Skip to main content

Advertisement

Log in

Hispidulin: a promising anticancer agent and mechanistic breakthrough for targeted cancer therapy

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cancer is a complex disease characterized by dysregulated cell growth and division, posing significant challenges for effective treatment. Hispidulin, a flavonoid compound, has shown promising biological effects, particularly in the field of anticancer research. The main objective of this study is to investigate the anticancer properties of hispidulin and gain insight into its mechanistic targets in cancer cells. A comprehensive literature review was conducted to collect data on the anticancer effects of hispidulin. In vitro and in vivo studies were analyzed to identify the molecular targets and underlying mechanisms through which hispidulin exerts its anticancer activities. Hispidulin has shown significant effects on various aspects of cancer, including cell growth, proliferation, cell cycle regulation, angiogenesis, metastasis, and apoptosis. It has been observed to target both extrinsic and intrinsic apoptotic pathways, regulate cell cycle arrest, and modulate cancer progression pathways. The existing literature highlights the potential of hispidulin as a potent anticancer agent. Hispidulin exhibits promising potential as a therapeutic agent for cancer treatment. Its ability to induce apoptosis and modulate key molecular targets involved in cancer progression makes it a valuable candidate for further investigation. Additional pharmacological studies are needed to fully understand the specific targets and signaling pathways influenced by hispidulin in different types of cancer. Further research will contribute to the successful translation of hispidulin into clinical settings, allowing its utilization in conventional and advanced cancer therapies with improved therapeutic outcomes and reduced side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not Applicable

Abbreviations

AKT:

serine/threonine kinase

AMPK:

AMP-activated protein kinase

BAK:

BCL2 antagonist killer 1

BAX:

BCL2-associated X protein

Bcl-2:

B-cell lymphoma protein 2

Bcl-XL:

BCL2-related protein, long isoform

CARD:

caspase recruitment domain

Caspase-10:

cysteinyl aspartic acid-protease-10

Caspase-3:

cysteinyl aspartic acid-protease-3

Caspase-6:

cysteinyl aspartic acid-protease-6

Caspase-7:

cysteinyl aspartic acid-protease-7

caspase-8:

cysteinyl aspartic acid-protease 8

COX-2 :

cyclooxygenase-2

DED:

death effector domain

ERK:

extracellular signal-regulated kinase

FasL:

Fas ligand

FasR:

Fas ligand-receptor

GBM:

glioblastoma multiforme

GLOBOCAN :

global cancer incidence, mortality, and prevalence

GSH/GSSG:

reduced glutathione/oxidized glutathione

HIF-1:

hypoxia-inducible factor-1

HIS:

hispidulin

HT-29 :

human colorectal adenocarcinoma cell line

JAK:

Janus kinase

MMP-2:

matrix metalloproteinase-2

mTOR:

mammalian target of rapamycin

OVX:

ovariectomy

PARP:

poly (ADP-ribose) polymerase

PI3K/:

phosphoinositide 3-kinase

PTEN:

phosphatase and tensin homolog

RCC:

renal cell carcinoma

ROS:

reactive oxygen species

STAT3:

signal transducer and activator of transcription 3

TMZ:

temozolomide

TNFR1:

type 1 TNF receptor

TRAIL:

TNF-related apoptosis-inducing ligand

TUNEL:

terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  • Ahmed A, Sarwar S, Hu Y, Munir MU, Nisar MF, Ikram F, Asif A, Rahman SU, Chaudhry AA, Rehman IU (2021) Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 18:1–24

    CAS  PubMed  Google Scholar 

  • Ahmed S, Khan H, Fratantonio D, Hasan MM, Sharifi S, Fathi N, Ullah H, Rastrelli L (2019) Apoptosis induced by luteolin in breast cancer: mechanistic and therapeutic perspectives. Phytomedicine 59:152883

    CAS  PubMed  Google Scholar 

  • Alton E, Ferrari S, Griesenbach U (2007) Progress and prospects: gene therapy clinical trials (part 2). Gene Ther 14:1555–1563

    Google Scholar 

  • Ashaq A, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, Qazi JI, Li Y, Ma T (2021) Hispidulin: a novel natural compound with therapeutic potential against human cancers. Phytother Res 35:771–789

