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Abstract
The present work investigated the effect of α-lipoic acid (ALA) and caffeine-loaded chitosan nanoparticles (CAF-CS NPs) 
on obesity and its hepatic and renal complications in rats. Rats were divided into control, rat model of obesity induced by 
high fat diet (HFD), and obese rats treated with ALA and/or CAF-CS NPs. At the end of the experiment, the activities of 
aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and the levels of urea, 
creatinine, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined in the sera of animals. In addition, 
malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) were measured in hepatic and renal tissues. 
Renal  Na+,  K+-ATPase was assessed. The histopathological changes were examined in the hepatic and renal tissues. Obese 
rats showed a significant increase in AST, ALT, ALP, urea, and creatinine. This was associated with a significant increase 
in IL-1β, TNF-α, MDA, and NO. A significant decrease in hepatic and renal GSH and renal  Na+,  K+-ATPase activity was 
recorded in obese rats. Obese rats also showed histopathological alterations in hepatic and renal tissues. Treatment with 
ALA and/or CAF-CS NPs reduced the weight of obese rats and ameliorated almost all the hepatic and renal biochemical and 
histopathological changes induced in obese rats. In conclusion, the present findings indicate that ALA and/or CAF-CS NPs 
offered an effective therapy against obesity induced by HFD and its hepatic and renal complications. The therapeutic effect 
of ALA and CAF-CS NPs could be mediated through their antioxidant and anti-inflammatory properties.
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Introduction

Obesity is a common medical condition caused by accu-
mulation of excess fat. It results from long-term imbalance 
between excessive caloric intake and low energy expendi-
ture caused by poor dietary habits and insufficient physi-
cal activity (Hill et al. 2012). Obesity is defined as a body 
mass index (BMI) of 30 or higher, and it is responsible for 
approximately 2.8 million deaths each year (WHO 2021). 
Obesity is not only a metabolic disorder, but it is also a 
strong risk factor for a variety of life-threatening conditions, 

like inflammation, oxidative stress, insulin resistance, can-
cer, hypertension, heart diseases, stroke, fatty liver, and kid-
ney diseases (Pi-Sunyer 2009; Kaur 2014; Petrie et al. 2018). 
Obesity has been linked to abnormal high fat deposition in 
hepatocytes (hepatic steatosis), which in turn results in fibro-
sis and cirrhosis through inducing lipid peroxidation and 
subsequent activation of stellate cells and collagen synthesis 
(Welch et al. 2022). Obesity has been also recognized as a 
major risk factor for chronic kidney disease and end-stage 
renal failure (Sun et al. 2020). Obesity has been correlated 
with higher levels of lipid accumulation in renal tissue. Sev-
eral studies have indicated an association between renal lipid 
accumulation and activation of pro-inflammatory cytokines 
like interleukin-6 and tumor necrosis factor-α (TNF-α) that 
play a key role in mediating cellular injury and renal dys-
function (D'Agati et al. 2016; Chen et al. 2019).

High fat diet (HFD) is the most useful model in study-
ing obesity and metabolic syndrome in rodents (Hariri and 
Thibault 2010). The main advantages of using HFD-induced 
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model of obesity lie in its physiological properties and in its 
similarity to human disease etiology (Buettner et al. 2007). 
HFD-induced obesity is characterized by overconsumption 
of HFDs due to their low satiating effects and the high effi-
ciency of dietary fat in being stored in the body as well as 
the alterations in the hormones involved in energy balance, 
such as HFD-induced hyperinsulinaemia and hyperleptinae-
mia and accompanied by insulin and leptin resistance, and 
lowered suppression of ghrelin secretion following HFDs 
(Hariri and Thibault 2010).α-Lipoic acid (thioctic acid), a 
fat- and water-soluble powerful antioxidant, is a naturally 
occurring dithiol compound derived from octanoic acid 
(Ghibu et al. 2008). α-Lipoic acid (ALA) can be found in 
tomato, Brussels sprouts, broccoli, spinach, rice bran, red 
meat, and entrails including heart, kidney, and liver (Shay 
et al. 2009). An increasing number of studies have revealed 
that ALA exhibits a significant therapeutic and protective 
effect against many diseases associated with oxidative stress 
and inflammation, including neurodegenerative diseases, 
diabetes, cardiovascular disease, cancer, chronic liver dis-
eases, hypothyroidism, and kidney diseases (Abdel-Zaher 
et al. 2008; Wongmekiat et al. 2013; Salehi et al. 2019; 
Khadrawy et al. 2022). The antioxidant property of ALA 
may be attributed to its ability to scavenge free radicals 
(Bast and Haenen 2003), its ability to enhance the activi-
ties of antioxidant enzymes (Gomes and Negrato 2014), and 
its ability to regenerate endogenous antioxidants including 
reduced glutathione (GSH), vitamin E, and vitamin C (Roch-
ette et al. 2015). ALA acts also as an essential cofactor for 
mitochondrial pyruvate dehydrogenase and α-ketoglutarate 
dehydrogenase, both of which are important enzymes in 
cellular energy metabolism (Shay et al. 2009). It has been 
reported that ALA could be an effective treatment of obe-
sity by increasing energy expenditure, reducing food intake, 
preventing lipid accumulation in adipose and non-adipose 
tissues, increasing mitochondrial biogenesis, and stimulat-
ing lipolysis and fat oxidation (Fernández–Galilea et al. 
2013). Moreover, Ziegler (2004) have found that ALA has 
potential beneficial effects against obesity-induced compli-
cations including metabolic syndrome, insulin resistance, 
type II diabetes, and vascular damage. Although the wide 
safety margin of ALA, some rare adverse effects have been 
reported with very high doses of ALA (Emir et al 2018) and 
in case of thiamine deficiency (Najm 2012).

