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Abstract
Trauma and toxic substances are connected in several aspects. On the one hand, toxic substances can be the reason for 
traumatic injuries in the context of accidental or violent and criminal circumstances. Examples for the first scenario is 
the release of toxic gases, chemicals, and particles during house fires, and for the second scenario, the use of chemical or 
biological weapons in the context of terroristic activities. Toxic substances can cause or enhance severe, life-threatening 
trauma, as described in this review for various chemical warfare, by inducing a tissue trauma accompanied by break 
down of important barriers in the body, such as the blood-air or the blood-gut barriers. This in turn initiates a “vicious 
circle” as the contribution of inflammatory responses to the traumatic damage enhances the macro- and micro-barrier 
breakdown and often results in fatal outcome. The development of sophisticated methods for detection and identifica-
tion of toxic substances as well as the special treatment of the intoxicated trauma patient is summarized in this review. 
Moreover, some highly toxic substances, such as the protein toxins from the pathogenic bacterium Clostridioides (C.) 
difficile, cause severe post-traumatic complications which significantly worsens the outcome of hospitalized patients, in 
particular in multiply injured trauma patients. Therefore, novel pharmacological options for the treatment of such patients 
are necessarily needed and one promising strategy might be the neutralization of the toxins that cause the disease. This 
review summarizes recent findings on the molecular and cellular mechanisms of toxic chemicals and bacterial toxins that 
contribute to barrier breakdown in the human body as wells pharmacological options for treatment, in particular in the 
context of intoxicated trauma patients. “trauma-toxicology” comprises concepts regrading basic research, development 
of novel pharmacological/therapeutic options and clinical aspects in the complex interplay and “vicious circle” of severe 
tissue trauma, barrier breakdown, pathogen and toxin exposure, tissue damage, and subsequent clinical complications.

Keywords  Trauma · Toxicology · Chemical warfare · Biological warfare · Bacterial toxins · Barrier damage · Post-
traumatic complications · Clostridioides difficile · Pharmacologic options

Introduction

Physical trauma is the realization of an external danger 
impact which threatens any life at any time. In humans and 
animals, the physical trauma force vector can breach the pro-
tective layers encompassing of the skin, fasciae, capsules, and 
underlying tissues. This damage results in the generation and 
release of damage-associated molecular patterns (DAMPs) 
including membrane debris, mitochondrial components, 
histones, DNA- and RNA fragments, and damaged proteins 
(Huber-Lang et al. 2018) (see Fig. 1). The demolished and 
compromised barriers inadequately restrict the efflux of vital 
internal constituents, such as blood, into the external envi-
ronment, leading to circulatory disturbances, hypoperfusion, 
hypoxia, and shock. Conversely, these compromised external 
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and internal barriers become highly susceptible to the ingress 
of microorganisms and potentially hazardous substances and 
fluids (Huber-Lang et al. 2018), thus increasing the risk of 
infectious, toxic, or septic complications. Recent findings 
from our laboratory have demonstrated that a highly stand-
ardized murine polytrauma plus hemorrhagic shock results 
in remote intestinal injury characterized by an enhanced 
permeability of the gut-blood-barrier (GBB) (Wrba et al. 
2019), which can ultimately impair organ performance and 
culminate in the development of multiple organ dysfunc-
tion syndrome (MODS), often resulting in a fatal outcome 
(Huber-Lang et al. 2018). An effective yet limited sealing 
system of the disrupted tissues is the fluid-phase and cellular 
coagulation system, which rapidly activates in the aftermath 
of trauma to prevent leakage (Rossaint et al. 2023). Similarly, 
activation of the interconnected innate complement cascade 
(Burk et al. 2012) and the “first cellular line of defense” strive 
to repel microbial invasion and to inhibit their growth.

Trauma as a physical “wound” can manifest across various 
contexts, including civilian incidents, acts of terrorism or 
within military operations. It encompasses physical injuries, 
burns, as well as exposure to chemical, biological, or radio-
logical/nuclear (CBRN) warfare agents. While bioterrorism 
and B-warfare—so far known—predominantly involve agents 
such as viruses, bacteria, and bacterial toxins (Botulinum 
Neurotoxin (Kreyden et al. 2000), Anthrax toxin) as well as 
plant toxins (Ricin) (Tin et al. 2022), the arsenal of chemical 
warfare agents is extensive (Wille et al. 2011) and comprises 
toxic substances that affect the skin, the lungs, or the nerv-
ous system. The latter comprises organophosphates such as 
tabun, sarin, VX, and the Novichok compounds, which can 
cause a severe, life-threatening cholinergic syndrome, as 
described in more detail later. These agents possess nearly 
boundless potential for inflicting tissue damage.