    CAS  PubMed  Google Scholar 

  • Assadpour E, MahdI Jafari S (2019) A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr, 59:3129–3151

    CAS  PubMed  Google Scholar 

  • Atif M, Ali I, Hussain A, Hyder SV, Niaz B, Khan FA, Maalik A, Farooq U (2015) Pharmacological assessment of hispidulin–a natural bioactive flavone. Acta Pol Pharm 72:829–842

    CAS  PubMed  Google Scholar 

  • Benavente-Garcia O, Castillo J (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56:6185–6205

    CAS  PubMed  Google Scholar 

  • Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Can 18:1–29

    CAS  Google Scholar 

  • Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005) Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 280:5636–5645

    CAS  PubMed  Google Scholar 

  • Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacog Rev 5:1

    CAS  Google Scholar 

  • Chang C-J, Hung Y-L, Chen T-C, Li H-J, Lo Y-H, Wu N-L, Chang D-C, Hung C-F (2021) Anti-proliferative and anti-migratory activities of hispidulin on human melanoma A2058 cells. Biomolecules 11:1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao S-W, Su M-Y, Chiou L-C, Chen L-C, Chang C-I, Huang W-J (2015) Total synthesis of hispidulin and the structural basis for its inhibition of proto-oncogene kinase Pim-1. J Nat Prod 78:1969–1976

    CAS  PubMed  Google Scholar 

  • Chen L-C, Hsu K-C, Chiou L-C, Tseng H-J, Huang W-J (2017) Total Synthesis and Metabolic Stability of Hispidulinand Its d-Labelled Derivative. Molecules. 22(11):1897. https://doi.org/10.3390/molecules22111897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabaghi-Barbosa P, Mariante Rocha A, Franco da Cruz Lima A, Heleno de Oliveira B 2005 Hispidulin: antioxidant properties and effect on mitochondrial energy metabolism. Free Radic Res 39:1305-1315

  • Dall’acqua S (2014) Natural products as antimitotic agents. Curr Top Med Chem 14:2272–2285

    CAS  PubMed  Google Scholar 

  • Duthie GG, Duthie SJ, Kyle JA (2000) Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 13:79–106

    CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrandiz M, Bustos G, Paya M, Gunasegaran R, Alcaraz M 1994 Hispidulin protection against hepatotoxicity induced by bromobenzene in mice. Life Sci 55:PL145-PL150

  • Gao H, Jiang Q, Han Y, Peng J, Wang C (2015) Hispidulin potentiates the antitumor effect of sunitinib against human renal cell carcinoma in laboratory models. Cell Biochem Biophys 71:757–764

    CAS  PubMed  Google Scholar 

  • Gao H, Liu Y, Li K, Wu T, Peng J, Jing F (2016) Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer. Am J Trans Res 8:1115

    CAS  Google Scholar 

  • Gao H, Wang H, Peng J (2014) Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of P13k/Akt signalling pathway in HepG2 cancer cells. Cell Biochem Biophys 69:27–34

    CAS  PubMed  Google Scholar 

  • Gao H, Xie J, Peng J, Han Y, Jiang Q, Han M, Wang C (2015) Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α. Exp Cell Res 332:236–246

    CAS  PubMed  Google Scholar 

  • Gao M-Q, Gao H, Han M, Liu K-L, Peng J-J, Han Y-T (2017) Hispidulin suppresses tumor growth and metastasis in renal cell carcinoma by modulating ceramide-sphingosine 1-phosphate rheostat. Am J Can Res 7:1501

    CAS  Google Scholar 

  • García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552

    PubMed  Google Scholar 

  • Gezici S, Şekeroğlu N (2019) Current perspectives in the application of medicinal plants against cancer: novel therapeutic agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 19:101-111

  • Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ (2009) Apoptosis and cancer: mutations within caspase genes. J Med Gen 46:497–510

    CAS  Google Scholar 

  • Ghavami S, Kerkhoff C, Los M, Hashemi M, Sorg C, Karami-Tehrani F (2004) Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: the role of ROS and the effect of metal ions. J Leukocyte Biol 76:169–175

