Skip to main content
Log in

Retinoic acid and evernyl-based menadione-triazole hybrid cooperate to induce differentiation of neuroblastoma cells

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Neuroblastoma arises when immature neural precursor cells do not mature into specialized cells. Although retinoic acid (RA), a pro-differentiation agent, improves the survival of low-grade neuroblastoma, resistance to retinoic acid is found in high-grade neuroblastoma patients. Histone deacetylases (HDAC) inhibitors induce differentiation and arrest the growth of cancer cells; however, HDAC inhibitors are FDA-approved mostly for liquid tumors. Therefore, combining histone deacetylase (HDAC) inhibitors and retinoic acid can be explored as a strategy to trigger the differentiation of neuroblastoma cells and to overcome resistance to retinoic acid. Based on this rationale, in this study, we linked evernyl group and menadione-triazole motifs to synthesize evernyl-based menadione-triazole hybrids and asked if the hybrids cooperate with retinoic acid to trigger the differentiation of neuroblastoma cells. To answer this question, we treated neuroblastoma cells using evernyl-based menadione-triazole hybrids (6a6i) or RA or both and examined the differentiation of neuroblastoma cells. Among the hybrids, we found that compound 6b inhibits class-I HDAC activity, induces differentiation, and RA co-treatments increase 6b-induced differentiation of neuroblastoma cells. In addition, 6b reduces cell proliferation, induces expression of differentiation-specific microRNAs leading to N-Myc downregulation, and RA co-treatments enhance the 6b-induced effects. We observed that 6b and RA trigger a switch from glycolysis to oxidative phosphorylation, maintain mitochondrial polarization, and increase oxygen consumption rate. We conclude that in evernyl-based menadione-triazole hybrid, 6b cooperates with RA to induce differentiation of neuroblastoma cells. Based on our results, we suggest that combining RA and 6b can be pursued as therapy for neuroblastoma.

Graphical Abstract

Schematic representation of RA and 6b in inducing differentiation of neuroblastoma cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Request for reagents can be directed to N.J. To whom correspondence may be addressed: Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India. Tel.: 91–40-27191857; Fax: 91–40-27191812; E-mail: nishant.iict@gov.in.

References

  • Agouram N, El Hadrami EM, Bentama A (2021) 1,2,3-triazoles as biomimetics in peptide science. Mol 26:2937

    Article  CAS  Google Scholar 

  • Bhattacharjee D, Balabhaskararao K, Jain N (2021) Mutant IDH1 inhibitors activate pSTAT3-Y705 leading to an increase in BCAT1 and YKL-40 levels in mutant IDH1-expressing cells. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1868:119114

    Article  CAS  Google Scholar 

  • Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D (2017) The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Disc Today 22:1572–1581

    Article  CAS  Google Scholar 

  • Boyd MR, Paull KD (1995) Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109

    Article  CAS  Google Scholar 

  • Bozorov K, Zhao J, Aisa HA (2019) 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg Med Chem 27:3511–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PC, Patil V, Guerrant W, Green P, Oyelere AK (2008a) Synthesis and structure–activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group. Bioorg Med Chem 16:4839–4853

    Article  CAS  PubMed  Google Scholar 

  • Chen PC, Patil V, Guerrant W, Green P, Oyelere AK (2008b) Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group. Bioorg Med Chem 16:4839–4853

    Article  CAS  PubMed  Google Scholar 

  • Chen IC, Sethy B, Liou JP (2020) Recent update of HDAC inhibitors in lymphoma. Front Cell Dev Biol 8:576391

    Article  PubMed  PubMed Central  Google Scholar 

  • Chlapek P, Slavikova V, Mazanek P, Sterba J, Veselska R (2018) Why differentiation therapy sometimes fails: molecular mechanisms of resistance to retinoids. Int J Mol Sci 19(1):132. https://doi.org/10.3390/ijms19010132

  • Cunningham TJ, Duester G (2015) Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 16:110–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. In: Hempel JE, Williams CH, Hong CC (eds) Chemical biology: methods and protocols p 243-50. Springer New York, New York, NY

    Google Scholar 

  • De los Santos M, Zambrano A, Sánchez-Pacheco A, Aranda A (2007) Histone deacetylase inhibitors regulate retinoic acid receptor β Expression in neuroblastoma cells by both transcriptional and posttranscriptional mechanisms. Mol Endocrinol 21:2416–26

    Article  CAS  PubMed  Google Scholar 

  • De los Santos M, Zambrano A, Aranda A (2007) Combined effects of retinoic acid and histone deacetylase inhibitors on human neuroblastoma SH-SY5Y cells. Mol Cancer Ther 6:1425–32

    Article  CAS  PubMed  Google Scholar 

  • Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18(7):1414. https://doi.org/10.3390/ijms18071414