Furthermore, combinations of traumata in the spatio-tem-
poral dimension, i.e., simultaneously across different body 

regions or consecutive impacts, can aggravate the overall 
trauma load. As a side note, the concept of trauma extends 
beyond physical injuries to encompass psychosocial dimen-
sions. Research has unveiled a growing understanding of the 
intricate physio-psychological interactions associated with 
trauma (Haffner-Luntzer et al. 2019). Notably, psychological 
stress has been shown to significantly alter the composition 
of the gut microbiome, potentially influencing the presence 
of exo- and endotoxin-producing microbes (Langgartner 
et al. 2018). However, the focus of this review does not 
encompass psychological aspects of trauma, which remain 
beyond the scope of our discussion.

Chemical warfare agents

Chemical warfare represents a dark chapter in the history of 
armed conflicts, encompassing the deliberate use of chemi-
cal substances to inflict harm upon adversaries. Unlike con-
ventional weapons, which rely on explosives or projectiles, 
chemical weapons leverage the toxic properties of chemicals 
to cause injury, incapacitation, or death. Natural toxins from 
plants or animals can be regarded as the earliest types of 
chemical warfare agents (CWAs). One well-known exam-
ple is curare, a poison derived from certain plants found 
in South America that works by blocking neuromuscular 
transmission, leading to muscle paralysis and ultimately res-
piratory failure (Bowman 2006).

World War I (WWI, 1914 to 1918) stands as a pivotal 
moment in the history of warfare: The first large-scale use of 
chlorine gas from pressurized canisters across a 5-mi front 
by the German forces, engulfing Allied positions, has to be 
regarded as “zero hour” of chemical warfare in modern his-
tory (Black 2016). During WWI, the deployment of CWAs 
in massive quantities (about 125,000 tons), resulted in about 
90,000 fatalities and 1.3 million nonfatal casualties. The use, 
large-scale development, production, stockpiling, or transfer of 
chemical weapons or their precursors is meanwhile prohibited 
by the Chemical Weapons Convention that entered into force 
in 1997. Nonetheless, chemical weapons have been utilized in 
a number of subsequent conflicts, terrorist attacks, or assas-
sinations (Ganesan et al. 2010). The most recent incidents 
include the murder of Kim Jong-nam (VX) and the attempted 
killings of Sergei Skripal and Alexei Navalny (both with Novi-
chok) (Brunka et al. 2022).

Classes of chemical agents

Chemical warfare agents are categorized into several 
groups based on their chemical properties, mechanisms of 
action, and pathophysiological effects. The most common 
classification system divides them into six categories (see 
Table 1).

Fig. 1   The concept of trauma-toxicology: The interplay between 
trauma and toxic agents and their biological consequences. Explana-
tions are given in the text
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Blister agents cause severe skin, eye, and mucous mem-
brane damage. They are named for the large, painful blisters 
that they can cause. Blood agents are compounds that inter-
fere with the body’s ability to utilize oxygen. They are typi-
cally absorbed through the respiratory system but can also 
be swallowed. Examples include hydrogen cyanide (AC) and 
cyanogen chloride (CK). Pulmonary agents damage lung tis-
sue, often leading to suffocation. Examples include chlorine 
(Cl), phosgene (CG), and chloropicrin (PS). Nerve agents 
disrupt the neuronal signal transmission, leading to cholin-
ergic overstimulation. Examples include sarin (GB), soman 
(GD), tabun (GA), VX, and the Novichoks.

In addition to these, there are also riot control agents, which 
are chemicals used for law enforcement and crowd control. 
These chemicals, while not intended for lethal use, can cause 
immediate irritation of the eyes, nose, and respiratory tract. 
Mental incapacitating agents include drugs and compounds 
that affect functions of the central nervous system resulting in 
respiratory depression and loss of consciousness. Examples 
are fentanyl and derivatives thereof. Because these compounds 
are used as drugs in clinical routine, they are also referred to as 
“pharmacological-based agents.” Furthermore, some chemical 
agents may exhibit characteristics of multiple categories. For 
example, certain compounds can act as both blister agents and 
pulmonary agents, depending on the route of exposure.

Chemical warfare compounds have the potential to impair 
the exposed person’s health instantly or within a few hours 
after exposure. Trauma damage sustained during combat or 
due to the explosive deployment of the warfare agent may 
exacerbate the health condition. As a result, the intoxicated 
trauma patient requires both trauma care and additional 
treatment due to chemical agent contamination.

The intoxicated trauma patient

The management of this specific group of patients is dif-
ficult, yet it adheres to strict guidelines (Wille et al. 2019). 

First, early antidote treatment (e.g., atropine and obidoxime 
in the event of nerve agent poisoning (Amend et al. 2020) 
or naloxone in the case of opioid is life-saving and should 
be initiated as soon as possible. The “time-until-first-treat-
ment” is critical and should be kept as short as feasible. 
Antidotes can be delivered using auto-injectors while still in 
the hot zone and prior to decontamination. The “trigger-to-
treat” is usually the manifestation of characteristic chemical 
agent-related clinical symptoms. However, particularly in 
the event of percutaneous exposure to non-volatile nerve 
agents (i.e., VX or Novichoks), symptoms may not manifest 
immediately, despite the fact that the patient has already 
been severely poisoned.

