Skip to main content
Log in

Neuroprotective activity of natural products isolated from Senecio graciliflorus DC against corticosterone-induced impairment in SH-SY5Y cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2022

This article has been updated

Abstract

Senecio graciliflorus DC root extract was studied for secondary metabolite composition following the bioactivity-guided isolation technique. The ethyl acetate extract of Senecio graciliflorus root yielded nine chemical constituents: 3,4-di-tert-butyl toluene, stigmasterol, β-sitosterol, 2β-(angeloyloxy)furanoeremophilane, gallic acid, 2β-{[(Z)-2-hydroxymethylbut-2-enoyl]oxy}furanoeremophilane, 1-hydroxypentan-2-yl-4-methylbenzoate, sarcinic acid, and sitosterol 3-O-β-d-glucopyranoside. The structures of the chemical constituents were elucidated on the basis of spectral data analysis in the light of literature. All the compounds are being reported for the first time from this plant. The isolated constituents were screened for neuroprotective effects against corticosterone-induced impairment in neuroblastoma cell lines (SH-SY5S cells). The viability of SH-SY5S cells was determined using MTT assay. Among various isolated compounds, three natural products (sarcinic acid, gallic acid, and β-sitosterol) displayed robust neurotropic activity. The compounds increased neuronal cell survival in differentiated neuroblastoma cells (SH-SY5Y) from high-dose corticosterone (400 µM)–induced cell death. All the three constituents showed maximum AKT/ERK pathway activation at 20 µM concentration. The studies are aimed to explore small molecules for treating neurodegeneration underlying various neurological disorders to restore neuronal cell plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Flow chart 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The research data is available as a supplementary file.

Change history

References

  • Abrahám IM, Meerlo P, Luiten PG (2006) Concentration dependent actions of gluco-corticoids on neuronal viability and survival. Dose Response 4(1):38–54

    Article  Google Scholar 

  • Ahmed M, Jakupovic J, Bohlmann F, Niemeyer HM (1991) Highly oxygenated furoeremophilane derivatives from Senecio zoellneri. Phytochem 30:2407–2409

    Article  CAS  Google Scholar 

  • Awad AB, Chan KC, Downie AC, Fink CS (2000) Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutr Cancer 36:238–241

    Article  CAS  Google Scholar 

  • Bak DH, Kim HD, Kim YO, Park CG, Han SY, Kim JJ (2016) Neuroprotective effects of 20(S)-protopanaxadiol against glutamate induced mitochondrial dysfunction in PC12 cells. Int J Mol Med 37:378–386

    Article  CAS  Google Scholar 

  • Bohlmann F, Ziesche J (1980) Eremophilane derivatives from Senecio species. Phytochem 19:2681–2684

    Article  CAS  Google Scholar 

  • Burgueno-Tapia E, Joseph-Nathan P (2003) Cacalolides from Senecio barba-johannis. Magn Reson Chem 41:386–390

    Article  CAS  Google Scholar 

  • Burgueno-Tapia E, Hernandez LR, Resendiz-Villalobos AY, Joseph-Nathan P (2004) Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides. Magn Reson Chem 42:887–892

    Article  CAS  Google Scholar 

  • Chen L, Sun Z, Wang F, Xu C, Geng M, Chen H, Duan D (2013) Shuyusan-containing serum protects SH-SY5Y cells against corticosterone-induced impairment. Neural Regen Res 8(22):2060–2068. https://doi.org/10.3969/j.issn.1673-5374.2013.22.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng D-L, Cao X-P, Cheng J-K, Roeder E (1992) Diterpene glycosides from Senecio rufus. Phytochem 32:151–153

    Article  CAS  Google Scholar 

  • Constantinescu R, Constantinescu AT, Reichmann H, Janetzky B (2007) Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. In: Gerlach M., Deckert J., Double K., Koutsilieri E. (eds) Neuropsychiatric disorders: an integrative approach, pp 17–28. J Neural Transm Supplementa, vol 72. Springer, Vienna. https://doi.org/10.1007/978-3-211-73574-9_3GGG

  • Dong-Liang C, Jin-Kui N, Roeder E (1992) Pyrrolizidine alkaloids from Senecio kaschkarovii. Phytochem 31:3671–3672

    Article  Google Scholar 

  • F. Bohlmann F, Zdero C, Jakupovic J, Grenz M, Castro V, Kino RM, Robinson H, Vincent LPD, (1986) Further pyrrolizidine alkaloids and furanoeremophilanes from Senecio species. Phytochem 25:1151–1159

    Article  Google Scholar 

  • Gao S, Li W, Zou W, Zhang P, Tian Y, Xiao F, Gu H, Tang X (2015) H2S protects PC12 cells against toxicity of corticosterone by modulation of BDNF-TrkB pathway. Acta Biochim Biophys Sin 47(11):915–924

