10 mg/kg, orally) (Ferrigno 
et al. 2020) for 10 successive days plus CIS (7.5 mg/kg, 
i.p.) on the 5th day of this study.
Group 4: Received EDV (20 mg/kg, orally) (Hassanein et al. 
2020a) for 10 successive days plus CIS (7.5 mg/kg, i.p.) 
(Emekli-Alturfan et al. 2015) on the 5th day of this study.
Group 5: Received OCA + EDV for 10 successive days at 
doses mentioned before and CIS on the 5th day of this study.

Sample collection and tissue processing

After 10 days of the treatment protocol, blood was obtained from 
the retroorbital plexus and under ketamine (100 mg/kg, i.p.) 
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anesthesia and allowed to clot for serum preparations obtained 
by centrifugation at 1200 g for 15 min for the biochemical 
markers. Then, rats were sacrificed, and hearts were dissected 
and washed with ice-cold saline. A small piece of cardiac tis-
sue from each group was preserved in 10% neutral formalin for 
histopathological evaluation. A large piece of cardiac tissues 
was divided into two parts; one section was homogenized in 
phosphate buffer at pH 7.4 to produce cardiac homogenates for 
oxidative stress biomarkers spectrophotometrically and cytokine 
assessment by enzyme-linked immunosorbent assay (ELISA). 
Other cardiac tissue sections were stored in RNAlater for quan-
titative real-time polymerase chain reaction (q-RCR) estimation 
and lysis buffer for western blotting evaluation.

Determination of serum ALP, AST, LDH, CK‑MB, 
and troponin‑I levels

Rats’ sera were used for the measurement of alkaline phos-
phatase (ALP; CAT# 1,001,132; Spinreact, Spain), aspartate 
aminotransferase (AST; CAT# 1,001,162; Spinreact, Spain), 
lactate dehydrogenase (LDH; CAT# 1,001,260; Spinreact, 
Spain), creatinine kinase-MB (CK-MB; CAT# 41,254; Spinre-
act, Spain), and troponin-I (CAT# E-EL-R1253; Elabscience, 
China) levels according to the manufacturer’s instructions.

Histological examinations

Cardiac sections were settled in 10% neutral formalin and 
then desiccated, cleared, embedded in paraffin, cut into 

4–5-µm-thick sections, and stained with hematoxylin and 
eosin (H&E) based on instructions notarized by Feldman 
and Wolfe (2014). The slides were evaluated randomly 
using a light microscope (Olympus, USA). On a scale of 
0 to 4, the parameters of the pathological changes were 
tabulated and graded, with 0 signifying a healthy myocar-
dium or the absence of the parameters in the samples: (1) 
showing the parameter’s observed presence and distribu-
tion up to 25% of the region under examination (0–25%); 
(2) observed existence and distribution of the parameter 
in between 26 and 50% of the area under study (26–50%); 
(3) observed existence and distribution of the parameter in 
between 51 and 75% of the area under study (51–75%); (4) 
showing that the parameter was present and distributed in 
more than 75% of the area under study (76–100%) (Molh 
et al. 2008).

Estimation of antioxidant and oxidative stress 
parameters

To examine the cardiac oxidative stress, the activity of 
superoxide dismutase enzyme (SOD), contents of lipid 
peroxidation (MDA), and reduced glutathione (GSH) in 
the homogenates of cardiac tissues were measured by the 
method documented earlier by Marklund (1985), Mihara and 
Uchiyama (1978), Sedlak and Lindsay (1968), respectively. 
Also, the enzyme activity of myeloperoxidase (MPO) was 
estimated colorimetrically based on the instructions authen-
ticated by Manktelow and Meyer (1986).

Fig. 1  Illustrated diagram explored the study experimental design
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Determination of inflammatory mediators

To examine CIS-induced inflammation in cardiac tissues, 
TNF-α (CAT# E-EL-R2856), IL-1β (CAT# E-EL-R0012), 
and IL-6 (CAT# E-EL-R0015) levels were measured by 
ELISA technique based on the manufacturer’s directions. 
The kits were purchased from Elabscience, China.

Estimation of mRNA expressions by qRT‑PCR

To inspect the impact of ED and OCA, mRNA expression of 
p38MAPK, TLR4, NF-κB-p65, and NLR family pyrin domain-
containing 3 (NLRP3), genes were quantified by real-time PCR 
using the instrument, real-time PCR system (Applied Biosys-
tems, USA). Briefly, total RNA was segregated by TRIzol rea-
gent (Invitrogen, USA). The obtained RNA was determined 
by nanodrop and then used for cDNA synthesis. The resultant 
cDNA was aggrandized via SYBR green. The data obtained 
were evaluated using the  2−ΔΔCt equation (Livak and Schmitt-
gen 2001) and referenced GAPDH as a housekeeping gene. The 
primers are indexed in Table 1.