  • Epping MT, Wang L, Plumb JA, Lieb M, Gronemeyer H, Brown R et al (2007) A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors. Proc Natl Acad Sci 104:17777–17782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer F, Avelar LAA (2021) A short overview of resistance to approved histone deacetylase inhibitors. Future Med Chem 13:1153–1155

    Article  CAS  PubMed  Google Scholar 

  • Frumm Stacey M, Fan Zi P, Ross Kenneth N, Duvall Jeremy R, Gupta S, VerPlank L et al (2013) Selective HDAC1/HDAC2 inhibitors induce neuroblastoma differentiation. Chem Biol 20:713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Calderón D, Mejía-Dionicio MG, Morales-Reza MA, Ramírez-Villalva A, Morales-Rodríguez M, Jauregui-Rodríguez B et al (2016) Azide-enolate 1,3-dipolar cycloaddition in the synthesis of novel triazole-based miconazole analogues as promising antifungal agents. Eur J Med Chem 112:60–65

    Article  PubMed  Google Scholar 

  • Guo J, Walss-Bass C, Ludueña RF (2010) The β isotypes of tubulin in neuronal differentiation. Cytoskeleton 67:431–441

    Article  CAS  PubMed  Google Scholar 

  • Hahn CK, Ross KN, Warrington IM, Mazitschek R, Kanegai CM, Wright RD et al (2008) Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc Natl Acad Sci 105:9751–9756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46

    Article  CAS  PubMed  Google Scholar 

  • He T, Hatem E, Vernis L, Lei M, Huang M-E (2015) PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug. J Exp Clin Cancer Res 34:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Sci 324:1029–1033

    Article  Google Scholar 

  • Hosios AM, Vander Heiden MG (2018) The redox requirements of proliferating mammalian cells. J Biol Chem 293:7490–7498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoxhaj G, Manning BD (2020) The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 20:74–88

    Article  CAS  PubMed  Google Scholar 

  • Irwin MS, Park JR (2015) Neuroblastoma: paradigm for precision medicine. Pediatr Clin North Am 62:225–256

    Article  PubMed  Google Scholar 

  • Isgrò MA, Bottoni P, Scatena R (2015) Neuron-specific enolase as a biomarker: biochemical and clinical aspects. In: Scatena R (ed) Advances in cancer biomarkers: from biochemistry to clinic for a critical revision. Springer, Netherlands, Dordrecht, pp 125–143

    Chapter  Google Scholar 

  • Janesick A, Wu SC, Blumberg B (2015) Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 72:1559–1576

    Article  CAS  PubMed  Google Scholar 

  • Jauhari A, Singh T, Singh P, Parmar D, Yadav S (2018) Regulation of miR-34 family in neuronal development. Mol Neurobiol 55:936–945

    Article  CAS  PubMed  Google Scholar 

  • Lotem J, Sachs L (2006) Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncog 25:7663–7672

    Article  CAS  Google Scholar 

  • Makani VKK, Mendonza JJ, Edathara PM, Yerramsetty S, Pal BM (2021) BORIS/CTCFL expression activates the TGFβ signaling cascade and induces Drp1 mediated mitochondrial fission in neuroblastoma. Free Radical Biol Med 176:62–72

    Article  Google Scholar 

  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK et al (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N Engl J Med 341:1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Modak S, Cheung N-KV (2010) Neuroblastoma: Therapeutic strategies for a clinical enigma. Cancer Treat Rev 36:307–17

    Article  CAS  PubMed  Google Scholar 

  • Nakaoka E, Tanaka S, Onda K, Sugiyama K, Hirano T (2015) Effects of vitamin K3 and K5 on daunorubicin-resistant human T lymphoblastoid leukemia cells. Anticancer Res 35:6041–6048

    CAS  PubMed  Google Scholar 

  • Neradil J, Veselska R (2015) Nestin as a marker of cancer stem cells. Cancer Sci 106:803–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nutter LM, Ann-Lii C, Hsiao-Ling H, Ruey-Kun H, Ngo EO, Tsang-Wu L (1991) Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines. Biochem Pharmacol 41:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Pal-Bhadra M, Ramaiah MJ, Reddy TL, Krishnan A, Pushpavalli S, Babu KS et al (2012) Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1by altering chromatin of STAT response element in A375 cells. BMC Cancer 12:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Garikapati KR, Makani VKK, Nair AD, Vangara N, Bhadra U et al (2018) Regulating BMI1 expression via miRNAs promote mesenchymal to epithelial transition (MET) and sensitizes breast cancer cell to chemotherapeutic drug. Plos One 13:e0190245

    Article  PubMed  PubMed Central  Google Scholar 

  • Peserico A, Simone C (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011:371832

    Article  PubMed  Google Scholar 

  • Poornima B, Siva B, Venkanna A, Shankaraiah G, Jain N, Yadav DK et al (2017) Novel Gomisin B analogues as potential cytotoxic agents: design, synthesis, biological evaluation and docking studies. Eur J Med Chem 139:441–453