    CAS  PubMed  Google Scholar 

  • Ghazal S, Abuzarqua M, Mahansneh A (1992) Effect of plant flavonoids on immune and inflammatory cell function. Phytother Res 6:265–271

    CAS  Google Scholar 

  • Ghobrial IM, Witzig TE, Adjei AA 2005 Targeting apoptosis pathways in cancer therapy. CA: Cancer J Clinic 55:178–194

  • GBD (2022) 2019 Colorectal Cancer Collaborators. Global, regional, and national burden of colorectal cancer and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol Hepatol 7(7):627–647. https://doi.org/10.1016/S2468-1253(22)00044-9

  • Goldar S, Khaniani MS, Derakhshan SM, Baradaran B (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 16:2129–2144

    PubMed  Google Scholar 

  • Gontijo VS, Dos Santos MH, Viegas Jr C (2017) Biological and chemical aspects of natural biflavonoids from plants: a brief review. Min Rev Med Chem 17:834-862

  • Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Gao H, Ju P, Gao M-Q, Yuan Y-P, Chen X-H, Liu K-L, Han Y-T, Han Z-W (2018) Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARγ. Biomed Pharmacother 103:272–283

    CAS  PubMed  Google Scholar 

  • Han M, Gao H, Xie J, Yuan Y-P, Yuan Q, Gao M-Q, Liu, K-L, Chen, X-H, Han Y-T, Han Z-W (2021) Retraction Note to: Hispidulin induces ER stress-mediated apoptosis in human hepatocellular carcinoma cells in vitro and in vivo by activating AMPK signaling pathway. Acta Pharmacol Sinica

  • Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46

    CAS  PubMed  Google Scholar 

  • Hashemi M, Karami-Tehrani F, Ghavami S (2004) Cytotoxicity effect of cladribine on the MCF-7 human breast cancer cell line. Iran Biomed J 8:7–12

    CAS  Google Scholar 

  • He L, Wu Y, Lin L, Wang J, Wu Y, Chen Y, Yi Z, Liu M, Pang X (2011) Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Sci 102:219–225

    CAS  PubMed  Google Scholar 

  • Ho C-T (1994) Food phytochemicals for cancer prevention II, American Chemical Society

  • Hu Q, Wu D, Chen W, Yan Z, Shi Y (2013) Proteolytic processing of the caspase-9 zymogen is required for apoptosome-mediated activation of caspase-9. J Biol Chem 288:15142–15147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jan R (2019) Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharmaceut Bull 9:205

    CAS  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA: a Cancer J Clinicians 61:69-90

  • Jin (2005) El-Deiry WS Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    CAS  PubMed  Google Scholar 

  • Kavvadias D, Sand P, Youdim KA, Qaiser MZ, Rice-Evans C, Baur R, Sigel E, Rausch WD, Riederer P, Schreier P (2004) The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood–brain barrier and exhibits anticonvulsive effects. Brit J Pharmacol 142:811–820

    CAS  Google Scholar 

  • Kell K, Manadi A, Adiyasora Z, Kunaera R, Akad I, Naun S (1987) Bioflavonoids and health effects in man. Chem Abstr 1987:366–367

    Google Scholar 

  • Khan H, Ullah H, Martorell M, Valdes SE, Belwal T, Tejada S, Sureda A, Kamal MA (2021) Flavonoids nanoparticles in cancer: treatment, prevention and clinical prospects. Elsevier, Sem Cancer Biol, pp 200–211

    Google Scholar 

  • Khan M, Bi Y, Qazi JI, Fan L, Gao H (2015) Evodiamine sensitizes U87 glioblastoma cells to TRAIL via the death receptor pathway. Mol Med Rep 11:257–262

    CAS  PubMed  Google Scholar 

  • Kim R (2005) Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer: Int Int J Am Cancer Soc 103:1551-1560

  • Kumar S, Chashoo G, Saxena AK, Pandey AK (2013) Parthenium hysterophorus: a probable source of anticancer, antioxidant and anti-HIV agents. BioMed Res Int, 2013