Western blotting

A small section of cardiac tissues was lysed using RIPA buffer, 
including protease inhibitor cocktail (Biospes, China), and cen-
trifuged at (1200 g for 15 min at 4 °C). Total proteins were 
estimated from the resultant supernatant based on the method 
described by Bradford (1976). The proteins were loaded (50 
µg in each lane) and then electrophoresed on SDS–polyacryla-
mide gels and relocated to a polyvinylidene difluoride mem-
brane (Thermo Fisher Scientific, USA) through a semi-dry 
transfer manner (Towbin et al. 1979). After being blocked 
with 5% non-fat dried milk powder for 2 h, the membrane was 
mixed with primary antibodies overnight at 4°C (El-Shoura 
et al. 2018). Then, the membranes were handled with second-
ary antibodies at 37°C for 1 h. Finally, the bands were detected 
via 5-bromo-4-chloro-3-indolyl phosphate (BCIP)/nitro blue 
tetrazolium (NBT) system (Genemed, USA). The intensity 
of the bands was analyzed using ImageJ® software, and the 
values of each band were represented as the relative protein 
expression referenced to β-actin bands.

Statistical analysis

Data are introduced by mean ± standard error of the 
mean. The data were tested for normality through the 
Shapiro–Wilk test. Multiple statistical comparisons 
were made via one-way ANOVA, followed by Tukey’s 
post-hoc test. Meanwhile, the Kruskal–Wallis test was 
employed to ascertain the difference between the groups 
obtained as semiquantitative in the histopathological 
examination. The level of significance at P-value < 0.05 
was conceived as statistically significant. Differences 
were made between groups through the GraphPad Prism 
software (version 8.0, USA).

Results

Effect of OCA or EDV and their combination 
on serum ALP, AST, LDH, CK‑MB, and troponin‑I 
levels after CIS challenge

Figure 2 shows that the serum ALP, AST, LDH, CK-MB, 
and troponin-I levels of rats in the CIS group were signifi-
cantly increased compared with the normal control group. In 
contrast, co-treating rats with OCA or EDVs or their com-
binations potently decreased the serum levels of ALP, AST, 
LDH, CK-MB, and troponin-I. Notably, rats co-administered 
OCA plus EDV showed noticeably decreased ALP, AST, 
LDH, CK-MB, and troponin-I levels that exceeded that of 
OCA and EDV alone.

Effect of OCA or EDV and their combination 
on histopathological abnormalities in CIS‑injected 
rats

Histological examination of cardiac tissue of rats stained by 
H&E showed that CIS administration resulted in disorgani-
zation of the normal pattern of cardiac muscles with signs of 
apoptosis where the muscles are stained deeply eosinophilic 
and showed pyknotic nuclei. In addition, severely affected 
fibers have been demonstrated in thinning and interfibrillar 
hemorrhage. In contrast, OCA treatment showed remarkable 

Table 1  Primer list for qRT-
PCR

Target gene The nucleotide sequence (5′‐3′) Accession number Product size

P38-MAPK F: AGA GTC TCT GTC GAC CTG CT
R: CCT GCT TTC AAA GGA CTG GT

XM_017601781.1 156

TLR-4 F: CGA GCC AGA ATG AGG ACT GG
R: TCC CAC TCG AGG TAG GTG TT

NM_019178.1 352

NLRP-3 F: GTG GCT ACT CCC AGT GAT TTGT 
R: TGC TTG CTT GGA TGC TCC TT

XM_017597078.1 910

GAPDH F: TGC TGG TGC TGA GTA TGT CG
R: TTG AGA GCA ATG CCA GCC 

NM_017008.4 645
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preservation of normal pattern arrangement and the histo-
logical features of cardiac muscles, while the treatment with 
EDV provided mild improvement of CIS-induced changes, 
and still, cardiac muscles appeared thinner but with normal 
nuclei. Besides, there is still capillary dilation. Interest-
ingly, combination therapy between OCA plus EDV showed 
marked protection, and the cardiac fiber pattern looked more 
or less similar to the control group (Fig. 3).