    Article  CAS  PubMed  Google Scholar 

  • Powers JT, Tsanov KM, Pearson DS, Roels F, Spina CS, Ebright R et al (2016) Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nat 535:246–251

    Article  CAS  Google Scholar 

  • Prasad CV, Nayak VL, Ramakrishna S, Mallavadhani UV (2018) Novel menadione hybrids: synthesis, anticancer activity, and cell-based studies. Chem Biol Drug Des 91:220–233

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Paul P, Lee S, Qiao L, Josifi E, Tiao JR et al (2012) PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochem Biophys Res Commun 424:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao J, Lee S, Paul P, Theiss L, Tiao J, Qiao L et al (2013) miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis. Surg 154:226–233

    Article  Google Scholar 

  • Raut GK, Chakrabarti M, Pamarthy D, Bhadra MP (2019) Glucose starvation-induced oxidative stress causes mitochondrial dysfunction and apoptosis via Prohibitin 1 upregulation in human breast cancer cells. Free Radical Biol Med 145:428–441

    Article  CAS  Google Scholar 

  • Raut GK, Manchineela S, Chakrabarti M, Bhukya CK, Naini R, Venkateshwari A et al (2020) Imine stilbene analog ameliorate isoproterenol-induced cardiac hypertrophy and hydrogen peroxide-induced apoptosis. Free Radical Biol Med 153:80–88

    Article  CAS  Google Scholar 

  • Reddy MA, Jain N, Yada D, Kishore C, Vangala JR, Surendra PR et al (2011) Design and synthesis of resveratrol-based nitrovinylstilbenes as antimitotic agents. J Med Chem 54:6751–60

    Article  CAS  PubMed  Google Scholar 

  • Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?—Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19:25–31

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Wu C-P, Nandigama K, Ambudkar SV (2007) The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance–linked ATP binding cassette drug transporter ABCG2. Mol Cancer Ther 6:3279–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivas C, Swathi V, Priyanka C, Anjana Devi T, Subba Reddy BV, Janaki Ramaiah M et al (2016) Novel SAHA analogues inhibit HDACs, induce apoptosis and modulate the expression of microRNAs in hepatocellular carcinoma. Apoptosis 21:1249–1264

    Article  CAS  PubMed  Google Scholar 

  • Teixeira J, Amorim R, Santos K, Soares P, Datta S, Cortopassi GA et al (2018) Disruption of mitochondrial function as mechanism for anti-cancer activity of a novel mitochondriotropic menadione derivative. Toxicol 393:123–139

    Article  CAS  Google Scholar 

  • Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Wu FY, Chang NT, Chen WJ, Juan CC (1993) Vitamin K3-induced cell cycle arrest and apoptotic cell death are accompanied by altered expression of c-fos and c-myc in nasopharyngeal carcinoma cells. Oncog 8:2237–2244

    CAS  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncog 26:5541–5552

    Article  CAS  Google Scholar 

  • Yu Z, Li Y, Fan H, Liu Z, Pestell RG (2012) miRNAs regulate stem cell self-renewal and differentiation. Front Genet 3:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.J.M, S.T.R, and V.K.K.M thank Council of Scientific and Industrial Research, India for the senior research fellowship. H.D. thanks DST-INSPIRE, India for the senior research fellowship. We thank Suresh Y for assistance in Flow cytometry. We thank Director, CSIR-IICT for providing all the required facilities to carry out the work (Ms. No. IICT/Pubs./2021/299).

Funding

This work was supported by grants from the Department of Biotechnology (DBT, GAP-0770), New Delhi, India, to M.P.B and the Council of Scientific and Industrial Research (CSIR-IICT/MLP0068), India, to N.J.

Author information

Authors and Affiliations

Authors

Contributions

Jolly Janette Mendonza: conceptualization; methodology; validation; data curation; writing — original draft; writing — review and editing. Srilakshmi Tirupathamma Reddy, Hashnu Dutta, and Venkata Krishna Kanth Makani: methodology, validation, data curation. Venkata Mallavadhani Uppuluri: supervision, writing — review and editing. Nishant Jain: supervision, writing — review and editing, funding acquisition. Manika Pal Bhadra: supervision, writing — review and editing, conceptualization, investigation, project administration, funding acquisition. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Venkata Mallavadhani Uppuluri, Nishant Jain or Manika Pal Bhadra.

Ethics declarations

Ethical approval

No human and/or animal studies are involved in this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

6b is a class-I HDAC inhibitor.

6b and RA increase differentiation of neuroblastoma cells.

6b and RA trigger metabolic switch in neuroblastoma cells.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonza, J.J., Reddy, S.T., Dutta, H. et al. Retinoic acid and evernyl-based menadione-triazole hybrid cooperate to induce differentiation of neuroblastoma cells. Naunyn-Schmiedeberg's Arch Pharmacol 396, 2651–2665 (2023). https://doi.org/10.1007/s00210-023-02489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02489-3

Keywords

Navigation