Caffeine (1,3,7-trimethylxanthine) is a naturally occur-
ring purine alkaloid found in coffee, cola, cocoa, and tea 
(Heckman et al. 2010). Several studies reported that caf-
feine significantly reduced body fat mass by increasing 
lipolysis and inhibiting fat accumulation (Kobayahi-Hat-
tori et al. 2005; Sugiura et al. 2012). Moreover, an increas-
ing number of studies have demonstrated the beneficial 
effects of caffeine against experimentally induced hepatic 
and renal toxicities (Khazaei et al. 2012; Cachón et al. 

2017; Anwar and Laila 2022). The ameliorative activity 
of caffeine could be attributed to its ability to scavenge 
reactive oxygen species (Devasagayam et al. 1996), its 
anti-inflammatory properties (Kang et al. 2012), and its 
ability to attenuate fibrotic processes (Arauz et al. 2014).

Caffeine is highly soluble but has rapid absorption, 
rapid distribution, and complete bioavailability, as well as 
its ability to cross lipid membranes (Arnaud 2011). After 
15–120 min, the oral plasma concentration reaches its 
peak. Caffeine plasma half-life ranges between 3 and 5 h 
as a result of its rapid distribution and elimination (White 
et al. 2016). This necessitates its repeated administration 
throughout the day in order to maintain adequate blood 
concentration (Teixeira 2009). As a result, it is preferable 
to have a controlled sustained release formula that reduces 
administration frequency while maintaining adequate 
therapeutic drug levels and increasing patient compliance. 
Chitosan nanoparticles have been successfully discovered 
as drug carriers, with the potential to enhance bioavail-
ability, efficacy, and the capacity to achieve sustained drug 
release (Garg et al. 2019). The use of caffeine-loaded chi-
tosan nanoparticles (CAF-CS NPs) has the advantage of 
the long-lasting release of caffeine which may enhance its 
therapeutic effects and reduce its adverse effects. CAF-CS 
NPs were used topically (Abosabaa et al. 2021); however, 
no studies were carried out investigating its parenteral 
administration.

Accordingly, the present study was conducted to evaluate 
the therapeutic effects of ALA and/or CAF-CS NPs against 
obesity and its hepatic and renal complications generated in 
rats fed on a high fat diet. ALA was co-administered with 
CAF-CS NPs to investigate the synergistic effect between 
them.

Materials and methods

Animals

Fifty male Wistar albino rats obtained from Animal House 
Colony of National Research Centre, Giza, Egypt, were 
used in the present study. Their weights ranged from 120 
to 150 g. Animals were housed in stainless steel cages with 
ad libitum access to standard laboratory diet and tap water. 
They were placed in a temperature-controlled (20–25 °C) 
and artificially illuminated (12-h dark/light cycle) room free 
of any chemical contamination. Animal procedures were 
approved by the Ethics Committee of the National Research 
Centre (with ethical approval number of 20,149) and were 
performed in compliance with the recommendations of the 
National Institutes of Health Guide for Care and Use of 
Laboratory Animals (publication no. 85–23, revised 1985).
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Chemical and drugs

α-Lipoic acid (ALA) was purchased from EVA Pharma for 
Pharmaceuticals and Medical Appliances, Cairo, Egypt. 
Caffeine and chitosan were obtained from Sigma-Adrich, 
Germany. The method used in the preparation of caffeine-
loaded chitosan nanoparticles (CAF-CS NPs) depended 
on the method described by Sahudin et al. (2018). In this 
method, nanoparticles (NPs) were prepared by inducing the 
gelation of chitosan (CS) solutions with the cross-link agent 
sodium tripolyphosphate (TPP). 0.2% low molecular weight 
chitosan solution was prepared in 1% acetic acid while 0.1% 
TPP was dissolved in distilled water. CS NPs were spon-
taneously formed upon addition of TPP into CS solution. 
Caffeine was dissolved in 0.1% TPP solution. CAF-CS NPs 
were formed when TPP-containing drug solution is added 
dropwise into 25 ml of CS solution with magnetic stirring 
for 30 min at room temperature. The resulting CAF-CS NPs 
were subjected to ultra-sonication for a few minutes. The 
CAF-CS NPs were then separated from their suspension by 
centrifugation.

Transmission electron microscopy (TEM) imaging

The shape and average size of the CAF-CS NPs were 
detected using transmission electron microscopy (TEM). 
A small quantity of CAF-CS NPs solution (1 mg/ml) was 
placed on surface of a TEM grid. After a few minutes of 
incubation, excess fluid was removed with filter paper and 
the grid surface was air-dried at room temperature. It was 
then loaded into the transmission electron microscope (JEM-
HR-2100 electron microscope, Japan) at total magnification 
6.00 kx and accelerating voltage 200 kV.

Induction of rat model of obesity

Rat model of obesity was induced by feeding the rats on a 
high fat diet (HFD) (45% fat, 41% carbohydrate, and 19% 
protein) for 20 weeks (McNeilly et al. 2011). The body mass 
index (BMI) was used as an indicator for obtaining obese 
rats. Body weight and body length measurements were used 
to calculate BMI. Body weight and body length of rats were 
measured using a weighing scale and tape rule, respectively. 
The BMI was determined using the formula (Novelli et al. 
2007):

Obese rats were defined by a BMI of greater than 0.68 g/
cm2 as previously described by Novelli et al. (2007). Rats 
that did not meet the obesity BMI in the experimental group 

BMI =
Body weight (g)

Body length2 (cm2)

after 20 weeks of HFD were excluded from the study. How-
ever, all the rats in the experimental group attained the target 
BMI and were all included.