Effect of OCA or EDV and their combination 
on the cardiac oxidative injury of CIS‑injected rats

Figure 4 illustrated a significant increase in cardiac MDA content 
and a significant decrease in cardiac antioxidants SOD and GSH 
levels following CIS injection. Conversely, OCA, EDV, and OCA 
plus EDV administration resulted in a marked decrease in MDA 
content, with a significant rise in SOD and GSH levels.

Effect of OCA or EDV and their combination 
on cardiac Nrf2, PPARγ, and SIRT1 signals 
of CIS‑intoxicated rats

Western blotting was used to analyze the levels of protein 
expression for redox-sensitive signals Nrf2, PPAR, and 
SIRT1. Here, the proteins Nrf2, PPAR, and SIRT1 were 
all significantly downregulated in CIS-injected rats. In 

contrast, oral administration of OCA, EDV, and OCA plus 
EDV significantly upregulated Nrf2, PPARγ, and SIRT1 
proteins (Fig. 5).

Effect of OCA or EDV and their combination 
on cardiac inflammation of CIS‑intoxicated rats

The injection of CIS markedly increased cardiac MPO 
enzymatic activity and cardiac cytokines TNF-α, IL-1β, 
and IL-6 levels, as well as NF-κB expression either mRNA 
or nuclear translocation, compared with normal control 
rats. Treatment with OCA, EDV, and OCA plus EDV 
showed a noticeable decline in cardiac TNF-α, IL-1β, 
IL-6, and NF-κB expressions compared with CIS-injected 
rats (Fig. 6).

Effect of OCA or EDV and their combination 
on cardiac JAK1/STAT3 signals of CIS‑intoxicated 
rats

A western blotting assay assessed the protein expression of 
JAK1, p-JAK1, STAT3, and p-STAT3. As depicted in Fig. 7, 
when compared to normal rats, CIS injection increased JAK1 
and STAT3 phosphorylation. On the other hand, oral admin-
istration of OCA, EDV, and their combination significantly 
suppressed JAK1 and STAT3 phosphorylation.

Fig. 2  Effect of EDV, OCA, and their combination on serum ALP 
(A), AST (B), LDH (C), CK-MB (D), and troponin-I (E) levels after 
CIS challenge. Results are represented as mean ± SE of 8 independ-
ent values and statistically conducted using a one-way ANOVA test at 

P-value < 0.05. a represents a significant difference from the normal 
control group. b represents a significant difference from the CIS con-
trol group. c represents a significant difference from the OCA + CIS 
group. d represents a significant difference from the EDV + CIS group
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Effect of OCA or EDV and their combination 
on cardiac p38MAPK/TLR4 and NLRP3 signals 
of CIS‑intoxicated rats

The mRNA expression and protein levels of redox-sensi-
tive signals p38MAPK, TLR4, and NLRP3 were assessed 
using a qRT-PCR assay, while the protein levels of these 
biomarkers were assessed by western blotting. In this regard, 

compared to normal rats, the heart of rats injected with CIS 
alone showed a significant upregulation of both mRNA 
and protein levels of p38MAPK, TLR4, and NLRP3. Con-
versely, compared to the CIS control group, oral adminis-
tration of EDV, OCA, and their combination significantly 
downregulated p38MAPK, TLR4, and NLRP3 (Fig. 8). 
We emphasized our results by estimating phosphorylated 
p38MAPK expression. As expected, the protein expression 
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of p-p38-MAPK was significantly upregulated in CIS con-
trol group as compared to normal control group. In contrast, 
oral administration of EDV, OCA, and their combination 
significantly reduced p38-MAPK phosphorylation as com-
pared to CIS control group.

Discussions

Despite its effectiveness in treating a wide range of cancers, 
the clinical use of CIS as a chemotherapy drug is limited 
because of the possibility of significant cardiac damage 
(Dugbartey et al. 2016; Herradón et al. 2017). We do not 
fully understand the exact mechanism underlying the cardiac 
damage induced by CIS. However, growing evidence shows 
ROS overproduction and inflammation are key contributors 
to CIS-induced cardiac injury (Miller et al. 2010; Barabas 
et al. 2008; El-Awady el et al. 2011; Qi et al. 2019; Qi et al. 
2020). Consequently, it is crucial to thoroughly understand 
the underlying molecular mechanisms of CIS cardiac toxic-
ity and identify new treatment targets.

