Skip to main content

Advertisement

Log in

Combination of SIX4-siRNA and temozolomide inhibits the growth and migration of A-172 glioblastoma cancer cells

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Glioblastoma is one of the most common and invasive types of primary brain malignancies in adults, accounting for 45.5% of malignancies. Its annual prevalence is low compared to other cancers. The survival rate of this disease is about 14 months after diagnosis. Temozolomide (TMZ) is a common chemotherapy drug used to treatment of glioblastoma, but drug resistance against this drug is an important barrier to successful treatment of this cancer. Today, siRNAs play a significant role in cancer treatment. SIX4 is a transcriptional regulatory molecule that can act as a transcriptional suppressor and an activator in target genes involved in differentiation, migration, and cell survival processes. The aim of this study was to evaluate the effect of SIX4-siRNA on A-172 glioblastoma cells, its role as a tumor suppressor, and its combination with TMZ. We studied the cytotoxic effect of the SIX4-siRNA and TMZ on A-172 cells using the MTT assay investigated their effect on apoptosis and cell cycle of A-172 cells used wound healing assays to assess their effect on cell migration. Finally, we used qRT-PCR to study the mRNA expression levels of genes involved in apoptosis and migration of tumoral cells after treatments. Based on our results, silencing SIX4-siRNA expression reduced the cell viability of A-172 cells and sensitize these cells to TMZ. Furthermore, we observed an increase in apoptosis and cell cycle arrest, and a decrease in migration. Bax and caspase-9 overexpression and BCL2 and MMP9 downregulation were detected in the combination of SIX4-siRNA and TMZ. According to our results, the combination of SIX4-siRNA and TMZ can be a very useful strategy for successful glioblastoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The results will be available upon the reasonable request from the corresponding author.

References

  • Arora A, Somasundaram K (2019) Glioblastoma vs temozolomide: can the red queen race be won? Cancer Biol Ther 20(8):1083–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagherian A et al (2020) Combination therapy with nanomicellar-curcumin and temozolomide for in vitro therapy of glioblastoma multiforme via Wnt signaling pathways. J Mol Neurosci 70:1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2020) NCK1-AS1 increases drug resistance of glioma cells to temozolomide by modulating miR-137/TRIM24. Cancer Biother Radiopharm 35(2):101–108

    CAS  PubMed  Google Scholar 

  • Doan P et al (2019) Alkylaminophenol induces G1/S phase cell cycle arrest in glioblastoma cells through p53 and cyclin-dependent kinase signaling pathway. Front Pharmacol 10:330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanif F et al (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18(1):3

    PubMed  PubMed Central  Google Scholar 

  • He Q et al (2020) SIX4 promotes hepatocellular carcinoma metastasis through upregulating YAP1 and c-MET. Oncogene 39(50):7279–7295

    Article  PubMed  Google Scholar 

  • Hu B et al (2020) Therapeutic siRNA: state of the art. Signal Transduct Target Ther 5(1):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C et al (2008) Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 12(5):637–645

    Article  CAS  PubMed  Google Scholar 

  • Huang W et al (2020) miR-802 inhibits the proliferation, invasion, and epithelial-mesenchymal transition of glioblastoma multiforme cells by directly targeting SIX4. Cell Biochem Funct 38(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Kong L et al (2017) Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells. Biomater Sci 5(2):258–266

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (2016) Temozolomide resistance in glioblastoma multiforme. Genes Dis 3(3):198–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G et al (2017) SIX4 promotes metastasis via activation of the PI3K-AKT pathway in colorectal cancer. PeerJ 5:e3394

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2018) Effect of AQP-5 silencing by siRNA interference on chemosensitivity of breast cancer cells. Onco Targets Ther 11:3359–3368

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2019) Effects of SIRT1 silencing on viability, invasion and metastasis of human glioma cell lines. Oncol Lett 17(4):3701–3708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2021) Upregulation of SIX4 indicates poor clinical outcome and promotes tumor growth and cell metastasis in esophageal squamous cell carcinoma. Thoracic Cancer 12(6):752–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  • Lozada-Delgado EL, Grafals-Ruiz N, Vivas-Mejía PE (2017) RNA interference for glioblastoma therapy: innovation ladder from the bench to clinical trials. Life Sci 188:26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matias D et al (2017) Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell Oncol 40:247–261