Experimental design

At the beginning of the experiment, the rats were divided 
into five groups of ten rats each. Rats in the control group 
were fed a standard diet (12% fat, 67% carbohydrate, and 
21% protein) until the end of the experiment. The rest of the 
animals were used to induce rat model of obesity by feeding 
the rats on a HFD for 20 weeks according to McNeilly et al. 
(2011). Then, these animals were subdivided into rat model 
of obesity treated daily with saline solution for 4 weeks, rat 
model of obesity treated daily with alpha ALA (100 mg/
kg, by gavage) (Perera et al. 2011) for 4 weeks, rat model 
of obesity injected daily with CAF-CS NPs (20 mg/kg, 
intraperitoneally) (Horvath et al. 2022) for 4 weeks, and rat 
model of obesity treated daily with ALA and CAF-CS NPs 
1 h between each treatment for 4 weeks.

Preparation of samples

At the end of the experiment, animals of all groups were 
sacrificed by sudden decapitation. Then, blood samples were 
collected and centrifuged at 3000 rpm for 15 min at 4 °C to 
separate sera which were stored at − 20 °C until the meas-
urement of interleukin-1β (IL-1β), tumor necrosis factor-α 
(TNF-α), and parameters of hepatic and renal function. The 
liver and kidney of each rat were quickly excised and washed 
with saline to get rid of any blood. A part of the liver tissue 
and the left kidney were fixed immediately in 10% formalin 
solution for histological examination. Each of the liver tis-
sue and the right kidney was weighed and homogenized in 
Tris–HCl buffer (pH 7.4). The homogenate was centrifuged 
at 3000 rpm for 10 min at 4 °C, and the supernatant was 
stored at − 20 °C until the determination of  Na+,  K+-ATPase 
and oxidative stress parameters.

Assessment of liver functions

The activities of aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), and alkaline phosphatase (ALP) 
were determined in the serum according to the methods 
described by Reitman and Frankel (1957), and Belfield and 
Goldberg (1971), respectively, using kits supplied by Spec-
trum-diagnostic Company (Cairo, Egypt).

Assessment of kidney functions

The serum levels of urea and creatinine were estimated spec-
trophotometrically according to the methods described by 
Fawcett and Scott (1960), and Schirmeister et al. (1964), 
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respectively, using kits purchased from Spectrum-diagnostic 
Company (Cairo, Egypt).

Determination of lipid peroxidation

Lipid peroxidation in terms of malondialdehyde (MDA) for-
mation was estimated in hepatic and renal tissue homogen-
ates according to the method of Ruiz-Larrea et al. (1994). In 
this method, MDA reacts with thiobarbituric acid produc-
ing thiobarbituric acid reactive substance, a pink colored 
complex, which can be measured spectrophotometrically at 
532 nm.

Determination of nitric oxide

Nitric oxide (NO) was measured spectrophotometrically 
in the hepatic and renal tissues according to the method 
described by Montgomery and Dymock (1961). This method 
depends on the measurement of endogenous nitrite concen-
tration as an indicator of NO production. It depends on the 
addition of Griess reagent which converts nitrite into a deep 
purple azo compound whose absorbance is read at 540 nm.

Determination of reduced glutathione

Reduced glutathione (GSH) was determined in hepatic 
and renal tissue homogenates according to the method of 
Beutler et al. (1963) using Ellman’s reagent. The procedure 
is based on the reduction of Ellman’s reagent by SH groups 
to produce 5,5′-dithiobis (2-nitrobenzoic acid) which has an 
intense yellow color that is measured spectrophotometrically 
at 412 nm.

Determination of Na+, K+‑ATPase activity

Na+,  K+-ATPase activity was measured in renal tissue 
homogenates according to the method described by Tsakiris 
et al. (2000).  Na+,  K+-ATPase activity was calculated as the 
difference between total ATPase activity  (Na+,  K+-ATPase 
and Mg-ATPase activity) and Mg-ATPase activity. The 
results were expressed as μmol Pi/min/g kidney tissue.

Determination of serum interleukin‑1β

Interleukin-1β (IL-1β) was measured in the serum using rat 
IL-1β ELISA kit obtained from Sino Gene Clon Biotech Co., 
Ltd, Hang Zhou, China, according to the company method 
instruction. The developed color was read at 450 nm using 
a microtiter plate reader. The concentration was then calcu-
lated from the standard curve. The concentration of IL-1β 
was expressed in ng/l.

Determination of serum tumor necrosis factor‑α 
(TNF‑α)

Tumor necrosis factor-α (TNF-α) was measured in the serum 
using rat TNF-α ELISA kit obtained from Sino Gene Clon 
Biotech Co., Ltd, Hang Zhou, China, according to the com-
pany method instruction. The developed color was read at 
450 nm using a microtiter plate reader. The concentration 
was then calculated from the standard curve. The concentra-
tion of TNF-α was expressed in ng/l.

Histopathological examination

The liver and kidney of different groups were dissected out 
and grossly inspected for any changes and fixed immediately 
in 10% formalin solution. Sections (4 µm thick) were cut 
from paraffin blocks. The sections were stained by hema-
toxylin and eosin (H&E) and then examined with a light 
microscope for histological changes.