In the current investigation, the administration of CIS led 
to a striking rise in serum levels of ALP, AST, CK-MB, 
LDH, and troponin-I, as well as significant cardiac histo-
logical abrasions. These data are in line with several pre-
vious studies (Bukhari et al. 2022; Xu et al. 2021; Gun-
turk et al. 2019). On the other hand, treatment with OCA, 
EDV, and their combinations indicated a significant cardiac 
protective effect, as seen by the decreased levels of these 
biomarkers. These effects of OCA and EDV can be related 

to their abilities to suppress oxidative stress and inflamma-
tion, preserving the structure and integrity of cardiac cells. 
Therefore, we aimed to examine the antioxidant and anti-
inflammatory activities of OCA and EDV, pointing to the 
impact of Nrf2, PPARγ, SIRT1, NF-κB, JAK1/STAT3, and 
TLR4/p38MAPK signals in these effects.

In the present study, CIS injection increased TNF-α, 
IL-1β, and IL-6 cytokines and MPO enzymatic activity, 
indicating a severe inflammatory response. These data are 
in harmony with several investigations (Qi et al. 2020; Zhao 
et al. 2018; Xing et al. 2019). In contrast, administration 
of OCA, EDV, and their combination potently counteracted 
these elevations. The molecular mechanisms underlying the 
inflammatory damage of CIS-induced cardiotoxicity have 
received a lot of interest. In addition to their harmful effects 
on cellular macromolecules, ROS cause the production 
of inflammatory mediators such as inducible nitric oxide 
synthase, TNF-α, IL-1β, and IL-6 by activating TLR-4 and 
NF-κB (Baeuerle and Baichwal 1997; Asehnoune et al. 
2004; Asami and Shimizu 2021). TLRs play a critical role 
in the innate immune system as pattern recognition recep-
tors (Lundberg et al. 2013). Importantly, TLR4 mediates the 
inflammatory response in the heart (Chimenti et al. 2017; 
Lu et al. 2015). Recent studies have demonstrated that CIS 
activates TLR4 in different models, such as testicular (Has-
sanein et al. 2021), renal (Deng et al. 2020), and hepatic 
(Khedr et al. 2020) injuries. Numerous studies have shown 
that myocardial tissue injury is primarily caused by an 
inflammatory response and that this response is fostered by 
the TLR4 signal, which regulates the generation of proin-
flammatory mediators and promotes the NF-B pathway (Luo 
et al. 2020; Xiao et al. 2021). Previous studies reported that 
OCA and its derivatives had been shown to decrease the 
release of proinflammatory cytokines in osteoarthritis and 
acute liver failure (Guo et al. 2021; Pellicciari et al. 2002). 
TLR4 is involved in CIS-induced epithelium damage among 
the TLRs. TLR4 on renal parenchymal cells triggers several 
pathways, including MAPK, which increases the produc-
tion of inflammatory cytokines and causes kidney damage 
(Miller et al. 2010).

Side by side, despite its significance in cell survival and 
proliferation, several data showed that NLRP3 activation 
has a key role CIS-induced toxicities (Jiang et al. 2021; Li 
et al. 2019). Moreover, strong evidence has been reported 
that NLRP3 activation is critical in myocardial inflammation 
and damage (Minutoli et al. 2016). NLRP3 inflammasome 
was activated by ROS, which was recently shown to have 
a significant role in promoting the inflammatory response 
(Liu et al. 2016). Additionally, the circulating proinflamma-
tory cytokines activate the JAK/STAT system to start down-
stream signal transduction, and phosphorylated STAT pro-
teins transform into potent transcription factors for particular 
STAT-target genes (Malemud and Pearlman 2009). JAK1 

Fig. 3  Effect of OCA or EDV and their combination on histopatho-
logical abnormalities in CIS-injected rats. A Sections from the left 
ventricle of the normal rat stained by H&E showed a regular pat-
tern of cardiac muscle fibers with their oval active nuclei and fine 
transverse striation (black arrows). Blood capillaries are thin walls 
compressed among the muscles (white arrow). B1 and B2 Sections 
from CIS-administrated rats showed disorganization of normal pat-
terns with signs of apoptosis represented by deeply eosinophilic 
stained fibers (dotted arrows) and pyknotic nuclei (black arrows). 
Sever edema (circle) and wavy myofibers (star) were also observed. 
Severely affected fibers showed thinning (black arrows) and inter-
fibrillar hemorrhage (white arrows). C Sections from OCA plus 
CIS-administrated rats showed marked preservation of normal pat-
tern arrangement and histological features of cardiac fibers (black 
arrows) with the absence of capillary congestion (white arrow) could 
be observed. D Sections from EDV plus CIS-administrated rats 
showed minor improvement where focal apoptotic degeneration is 
still observed (dotted arrows). Other fibers appeared thinner but with 
normal nuclei (black arrows). There is still capillary dilation (white 
arrows). E Sections from OCA + EDV plus CIS-administrated rats 
showed marked protection, and cardiac fibers pattern looked more or 
less similar to the normal control group. F Semiquantitative analysis 
of histopathological lesions in heart muscle. a represents a significant 
difference from the normal control group. b represents a significant 
difference from the CIS control group. c represents a significant dif-
ference from the OCA + CIS group. d represents a significant differ-
ence from the EDV + CIS group

