Skip to main content

Advertisement

Log in

Combinatorial antitumor effects of amino acids and epigenetic modulations in hepatocellular carcinoma cell lines

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a highly fatal form of liver cancer. Recently, the interest in using amino acids as therapeutic agents has noticeably grown. The present work aimed to evaluate the possible antiproliferative effects of selected amino acids supplementation or deprivation in human HCC cell lines and to investigate their effects on critical signaling molecules in HCC pathogenesis and the outcomes of their combination with the histone deacetylase inhibitor vorinostat. HepG2 and Huh7 cells were treated with different concentrations of l-leucine, l-glutamine, or l-methionine and cell viability was determined using MTT assay. Insulin-like growth factor 1 (IGF1), phosphorylated ribosomal protein S6 kinase (p70 S6K), p53, and cyclin D1 (CD1) protein levels were assayed using ELISA. Caspase-3 activity was assessed colorimetrically. l-leucine supplementation (0.8–102.4 mM) and l-glutamine supplementation (4–128 mM) showed dose-dependent antiproliferative effects in both cell lines but l-methionine supplementation (0.2–25.6 mM) only affected the viability of HepG2 cells. Glutamine or methionine deprivation suppressed the proliferation of HepG2 cells whereas leucine deprivation had no effect on cell viability in both cell lines. The combination between the effective antiproliferative changes in l-leucine, l-glutamine, and l-methionine concentrations greatly suppressed cell viability and increased the sensitivity to vorinostat in both cell lines. The growth inhibitory effects were paralleled with significant decreases in IGF-1, phospho p70 S6k, and CD1 levels and significant elevations in p53 and caspase-3 activity. Changes in amino acids concentrations could profoundly affect growth in HCC cell lines and their response to epigenetic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdallah FM, Helmy MW, Katary MA, Ghoneim AI (2018) Synergistic antiproliferative effects of curcumin and celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn Schmiedebergs Arch Pharmacol 391:1399–1410

    Article  CAS  PubMed  Google Scholar 

  • Abraham RT (2015) Making sense of amino acid sensing. Science 347:128–129

    Article  CAS  PubMed  Google Scholar 

  • Alqaraleh M, Kasabri V, Mashallah S (2018) Evaluation of anticancer and anti-inflammatory properties of branched chain amino acids. J Biochem Cell Biol 1:108

    Google Scholar 

  • Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ (2010) Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11:726–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benavides MA, Oelschlager DK, Zhang H-G, Stockard CR, Vital-Reyes VS, Katkoori VR, Manne U, Wang W, Bland KI, Grizzle WE (2007) Methionine inhibits cellular growth dependent on the p53 status of cells. Am J Surg 193:274–283

    Article  CAS  PubMed  Google Scholar 

  • Bhat M, Sonenberg N, Gores GJ (2013) The mTOR pathway in hepatic malignancies. Hepatology 58:810–818

    Article  CAS  PubMed  Google Scholar 

  • Cardaci S, Rizza S, Filomeni G, Bernardini R, Bertocchi F, Mattei M, Paci M, Rotilio G, Ciriolo MR (2012) Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1. Cancer Res 72:4526–4536

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi S, Hoffman RM, Bertino JR (2018) Exploiting methionine restriction for cancer treatment. Biochem Pharmacol 154:170–173

    Article  CAS  PubMed  Google Scholar 

  • Chiu M, Tardito S, Pillozzi S, Arcangeli A, Armento A, Uggeri J, Missale G, Bianchi M, Barilli A, Dall’Asta V (2014) Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. Br J Cancer 111:1159–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi CB, Baik MG, Keller WL, Park CS (1993) Lipotrope-modified diets enhance nitrosomethylurea-induced mammary carcinogenesis in female rats. Nutr Cancer 20:215–221

    Article  CAS  PubMed  Google Scholar 

  • Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Ma X, Wang Z, Han B, Zou H, Wu Z, Zang Y, Zhuang L (2017) YY1 promotes HDAC1 expression and decreases sensitivity of hepatocellular carcinoma cells to HDAC inhibitor. Oncotarget 8:40583

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan L, Maki CG (2016) The IGF-1R/AKT pathway determines cell fate in response to p53. Transl Cancer Res 5:664