Onsite testing of acetylcholinesterase activity using a 
mobile test kit and the use of a sensitive and easy to use 
organophosphate (OP) skin disclosure kit may allow for the 
early diagnosis of OP skin exposure and the start of life-
saving countermeasures (Worek et al. 2016). Contaminated 
patients cannot be sent into the rescue chain without prior 
decontamination. Massive bleedings and trauma injuries 
must also be handled prior to decontamination, for exam-
ple, using tourniquets, to minimize any treatment delays. 
In a mass intoxication scenario, the number of patients will 
exceed the available resources (Rossaint et al. 2023). Thus, 
there is an urgent need to prioritize equipment and medical 
supplies using triage algorithms (Khoshnevis et al. 2015). 
It is critical to repeat the triage procedure on a regular basis 
in order to detect deteriorating health issues, particularly 
following percutaneous exposures.

Verification of exposures to chemical warfare 
agents

Most chemical agents are highly reactive. They readily 
hydrolyze following either an enzymatic or, more typically, 
a non-enzymatic pathway. Moreover, they can form cova-
lent products (adducts) with endogenous biomacromolecules 
(e.g., DNA and proteins) (John & Thiermann 2021). The 

Table 1   Main classes of chemical agents and their mode of action

Classes of chemical agents Mode of action

Blister agents (or Vesicants) (e.g., sulfur mustard) Alkylation of biomacromolecules (e.g., DNA, proteins)
Chemical asphyxiants (“blood agents”) (e.g., cyanide) Inhibition of the respiratory chain by inhibition of mitochondrial 

complex IV
Pulmonary agents (e.g., phosgene or chlorine) Bi-phasic:

1. Irritation of mucous membranes/peripheral nerve endings
2. Development of lung edema and toxic lung injury

Nerve agents (e.g., sarin, VX, Novichok) Inhibition of acetylcholinesterase (AChE)
Riot control agents (e.g., tear gases) and incapacitating agents (e.g., 

adamsite)
Interaction with peripheral sensory nerve endings

Mental incapacitating agents (“pharmacological-based agents”) (e.g., 
fentanyl)

Interaction with neuronal targets expressed in the central and 
peripheral nervous system (e.g., opioid receptors)
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limited stability and high reactivity of most chemical agents 
preclude the detection of the intact poison in vivo, thus 
requiring the search for more stable and long-lived surro-
gate parameters derived from biotransformation (John et al. 
2018). Thus, detection of the metabolites or the adducts can 
be used to verify human exposures. Gas and liquid chroma-
tography (LC) coupled to mass spectrometry (MS) are com-
monly used for biomedical verification of OPNA (organo-
phosphorus nerve agent) exposure in humans and animals 
(Kranawetvogl et al. 2023).

Barrier failure due to trauma

An intact intestinal barrier serves as a crucial boundary sep-
arating the systemic circulation from the intestinal microbi-
ome. When this barrier is compromised, it can lead to the 
translocation of bacteria and pathogen-associated molecular 
patterns (PAMPs) into the bloodstream or lymphatic system, 
thereby intensifying the immune response and promoting 
systemic inflammation (Wrba et al. 2017). This phenomenon 
is commonly observed as a complication following injury, 
with profound systemic effects on both pro-inflammatory 
and anti-inflammatory immune responses, as well as organ 
perfusion and oxygenation. Such intestinal barrier dysfunc-
tion often contributes to multiple organ dysfunction in the 
clinical course post-injury (Faries et al. 1998; Spindler-Vesel 
et al. 2006). In case of direct abdominal trauma, experimen-
tal evidence suggests, that the infliction of macroscopically 
visible intestinal injuries is significantly influenced by the 
location and intensity of the traumatic force (Maitz et al. 
2021). In the clinical setting, indirect, remote abdominal 
traumata appear more frequent than direct ones. Especially, 
severe blood loss with development of hemorrhagic shock 
during or after traumatic injury emerges as a major factor 

causing endothelial damage and subsequent dysfunction of 
the intestinal barrier (see Fig. 2).

Our own research findings further emphasize the vul-
nerability of the intestines to hypoperfusion due to blood 
loss or centralization. In patients with multiple injuries, we 
observed a remarkable increase in the levels of circulating 
glycocalyx components and markers of intestinal injury and 
permeability, particularly in those who had experienced sub-
stantial blood loss (Halbgebauer et al. 2018). In a murine 
model of multiple trauma and hemorrhage, we observed 
several notable effects on intestinal integrity even in the 
absence of direct abdominal injury. These effects included 
an increase in abdominal girth, indicative of extravascular 
fluid accumulation, a reduction in the expression of the 
central tight-junction protein, zonula occludens protein 1, 
in cell–cell contacts within the ileum and colon, and the 
appearance of mucosal molecules in the bloodstream (Wrba 
et al. 2019).