◂
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is necessary for receptor signaling by IL-6-type cytokines, 
even though these cytokines may activate other JAK kinase 
family members. The recruitment of inflammatory cells 
is encouraged by phosphorylated STAT3, intensifying the 
inflammatory response (Xin et al. 2020; Rawlings et al. 
2004). In the current study, CIS injection elevated JAK1 
and STAT3 phosphorylation. Conversely, oral administration 
of OCA, EDV, and their combination dramatically reduced 
JAK1 and STAT3 phosphorylation compared to the CIS 
control group. Taken together, OCA and EDV can attenuate 
TLR4/NF-κB/NLRP-3 and JAK1/STAT-3 pathway activa-
tion and, in turn, suppress inflammatory cytokines-induced 
myocardial damage.

The cardiomyocyte may suffer severe oxidative dam-
age from excessive ROS, which could damage the cells 
and cause cardiac damage (Deavall et al. 2012; Costa et al. 
2013). Interestingly, several studies showed that antioxi-
dants or ROS scavengers might significantly reduce the 
cardiac damage induced by CIS (Yüce et al. 2007; Qi et al. 
2022). Oxidative stress caused by CIS was evidenced by 
increased MDA and decreased GSH and SOD. The genera-
tion of reactive oxygen species (ROS) is increased by CIS, 
and this might affect cellular macromolecules by, for exam-
ple, peroxidizing membrane lipids and thereby altering the 
membrane’s fluidity and permeability. Furthermore, ROS’s 
high oxidative activity may lead to the depletion of GSH 

and antioxidant enzymes. These findings are supported by 
several previous studies (Yüce et al. 2007; Qi et al. 2022). 
In contrast, OCA, EDV, and their combinations markedly 
decreased heart MDA content with a marked boosting of the 
antioxidant status by increasing cardiac antioxidants GSH 
and SOD. In various experimental models, EDV reduced 
oxidative stress. As evidenced by the improvement in heart 
function and the decrease in histological injury, treatment 
with EDV had an antioxidant protective effect on the heart 
(Hassanein et al. 2020a; Hassan et al. 2015). In diabetic car-
diomyopathy, EDV improved cardiac function by upregulat-
ing Nrf2 and SIRT1 and potently counteracted heart oxida-
tive injury (Ji et al. 2016). Also, OCA exhibited antioxidant 
effects in different models, such as valproic acid-induced 
hepatotoxicity (Gai et al. 2020) and hepatorenal syndrome 
in ascitic cirrhotic rats (Tsai et al. 2020).

To emphasize the mechanism(s) behind the protective 
effect of OCA and EDV against CIS-induced oxidative and 
inflammatory responses in the heart, we evaluated the changes 
in Nrf2, PPAR, and SIRT1 signals. Nrf2 can directly inhibit 
NF-B and the inflammatory response while concurrently 
activating anti-inflammatory pathways to limit the inflamma-
tory cascade (Wardyn et al. 2015). Previous investigations 
have shown that Nrf2 activation reduces the harmful effects 
of chemotherapy on the heart (Wang et al. 2022; Hassanein 
et al. 2020a). In parallel, PPARγ upregulates the expression 

Fig. 4  Effect of OCA or EDV 
and their combination on the 
cardiac oxidative injury of CIS-
injected rats. A MDA, B GSH, 
and C SOD were measured 
spectrophotometrically. Results 
are represented as mean ± SE 
of 8 independent values and 
statistically conducted using 
a one-way ANOVA test at 
P-value < 0.05. a represents a 
significant difference from the 
normal control group. b rep-
resents a significant difference 
from the CIS control group. c 
represents a significant differ-
ence from the OCA + CIS group
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Fig. 5  Effect of OCA or EDV and their combination on cardiac Nrf2, 
PPARγ, and SIRT1 signals of CIS-intoxicated rats. A Western blot 
bands of Nrf2, PPARγ, and SIRT1 protein expressions. B Semiquan-
titative analysis of PPARγ. C Semiquantitative analysis of SIRT1. 
D Semiquantitative analysis of Nrf2. Results are represented as 

mean ± SE of 3 independent values and statistically conducted using 
a one-way ANOVA test at P-value < 0.05. a represents a significant 
difference from the normal control group. b represents a significant 
difference from the CIS control group. d represents a significant dif-
ference from the EDV + CIS group

