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Abstract
Cerebral sinus venous thrombosis (CSVT) is an uncommon disease that is usually treated with anticoagulation (heparin, low-
molecular heparin, or vitamin K-antagonists). We compared treatment with edoxaban, an oral factor Xa-antagonist, that has not 
been approved in patients with CSVT, with enoxaparin, a well-established therapy, in a rat model of CSVT. Fifty male Wistar rats 
were randomized into 5 groups (10 animals each) and subjected to aluminum chloride (AlCl3)-induced thrombosis of the superior 
sagittal sinus (SSS) or sham procedure. Animals with thrombosis of the SSS were treated with edoxaban, enoxaparin, or placebo. 
Diagnostic workup included neurological examination, MRI imaging, MR-flow measurements of the SSS, and immunohistochemi-
cal staining. Neurological examination revealed no differences between treatment groups. Seven days after initial thrombosis, flow 
in the SSS was lower in the active treatment group as compared to sham-operated animals (p < 0.05). Flow in the SSS in the active 
treatment groups (edoxaban 1 h prior to thrombosis: 0.16 cm/s ± 0.06 cm/s; edoxaban 6 h after thrombosis: 0.13 cm/s ± 0.05 cm/s; 
enoxaparin: 0.13 cm/s ± 0.04 cm/s; placebo: 0.07 cm/s ± 0.02 cm/s) was higher as compared to placebo (p < 0.05), but there were 
no differences between the active treatment groups (p > 0.05). Immunohistochemical staining showed no differences in the actively 
treated animals. Edoxaban proved to be similar to enoxaparin in a model of experimental AlCl3-induced CSVT.
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Introduction

Cerebral sinus venous thrombosis (CSVT) is an uncommon 
disease and occurs in younger patients. Risk factors are female 
gender, intake of oral contraceptives or hormone replacement 
therapy, pregnancy and puerperium, obesity, smoking, and 
thrombophilia. Symptoms usually develop gradually and con-
sist of headache, focal symptoms, encephalopathy, and epilep-
tic seizures. Treatment consists of anticoagulation (heparin, 
low-molecular heparin, and vitamin k antagonists (Ferro and 

Aguiar de Sousa 2019). Recently, the thrombin-inhibitor dabi-
gatran was identified as a safe alternative (Ferro et al. 2021), 
but has not yet been approved for the therapy of CSVT.

Hence, the present study elucidated alternative state-of-
the-art therapeutic options in a preclinical model of CVST. 
Previous work of our own have already established successful 
closure of the superior sagittal sinus (SSS) using aluminum 
chloride (AlCl3 (paper in review)). We chose AlCl3, because 
this substance does not lead to artifacts in the magnetic reso-
nance imaging (MRI) as compared to ferric chloride. In the 
study at hand, we tested the effects of the factor Xa-inhibitor 
edoxaban in a rat model of AlCl3-induced CSVT as com-
pared to the low-molecular-weight heparin enoxaparin.

Methods

Animal preparation and experimental design

All animal studies were performed in accordance with 
institutional guidelines for animal research and were 
approved by the regional animal care and use committee 
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(Regierungspraesidium Darmstadt, Germany; Az. 
B10/1000). Fifty male Wistar rats (Charles River, Ger-
many), weighing 276 ± 22.47 g, were used for the present 
study. The animals had free access to water and food and 
were kept under conditions of a circadian rhythm. Rats 
received analgesia with buprenorphine (Buprenovet, Bayer 
AG, Germany) in a dosage of 0.05 mg/kg body weight 
subcutaneously (s.c.) half an hour before the anesthetic 
was administered. The anesthesia was induced with 5% 
isoflurane (Isofluran CP, CP-Pharma) in 2 l/min oxygen. 
The maintenance was performed with 2–2.5% isoflurane 
in 0.5 l/min oxygen. Isoflurane concentrations were con-
trolled during the entire operation within the specified lim-
its, taking physiological parameters into account. The body 
temperature of each animal was kept constant at 37.0 °C 
throughout the surgery, using a feedback-heating plate.