These findings underscore the significant impact of sys-
temic post-traumatic processes on the integrity of the intes-
tines. Additionally, it is worth noting that traumatic brain 
injury, as demonstrated in various preclinical models, can 
additionally impair intestinal barrier function (Bansal et al. 
2010; Feighery et al. 2008; Ma et al. 2019). Mechanistically, 
we have identified the local upregulation of an apoptosis-
inducing protein, thirty-eight-negative kinase 1, as a poten-
tial mediator of post-traumatic intestinal epithelial cell death 
(Armacki et al. 2018). For future therapeutic applications, 
preventing the effects of mesenteric “lymph toxicity” (Mag-
notti et al. 1998; Deitch et al. 2006; Fang et al. 2010; Levy 
et al. 2013) may aid in reducing the detrimental effects of 
intestinal injury on remote organ systems. Taken together, 
the available data underscores the significance of the intes-
tine as an often-underappreciated contributor to the develop-
ment of post-traumatic complications.

Fig. 2   The multiple aspects of 
trauma-toxicology. Explana-
tions re given in the text. CNS, 
central nerve system; DAMPs, 
danger-associated molecular 
pattern; PAMPs, pathogen-asso-
ciated molecular pattern
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Trauma‑caused microbiome shifts: role 
of bacterial enterotoxins

The human as “macrocosm” and the integrated and sur-
rounding microorganisms as “microcosm” share a complex 
and mutually dependent relationship. In the experimental 
setting of rodent polytrauma, both, others, and our research 
efforts have uncovered rapid microbial alterations within 
the gut mere hours after injury, a phenomenon influenced, 
among other factors, by the systemic inflammatory response 
and the demand for catecholamines (Nicholson et al. 2018; 
Appiah et al. 2021). In the days following trauma, a sig-
nificant shift in the microbiome is observed, characterized 
by a transition towards a pathobiome. This shift manifests 
as a loss of beta-diversity and the prevalence of certain 
microorganisms such as Rothia, Anaerostipes, and Lac-
tobacillus. Simultaneously, indications of a compromised 
intestinal barrier emerge, as recently demonstrated in a rat 
model of multiple injuries and secondary insults (Munley 
et al. 2023). Studies employing rodent burn injury revealed 
that advanced age exacerbates microbiome dysbiosis and 
weakens the host’s antimicrobial defenses (Wheatley et al. 
2020). Conversely, adolescent rats subjected to repetitive 
mild traumatic brain injury (TBI), preceded by microbi-
ome depletion, exhibited a pathogenic state dominated by 
Clostridia, rendering them more vulnerable than their adult 
counterparts (Sgro et al. 2022).

Translational research has consistently revealed that 
microbial changes are closely associated with adverse out-
comes (Schuijt et al. 2013). Several factors, notably trauma-
induced hypoxia, stress, and administration of antibacterial 
drugs, have been identified as key drivers of microbiome 
alterations. In patients with persistent hypoxia (paO2/FiO2 
ratio below 300) following burn and inhalation injuries, an 
altered bronchoalveolar microbiome is evident, character-
ized by an enrichment of Prevotella, Corynebacteria, and 
Mogibacterium (Walsh et al. 2017). Likewise, spinal cord 
injury studies, both experimental and clinical, have identified 
an increase in inflammation-promoting microbes, including 
Clostridia (Valido et al. 2022). Despite the growing body of 
evidence pointing to early post-trauma microbiome altera-
tions, our understanding of the specific pathobiome and the 
mechanisms involved in rebalancing microbiome homeosta-
sis following trauma remains limited. Further investigations 
are warranted to unravel these intricate interactions.

Numerous microorganisms possess the capability to 
facilitate microbial invasion by strategically targeting and 
compromising the intestinal barrier through the action of 
enterotoxins. These enterotoxins act predominantly in the 
gut and mainly target the intestinal epithelial cells, often 
exhibiting pore-forming properties, or disrupt the integrity 
of intercellular tight junctions, resulting in a loss of barrier 

function. Enterotoxins can be produced by a variety of path-
ogens, including Staphylococcus aureus, Bacillus cereus, 
and Streptococcus pyogenes, and by plants (Ricin), as sum-
marized in Table 2.

Notably, enterotoxins, especially the AB-toxins produced 
by C. difficile (Aktories 2011) and Clostridium perfringens, 
play a significant role in this context. In serum and wounds 
of burn and trauma patients, enterotoxin A from Staphylo-
coccus aureus (SEA) could be isolated and were predic-
tive of mortality (Ali et al. 2022; Prindeze et al. 2014). In a 
rat model of infectious burn wounds, enterotoxin B (SEB) 
and toxic shock syndrome toxin-1 (TSST-1) were found to 
translocate from the wounds to the kidneys, potentially con-
tributing to the development of remote complications (Mino 
et al. 2013). Collectively, research on enterotoxins has pre-
dominantly centered on burn injuries, necessitating further 
comprehensive mechanistic investigations in diverse trauma 
and post-traumatic settings.