Fig. 6  Effect of OCA or EDV and their combination on cardiac 
inflammation of CIS-challenged rats. A NF-κB mRNA expression, 
B Western blot bands for total and nuclear NF-κB-p65, C semiquan-
titative analysis of nuclear NF-κB-p65, D TNF-α, E IL-1β, F IL-6, 
G MPO. Results are represented as mean ± SE of 8 independent 

values and statistically conducted using a one-way ANOVA test at 
P-value < 0.05. a represents a significant difference from the normal 
control group. b represents a significant difference from the CIS con-
trol group. c represents a significant difference from the OCA + CIS 
group. d represents a significant difference from the EDV + CIS group
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Fig. 7  Effect of OCA or EDV 
and their combination on 
cardiac JAK1/STAT3 signals of 
CIS-challenged rats. A Western 
blot bands of JAK1, p-JAK1, 
STAT3, p-STAT3 protein 
expressions. B Semiquantita-
tive analysis of p-JAK1/JAK. 
C Semiquantitative analysis of 
p-STAT3/STAT3. Results are 
represented as mean ± SE of 3 
independent values and statisti-
cally conducted using a one-way 
ANOVA test at P-value < 0.05. 
a represents a significant differ-
ence from the normal control 
group. b represents a significant 
difference from the CIS control 
group. c represents a significant 
difference from the OCA + CIS 
group. d represents a significant 
difference from the EDV + CIS 
group

Fig. 8  Effect of OCA or EDV and their combination on car-
diac p38MAPK/TLR4 and NLRP3 signals of CIS-intoxicated 
rats. A p38MAPK; B TLR4; C NLRP3; D Western blot bands 
for p38MAPK, TLR4, and NLRP3; E semiquantitative analy-
sis of p38MAPK; F semiquantitative analysis of p-p38MAPK; G 
semiquantitative analysis of TLR4; H semiquantitative analysis of 

NLRP3. Results are represented as mean ± SE of 8 independent 
values and statistically conducted using a one-way ANOVA test at 
P-value < 0.05. a represents a significant difference from the normal 
control group. b represents a significant difference from the CIS con-
trol group. c represents a significant difference from the OCA + CIS 
group. d represents a significant difference from the EDV + CIS group
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of antioxidant genes (Okuno et al. 2010) and inhibits NF-κB 
activation (Mateu et al. 2015). In various models of cardiac 
damage, including diabetic cardiomyopathy (Gbr et al. 2021) 
and sepsis-induced cardiac dysfunction (Peng et al. 2017), 
the anti-inflammatory impact of PPAR has been mediated by 
suppressing NF-κB. Also, SIRT1 ensures cell survival by dea-
cetylating substrate proteins under oxidative stress (Farghali 
et al. 2019; Raynes et al. 2013) and negative regulation of 
NF-κB activity (Chen et al. 2005). In the present investiga-
tion, CIS injection decreased Nrf2, PPARγ, and SIRT1. In 
contrast, OCA and EDV increased Nrf2, PPARγ, and SIRT1. 
Consequently, improvements in antioxidant defenses and 
reduced oxidative stress and inflammation were attributed 
to Nrf2, PPARγ, and SIRT1 activation in the heart of CIS-
administered rats treated with OCA and EDV.

Conclusions

The results of the present study revealed that CIS cardiotox-
icity could be prevented by using EDV, OCA, and combina-
tion therapy. This effect could be attributed to the interplay 
of antioxidant and anti-inflammatory capabilities of tested 
agents through modulation of Nrf2/PPARγ/SIRT1, JAK1/
STAT3/NF-κB, and TLR4/P38MAPK signaling pathways. 
Notably, the combination therapy between OCA and EDV 
exhibited the highest protective outcomes rather than each 
drug alone. Their effects on tumor reduction and cytotoxic 
activity of CIS should be considered in future work. In this 
regard, the promising results of this combination attract to 
recommend use in the regimen of CIS therapy.
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