    Article  CAS  Google Scholar 

  • Gite S, Ross RP, Kirke D, Guihéneuf F, Aussant J, Stengel DB, Dinan TG, Cryan JF, Stanton C (2019) Nutraceuticals to promote neuronal plasticity in response to corticosterone-induced stress in human neuroblastoma cells. Nutr Neurosci 22(8):551–568

    Article  CAS  Google Scholar 

  • Gnawali GR, Acharya PP, Rajbhandari M (2013) Isolation of gallic acid and estimation of total phenolic content in some medicinal plants and their antioxidant activity. Nepal J Sci Technol 14:95–102

    Article  Google Scholar 

  • Hambley TW, Sternhell S, Tansey CW (1990) The synthesis and structure of 3,4-di-t-butylbenzoic acid. Aust J Chem 43:807–814

    Article  CAS  Google Scholar 

  • Han D, Kim HJ, Choi HY, Kim BW, Yang G, Han J, Dayem AA, Lee HR, Kim JH, Lee KM, Jeong KS, Do SH, Cho SG (2014) 2’-Dihydroxyflavone-treated pluripotent stem cells show enhanced proliferation, pluripotency marker expression, and neuroprotective properties. Cell Transplant 24(8):1511–1532

    Article  Google Scholar 

  • Jares EA, Tettamanzi MC, Pomilio AB (1990) Sitosterol 3-O-β-d-glucuronopyranoside from Senecio bonariensis. Phytochem 29:340–341

    Article  CAS  Google Scholar 

  • Joshi S, Shrestha K, Bajraacharya DM (2013) Secondary Metabolite variation in some species of Senecio L. from Nepal Himalaya. PharmaInnov J 2:70–76

    CAS  Google Scholar 

  • Kim K, Dayem AA, Gil M, Yang GM, Lee SB, Kwon OH, Choi S, Kang GH, Lim KM, Kim D, Cho SG (2020) 3,2’-Dihydroxyflavone improves the proliferation and survival of human pluripotent stem cells and their differentiation into hematopoietic progenitor cells. J Clin Med 2;9(3):669

    Article  Google Scholar 

  • Koul MK (1997) Medicinal plants of Kashmir and Ladakh: temperate and cold arid Himalaya. Indus Publishing Company, FS-5, Tagore Garden, New Delhi, 102 ; Senecio graciliflorus DC, PP 146.

  • Liu Y, Yang X, Lei Q (2015) PEG-PEI/siROCK2 protects against Abeta42-induced neurotoxicity in primary neuron cells for Alzheimer disease. Cell Mol Neurobiol 35(6):841–848

    Article  CAS  Google Scholar 

  • Loizzo MR, Statti GA, Tundis R, Conforti F, Bonesi M, Autelitano G, Houghton PJ, Miljkovic-Brake A, Menichini F (2004) Antibacterial and antifungal activity of Senecio inaequidens DC and Senecio vulgaris L. Phytother Res 18:777–779

    Article  Google Scholar 

  • Lone SH, Bhat KA, Naseer S, Rather RA, Khuroo MA, Tasduq SA (2013) Isolation, cytotoxicity evaluation and HPLC-quantification of the chemical constituents from Artemisia amygdalina Decne. J Chromatogr B 940:135–141

    Article  CAS  Google Scholar 

  • Lone SH, Bhat KA, Bhat HM, Majeed R, Anand R, Hamid A, Khuroo MA (2014) Essential oil composition of Senecio graciliflorus DC: comparative analysis of different parts and evaluation of antioxidant and cytotoxic activities. Phytomed 21:919–925

    Article  CAS  Google Scholar 

  • McCarty MF, DiNicolantonio JJ (2017) Neuroprotective potential of high dose biotin. Med Hypotheses 109:145–149

    Article  CAS  Google Scholar 

  • Merfort I (2002) Review of the analytical techniques for sesquiterpenes and sesquiterpene lactones. J Chromatogr A 967:115–130

    Article  CAS  Google Scholar 

  • Nayak PS, Kar DM, Nayak SP (2015) Isolation and characterization of stigmasterol from chloroform fraction of aerial part of Argemone mexicana L. Int J Pharm Sci 7:25–29

    CAS  Google Scholar 

  • Reina M, Gonzalez-Coloma A, Gutierrez C, Cabrera R, Rodriguez ML, Fajardo V, Villarroel L (2001) Defensive chemistry of Senecio miser. J Nat Prod 64:6–11

    Article  CAS  Google Scholar 

  • Reina M, Nold M, Santana O, Orihuela JC, Gonzalez-Coloma A (2002) C-5-substituted antifeedant silphinene sesquiterpenes from Senecio palmensis. J Nat Prod 65:448–453