  • Kumar S, Pandey A (2012) Antioxidant, lipo-protective and antibacterial activities of phytoconstituents present in Solanum xanthocarpum root. Int Rev Biophys Chem 3:42–47

    Google Scholar 

  • Leone GM, Candido S, Lavoro A, Vivarelli S, Gattuso G, Calina D, Libra M, Falzone L (2023) Clinical relevance of targeted therapy and immune-checkpoint inhibition in lung cancer. Pharmaceutics 15:1252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Zhang W, Dong Z-X, Gu T, Li N-G, Shi Z-H, Kai J, Qu C, Shang G-X, Tang Y-P (2015) A new and practical synthetic method for the synthesis of 6-O-methyl-scutellarein: one metabolite of scutellarin in vivo. Int J Mol Sci 16:7587–7594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin T-Y, Lu C-W, Wang C-C, Lu J-F, Wang S-J (2012) Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals. Toxicol Appl Pharmacol 263:233–243

    CAS  PubMed  Google Scholar 

  • Lin Y-C, Hung C-M, Tsai J-C, Lee J-C, Chen Y-LS, Wei C-W, Kao J-Y, Way T-D (2010) Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J Agr Food Chem 58:9511–9517

    CAS  Google Scholar 

  • Liu-Smith F, Meyskens FL (2016) Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol Nutr Food Res 60:1264–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Zhao F, Yan J, Xia Z, Jiang D, Ma P (2020) Hispidulin: a promising flavonoid with diverse anti-cancer properties. Life Sci 259:118395

    CAS  PubMed  Google Scholar 

  • Los M Craen M Van de, Penning LC, Schenk H, Westendorp M, Baeuerle PA, DrÖge W, Krammer PH, Fiers W, Schulze-Osthoff K (1995) Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature 375:81-83

  • Lv L, Zhang W, Li T, Jiang L, Lu X, Lin J (2020) Hispidulin exhibits potent anticancer activity in vitro and in vivo through activating ER stress in non-small-cell lung cancer cells. Oncol Rep 43:1995–2003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  • Marina Lecci R, Logrieco A, Leone A (2014) Pro-oxidative action of polyphenols as action mechanism for their pro-apoptotic activity. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 14:1363-1375

  • Matei A-M, Caruntu C, Tampa M, Georgescu SR, Matei C, Constantin MM, Constantin TV, Calina D, Ciubotaru DA, Badarau IA, Scheau C, Caruntu A (2021) Applications of nanosized-lipid-based drug delivery systems in wound care. Appl Sci 11:4915

    CAS  Google Scholar 

  • Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16:2794–2804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michael OH (2000) The biochemistry of apoptosis. Nature 407:770–776

    Google Scholar 

  • Middleton E (1998) Effect of plant flavonoids on immune and inflammatory cell function. Flavonoids in the living system, 175-182

  • Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK (2013) Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Res Int, 2013

  • Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK (2022) Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OpenNano 7:100055

    Google Scholar 

  • Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R, Tabrez S, Zughaibi TA, Alsaieedi A, Hakeem IJ (2022) The role of natural products and their multitargeted approach to treat solid cancer. Cells 11:2209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onyeagucha B, Subbarayalu P, Abdelfattah N, Rajamanickam S, Timilsina S, Guzman R, Zeballos C, Eedunuri V, Bansal S, Mohammad T (2017) Novel post-transcriptional and post-translational regulation of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 determine the fate of breast cancer cells to survive or die. Oncotarget 8:85984

    PubMed  PubMed Central  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5

  • Pandey AK (2007) Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parthenium histerophorus: an in vitro study. Nat Acad Sci Lett 30:383–386

    Google Scholar 

  • Pateiro M, Gómez B, Munekata PES, Barba FJ, Putnik P, Kovačević DB, Lorenzo JM (2021) Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 26

  • Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb) 3:279–96

    CAS  PubMed  Google Scholar 

  • Pourmorad F, Hosseinimehr S, Shahabimajd N (2006) Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol 5

  • Rahmani AH, Alzohairy MA, Khan MA, Aly SM (2014) Therapeutic implications of black seed and its constituent thymoquinone in the prevention of cancer through inactivation and activation of molecular pathways. Evid-Based Complement Altern Med 2014