Role of bacterial toxins in traumatic 
diseases, barrier failure, and post‑traumatic 
complications

Nowadays, due to changing global political situations, there 
is increasing concern regarding the deployment of C- and 
B-weapons in the context of military or terroristic activities, 
also in Europe. Therefore, research on the mode of action of 
such toxins is of major impact, as well as on the development 
of novel, highly specific and sensitive detection methods for 
such compounds and therapeutic options to treat traumatic 
and post-traumatic diseases caused by C- and B-warfare.

We and others have investigated the mode of action of the 
protein exotoxins of C. difficile on the molecular and cellular 
levels in detail and suggested a panel of molecules including 
human body’s own proteins and peptides as well as licensed 
drugs that are used for therapy of other diseases as potent 
inhibitors against C. difficile toxins. These molecules, in 
addition to the already available antibacterial drugs against 
C. difficile, might provide an attractive starting point for 
clinical studies to introduce novel pharmacological options 
to treat and/or prevent C. difficile-induced infections (CDI).

Similar to the trauma response, the response to toxic 
substances including bacterial protein toxins can result in 
local and systemic inflammation, activation and depletion of 
the coagulation- and complement cascade, development of 
barrier dysfunction, micro- and macro-perfusion problems, 
and subsequent organ dysfunction and failure (Abrams et al. 
2022). Although the clinical consequences of toxins can be 
similar, toxic compounds and their induced pathophysiol-
ogy can be rather different. In conclusion, toxic compounds 
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exhibit a wide range of characteristics, yet their clinical 
manifestations can resemble those of other severe diseases, 
potentially leading to multiple organ failure. However, little 
is known about the role of toxins in the context of severe 
tissue trauma and the potential underlying crosstalk driving 
the pathophysiology towards disease progress including the 
process of post-traumatic regeneration. In particular, barrier 
failure due to toxic compounds such as chemical warfare 
or toxins (e.g., enterotoxins from C. difficile) needs further 
mechanistic enlightenment.

Trauma‑associated Clostridioides difficile infection

In recent decades, there has been a global increase in 
Clostridioides (formerly Clostridium) difficile infections, 
impacting not only the traditional demographic of elderly 
patients with prolonged use of antibacterial drugs (Depestel 
& Aronoff 2013). In case of accidental or surgical trauma, C. 
difficile infection develop in ca. 1–3% (Gonzalez et al. 2022; 
Lumpkins et al. 2008). Moreover, in cases of burn injuries, 
colonization by C. difficile on the skin and in the surround-
ing environment has been reported in up to 18% of cases 
(Shoaei et al. 2022). An extensive analysis of over 11,000 
trauma patients admitted to a level I trauma center revealed 
a significant association between C. difficile infection and a 
nearly threefold increase in mechanical ventilation require-
ments, mortality rates, and a markedly prolonged stay in 
both the intensive care unit (ICU) and overall hospitalization 
duration (Karamanos et al. 2018).

Patients with post-traumatic C. difficile often exhibited a 
high initial injury severity score (ISS), an abdominal injury 
pattern (colonic, renal, and hepatic), received third-generation 
cephalosporins and/or clindamycin, and/or i.v. proton-pump-
inhibitors (Karamanos et al. 2018). In addition, a clinical anal-
ysis after blunt trauma proposed a specific C. difficile patient 
population that was older than 65 years, and developed greater 
multiple organ dysfunction scores (including enhanced base 
deficit, lactic acid, creatinine, glucose levels, and reduced 
PiO2:FiO2) than uninfected trauma patients (Vanzant et al. 
2015). A recent multifactorial analysis reaffirmed these risk 
factors and introduced trauma as a surgical cause associated 
with C. difficile infection (Jachowicz et al. 2022).

It is noteworthy that an analysis of approximately 1.5 
million surgical patients indicated that an elevated body 
mass index, a measure of adiposity, appears to confer some 
protection against C. difficile infection (Meier et al. 2019). 
Recognizing the challenge of C. difficile infection in trauma 
patients, management guidelines have been developed to 
address this concern (Sartelli et al. 2019, 2021). Therapeuti-
cally, application of phosphatidylcholine as a key component 
of the intestinal mucosal barrier reduced epithelial necrosis 
and improved the barrier integrity in an in vitro intestinal 

model of C. difficile exposure (Olson et al. 2014). However, 
translating these findings into clinical interventions for 
restoring the gut-blood barrier in cases of C. difficile infec-
tion remains a pending challenge.

Clostridioides difficile toxins as reason 
for post‑traumatic complications

Structure, uptake, mode of action, and pathophysiological 
role of TcdA and TcdB

Toxin A (TcdA) and toxin B (TcdB) are the two major exo-
toxins of C. difficile (Aktories 2011; Just et al. 1995a, b). 
A third toxin termed CDT (C. difficile transferase) is pro-
duced by certain epidemic strains (e.g., C. difficile strain BI/
NAP1/027). All three toxins are protein toxins harboring a 
deleterious enzymatic domain, which is delivered into target 
cells via receptor-mediated endocytosis. The toxins’ actions 
on target tissues are directly responsible for the outcomes or 
severity of C. difficile-associated diseases (CDADs), such 
as diarrhea and pseudomembranous colitis (Papatheodorou 
et al. 2018).