    Article  CAS  PubMed  Google Scholar 

  • Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358

    Article  PubMed  CAS  Google Scholar 

  • Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature 517:302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Sayed I, Helmy MW, El-Abhar HS (2018) Inhibition of SRC/FAK cue: a novel pathway for the synergistic effect of rosuvastatin on the anti-cancer effect of dasatinib in hepatocellular carcinoma. Life Sci 213:248–257

    Article  PubMed  CAS  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Fuchs BC, Perez JC, Suetterlin JE, Chaudhry SB, Bode BP (2004) Inducible antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis in human hepatoma cells. Am J Physiol Gastrointest Liver Physiol 286:G467–G478

    Article  CAS  PubMed  Google Scholar 

  • Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ghoneim A (2012) Phytochemicals and amino acids: inducers or inhibitors of cell death? Natural compounds as inducers of cell death. Springer, pp. 3–32

  • Ghoneim AI (2009) Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: implication of lipid peroxidation and cytochrome c. Naunyn Schmiedebergs Arch Pharmacol 379:47–60

    Article  CAS  PubMed  Google Scholar 

  • Ghoneim AI, Eldahshan OA (2012) Anti-apoptotic effects of tamarind leaves against ethanol-induced rat liver injury. J Pharm Pharmacol 64:430–438

    Article  CAS  PubMed  Google Scholar 

  • Goseki N, Nagahama T, Maruyama M, Endo M (1996) Enhanced anticancer effect of vincristine with methionine infusion after methionine-depleting total parenteral nutrition in tumor-bearing rats. Jap J Cancer Res 87:194–199

    Article  CAS  Google Scholar 

  • Hallbrucker C, Vom DAHLS, LANG F, HÄUSSINGER D (1991) Control of hepatic proteolysis by amino acids: the role of cell volume. Eur J Biochem 197:717–724

    Article  CAS  PubMed  Google Scholar 

  • Hawrylewicz E, Huang H (1992) Effect of dietary protein and methionine supplementation on mammary tumorigenesis. Dietary Proteins How They Alleviate Disease and Promote Better Health GU Liepa, ed Am Oil Chemists Society, Champaign, IL: 139–148

  • Hawrylewicz E, Huang H, Blair W (1991) Dietary soybean isolate and methionine supplementation affect mammary tumor progression in rats. J Nutr 121:1693–1698

    Article  CAS  PubMed  Google Scholar 

  • Helmy MW, Ghoneim AI, Katary MA, Elmahdy RK (2020) The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/mTOR/NF-kappaB axis. Mol Biol Rep 47:2217–2230

    Article  CAS  PubMed  Google Scholar 

  • Hens J, Sinha I, Perodin F, Cooper T, Sinha R, Plummer J, Perrone C, Orentreich D (2016) Methionine-restricted diet inhibits growth of MCF10AT1-derived mammary tumors by increasing cell cycle inhibitors in athymic nude mice. BMC Cancer 16:1–13

    CAS  Google Scholar 

  • Hoffman RM (2019) Clinical studies of methionine-restricted diets for cancer patients. Methionine Dependence of Cancer and Aging. Springer, pp. 95–105

  • Hsu F-T, Liu Y-C, Chiang I, Liu R-S, Wang H-E, Lin W-J, Hwang J-J (2014) Sorafenib increases efficacy of vorinostat against human hepatocellular carcinoma through transduction inhibition of vorinostat-induced ERK/NF-κB signaling. Int J Oncol 45:177–188

    Article  CAS  PubMed  Google Scholar 

  • Iwasa J, Shimizu M, Shiraki M, Shirakami Y, Sakai H, Terakura Y, Takai K, Tsurumi H, Tanaka T, Moriwaki H (2010) Dietary supplementation with branched-chain amino acids suppresses diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Sci 101:460–467

    Article  CAS  PubMed  Google Scholar 

  • Kim HH, Park CS (2003) Methionine cytotoxicity in the human breast cancer cell line MCF-7. Vitro Cell Dev Biol Anim 39:117

    Article  CAS  Google Scholar 

  • Kokkinakis DM, Liu X, Chada S, Ahmed MM, Shareef MM, Singha UK, Yang S, Luo J (2004) Modulation of gene expression in human central nervous system tumors under methionine deprivation-induced stress. Cancer Res 64:7513–7525

    Article  CAS  PubMed  Google Scholar 

  • Lieu EL, Nguyen T, Rhyne S, Kim J (2020) Amino acids in cancer. Exp Mol Med 52:15–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu KA, Lashinger LM, Rasmussen AJ, Hursting SD (2014) Leucine supplementation differentially enhances pancreatic cancer growth in lean and overweight mice. Cancer Metab 2:1–12

