Skip to main content
Log in

Osthole increases the radiosensitivity of hepatoma cells by inhibiting GSK-3β/AMPK/mTOR pathway-controlled glycolysis

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Osthole is a natural coumarin substance that has an inhibitory effect on hepatic cancer, but its radiosensitization effect on hepatoma cells has not been reported. This study aimed to investigate the effect of osthole. Human HCC-LM3 and SK-Hep-1 hepatoma cells were used and treated with or without osthole, irradiation, or their combination; the cell survival, migration, colony formation, DNA damage repair, intracellular lactic acid content, and glycolysis-related glycogen synthase kinase-3β (GSK-3β), p-GSK-3β, AMP-activated protein kinase (AMPK), p-AMPK, mammalian target of rapamycin (mTOR), p-mTOR, glucose transporter-1 (GLUT-1), GLUT-3, and pyruvate kinase isozyme type M2 (PKM2) protein expressions were determined. Compared with the irradiation group, the osthole plus irradiation group could further decrease the survival rate, migration, colony formation, and DNA damage repair of both hepatoma cells, indicating a synergistic effect of the combination treatment. Moreover, the combination of osthole and irradiation could decrease the content of intracellular lactic acid, ratios of intracellular p-GSK-3β/GSK-3β and p-mTOR/mTOR proteins, and expressions of intracellular GLUT-1/3 and PKM2 proteins, and increase the ratio of intracellular p-AMPK/AMPK proteins. Osthole can increase the radiosensitivity of hepatoma cells, and its radiosensitization mechanisms may be related to glycolytic inhibition by attenuating the GSK-3β/AMPK/mTOR pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data will be made available upon reasonable request.

References

  • Alves AP, Mamede AC, Alves MG, Oliveira PF, Rocha SM, Botelho MF, Maia CJ (2019) Glycolysis inhibition as a strategy for hepatocellular carcinoma treatment? Curr Cancer Drug Targets 19:26–40

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Lee JY, Song J, Song G, Lim W (2021) Osthole interacts with an ER-mitochondria axis and facilitates tumor suppression in ovarian cancer. J Cell Physiol 236:1025–1042

    Article  CAS  PubMed  Google Scholar 

  • Bhatt AN, Chauhan A, Khanna S, Rai Y, Singh S, Soni R, Kalra N, Dwarakanath BS (2015) Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells. BMC Cancer 15:335

    Article  PubMed  PubMed Central  Google Scholar 

  • Che YL, Li J, Li ZJ, Li J, Wang S, Yan Y, Zou K, Zou LJ (2018) Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NF-κB signaling. Oncol Rep 40:737–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CP (2019) Role of radiotherapy in the treatment of hepatocellular carcinoma. J Clin Transl Hepatol 7:183–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen ZQ, Xie H, Hu MM, Huang TY, Hu YN, Sang N, Zhao YL (2020) Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res 10:2993–3036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Wu YY, Yu SY, Li XM, Wang AY, Wang SJ, Chen WX, Lu Y (2021) Critical role of mTOR in regulating aerobic glycolysis in carcinogenesis (Review). Int J Oncol 58(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Fang GX, Zhang PL, Liu JF, Zhang X, Zhu XJ, Li R, Wang HY (2019) Inhibition of GSK-3β activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling. Cancer Lett 463:11–26

    Article  CAS  PubMed  Google Scholar 

  • Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong ZF, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, Avizonis D, DeBerardinis RJ, Siegel PM, Jones RG (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17:113–124

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Chen D, Yin X, Shu QF (2019) GSK-3 beta promotes cell migration and inhibits autophagy by mediating the AMPK pathway in breast cancer. Oncol Res 27:487–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Hsieh FS, Wang CY, Chen LJ, Chang SS, Tsai MH, Huang MH, Kuo CW, Shih CT, Chao T, Chen KF (2018) Palbociclib enhances radiosensitivity of hepatocellular carcinoma and cholangiocarcinoma via inhibiting ataxia telangiectasia-mutated kinase-mediated DNA damage response. Eur J Cancer 102:10–22

    Article  CAS  PubMed  Google Scholar 

  • Huangfu MJ, Wei RM, Wang J, Qin JL, Yu D, Guan X, Li XM, Fu ML, Liu HP, Chen X (2021) Osthole induces necroptosis via ROS overproduction in glioma cells. FEBS Open Bio 11:456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia CH, Zhao Y, Huang H, Fan K, Xie T, Xie ML (2022) Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem 107:109038

    Article  CAS  PubMed  Google Scholar 

  • Lee WH, Lin RJ, Lin SY, Chen YC, Lin HM, Liang YC (2011) Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells. J Agric Food Chem 59:12874–12881