TcdA and TcdB (shortly TcdA/B) are independently 
acting, single-chain toxins with a rather large size of 308 
(TcdA) and 270 kD (TcdB), respectively. They consist of 
several functional domains whose orchestrated interplay is 
required for the delivery of the toxic cargo, an N-terminally 
located glucosyltransferase domain, into target cells (Akto-
ries et al. 2017). The domain architecture of TcdA/B and 
their functions at consecutive steps during cell entry of 
TcdA/B are depicted in detail in Fig. 3A.

The target molecules of TcdA/B are small GTPases of 
the Rho and/or Ras family (Just et al. 1995a, b; Just & Ger-
hard 2004; Genth et al. 2018; Zeiser et al. 2013), which act 
in cells as molecular switches and as master regulators of 
the actin cytoskeleton and of numerous other cellular pro-
cesses, including cell migration, phagocytosis, intracellular 
trafficking, cell progression, and apoptosis (Nobes & Hall 
1994; Burridge and Wennerberg 2004 l; Jaffe & Hall 2005; 
Aktories 2011; Lemichez & Aktories 2013). TcdA and TcdB 
vary in their substrate profile but they both inactivate their 
substrates by covalent attachment of a glucose moiety at a 
conserved threonine residue, which is crucial for the interac-
tion with effectors. The glucose is provided by UDP-glucose, 
which acts as a co-substrate for the toxins’ glucosyltrans-
ferase domain. In this respect, TcdA/B are members of the 
family of clostridial glucosylating toxins (CGTs) (Jank & 
Aktories 2008), also denoted as the family of large clostrid-
ial cytotoxins (LCCs) (von Eichel-Streiber et al. 1996).

TcdA/B-mediated glucosylation of Rho proteins causes a 
number of changes in cellular function, but cell rounding is 
the most obvious cytopathological effect in cultured mam-
malian cells. Due to a redistribution of the actin cytoskeleton, 
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the cells lose their normal shape and form irregular exten-
sions, a process which is called arborization. The role of the 
toxins during CDI pathogenesis is not entirely understood. 
However, pathophysiological effects of the toxins, such as 
disruption of the barrier function of enterocytes, impair-
ing colonic epithelial renewal, increasing colonic vascular 
permeability, induction of apoptosis, and pro-inflammatory 
activities, are altogether contributing and promoting dis-
ease pathogenesis. The numerous cytopathological and 

pathophysiological effects of TcdA/B were summarized 
recently in detail (Papatheodorou et al. 2018).

Structure, uptake, mode of action, and pathophysiological 
role of CDT

CDT is binary toxin formed by two separate components, 
the binding and translocation component CDTb and the 
enzyme component CDTa. The toxin is highly similar to 

Fig. 3   Domain architecture, cellular uptake, mode of action, and 
inhibitory drugs of C. difficile toxins. A Domain architecture of TcdA 
and TcdB. The glucosyltransferase domain (GTD, red) is the toxic 
part of the toxins that modifies host Rho and/or Ras GTPases upon 
cleavage and release into the cytosol by the cysteine protease domain 
(CPD, blue). The combined repetitive oligopeptides (CROPs, gray) 
act together with the delivery and receptor binding domain (DRBD, 
yellow) in binding of the toxins to cell surface receptors. The DRBD 
is also harboring a region that forms a translocation pore in endoso-
mal membranes upon acidification of the endosomes via vacuolar 
H+-ATPases (shown in brown) for delivery of the GTD into the cyto-
sol. B Domain architecture of CDTa and CDTb. CDTa consists of an 
N-terminal pADPRT, pseudo-ADP-ribosyltransferase (pADPRT) fol-
lowed by an active ADP-ribosyltransferase (ADPRT) that modifies 
G-actin monomers upon entry into the host cell cytosol via CDTb, 
which consists of the domains D1 (activation by host proteases), D2/
D3 (insertion and pore formation in endosomal membranes upon 
acidification of the endosomes via vacuolar H+-ATPases (shown 
in brown) for delivery of CDTa into the cytosol), D3 (oligomeriza-
tion), and D4 (receptor binding; including a glycan-binding domain 
(GBD)). C Cellular uptake, mode of action, and inhibitors of TcdB 
(exemplarily; left part) and CDT (right part). The four steps in Roman 
numerals indicate I, receptor binding (for CDT receptor binding is 