SSS thrombosis was induced as previously described 
(Stolz et al. 2011) with slight modifications. Briefly, as 
mentioned above, closure of the SSS using ferric chloride, 
which was used in previous studies, leads to significant 
artifacts due to its ferromagnetic properties when perform-
ing MRI examination, making exact measurements impos-
sible. Therefore we used AlCl3 as this substance does not 
lead to artifacts.

After the operating area had been shaved and aseptically 
prepared, the local anesthetic lidocaine (lidocaine-HCl 2% 
injection solution, B. Braun, Germany) was applied s.c. for 
local anesthesia. A skin incision of about 1.5 cm was made 
in the midline, and the calotte was exposed. The skull bone 
was drilled down under water cooling so thinly in the mid-
line along the suture that the SSS shone through the bone 
lamella. Bregma and lambda sutures served as rostral and 
caudal boundaries. When lifting and removing the bone 
lamella, care was taken not to damage the dura mater. A 
filter paper strip soaked with AlCl3 solution (40%) was 
placed on the exposed SSS for a duration of 5 min. There-
after, another strip of filter paper was soaked with the cor-
responding substance and placed on the exposed sinus for 
5 min. This procedure was then repeated a second time, 
resulting in a 3 times 5-min application. The filter paper 
strip covered the entire exposed SSS.

To ensure a safe thrombosis of the SSS, a time frame 
of 15 min was chosen, during which the substance could 
diffuse through the vessel wall. Contact of the surrounding 
brain tissue with the AlCl3 solution was avoided. Animals 
that received a sham operation were used as controls. The 
filter paper strip was soaked with sodium chloride solu-
tion instead of aluminum chloride. After removing the last 
strip of filter paper, the surgical field was carefully rinsed 
with sterile sodium chloride solution. The skin was closed 
with a continuous suture. The animals were observed until 
they completely regained consciousness and then returned 
to their cages.

The animals were treated with the analgesic buprenor-
phine at the abovementioned concentration on the day of 
surgery and the first postoperative day. Furthermore, the ani-
mals received metamizol via drinking water from 1 day prior 
to surgery up to and including the fifth postoperative day. 
Seven days after operation, the animals were decapitated 
while under deep anesthesia after completing the last MRI, 
and the brains were collected in formalin for histological 
analysis.

Functional assessment

Neurological evaluation was performed prior to anesthesia 
and 24 h after induction of ischemia. We applied a neuro-
logical score with 10 different sensorimotor and coordinative 
items, as described by Nedelmann et al. (Nedelmann et al. 
2007). Furthermore, animals were placed on a rotarod that 
was continuously accelerated from 0 to 30 rounds per minute 
(rpm). The maximum speed that the animals tolerated with-
out falling off the device was recorded (Hamm et al. 1994). 
The rotarod scores before surgery and 24 h or 7 days after 
surgery were subtracted to display the deterioration.

MRI studies

MRI measurements were performed using a 7 Tesla MRI 
spectrometer (PharmaScan, Bruker) equipped with a 760 
mT/m gradient system using a 20 mm 1H receive-only sur-
face coil together with a 72-mm transmit-only volume reso-
nator. First measurement was performed preoperatively on 
the healthy animal in order to obtain basic values. Second 
measurement took place on the first postoperative day and 
the third measurement on the seventh postoperative day.

During MRI measurements, the anesthesia of rats was induced 
using 5% isoflurane at 1 l/min oxygen. Subsequently, the animals 
were fixed in a cradle with a breathing mask, and anesthesia was 
maintained at 1.5–2% isoflurane at 0.5 l/min oxygen. The cra-
dle was placed into the MRI until the correct positioning was 
achieved. The rectal temperature of rats was kept at 37.0 °C using 
a feedback-controlled water bath. The protocol included T1- and 
T2-mapping sequences, as well as angiography sequences.