Statistical analysis

The data were expressed as means ± S.E.M. Statistical Pack-
age for Social Sciences (SPSS) software (version 16) was 
used for all statistical calculations. Statistical difference 
between the groups under investigation was carried out using 
one-way analysis of variance (ANOVA) followed by Duncan 
as post hoc test. The difference was considered significant 
at P-value ≤ 0.05.

Results

TEM image

As shown in Fig. 1, TEM imaging of caffeine-loaded chi-
tosan nanoparticles (CAF-CS NPs) showed that the average 
particle size was 4–12 nm.

Body mass index

The body mass index (BMI) of control rats was 0.54 gm/
cm2. However, in rat model of obesity, BMI recorded 0.76 g/
cm2. When obese rats were treated with ALA and/or CAF-
CS NPs, BMI reduced to 0.65 g/cm2, 0.66 g/cm2, and 0.62 
gm/cm2 respectively (Fig. 2).

Liver function biomarkers

Data presented in Table 1 show that HFD induced a sig-
nificant increase in the serum activities of AST by + 92.13% 
(from 18.55 ± 1.90 to 35.64 ± 6.32, P = 0.000), ALT 
by + 193.27% (from 15.46 ± 2.59 to 45.34 ± 2.97, P = 0.000), 
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and ALP by + 164.16% (from 76.47 ± 13.73 to 202.0 ± 27.05, 
P = 0.001) compared to the normal control values. Treat-
ment with ALA and/or CAF-CS NPs returned the increased 
ALT and ALP activities caused by HFD to control rats. 
Concerning AST activity, only the treatment with ALA 
restored the serum AST to nearly control like values, while 
treatment with CAF-CS NPs alone or in combination with 
ALA failed to produce a similar effect recording + 116.23% 
and + 104.26% respectively more than the control value.

Fig. 1  TEM image of the prepared CAF-CS NPs

Fig. 2  Effect of daily treatment with alpha-lipoic acid (ALA) 
(100 mg/kg) and/or caffeine-loaded chitosan nanoparticles (CAF-CS 
NPs) (20 mg/kg) for 30 days on body mass index (BMI).  Control. 

 Rat model of obesity.  Rat model of obesity treated with ALA. 
Rat model of obesity treated with CAF-CS NPs.  Rat model of obe-
sity treated with ALA and CAF-CS NPs
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Kidney function biomarkers

The present results revealed that HFD resulted in a signifi-
cant increase in serum levels of urea by + 39.43% (from 
18.59 ± 1.92 to 25.92 ± 1.41, P = 0.001) and creatinine 
by + 120.51% (from 0.39 ± 0.04 to 0.86 ± 0.06, P = 0.000) 
compared to the control values. However, treatment with 
ALA and/or CAF-CS NPs succeeded in returning the sig-
nificant increase in urea and creatinine levels induced by 
HFD to normal control values (Table 2).

Oxidative stress parameters

In the present study, HFD induced a significant increase 
in hepatic MDA by + 131.89% (from 4.86 ± 0.74 to 
11.27 ± 1.68, P = 0.002) and NO by + 550% (from 
0.04 ± 0.006 to 0.26 ± 0.026, P = 0.000) in compari-
son to the control group. In the kidney of obese rats, a 
significant increase in the levels of MDA by + 314.38% 
(from 8.00 ± 0.84 to 33.15 ± 2.92, P = 0.000) and NO 
by + 740% (from 0.05 ± 0.003 to 0.42 ± 0.038, P = 0.000) 
was recorded as compared to the control group. These 
findings were associated with a significant decrease in 
GSH levels of liver (from 2.77 ± 0.13 to 2.36 ± 0.06, 
P = 0.038) and kidney (from 4.20 ± 0.27 to 3.35 ± 0.12, 
P = 0.005) recording − 14.80% and − 20.24%, respectively, 
less than the control values. Treatment with ALA and/or 
CAF-CS NPs restored the aforementioned-studied param-
eters to nearly control-like values except for a significant 
increase in hepatic MDA of rats treated with CAF-CS NPs 
(+ 71.81%) (Figs. 3 and 4).

Na+, K+‑ATPase activity

As shown in Fig. 5, a significant decrease in renal  Na+, 
 K+-ATPase activity (from 1.03 ± 0.042 to 0.86 ± 0.035, 
P = 0.030) was observed in obese rats recording − 16.50% 
compared to the control values. Treatment with ALA suc-
ceeded in normalizing the significant decrease induced by 
HFD in  Na+,  K+-ATPase activity. However, treatment with 
CAF-CS NPs alone or in combination with ALA improves 
the activity of  Na+,  K+-ATPase which showed a nonsig-
nificant change as compared to control and obese rats.

Interleukin‑1β and tumor necrosis factor‑α

The present findings revealed that HFD significantly 
increased the serum levels of IL-1β by + 69.49% (from 
2.72 ± 0.07 to 4.61 ± 0.26, P = 0.000) and TNF-α 
by + 40.72 (from 17.78 ± 2.53 to 25.02 ± 2.83, P = 0.026) 
as compared to the control values. Treatment with ALA 
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and/or CAF-CS NPs succeeded in normalizing the 
increased levels of IL-1β and TNF-α induced by HFD 
(Fig. 6).