followed by host protease-mediated cleavage and activation at the D1 
domain, oligomerization at the plasma membrane by the D3 domain 
and recruitment of CDTa to the receptor: CDTb oligomer complex); 
I*, direct pore formation of the CDTb oligomer into the plasma mem-
brane; II, receptor-mediated endocytosis; III, endosome-to-cytosol 
translocation of the enzyme domains (GTD and CDTa, respectively) 
and refolding with the help of host chaperons; IV, modification of 
target substrates (GTD, glucosylation of Rho and/or Ras GTPases, 
e.g., Rac1; CDTa, ADP-ribosylation of G-actin). Inhibitory drugs and 
the affected steps during cell entry of the toxins are indicated by red 
boxes and dashed arrows. 3D structures of TcdB (PDB ID: 6OQ5; 
Chen et al. 2019) and of Rac1 (PDB ID: 3TH5; Krauthammer et al. 
2012) as well as 3D structures of the CDTb oligomer in the prepore 
conformation in complex or without CDTa (PDB ID: 6V1S; Sheedlo 
et al. 2020), of the CDTb pore with long stem in complex with CDTa 
(PDB ID: 7VNN, Kawamoto et al. 2022), of CDTa (PDB ID: 2WN4; 
Sundriyal et al. 2009), and of G-actin (PDB ID: 2HF3; Rould et al. 
2006) were generated with Mol* (Sehnal et  al. 2021). Membrane-
inserting structures of CDTb at the plasma membrane and TcdB 
in endosomal membrane are fictitious and for representation only. 
Abbreviations: InsP6, inositol hexakisphosphate; Glc, glucose; LSR, 
lipolysis-stimulated lipoprotein receptor
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other clostridial binary ADP-ribosylating toxins, such as 
the C2 toxin from Clostridium botulinum and the iota-toxin 
from Clostridium perfringens, and more distantly related to 
the anthrax toxin of Bacillus anthracis (Stiles et al. 2014; 
Aktories et al. 2018). CDTb binds to its receptor, the lipol-
ysis-stimulated lipoprotein receptor (LSR) (Papatheodorou 
et al. 2011), and upon entry into endosomes, and facilitates 
by forming oligomeric pores the translocation of CDTa into 
the cytosol. In the cytosol, CDTa utilizes NAD for covalent 
attachment of an ADP-ribose moiety to monomeric G-actin. 
ADP-ribosylated G-actin monomers block the polymeri-
zation of F-actin filaments, which eventually leads to the 
collapse of the actin cytoskeleton. Figure 3B illustrates the 
modular composition of CDT and its various steps during 
cell entry. Recent findings indicate that CDTb alone is also 
capable of damaging cells by pore formation in the plasma 
membrane (Landenberger et al. 2021).

The pathophysiological role of CDT still remains enig-
matic. However, a recent retrospective study has shown 
that CDT-positive patients were associated with increased 
disease severity and worse clinical outcomes (Young et al. 
2022). One explanation might be that CDT increases the 
adherence of the C. difficile bacteria at the surface of intes-
tinal epithelial cells. CDT-induced disruption of the actin 
cytoskeleton leads to the formation of long microtubule-
based protrusions on the surface of intestinal host cells. 
These protrusions enwrap the bacteria, resulting in increased 
pathogen adherence (Schwan et al. 2009).

Novel pharmacological approaches against C. 
difficile toxins

The growing mechanistic knowledge about the biology of 
C. difficile toxins has led to novel anti-toxin approaches, 
which might be useful in the future as supportive treatment 
options against C. difficile-associated diseases and/or post-
traumatic complications. For instance, body-own antimi-
crobial peptides, such as certain defensins, were shown 
to inhibit TcdA/B and CDT either by direct interaction 
and formation of biologically inactive aggregates (Fischer 
et al. 2020; Korbmacher et al. 2020; Barthold et al. 2022) 
or by inhibiting enzyme activities, as suggested for human 
α-defensin and TcdB (Giesemann et al. 2008).

Along with body-own or artificial peptide libraries, 
“drug repurposing” (also known as “drug repositioning”) 
is another promising approach for the discovery of novel 
pharmacological approaches against C. difficile toxins on 
the basis of already licensed and safe-to-use drugs. It is a 
cost-effective and time-efficient way to develop new anti-
toxin treatments with a high probability of success.

Since now, several licensed drugs have been found that 
exhibits activity against C. difficile toxins. The mucolytic 
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agent ambroxol, for instance, has been shown to specifi-
cally inhibit the glucosyltransferase activity of TcdA/B 
(Heber et al. 2022). The antiemetic and prokinetic drug 
domperidone inhibits the refolding of the glucosyltrans-
ferase domain of TcdA/B and of the enzyme component 
CDTa after the translocation from endosomes as linear, 
unfolded proteins into the cytosol (Braune-Yan et  al. 
2023). In this context, domperidone acts as an inhibitor 
of Hsp70 (Concilli et  al. 2020), a chaperone crucially 
involved in the refolding step during cell entry of TcdA/B 
and CDT (Ernst 2022; Braune-Yan et al. 2023).