After adjustments of field homogeneity, frequency, and 
transmit amplitudes, localizer scans in three perpendicular 
directions were acquired. For visualization and volumet-
ric analysis of the volume of edema in the surrounding 
brain parenchyma where appropriate, a T2-CPMG (Carr 
Purcell Meiboom Gill) mapping sequence was followed: 
TR = 3800 ms, NEX = 1, matrix = 512 × 256, FOV = 35 × 35 
mm2, slice thickness = 1 mm, 12 slices, no gap, TE = 18 to 
216 ms in steps of 18 ms. The angiography sequences con-
trolled the degree of occlusion. Due to the low flow velocity 
in the SSS, the sequences were based on a 3D phase contrast 
method with an encoding velocity (venc) of 20 cm/s for the 
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detected velocity range: TR = 12 ms, TE = 4,54 ms, NEX = 2; 
flip angle = 30°, matrix = 256 × 256 × 85, FOV = 30 × 30 × 17 
mm3, slab thickness = 17 mm. Additionally, a flow map 
sequence with TR = 15 ms, TE = 4,54 ms, NEX = 8, flip 
angle = 30°, matrix = 256 × 256 × 11, FOV = 30 × 30 × 11 
mm3, slab thickness = 11 mm, and venc = 30 cm/s for the 
flow quantification was included, important particularly in 
the course of treatment.

Quantitative image analysis

The calculated images of the different sequences were analyzed 
with a suitable software program (Paravision 6.0.1 Image Display 
and Processing, Bruker). Based on the least squares method, T1 
and T2 maps were calculated to evaluate possible injury in the 
surrounding parenchyma and changes of the thrombosis during 
treatment. A region of interest for flow measurement was defined 
in the SSS. Based on the angiography sequences, a sagittal image 
was created showing vessels in which blood flow took place.

Immunohistochemical staining

The cryofixed rat brain tissue was sliced in 8-μm samples, 
fixed with 4 °C paraformaldehyde (PFA) 4%, permeabilized 
by exposure to heated citrate solution and blocked with a 
bovine serum albumine/glycerine/glycin solution. Primary 
antibody binding followed by using 10 µg/mL anti-VEGF 
(vascular endothelial growth factor; vascular tissue, angio-
genesis), 1:100 anti-α-SMA (alpha smooth muscle actin; 
cytosol of vascular smooth-muscle cells), or both, respec-
tively, in a saturated humid chamber for 24 h at 4 °C. Sub-
sequently, the labeling of the anti-VEGF antibody was per-
formed using 1 µg/mL Alexa-488 for 2 h at room temperature. 
The anti- α-SMA antibody used has been pre-labeled with 
FITC-514. Counterstaining was performed using a 10 μg/μL 
DAPI solution. Scanning and analysis of the slides were done 
with a Zeiss Axio Scan Z1 microscope and the Zeiss ZEN 
2.3 lite (blue edition) system. Fluorescence intensities were 
calculated as relative to the normal brain tissue.

Randomization and treatment

After baseline-MRI, the animals were randomized to the 
different groups (10 animals in each group):

1:	 Edoxaban p.o. (20 mg/kg BW) 1 h before closure of the 
SSS, afterwards once daily (dosage constant p.o.)

2:	 Edoxaban p.o. (20 mg/kg BW) 6 h after closure of the 
SSS, then once daily (dosage constant p.o.)

3:	 Enoxaparin s.c. (450 IU/kg BW) 6 h after closure of the 
SSS, followed by twice a day (dosage constant s.c.)

4:	 Placebo: NaCl p.o. (amount to be administered accord-
ing to the Edoxaban dosage) 6 h after closure of the SSS, 
followed by once daily (dosage constant p.o.)