Fig. 3  Effect of daily treatment with alpha-lipoic acid (ALA) 
(100  mg/kg) and/or caffeine-loaded chitosan nanoparticles (CAF-
CS NPs) (20  mg/kg) for 30  days on the levels of malondialdehyde 
(MDA), nitric oxide (NO), and reduced glutathione (GSH) in the 
liver of rat model of obesity induced by feeding rats on a high fat diet 
(HFD).  Control.  Rat model of obesity. Rat model of obesity 
treated with ALA.  Rat model of obesity treated with CAF-CS NPs. 

 Rat model of obesity treated with ALA and CAF-CS NPs Fig. 4  Effect of daily treatment with alpha-lipoic acid (ALA) 
(100  mg/kg) and/or caffeine-loaded chitosan nanoparticles (CAF-
CS NPs) (20  mg/kg) for 30  days on the levels of malondialdehyde 
(MDA), nitric oxide (NO), and reduced glutathione (GSH) in the kid-
ney of rat model of obesity induced by feeding rats on a high fat diet 
(HFD).  Control.  Rat model of obesity.  Rat model of obesity 
treated with ALA.  Rat model of obesity treated with CAF-CS NPs. 

 Rat model of obesity treated with ALA and CAF-CS NPs
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Histopathological results

The examined H&E-stained section of control livers showed 
a normal lobular architecture with central veins and radi-
ating hepatic cords separated by narrow blood sinusoids 
and prominent nuclei (Fig. 7a). Liver sections of obese rats 
showed disruption of the normal architecture of hepatic lob-
ules, hepatic necrosis, and cytoplasmic vacuoles with lym-
phocytic infiltration around the central vein and portal areas 
with pyknotic nuclei (Fig. 7b). Treatment with ALA induced 
mild improvement with focal hepatocyte necrosis, inflam-
matory cell infiltration, and mild activation of Kupffer cells 
(Fig. 7c). In obese rats treated with CAF-CS NPs, the liver 
tissue displayed a normal histological picture with pericentral 
hepatic necrosis, dilated blood sinusoids, and mild activa-
tion of Kupffer cells (Fig. 7d). Hepatic sections of obese rats 
treated with ALA and CAF-CS NPs combination showed 
improvement and nearly normalized hepatocytes with focal 
hepatocyte necrosis and inflammatory cells (Fig. 7e).

 
The histological examination of renal tissues of the con-

trol group revealed normal renal glomeruli surrounded by 
urinary space and normal proximal, distal, and convoluted 
tubules (Fig. 8a). In the renal tissue of rat model of obesity, 
there were degenerative changes in the glomeruli such as 
shrinkage and widening of urinary space. In addition, renal 
tubules revealed vacuolation and hydropic degeneration of 
epithelium, pyknotic nuclei, and interstitial inflammatory 
cells (Fig. 8b). Treatment with either ALA or CAF-CS NPs 
resulted in mild improvements in the architecture of the 
kidney. However, some glomeruli showed mild dilatation 

of Bowman’s space with mild degenerated tubules and pyk-
notic nuclei (Fig. 8c and d). Renal sections of rats treated 
with ALA in combination with CAF-CS NPs showed almost 
normal architecture of the kidney with the exception of a few 
degenerated tubules and pyknotic nuclei (Fig. 8e).

Discussion

In the present study, the rat model of obesity was induced 
by feeding rats on a HFD for 20 weeks. Feeding rats on 
HFD is the most useful obesity model as it mimics the most 
common cause of obesity in humans. The obesity model 
was confirmed by measuring the BMI. A rat was consid-
ered obese when its BMI exceeded 0.68 g/cm2 (Novelli et al. 
2007). The current results revealed that the HFD produced 
oxidative stress in the liver and kidney. This was evident 

Fig. 5  Effect of daily treatment with alpha-lipoic acid (ALA) 
(100 mg/kg) and/or caffeine-loaded chitosan nanoparticles (CAF-CS 
NPs) (20 mg/kg) for 30 days on the activity of  Na+,  k+-ATPase in the 
kidney of rat model of obesity induced by feeding rats on a high fat 
diet (HFD).  Control.  Rat model of obesity.  Rat model of obe-
sity treated with ALA.  Rat model of obesity treated with CAF-CS 
NPs.  Rat model of obesity treated with ALA and CAF-CS NPs

Fig. 6  Effect of daily treatment with alpha-lipoic acid (ALA) 
(100 mg/kg) and/or caffeine-loaded chitosan nanoparticles (CAF-CS 
NPs) (20  mg/kg) for 30  days on the serum levels of interleukin-1β 
(IL-1β) and tumor necrosis factor-α (TNF-α) of rat model of obesity 
induced by feeding rats on a high fat diet (HFD).  Control.  Rat 
model of obesity.  Rat model of obesity treated with ALA.  Rat 
model of obesity treated with CAF-CS NPs.  Rat model of obesity 
treated with ALA and CAF-CS NPs
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from the significant increase in lipid peroxidation (MDA) 
and NO levels, and the significant decrease in GSH levels in 
hepatic and renal tissues. Beef tallow, which is rich in satu-
rated fatty acids, was used as the source of fat in preparing 
the HFD in the current study. Overconsumption of saturated 
fatty acids leads to the accumulation of white adipose tis-
sue; the liver continuously metabolizes the excess lipids, 
activating cytochrome P450 and resulting in overproduction 
of reactive oxygen species (ROS) (Kennedy et al. 2009; Lai 
et al. 2016). ROS in turn react with the cell membrane phos-
pholipids, causing increased lipid peroxidation in hepatic 
tissues. Moreover, ROS and lipid peroxidation products 
either directly or indirectly harm the respiratory chain in 
hepatocytes causing oxidative damage to the mitochondrial 

genome. This in turn generates more ROS exacerbating the 
oxidative stress (Cichoż-Lach and Michalak 2014). The 
products of ROS and lipid peroxidation also activate stellate 
cells, leading to fibrosis (Carmiel-Haggai and Nieto 2005).