Pore formation of TcdA/B is another critical step dur-
ing cell entry and requires the presence of cholesterol in 
endosomal membranes. Therefore, the hypocholester-
olemic drug simvastatin, which acts as an inhibitor of the 
HMG-CoA reductase, was found to be capable of inhibit-
ing cell entry of TcdA/B by decreasing the cholesterol 
content in membranes of cultured cells (Papatheodorou 
et al. 2019). Recently, it was shown that the antiarrhythmic 
drug amiodarone prevents intoxication of cells by TcdA/B 
(Schumacher et al. 2023). Amiodarone’s main mode of 
inhibition likely involves interference with pore formation 
and translocation of both toxins.

For CDT, not only domperidone, but also the antibacterial 
drug bacitracin and the immunosuppressant cyclosporine A 
have been proven to interfere with the endosome-to-cytosol 
translocation of CDTa and to thus inhibit the intoxication of 
cells with CDT (Schnell et al. 2019). Interestingly, later, it 
was found that bacitracin was also effective against TcdB, 
most likely due to inhibition of the translocation of the glu-
cosyltransferase domain across the endosomal membrane 
(Zhu et al. 2019). Another approach for inhibiting CDT is 
the direct blockage of its pore formed by CDTb with chemi-
cal compounds. The antimalarial drug chloroquine is among 
various substances that are capable of inhibiting the CDTb 

pore, thereby preventing not only the endosome-to-cytosol 
translocation of CDTa, but also the cytotoxic effects, which 
are associated with CDTb-dependent pore formation at the 
plasma membrane (Ernst et al. 2021). Licensed drugs capa-
ble of inhibiting TcdA/B and/or CDT and their proposed 
mode of inhibition are summarized in Fig. 3C.

Conclusions

Trauma-toxicology, traumatology, and toxicology are related 
medical fields, but they have distinct focuses and approaches 
(see Table 4). Trauma-toxicology is a specialized area of 
toxicology that focuses on the effects of toxic substances on 
injured patients, while traumatology focuses on the preven-
tion, diagnosis, and treatment of injuries (see Table 3).

In conclusion, for the first time, we coin and define 
the term “trauma-toxicology” referring the interplay and 
“vicious circle” of severe tissue trauma, barrier break-
down, pathogen and toxin exposure, and subsequent tissue 
damage. Furthermore, trauma can be associated with tox-
ins (e.g., biological warfare) and toxic agents (e.g., chem-
ical warfare) leading also to macro- and micro-barrier 
break down and the “vicious circle” and frequently often 
fatal outcome. In this context, toxins can be the reason for 
the trauma or essentially contribute to post-traumatic com-
plications after traumatic injuries. Although the under-
lying cellular and molecular mechanisms of both toxins 
and toxic agents are well described for most substances, 
treatment options need further research and translation 
to the real world in order to sufficiently improve trauma-
toxicological conditions. Some keyterms in the field of 
“trauma-toxicology” are defined in Table 4.

Abbreviations  AC:  Hydrogen cyanide; AChE:  Acetylcholinest-
erase; ADP:  Ribosyltransferase; B-warfare:  Biological warfare; 

Table 4   Definition of key terms in trauma-toxicology

Term Definition, meaning

Pathobiome The microbiome, which underwent a shift towards the growth of more pathogenic bacteria in the gut. This might 
be induced by prolonged treatment with antibacterial drugs or by traumatic injuries

Time until first treatment The time elapsed till the first professional diagnostic measures and treatment is induced
Macrocosm The patient
Microcosm The microbiome of a patient
B-warfare Biological warfare, e.g., viruses, bacteria, toxins from bacteria (anthrax toxins, botulinum neurotoxin) or plants 

(ricin)
C-warfare Chemical warfare (see Table 1)
Post-traumatic complications Clinical complications in patients after traumatic injury, such as infections with toxin-producing bacteria in hos-

pital (e.g., C. difficile, Staphylococcus aureus, Streptococcus pyogenes) that may worsen the outcome of these 
trauma patients

Trigger-to-threat Manifestation of characteristic clinical symptoms after exposure to a “trigger” (e.g., a toxic substance)
Intoxicated trauma patient A patient that has an intoxication, e.g., by B- or C-warfare in addition to the traumatic injuries
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C.: Clostridioides; CBRN: Chemical, biological or radiological/nuclear 
warfare agents; CDAD: C. difficile-Associated disease; CDI: C. difficile-
Induced infection; CDT: C. difficile Transferase; ADPRT: CG, phos-
gene; CGTs: Clostridial glucosylating toxins; CK: Cyanogen chloride 
(CK); Cl: Chlorine; CNS: Central nerve system; C-warfare: Chemical 
warfare; CWAs: Chemical warfare agents; DAMPs: Damage-associated 
molecular patterns; GA: Tabun; GB: Sarin; GBB: Gut-blood-barrier; 
GD: Soman; GTPases: Guanine nucleotide-binding proteins (G-pro-
teins); ICU: Intensive care unit; ISS: Injury severity score; LC: Liquid 
chromatography; LCCs: Large clostridial cytotoxins; MODS: Multiple 
organ dysfunction syndrome; MS: Mass spectrometry; OP: Organo-
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