  • Ruiz-Garcia A, Bermejo M, Moss A, Casabo VG (2008) Pharmacokinetics in drug discovery. J Pharmaceut Sci 97:654–690

    CAS  Google Scholar 

  • Sadasivam K, Kumaresan R (2011) Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds–A DFT study. Comput Theor Chem 963:227–235

    CAS  Google Scholar 

  • Sagbo IJ, Otang-Mbeng W (2021) Plants used for the traditional management of cancer in the Eastern Cape Province of South Africa: a review of ethnobotanical surveys, ethnopharmacological studies and active phytochemicals. Molecules 26:4639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saha P, Mazumder UK, Haldar PK, Sen SK, Naskar S (2011) Antihyperglycemic activity of Lagenaria siceraria aerial parts on streptozotocin induced diabetes in rats. Diabetol Croatic 40

  • Sak K (2014) Site-specific anticancer effects of dietary flavonoid quercetin. Nutr Cancer 66:177–193

    CAS  PubMed  Google Scholar 

  • Sakle NS, More SA, Mokale SN (2020) Chemomodulatory effects of Alysicarpus vaginalis extract via mitochondria-dependent apoptosis and necroptosis in breast cancer. Nutr Cancer 72:1243–1253

    CAS  PubMed  Google Scholar 

  • Sankari SL, Masthan K, Babu NA, Bhattacharjee T, Elumalai M (2012) Apoptosis in cancer-an update. Asian Pac J Cancer Prev 13:4873–4878

    PubMed  Google Scholar 

  • Saranath D, Khanna A (2014) Current status of cancer burden: global and Indian scenario. Biomed Res J 1:1–5

    Google Scholar 

  • Sawa T, Nakao M, Akaike T, Ono K, Maeda H (1999) Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables. J Agric Food Chem 47:397–402

    CAS  PubMed  Google Scholar 

  • Sayers TJ (2011) Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol immunother 60:1173–1180

    CAS  PubMed  Google Scholar 

  • Scoparo CT, Valdameri G, Worfel PR, Guterres FA, Martinez GR, Winnischofer S, di Pietro A, Rocha ME (2015) Dual properties of hispidulin: antiproliferative effects on HepG2 cancer cells and selective inhibition of ABCG2 transport activity. Mol Cell Biochem 409:123–133

    CAS  PubMed  Google Scholar 

  • Shen M-Z, Shi Z-H, Li N-G, Tang H, Shi Q-P, Tang Y-P, Yang J-P, Duan J-A (2013) Efficient synthesis of 6-O-methyl-scutellarein from scutellarin via selective methylation. Lett Org Chem 10:733–737

    CAS  Google Scholar 

  • Soerjomataram I, Bray F (2021) Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat Rev Clin Oncol 18:663–672

    PubMed  Google Scholar 

  • Stergiou L, Hengartner M (2004) Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 11:21–28

    CAS  PubMed  Google Scholar 

  • Su LJ (2012) Diet, epigenetics, and cancer. Cancer Epigenet :377-393

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71:209-249

  • Talib WH, Zarga MHA, Mahasneh AM (2012) Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules 17:3291–3303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    CAS  PubMed  Google Scholar 

  • Tung RD (2016) Deuterium medicinal chemistry comes of age. Fut Sci

  • Ullah H, Khan H (2018) Anti-Parkinson potential of silymarin: mechanistic insight and therapeutic standing. Front Pharmacol 9:422

    PubMed  PubMed Central  Google Scholar 

  • Valdameri G, Herrerias T, Carnieri EGS, Cadena SMSC, Martinez GR, Rocha MEM (2010) Importance of the core structure of flavones in promoting inhibition of the mitochondrial respiratory chain. Chemico-Biol Interact 188:52–58

    CAS  Google Scholar 

  • Wang K, Chen B, Yin T, Zhan Y, Lu Y, Zhang Y, Chen J, Wu W, Zhou S, Mao W (2019) N-methylparoxetine blocked autophagic flux and induced apoptosis by activating ROS-MAPK pathway in non-small cell lung cancer cells. Int J Mol Sci 20:3415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu W, He X, Fei Z (2015) Hispidulin enhances the anti-tumor effects of temozolomide in glioblastoma by activating AMPK. Cell Biochem Biophys 71:701–706