On the other hand, HFD was found to increase the activ-
ity of inducible nitric oxide synthase (iNOS) in the liver 
(Wan et al. 2000) and kidney (Chowdhury et al. 2022) of 
obese rats. This may explain the present elevated NO level 
in hepatic and renal tissues. At high level, NO induces cel-
lular apoptosis by modulating both extrinsic and intrinsic 
signaling pathways in rat hepatocytes (Balakirev et al. 1997). 
NO can also combine with superoxide anion to form perox-
ynitrite  (ONOO−), a powerful oxidant that can freely dif-
fuse through intra- and intercellular pathways (Stamler et al. 

Fig. 7  Effect of daily treatment with alpha-lipoic acid (ALA) 
(100  mg/kg) and/or caffeine-loaded chitosan nanoparticles (CAF-
CS NPs) (20  mg/kg) for 30  days on the histopathological changes 
induced by obesity in the liver of rats (H&E × 200). a Photomicro-
graph of liver section of control rat showing normal hepatic archi-
tecture with central vein (CV), blood sinusoids (S), and prominent 
nuclei (N). b Section of the liver of obese rats showing disruption of 
normal architecture of hepatic lobules, hepatic necrosis (arrowhead), 
cytoplasmic vacuole (V) with lymphocytic infiltration around central 
vein and portal areas (arrow) and pyknotic nuclei. c Section of the 

liver of obese rats treated with ALA showing mild improvement with 
focal hepatocyte necrosis (arrowhead), inflammatory cells and mild 
activation of Kupffer cells (K). d Section of the liver of obese rats 
treated with CAF-CS NPs showing normal histological picture of 
the liver tissue with pericentral hepatic necrosis (arrowhead), dilated 
blood sinusoids (S) and mild activation of Kupffer cells (K). e Sec-
tion of the liver of obese rats treated with ALA + CAF-CS NPs show-
ing normal histological picture of the liver tissue with dilated blood 
sinusoids (S) and pyknotic nuclei (P)
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1992). The accumulation of  ONOO− interacts with lipids, 
DNA, and proteins causing irreversible cellular damage 
(Pacher et al. 2007).

The decreased GSH, which acts as an important endog-
enous antioxidant, may also potentiate the oxidative and 
nitrosative stress induced by HFD in the present study. GSH 
acts directly by scavenging free radicals and indirectly as a 
substrate for some antioxidant enzymes (Birk et al. 2013). 
As a result, the current reduction in hepatic and renal GSH 
level could be due to its consumption in scavenging the free 
radicals generated by HFD.

The oxidative and nitrosative stress induced by HFD may 
mediate the histopathological disruption of the normal archi-
tecture of hepatic lobules, hepatic necrosis, and cytoplasmic 

vacuole with lymphocytic infiltration (steatohepatitis) 
around the central vein and portal areas with pyknotic nuclei 
that have been reported in the present study. In agreement 
with our findings, Cui et al. (2011) found that HFD induced 
excessive production of ROS and increased lipid peroxida-
tion, thereby causing degradation of hepatocyte membranes 
and cellular leakage of liver enzymes into the plasma. This 
may explain the present increased AST, ALT, and ALP 
activities in the serum of obese rats. Under normal condi-
tions, these enzymes are found in high concentrations in 
the cytoplasm of hepatocytes, and they are released into the 
circulation during hepatic damage (Contreras-Zentella and 
Hernández-Muñoz 2016).

Fig. 8  Effect of daily treatment with alpha-lipoic acid (ALA) 
(100  mg/kg) and/or caffeine-loaded chitosan nanoparticles (CAF-
CS NPs) (20  mg/kg) for 30  days on the histopathological changes 
induced by obesity in the kidney of rats (H&E × 200). a Photomicro-
graph of kidney section of control rat showing normal structure of 
the glomerulus (G), urinary space (US), normal proximal convoluted 
tubules (PCT), and distal convoluted tubules (DCT). b Section of the 
kidney of obese rat showing degenerative changes in the glomerulus 
such as shrinkage (G) and widening of urinary space (US), degenera-
tion of renal tubules, pyknotic nuclei (P) and interstitial inflamma-