    Article  Google Scholar 

  • López-Lázaro M (2015) Selective amino acid restriction therapy (SAART): a non-pharmacological strategy against all types of cancer cells. Oncoscience 2:857

    Article  PubMed  PubMed Central  Google Scholar 

  • Maddocks OD, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJ, Mackay GM, Labuschagne CF, Gay D, Kruiswijk F (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544:372–376

    Article  CAS  PubMed  Google Scholar 

  • Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–546

    Article  CAS  PubMed  Google Scholar 

  • Maddocks OD, Labuschagne CF, Adams PD, Vousden KH (2016) Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 61:210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med 89:237–245

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T, Akiyama M, Chauhan D, Munshi N, Gu X (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 101:540–545

    Article  CAS  PubMed  Google Scholar 

  • Moon YS, Keller WL, Park CS (1998) Dietary lipotrope-mediated mammary carcinogenesis in female rats. Nutr Res 18:1605–1614

    Article  CAS  Google Scholar 

  • Mu X, Brynien D, Weiss KR (2015) The HDAC inhibitor Vorinostat diminishes the in vitro metastatic behavior of Osteosarcoma cells. BioMed Res Int 2015

  • Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano M, Nakashima A, Nagano T, Ishikawa S, Kikkawa U, Kamada S (2013) Branched-chain amino acids enhance premature senescence through mammalian target of rapamycin complex I-mediated upregulation of p21 protein. PloS one 8: e80411

  • Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  CAS  PubMed  Google Scholar 

  • Nishitani S, Horie M, Ishizaki S, Yano H (2013) Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin. PLoS One 8: e82346

  • O’Connell TM (2013) The complex role of branched chain amino acids in diabetes and cancer. Metabolites 3:931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Kennedy R, Murphy C (2017) Immunoassays: development, applications and future trends. CRC Press

    Book  Google Scholar 

  • Ozturk M (1991) p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet (london, England) 338:1356–1359

    Article  CAS  Google Scholar 

  • Petronini PG, Urbani S, Alfieri R, Borghetti AF, Guidotti GG (1996) Cell susceptibility to apoptosis by glutamine deprivation and rescue: survival and apoptotic death in cultured lymphoma-leukemia cell lines. J Cell Physiol 169:175–185

    Article  CAS  PubMed  Google Scholar 

  • Rimassa L, Danesi R, Pressiani T, Merle P (2019) Management of adverse events associated with tyrosine kinase inhibitors: improving outcomes for patients with hepatocellular carcinoma. Cancer Treat Rev 77:20–28

    Article  CAS  PubMed  Google Scholar 

  • Sarfstein R, Bruchim I, Fishman A, Werner H (2011) The mechanism of action of the histone deacetylase inhibitor vorinostat involves interaction with the insulin-like growth factor signaling pathway. PLoS One 6: e24468

  • Sheen J-H, Zoncu R, Kim D, Sabatini DM (2011) Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19:613–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu M, Shirakami Y, Iwasa J, Shiraki M, Yasuda Y, Hata K, Hirose Y, Tsurumi H, Tanaka T, Moriwaki H (2009) Supplementation with branched-chain amino acids inhibits azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ-db/db mice. Clin Cancer Res 15:3068–3075

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Kumar R, Pandey AK (2018) Hepatocellular carcinoma: causes, mechanism of progression and biomarkers. Curr Chem Genom Transl Med 12:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Akcakanat A, Sharma C, Luyimbazi D, Naff KA, Meric-Bernstam F (2011) The effect of leucine restriction on Akt/mTOR signaling in breast cancer cell lines in vitro and in vivo. Nutr Cancer 63:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Cooper TK, Rogers CJ, Sinha I, Turbitt WJ, Calcagnotto A, Perrone CE, Richie JP Jr (2014) Dietary methionine restriction inhibits prostatic intraepithelial neoplasia in TRAMP mice. Prostate 74:1663–1673

    Article  CAS  PubMed  Google Scholar 

  • Sonnemann J, Marx C, Becker S, Wittig S, Palani C, Krämer O, Beck J (2014) p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. Br J Cancer 110:656–667

    Article  CAS  PubMed  Google Scholar 

  • Stanaway JD, Flaxman AD, Naghavi M, Fitzmaurice C, Vos T, Abubakar I, Abu-Raddad LJ, Assadi R, Bhala N, Cowie B (2016) The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet 388:1081–1088