    Article  CAS  Google Scholar 

  • Na X et al (2019) MiR-203a functions as a tumor suppressor in bladder cancer by targeting SIX4. Neoplasma 66(2):211–221

    Article  CAS  PubMed  Google Scholar 

  • Ohka F, Natsume A, Wakabayashi T (2012) Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int 2012:878425

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira KA et al (2018) Atorvastatin promotes cytotoxicity and reduces migration and proliferation of human A172 glioma cells. Mol Neurobiol 55:1509–1523

    Article  CAS  PubMed  Google Scholar 

  • Petrenko D et al (2022) Temozolomide efficacy and metabolism: the implicit relevance of nanoscale delivery systems. Molecules 27(11):3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock K et al (2012) A clinical review of treatment outcomes in glioblastoma multiforme—the validation in a non-trial population of the results of a randomised phase III clinical trial: has a more radical approach improved survival? Br J Radiol 85(1017):e729–e733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santolini M et al (2016) MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis. Nucleic Acids Res 44(18):8621–8640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stupp R et al (2014) High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25: iii93–iii101‏

  • Sun X et al (2019) SIX4 activates Akt and promotes tumor angiogenesis. Exp Cell Res 383(1):111495

    Article  CAS  PubMed  Google Scholar 

  • Sun X et al (2020) SIX4 promotes metastasis through STAT3 activation in breast cancer. Am J Cancer Res 10(1):224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamimi AF, Juweid M (2017) Epidemiology and outcome of glioblastoma. Exon Publications 143–153‏

  • Tang X et al (2019) SIX4 acts as a master regulator of oncogenes that promotes tumorigenesis in non-small-cell lung cancer cells. Biochem Biophys Res Commun 516(3):851–857

    Article  CAS  PubMed  Google Scholar 

  • Thakkar JP et al (2014) Epidemiologic and molecular prognostic review of glioblastomaGBM epidemiology and biomarkers. Cancer Epidemiol Biomark Prev 23(10):1985–1996

    Article  CAS  Google Scholar 

  • Valtorta S et al (2017) Metformin and temozolomide, a synergic option to overcome resistance in glioblastoma multiforme models. Oncotarget 8(68):113090

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Q et al (2013) Expression of Six1 and Six4 in esophageal squamous cell carcinoma and their correlation with clinical prognosis. Chin J Pathol 42(7):446–450

    CAS  Google Scholar 

  • Wick W, Platten M (2014) Understanding and targeting alkylator resistance in glioblastoma. Cancer Discov 4(10):1120–1122

    Article  CAS  PubMed  Google Scholar 

  • Xu H-X et al (2016) Expression profile of SIX family members correlates with clinic-pathological features and prognosis of breast cancer: a systematic review and meta-analysis. Medicine 95(27):e4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi G-Z et al (2016) Akt and β-catenin contribute to TMZ resistance and EMT of MGMT negative malignant glioma cell line. J Neurol Sci 367:101–106

    Article  CAS  PubMed  Google Scholar 

  • Zhang D et al (2016) Inhibition of REST suppresses proliferation and migration in glioblastoma cells. Int J Mol Sci 17(5):664

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2018) Synergistic anticancer effects of formononetin and temozolomide on glioma C6 cells. Biol Pharm Bull 41(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Immunology Research Center, Tabriz University of Medical Science.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Jodari Mohammadpour. The first author of the manuscript, performed the experiment, contributed to the cellular and molecular assays and wrote the initial version of the manuscript. Reza Mohammadzadeh. The corresponding author of the manuscript, supervised the project, and revised the main text of the manuscript. Darya Javadrashid. and Amir Baghbanzadeh. Contributed to the cellular and molecular assays, analyzed the data, formal analysis and revised the manuscript. Mohammad Amin Doustvandi. Participate in reviewing and editing manuscript, and revised the main text of the manuscript. Nesa Barpour. Helped with the data categorization and interpreted the results. Behzad Baradaran. The corresponding author of the manuscript, supervised the project, and revised the main text of the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Reza Mohammadzadeh or Behzad Baradaran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, Z.J., Mohammadzadeh, R., Javadrashid, D. et al. Combination of SIX4-siRNA and temozolomide inhibits the growth and migration of A-172 glioblastoma cancer cells. Naunyn-Schmiedeberg's Arch Pharmacol 396, 2741–2751 (2023). https://doi.org/10.1007/s00210-023-02495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02495-5

Keywords

Navigation