tory cells (arrow). c Section of the kidney of obese rats treated with 
ALA showing mild improvement in the architecture of kidney with 
mild dilatation of Bowman’s space (US), mild degenerated tubules 
(arrowhead) and pyknotic nuclei (arrow). d Section of the kidney of 
obese rats treated with CAF-CS NPs showing mild dilatation of Bow-
man’s space (US), mild degenerated tubules (arrowhead) and pyk-
notic nuclei (arrow). e Section of the kidney of obese rats treated with 
ALA + CAF-CS NPs showing almost normal architecture of the kid-
ney with the exception of only few degenerated tubules (arrowhead) 
and pyknotic nuclei (P)
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It has been reported that long-term consumption of a 
HFD alters renal lipid metabolism by inducing an imbalance 
between lipogenesis and lipolysis in the kidney resulting in 
renal lipid accumulation and lipid peroxidation which has 
been correlated with a progressive decline in renal function 
(Jiang et al. 2005; Guebre-Egziabher et al. 2013). Moreover, 
adipose tissue accumulates around the kidneys and enters 
the medullary sinuses, increasing intrarenal pressures and 
causing renal tissue damage (Kume et al. 2007). The present 
findings showed that HFD induced oxidative stress in renal 
tissue of obese rats as indicated by the elevated MDA and 
NO and the reduced GSH levels. Nephrons are rich in mito-
chondria and HFD has been found to promote renal injury by 
inducing mitochondrial dysfunction causing overproduction 
of ROS and oxidative stress which leads to renal tubular 
cell apoptosis (Sun et al. 2020). This, in turn, results in a 
decrease in the glomerular filtration rate and an accumu-
lation of urea and creatinine in the blood (Baracho et al. 
2016). This may explain the elevated serum levels of urea 
and creatinine in the present model of obesity. Moreover, 
oxidative stress and nitrosative stress induced by HFD con-
sumption may also be responsible for the reduced renal  Na+, 
 K+-ATPase activity in the present study.  Na+,  K+-ATPase 
is highly sensitive to oxidative stress (Dobrota et al. 1999). 
The present findings agree with the study of Briffa et al. 
(2015) who reported that HFD can cause a reduction in 
 Na+,  K+-ATPase expression which could also potentially 
impact albumin uptake and sodium reabsorption. Normal 
 Na+,  K+-ATPase activity is essential for proper kidney func-
tion. The importance of the  Na+,  K+-ATPase pump for the 
kidneys comes from its great number, which reaches up to 
50 million pumps per cell in the distal convoluted tubule 
(El Mernissi and Doucet 1984). Moreover,  Na+,  K+-ATPase 
induces important physiological roles in the kidneys, with 
a primary function in  Na+ and water reabsorption, which is 
fundamental for keeping body fluid and electrolyte homeo-
stasis (Reinhard et al. 2013). As a result, the reduced  Na+, 
 K+-ATPase activity caused by HFD may contribute to the 
impairment of renal function observed in the current study.

The adverse effect of obesity on the kidney was also 
manifested by the histopathological changes which included 
shrinkage of the glomerulus, widening of the urinary space, 
vacuolation of renal tubules, hydropic degeneration of renal 
tubular epithelium, pyknosis of the nuclei, and inflamma-
tory cell infiltration. These changes could be attributed to 
the oxidative and nitrosative stress and the reduced  Na+, 
 K+-ATPase activity induced by HFD. It has been reported 
that excessive renal lipid deposition can result in renal tubu-
lar cell injury (Nosadini and Tonolo 2011), tubulointerstitial 
fibrosis (Takabatake et al. 2017), podocyte damage, mesan-
gial sclerosis (Abrass 2004), and structural glomeruli altera-
tions (Keane 2000; Zhou et al. 2016).

Obesity is a chronic low-grade systemic inflammatory 
state characterized by increased pro-inflammatory cytokine 
secretion from adipose tissue and infiltration of leukocytes, 
including macrophages, into adipose tissue. This chronic 
inflammation contributes to the development of metabolic 
disorders like non-alcoholic fatty liver disease and chronic 
kidney disease (Schäffler et al. 2007). The present study 
clearly revealed a significant increase in serum levels of 
pro-inflammatory cytokines like tumor necrosis factor-α 
(TNF-α) and interleukin-1β (IL-1β) in obese rats indicating 
the development of severe inflammation. These results agree 
with the study of Cortez et al. (2013) who found that HFD 
induced a significant increase in TNF-α and IL-1β levels by 
increasing the gene expression of nuclear transcription factor 
kappa B (NF-κB). Moreover, obesity induced progressive 
and cumulative cell injury caused by the large body mass’s 
pressure. Cell injury leads to the release of pro-inflammatory 
cytokines, which stimulate the production of ROS from the 
tissues (Khan et al. 2006).

The present data clearly revealed that obesity produced 
lipotoxicity. This term is used to describe the deleterious 
effects exerted by lipids on cells and tissues (Martins and 
Mas 2015; Escasany et al. 2019).

The present data showed that alpha-lipoic acid (ALA) 
attenuated the impairment of hepatic and renal functions 
induced in obese rats. This was demonstrated by the ability 
of ALA to normalize the activities of AST, ALT, and ALP 
(liver functions) as well as the levels of urea and creatinine 
(kidney functions). Our results are in parallel with previ-
ous studies reporting that ALA attenuated the hepatic and 
renal toxicities induced by cyclophosphamide and colistin 
(Abdul-Hamid et al. 2020; Oktan et al. 2021). This amelio-
rative effect could be attributed to its ability to prevent the 
oxidative stress induced by HFD. It has been demonstrated 
that ALA acts as a potent antioxidant by scavenging reac-
tive oxygen and nitrogen species (Bast and Haenen 2003), 
increasing the activities of antioxidant enzymes (Gomes and 
Negrato 2014), and reducing the oxidized antioxidants like 
glutathione, vitamin C, and vitamin E (Rochette et al. 2015). 
Moreover, ALA can increase GSH synthesis by increasing 
the availability of cysteine in cells through the conversion of 
cystine to cysteine (Han et al. 1997). This may explain the 
ability of ALA to prevent the increase in lipid peroxidation 
and NO and the reduced level of GSH induced by HFD in 
the present study. In addition, ALA reduced the production 
of NO by suppressing the activity and expression of iNOS 
(Demarco et al. 2004; Tanaka et al. 2015).