5:	 Sham operation: no treatment

Edoxaban and placebo were administered via gavage. The 
persons performing and analyzing the MRI examination or 
the immunohistological examination were blinded. Edoxaban 
was supplied by Daiichi Sankyo Co., Ltd. (Tokyo, Japan).

Inclusion and exclusion criteria

Animals were included if the MRI showed a sufficient reduc-
tion of the flow in the SSS. Prespecified exclusion criteria 
were unstoppable bleeding during surgery (e.g., laceration of 
the SSS) or model failure. The animals were also excluded in 
the case of severe dyspnea and neurological impairment that 
made the ingestion of food and water impossible.

Outcome measures

Neuroscore, flow in the SSS (primary outcome), presence of 
parenchymal damage, and immunohistochemical changes 7 days 
after induction of thrombosis were defined as outcome measures.

Data evaluation and statistical analysis

All data are given as mean ± standard deviation (SD). Data were 
tested for normal distribution and variance homogeneity. The 
Kruskal–Wallis test was used to test the functional assessments. A 
t test for independent samples was then performed. The values of 
the 2 time points (preoperative, 7 days postoperative) were com-
pared, and p < 0.05 was considered statistically significant. The 
data analysis program SPSS (IBM) was used for evaluation. The 
sample size was decided due to observations from previous work 
when developing the experimental method (paper in review).

Results

Only 30 animals (75%) completed the experiment and were ana-
lyzed per protocol. Four animals died during the surgery and MRI 
examination procedure (10%) due to respiratory failure. The MRI 
examination detected model failure (SSS not closed) in 6 (15%) 
animals. For the distribution of the surviving animals, see Table 1.

Functional evaluations

Seven days after closure of the SSS, clinical evaluation 
using the neuroscore revealed no differences between 
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groups (p > 0.05). Rotarod testing also showed no differ-
ences between the groups (p > 0.05).

MRI examinations

Flow measurements showed significant reduction in groups 1–4 as 
compared to sham (p < 0.05), indicating a successful closure of the 
SSS. All active treatment groups showed a better flow in the SSS 
as compared to placebo (group 1: 0.16 cm/s ± 0.06 cm/s; group 2: 
0.13 cm/s ± 0.05 cm/s; group 3: 0.13 cm/s ± 0.04 cm/s; group 4: 
0.07 cm/s ± 0.02 cm/s; p < 0.05). However, there were no differences 
between the active treatment groups (p > 0.05) (Fig. 1). We detected 
no parenchymal damage in the animals 7 days after closure of the SSS.

Immunohistochemical staining

We detected no differences in the fluorescence intensities between 
the treatment groups for VEGF (group 1: 0.243 ± 0.344; group 
2: 0.075 ± 0.121; group 3: 0.042 ± 0.067; group 4: 0.017 ± 0.049; 

group 5: 0.058 ± 0.075; p < 0.05) or for alpha-SMA (group 1: 
0.075 ± 0.05; group 2: 0.1145 ± 0.132; group 3: 0.091 ± 0.064; 
group 4: 0.057 ± 0.034; group 5: 0.103 ± 0.082; p < 0.05).

Discussion

In our AlCl3-mediated model of CSVT in rats, both edoxaban 
and enoxaparin showed a significant increase of SSS flow. Of 
note, a direct head-to-head comparison in a preclinical model 
of CSVT has not yet been performed, providing valuable data 
with a clinical impact. Edoxaban is a fast-acting anticoagulant 
that has been approved for treatment of non-valvular atrial 
fibrillation as well as prevention and treatment of venous 
thrombosis. The mechanism of action is a direct inhibition 
of the factor Xa (Hurst et al. 2016). In an in vitro study on 
human clots, edoxaban inhibited tissue factor-induced platelet 
aggregation in a concentration-dependent manner (Honda et al. 
2016). Interestingly, another way of action where edoxaban 
acts in a plasmin-independent profibrinolytic effect is also sug-
gested. Such data is backed up due to the finding of thinner 
fibrin fibers and larger pores in clots formed in the presence of 
edoxaban compared with control clots (Morishima et al. 2020).