    CAS  PubMed  Google Scholar 

  • Woerdenbag H, Merfort I, Schmidt T, Passreiter C, Willuhn G, van Uden W, Pras N, Konings A (1995) Decreased helenalin-induced cytotoxicity by flavonoids from Arnica as studied in a human lung carcinoma cell line. Phytomedicine 2:127–132

    CAS  PubMed  Google Scholar 

  • Xie J, Gao H, Peng J, Han Y, Chen X, Jiang Q, Wang C (2015) Hispidulin prevents hypoxia-induced epithelial-mesenchymal transition in human colon carcinoma cells. Am J Cancer Res 5:1047

    PubMed  PubMed Central  Google Scholar 

  • Yang J-M, Hung C-M, Fu C-N, Lee J-C, Huang C-H, Yang M-H, Lin C-L, Kao J-Y, Way T-D (2010) Hispidulin sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by AMPK activation leading to Mcl-1 block in translation. J Agric Food Chem 58:10020–10026

    CAS  PubMed  Google Scholar 

  • Yang L, Lyu H, Yiming A, Xu X, Ma C, Tu S, Chen B, Liu M, Wu C (2022) Integrated metabolism, network pharmacology, and pharmacokinetics to explore the exposure differences of the pharmacodynamic material basis in vivo caused by different extraction methods for Saussurea involucrata. J Ethnopharmacol 298:115648

    CAS  PubMed  Google Scholar 

  • Yang L, Yu Z, Qu H, Li M (2014) Comparative effects of hispidulin, genistein, and icariin with estrogen on bone tissue in ovariectomized rats. Cell Biochem Biophys 70:485–490

    CAS  PubMed  Google Scholar 

  • Yu CY, Su K-Y, Lee P-L, Jhan J-Y, Tsao P-H, Chan D-C, Chen Y-LS (2013) Potential therapeutic role of hispidulin in gastric cancer through induction of apoptosis via NAG-1 signaling. Evid-Based Complement Altern Med 2013

  • Yuan L, Wang J, Xiao H, Xiao C, Wang Y, Liu X (2012) Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells. Toxicol Appl Pharmacol 265:83–92

    CAS  PubMed  Google Scholar 

  • Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21:501–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Dong Z-X, Gu T, Li N-G, Zhang P-X, Wu W-Y, Yu S-P, Tang Y-P, Yang J-P, Shi Z-H (2015) A new and efficient synthesis of 6-O-methylscutellarein, the major metabolite of the natural medicine scutellarin. Molecules 20:10184–10191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yang L, Hou J, Tian S, Liu Y (2021) Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J Ethnopharmacol 267:113635

    CAS  PubMed  Google Scholar 

  • Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, Shen L, Zhang N, He L, Qin S (2021) Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci 22

  • Zhou R, Wang Z, Ma C (2014) Hispidulin exerts anti-osteoporotic activity in ovariectomized mice via activating AMPK signaling pathway. Cell Biochem Biophys 69:311–317

    CAS  PubMed  Google Scholar 

  • Zhuo X-Z, Wu Y, Ni Y-J, Liu J-H, Gong M, Wang X-H, Wei F, Wang T-Z, Yuan Z, Ma A-Q (2013) Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis 18:800–810

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors received the UMT for TAPERG/2021/UMT/807 grant provided to G. C.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas. That is, revising or critically reviewing the article; giving final approval of the version to be published; agreeing on the journal to which the article has been submitted; and, confirming to be accountable for all aspects of the work. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding authors

Correspondence to Gul-e-Saba Chaudhry, Javad Sharifi-Rad or Daniela Calina.

Ethics declarations

Ethical approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhry, GeS., Zeenia, Sharifi-Rad, J. et al. Hispidulin: a promising anticancer agent and mechanistic breakthrough for targeted cancer therapy. Naunyn-Schmiedeberg's Arch Pharmacol 397, 1919–1934 (2024). https://doi.org/10.1007/s00210-023-02645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02645-9

Keywords

Navigation