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamanna N, Mahmood N (2014) Emerging roles of branched-chain amino acid supplementation in human diseases. Int Sch Res Notices 2014

  • Tennant DA, Durán RV, Boulahbel H, Gottlieb E (2009) Metabolic transformation in cancer. Carcinogenesis 30:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Todorova VK, Harms SA, Kaufmann Y, Luo S, Luo KQ, Babb K, Klimberg VS (2004) Effect of dietary glutamine on tumor glutathione levels and apoptosis-related proteins in DMBA-induced breast cancer of rats. Breast Cancer Res Treat 88:247–256

    Article  CAS  PubMed  Google Scholar 

  • Todorova VK, Harms SA, Luo S, Kaufmann Y, Babb KB, Klimberg VS (2003) Oral glutamine (AES-14) supplementation inhibits PI-3k/Akt signaling in experimental breast cancer. JPEN J Parenter Enteral Nutr 27:404–410

    Article  CAS  PubMed  Google Scholar 

  • Tran TQ, Lowman XH, Reid MA, Mendez-Dorantes C, Pan M, Yang Y, Kong M (2017) Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction. Oncogene 36:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Tripodi F, Badone B, Vescovi M, Milanesi R, Nonnis S, Maffioli E, Bonanomi M, Gaglio D, Tedeschi G, Coccetti P (2020) Methionine supplementation affects metabolism and reduces tumor aggressiveness in liver cancer cells. Cells 9:2491

    Article  CAS  PubMed Central  Google Scholar 

  • Tsilimigras DI, Ntanasis-Stathopoulos I, Moris D, Spartalis E, Pawlik TM (2018) Histone deacetylase inhibitors in hepatocellular carcinoma: a therapeutic perspective. Surg Oncol 27:611–618

    Article  PubMed  Google Scholar 

  • van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  PubMed  Google Scholar 

  • Wakshlag JJ, Kallfelz FA, Wakshlag RR, Davenport GM (2006) The effects of branched-chain amino acids on canine neoplastic cell proliferation and death. J Nutr 136:2007S-2010S

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DJ, Hossain T, Hill D, Phillips B, Crossland H, Williams J, Loughna P, Churchward-Venne T, Breen L, Phillips S (2013) Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol 591:2911–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao F, Wang C, Yin H, Yu J, Chen S, Fang J, Guo F (2016) Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 7:63679

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Li Y, Gao X, Kang K, Williams JG, Tong L, Liu J, Ji M, Deterding LJ, Tong X (2020) HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat Commun 11:1–17

    Google Scholar 

  • Zakaria S, Helmy MW, Salahuddin A, Omran G (2018) Chemopreventive and antitumor effects of benzyl isothiocynate on HCC models: a possible role of HGF/pAkt/STAT3 axis and VEGF. Biomed Pharmacother 108:65–75

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Wang J, Zhao M, Xie T-X, Tanaka N, Sano D, Patel AA, Ward AM, Sandulache VC, Jasser SA (2014) Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell 54:960–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Cai Y, Liu D, Li M, Sha Y, Zhang W, Wang K, Gong J, Tang N, Huang A (2018) Pharmacological or transcriptional inhibition of both HDAC 1 and 2 leads to cell cycle blockage and apoptosis via p21Waf1 Cip1 and p19INK4d upregulation in hepatocellular carcinoma. Cell Prolif 51:e12447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AIG: conceptualization, data curation, formal analysis, investigation, methodology, resources, supervision, validation, writing—review and editing. MWH: conceptualization, data curation, formal analysis, investigation, methodology, resources, software, supervision, validation, writing—review and editing. YAH: conceptualization, data curation, formal analysis, investigation, methodology, resources, validation, writing—original draft. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Yasmine A. Hassan.

Ethics declarations

Ethics approval

The current research has followed accepted principles of ethical and professional conduct according to approval reference number (1218PO13) by the Research Ethics Committee of the Faculty of Pharmacy, Damanhour University, regarding originality, risk control, and community service.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, Y.A., Helmy, M.W. & Ghoneim, A.I. Combinatorial antitumor effects of amino acids and epigenetic modulations in hepatocellular carcinoma cell lines. Naunyn-Schmiedeberg's Arch Pharmacol 394, 2245–2257 (2021). https://doi.org/10.1007/s00210-021-02140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02140-z

Keywords

Navigation