In rodents, edoxaban was found to effectively prevent throm-
bosis non-related to CSVT (Furugohri et al. 2008). In an lipopol-
ysaccharide model of microvascular thrombosis in rats, edoxa-
ban inhibited the hypercoagulation and fibrin deposits in the 
liver and reduced mortality following lipopolysaccharide injec-
tion (Morishima et al. 2021). In a platin wire model of throm-
bosis of the inferior vena cava in rats, edoxaban showed effects 
similar to enoxaparin in regards to the thrombosis. The bleeding 
risk was, however, lower in the edoxaban group (Morishima 

Table 1   Distribution of surviving animals in the different treatment 
groups

Group Number of 
surviving 
animals

1: Edoxaban 1 h prior to SSS closure 5
2: Edoxaban 6 h after SSS closure 7
3: Enoxaparin 6 h after SSS closure 7
4: Placebo 5
5: Sham operation 6

Fig. 1   Flow in the superior 
sagittal sinus in cm/s. The data 
is presented as means and stand-
ard deviation. Asterisk marks a 
p-level < 0.05
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et al. 2012). Under conditions of ferric chloride-induced venous 
thrombosis, edoxaban leads to upregulation of hydrogen sulfide 
and homocysteine activities through the MMP-9-induced PI3K/
AKT signaling pathway (Song et al. 2017). This pathway is 
thought to inhibit the activation of platelets in thrombus forma-
tion and stabilization (Guidetti et al. 2015).

When CSVT is suspected in humans, the diagnosis is con-
firmed by venous angiography with contrast-enhanced CT or 
MRI. Intracerebral hemorrhages as a result of venous infarc-
tion can be detected as well. After confirmation of the diag-
nosis, patients are started on an anticoagulative regime, irre-
spective of the presence of intracerebral hemorrhages. The 
treatment usually consists of unfractioned heparin or low-
molecular heparin in full anticoagulant dosage followed by 
an administration of vitamin K-antagonists for 3 to 12 months 
(Ferro and Aguiar de Sousa 2019). Venous recanalization is 
achieved in 85% of patients, but there is only limited data on 
the temporal profile (Kenet et al. 2007).

Recently, the RE-SPECT-CVT study showed that treatment 
with dabigatran may be safe and effective in treating CSVT. 
However, dabigatran has not yet been approved for the treatment 
of CSVT (Ferro et al. 2021). Edoxaban might have a similar pro-
file of safety and efficacy in the treatment of CSVT, but edoxaban 
offers the advantage of a single daily dose only. In light of edoxa-
ban being as effective as enoxaparin, edoxaban might be a useful 
alternative to dabigatran and vitamin k antagonist in long-term 
treatment paradigms of patients suffering from CVST.

The main limitation of our experiment, however, is the short 
observation period of 7 days only. One might argue that the 
time is not sufficient to detect side effects such as bleeding 
events and that a recanalization is unlikely to occur in 7 days. 
Nevertheless, we were able to detect a higher flow in the SSS 
of rats treated with either edoxaban or enoxaparin, indicating 
an already beginning, albeit putative, recanalization of the for-
merly occluded vessel. Beside the limited observational time 
window of our study, the surgery technique itself as well as the 
way of inducing an SSS should also be considered. Since the 
composition and structure of the thrombus produced by AlCl3 
cannot be determined, no statement can be made about the 
consistency and integrity of the thrombus. It is possible that the 
drugs studied herein are less effective because the thrombus is 
too well organized. This would not correspond to the thrombus 
characteristics after SSS in humans.

Conclusion

Using a well-established preclinical model of CSVT, treat-
ment with edoxaban proves to be similar to the standard of 
care treatment paradigm administering enoxaparin. Hence, 
edoxaban might offer an alternative and feasible treatment 
paradigm for patients suffering from CSVT.
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