Besides the potent antioxidant activity, ALA attenuated 
the inflammation induced in rat model of obesity. This was 
evident from its ability to restore the elevated TNF-α and 
IL-1β levels induced by HFD. The present data agree with 
the study of Çakır et al. (2015) who revealed that ALA 
decreased the serum levels of TNF-α and IL-1β in rats. The 
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anti-inflammatory effect of ALA could be mediated by its 
ability to inhibit the release of pro-inflammatory cytokines 
that participate in inflammatory signaling by reducing 
the gene expression of NF-κB occurring in HFD-fed rats 
(Sztolsztener et al.  2022). The antioxidant and anti-inflam-
matory effects of ALA could have a role in minimizing the 
histopathological alterations induced in the liver and kidney 
of obese rats. In addition, the restored renal  Na+,  K+-ATPase 
activity induced by ALA in the present study may result 
in maintaining body fluid and electrolyte homeostasis. This 
effect could also contribute to reduced renal histopathologi-
cal changes. The recovered renal  Na+,  K+-ATPase activity 
may be attributed to ALA’s antioxidant effect and its stimu-
latory effect on the biosynthesis of ATP which is the main 
substrate for  Na+,  K+-ATPase (Shay et al. 2009).

The present findings also revealed that CAF-CS NPs ame-
liorated the hepatic and renal alterations induced in obese 
rats. Treatment with CAF-CS NPs successfully restored 
ALP, ALT, and AST. This effect may be due to the ability of 
caffeine to maintain hepatocyte membrane integrity, thereby 
preventing the leakage of hepatic enzymes from hepatocytes 
to the systemic circulation. Caffeine consumption, on the 
other hand, has been shown to have a renal protective effect 
against chronic kidney diseases by increasing glomerular 
filtration rate and maintaining the renin-angiotensin system 
(Kennedy et al. 2020; Srithongkul and Ungprasert 2020). 
This may explain the restored urea and creatinine levels 
induced by caffeine in the present study.

The hepato-renal protective effect of CAF-CS NPs in the 
present study could be attributed to their ability to attenuate 
oxidative stress and inflammation induced by HFD. CAF-
CS NPs reduced the increased MDA in the liver and kid-
ney. This effect may be due to the action of caffeine as a 
free radical scavenger (León-Carmona and Galano 2011). 
Thus, caffeine could scavenge oxygenated free radicals and 
NO radicals preventing the formation of peroxynitrite. In 
addition, the increased GSH content in the liver and kidney 
by CAF-CS NPs may be due to the stimulatory effect of 
caffeine on the cellular synthesis of GSH (Aoyama et al. 
2011). The reported suppressive effect of caffeine on the 
gene expression of iNOS (de Alcântara Almeida et al. 2021) 
may enable CAF-CS NPs to restore NO levels in the liver 
and kidney of obese rats. CAF-CS NPs also demonstrated 
an anti-inflammatory effect, as evident from their ability to 
restore elevated TNF-α and IL-1β to control levels by inhib-
iting the production of pro-inflammatory cytokines such as 
TNF-α and IL-1β via the cyclic adenosine monophosphate/
protein kinase A (cAMP/PKA) pathway (Horrigan et al. 
2004).

The current data show that CAF-CS NPs reduced hepatic 
and renal histopathological changes caused by obesity. 
However, pericentral hepatic necrosis with dilated blood 
sinusoids and mild activation of Kupffer cells in hepatic 

sections were observed. Also, treatment with CAF-CS NPs 
reduced the degeneration of renal tubules and the dilatation 
of Bowman’s space caused by HFD in kidney. The present 
improvement in the histopathological picture in rats treated 
with CAF-CS NPs could be attributed to the antioxidant and 
anti-inflammatory activities of CAF-CS NPs. The improved 
 Na+,  K+-ATPase activity induced by CAF-CS NPs in the 
renal tissue may play a role in restoring renal function and 
reducing renal histopathology in obese rats.

The present study extended to investigate the combined 
administration of ALA + CAF-CS NPs on the hepatic and 
renal complications induced by obesity. Treatment of obese 
rats with ALA + CAF-CS NPs restored the hepatic and 
renal functions. In addition, they ameliorated the increased 
levels of lipid peroxidation and NO levels and the reduced 
level of GSH in the liver and kidney. Moreover, the com-
bined administration of ALA + CAF-CS NPs showed anti-
inflammatory effect as they suppressed the elevated levels 
of TNF-α and IL-1β induced in the sera of obese rats. The 
antioxidant and anti-inflammatory effects together with the 
restored  Na+,  K+-ATPase obtained by ALA + CAF-CS NPs 
in the present study may have a substantial role in improving 
the histopathological alterations induced in hepatic and renal 
tissues of obese rats. The present findings showed that the 
co-treatment with ALA and CAF-CS NPs improved almost 
all the histopathological changes resulting from obesity in 
hepatic and renal tissues. However, focal hepatocyte necrosis 
with mild infiltration of inflammatory cells and a few degen-
erated tubules and pyknotic nuclei were still observed in the 
liver and kidney, respectively.

The results obtained in the present study indicated that 
ALA and/or CAF-CS NPs reduced obesity as indicated by 
the BMI which recorded the least measure when obese rats 
were co-treated with ALA and CAF-CS NPs indicating a 
synergistic effect against obesity.

Conclusion

According to the present data, it could be concluded that 
ALA and/or CAF-CS NPs attenuated the hepatic and renal 
complications induced by obesity in rats. This effect could 
be attributed to their ability to reduce BMI, oxidative stress, 
and inflammation induced by feeding rats on HFD. Based on 
the present findings, ALA and/or CAF-CS NPs are recom-
mended as anti-obesity agents in human.
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