    Article  CAS  Google Scholar 

  • Rucker G, Manns D, Schenkel EP, Hartmann H, Heinzmann BM (1999) Triterpenes with a new 9-epi-cucurbitan skeleton from Senecio selloi. Phytochem 52:1587–1591

    Article  CAS  Google Scholar 

  • Shuzo A, Kunihiko SA (1960) A branched saturated C15 acid (sarcinic acid) from sarcina phospholipids and a similar acid from several microbial lipids. J Biochem 47:222–229

    Article  Google Scholar 

  • Steenkamp V, Stewart MJ, Van der Merwe S, Zuckerman M, Crowther NJ (2001) The effect of Senecio latifolius a plant used as a South African traditional medicine on a human hepatoma cell line. J Ethnopharmacol 78:51–58

    Article  CAS  Google Scholar 

  • Suau R, Cabezudo B, Rico R, Najera F, Lopez-Romero JM, Garca AI (2002) Pyrrolizidine alkaloids from three Spanish Senecio species. Biochem Syst Ecol 30:981–984

    Article  CAS  Google Scholar 

  • Tan DP, Chou GX, Wang ZT (2010) Phenolic compounds from Senecio scandens. Biochem Systemat Ecol 38:122–124

    Article  CAS  Google Scholar 

  • Tiong CX, Lu M, Bian JS (2010) Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway Br. J Pharmacol 161(2):467–480

    CAS  Google Scholar 

  • Tiwari SK, Seth B, Agarwal S (2015) Ethosuximide induces hippocampal neurogenesis and reverses cognitive deficits in amyloid-beta toxin induced Alzheimer’s rat model via PI3K/Akt/Wnt/beta-catenin pathway. J Biol Chem 290(47):28540–28558

    Article  CAS  Google Scholar 

  • Tundis R, Loizzo MR, Statti GA, Deguin B, Amissah R, Houghton PJ, Menichini F (2005) Chemical composition of and inhibition of angiotensin-converting enzyme by Senecio samnitumhuet. Pharm Biol 43:605–608

    Article  CAS  Google Scholar 

  • Xu H, Zhang N, Casida JE (2003) Insecticides in Chinese medicinal plants: survey leading to jacaranone, a neurotoxicant and glutathione-reactive quinol. J Agric Food Chem 51:2544–2547

    Article  CAS  Google Scholar 

  • Yeon KJ, Hakjune R, Misoo K (2002) Conversion of cyclic acetals to hydroxy esters by MCPBA oxidation. J Korean Chem Soc 46:479–483

    Article  Google Scholar 

  • Yusim A, Ajilore O, Bliss T, Sapolsky R (2000) Glucocorticoids exacerbate insult-induced declines in metabolism in selectively vulnerable hippocampal cell fields. Brain Res 870(1–2):109–117

    Article  CAS  Google Scholar 

  • Zhang B, Wang Y, Li H, Xiong R, Zhao Z, Chu X, Li Q, Sun S, Chen S (2016) Neuroprotective effects of salidroside through PI3K/AKT pathway activation in Alzheimer’s disease models. Drug Des Devel Ther 10:1335–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang y, He Y, Deng N, Chen Y, Huang J, Xie W, (2019) Protective effect of resveratrol against corticosterone-induced neurotoxicity in PC12 cells. Transl Neurosci 10:235–240

    Article  Google Scholar 

Download references

Funding

The research work was partly funded by CSIR and DST by providing fellowship to Showkat Ahmad Bhat and Loveleena Kaur.

Author information

Authors and Affiliations

Authors

Contributions

Khursheed Ahmad Bhat and Fayaz A. Malik conceived and designed the research work, supervised the experimental work, interpreted the experimental data, and participated in writing the manuscript. Salman Jameel and Loveleena Kaur did the experimental work and participated in writing the manuscript. Showkat Ahmad Bhat contributed to the isolation of pure natural products. All authors approved the final version of the article. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Khursheed Ahmad Bhat.

Ethics declarations

Ethical approval

The work was reviewed and approved by institutional ethics and publication committee. The committee has assigned CSIR-IIIM/IPR/00291 as the research paper number.

Consent to participate

Not applicable.

Consent for publication

All the authors agree to publish the research work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jameel, S., Kaur, L., Bhat, S.A. et al. Neuroprotective activity of natural products isolated from Senecio graciliflorus DC against corticosterone-induced impairment in SH-SY5Y cells. Naunyn-Schmiedeberg's Arch Pharmacol 394, 2389–2399 (2021). https://doi.org/10.1007/s00210-021-02136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02136-9

Keywords

Navigation