    Article  CAS  PubMed  Google Scholar 

  • Lin JT, Song T, Li C, Mao WF (2020) GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res 1867:118659

    Article  CAS  PubMed  Google Scholar 

  • Lin SC, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27:299–313

    Article  CAS  PubMed  Google Scholar 

  • Lin ZK, Liu J, Jiang GQ, Tan G, Gong P, Luo HF, Li HM, Du J, Ning Z, Xin Y, Wang ZY (2017) Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol Rep 37:1611–1618

    Article  CAS  PubMed  Google Scholar 

  • Liu KX, Everdell E, Pal S, Haas-Kogan DA, Milligan MG (2021) Harnessing lactate metabolism for radiosensitization. Front Oncol 11:672339

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo Y, Wu Y, Li X, Rao H, Tian XX, Wu DN, Qiu ZP, Zheng GH, Hu JJ (2020) Osthole delays hepatocarcinogenesis in mice by suppressing AKT/FASN axis and ERK phosphorylation. Eur J Pharmacol 867:172788

    Article  CAS  PubMed  Google Scholar 

  • Nagini S, Sophia J, Mishra R (2019) Glycogen synthase kinases: moonlighting proteins with theranostic potential in cancer. Semin Cancer Biol 56:25–36

    Article  CAS  PubMed  Google Scholar 

  • Park W, Park S, Song G, Lim W (2019) Inhibitory effects of osthole on human breast cancer cell progression via induction of cell cycle arrest, mitochondrial dysfunction, and ER stress. Nutrients 11(11):2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Huang YT, Chen J, Zhuang YX, Zhang F, Chen JY, Zhou L, Zhang DH (2018) Osthole sensitizes with radiotherapy to suppress tumorigenesis of human nasopharyngeal carcinoma in vitro and in vivo. Cancer Manag Res 10:5471–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pliszka M, Szablewski L (2021) Glucose transporters as a target for anticancer therapy. Cancers 13(16):4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi ZG, Zhao X, Zhong W, Xie ML (2016) Osthole improves glucose and lipid metabolism via modulation of PPARα/γ-mediated target gene expression in liver, adipose tissue, and skeletal muscle in fatty liver rats. Pharm Biol 54:882–888

    Article  CAS  PubMed  Google Scholar 

  • Shokoohinia Y, Jafari F, Mohammadi Z, BazvandiL HL, Chow N, Bhattacharyya P, Farzaei MH, Farooqi AA, Nabavi SM, Yerer MB, Bishayee A (2018) Potential anticancer properties of osthol: a comprehensive mechanistic review. Nutrients 10(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang L, Wei F, Wu YF, He Y, Shi L, Xiong F, Gong ZJ, Guo C, Li XY, Deng H, Cao K, Zhou M, Xiang B, Li XL, Li Y, Li GY, Xiong W, Zeng ZY (2018) Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res 37:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang XG, Lu Y, Hang JJ, Zhang JF, Zhang TN, Hou YM, Liu J, Lai ST, Luo DW, Wang LW, Hua R, Lin YL (2020) Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer. Cancer Immunol Res 8:1440–1451

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Sun YF, Li JJ, Wang Y, Zhu YX, Shi Y, Fan XJ, Zhou JD, Bao Y, Xiao J, Cao K, Cao PG (2017) Silencing the girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism. J Exp Clin Cancer Res 36:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahra K, Dey T, Ashish MSP, Pandey U (2020) Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol 10:159

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Huang H, Jia CH, Fan K, Xie T, Zhu ZY, Xie ML (2021) Apigenin increases radiosensitivity of glioma stem cells by attenuating HIF-1α-mediated glycolysis. Med Oncol 38:131

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science & Technology Project of Suzhou City for Medical Health (KJXW2020039), Research Fund of Nanjing Medical University (NMUB2020254), and Research Program of Gusu School of Nanjing Medical University (GSKY20220526), China.

Author information

Authors and Affiliations

Authors

Contributions

HH and XJ performed the cell experimental study. HH analyzed the experimental data and drafted the manuscript. XJ revised the manuscript. XT and XML designed the study and reviewed the manuscript. All the authors read and approved the final version of the manuscript. The authors declare that all the data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Tao Xie or Mei-Lin Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Xue, J., Xie, T. et al. Osthole increases the radiosensitivity of hepatoma cells by inhibiting GSK-3β/AMPK/mTOR pathway-controlled glycolysis. Naunyn-Schmiedeberg's Arch Pharmacol 396, 683–692 (2023). https://doi.org/10.1007/s00210-022-02347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-022-02347-8

Keywords

Navigation