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Opioid receptor agonists may favorably affect bone mechanical
properties in rats with estrogen deficiency-induced osteoporosis
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Abstract The results of epidemiological, clinical, and in vivo
and in vitro experimental studies on the effect of opioid anal-
gesics on bone are inconsistent. The aim of the present study
was to investigate the effect of morphine (an agonist of opioid
receptors), buprenorphine (a partial μ opioid receptor agonist
and κ opioid receptor antagonist), and naloxone (an antagonist
of opioid receptors) on the skeletal system of female rats
in vivo. The experiments were carried out on 3-month-old
Wistar rats, divided into two groups: nonovariectomized (intact;
NOVX) rats and ovariectomized (OVX) rats. The bilateral
ovariectomy was performed 7 days before the start of drug
administration. Morphine hydrochloride (20 mg/kg/day s.c.),
buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochlo-
ride dihydrate (2mg/kg/day s.c.) were administered for 4 weeks
to NOVX and OVX rats. In OVX rats, the use of morphine and
buprenorphine counteracted the development of osteoporotic
changes in the skeletal system induced by estrogen deficiency.
Morphine and buprenorphine beneficially affected also the
skeletal system of NOVX rats, but the effects were much weak-
er than those in OVX rats. Naloxone generally did not affect the
rat skeletal system. The results confirmed the role of opioid
receptors in the regulation of bone remodeling processes and
demonstrated, in experimental conditions, that the use of opioid
analgesics at moderate doses may exert beneficial effects on the
skeletal system, especially in estrogen deficiency.
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Introduction

There is a progressive increase in the long-term use of
opioid analgesics in the treatment of pain associated with
cancer and other diseases, such as degenerative changes in
the musculoskeletal system (Cherubino et al. 2012). More
and more patients, including the elderly, in whom bone
mass physiologically decreases, undergo prolonged expo-
sure to opioid analgesics (agonists, partial agonists and
agonist-antagonists of opioid receptors) (Ballantyne
2012). This applies particularly to postmenopausal wom-
en who are at increased risk of developing osteoporosis
due to estrogen deficiency (Braden et al. 2012).

Endogenous opioid peptides and their receptors (μ, δ, and
κ) are present in the skeletal system (Baldock et al. 2012;
Böhm and Grässel 2012; Spetea 2013), but the role of endog-
enous opioid peptides in the regulation of bone remodeling
processes and the effect of opioid analgesics on the skeletal
system have not been fully clarified yet.

Administration of opioid analgesics may adversely affect
the skeletal system; however, the results of epidemiological
and clinical studies, as well as in vivo and in vitro experimen-
tal studies published so far are inconsistent. The population-
based and clinical studies indicate rather damaging effects of
opioids on bone leading to a reduction in bonemineral density
(BMD) (Pedrazzoni et al. 1993; Kim et al. 2006; Fortin et al.
2008; Dürsteler-MacFarland et al. 2011; Grey et al. 2011;
Duarte et al. 2013) and increased risk of fracture (Guo et al.
1998; Ensrud et al. 2003; Vestergaard et al. 2006; Saunders
et al. 2010; Solomon et al. 2010; Miller et al. 2011; Carbone
et al. 2013; Li et al. 2013), although recently two reports
indicating possible favorable opioid effects on the skeletal
system in women have been published (Vestergaard et al.
2012; Lee et al. 2013). The unfavorable effects of opioids on
the skeletal system are usually attributed to inhibitory effects
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on the endocrine system (hypogonadism), as well as increased
tendency to falls (Vestergaard et al. 2006; Daniell 2008;
Saunders et al. 2010; Brennan 2013; Duarte et al. 2013); how-
ever, results of a small number of in vitro and in vivo exper-
imental studies suggest that opioids may also act directly on
bone tissue and exert differential effects (Hall et al. 1996;
Pérez-Castrillón et al. 2000; King et al. 2007; Akhoundi
et al. 2010; Bastos et al. 2011; Boshra 2011; Ezzatabadipour
et al. 2011; Chrastil et al. 2013).

The aim of the present study was to verify, in experimental
conditions, the widely held view that opioid analgesics unfa-
vorably affect the skeletal system. The skeletal effects of mor-
phine (an agonist of opioid receptors) and buprenorphine (a
partial μ opioid receptor agonist and a κ opioid receptor an-
tagonist), widely used in the pharmacotherapy of pain, were
examined in mature female rats. Moreover, the effects of nal-
oxone (an antagonist of opioid receptors) were studied. Since,
due to cessation of ovarian estrogen production in women at
menopause, the opioids act on the female organism in differ-
ent estrogen environment, the present study was conducted in
two experimental models: nonovariectomized (with normal
levels of estrogen) rats and bilaterally ovariectomized
(estrogen-deficient) rats.

Materials and methods

Animals and chemicals

The experiments were carried out on 3-month-old female
Wistar rats obtained from the Center of Experimental
Medicine, Medical University of Silesia, Katowice. The rats
were fed a standard laboratory diet Labofeed B (Wytwórnia
Pasz BMorawski^, Poland). The protocol for the experiments
on animals was approved by Local Ethics Commission,
Katowice, Poland.

Drugs used were as follows: morphine hydrochloride (sub-
stance, Kutnowskie Z.F. BPolfa^ S.A.) at a dose 20 mg/kg s.c.
daily; buprenorphine hydrochloride (Bunondol, ampoules,
Polfa Warszawa) at a dose 0.05 mg of buprenorphine/kg s.c.
daily; naloxone hydrochloride dihydrate (substance, Sigma-
Aldrich) at a dose 2 mg/kg s.c. daily; ketamine (Bioketan,
Vetoquinol Biowet); and xylazine (Rometar, Spofa).
Morphine and buprenorphine were administered at effective
analgesic doses for rats (Mucha et al. 1996; Allen and Dykstra
2000; Curtin et al. 2009). Naloxone was administered at a
dose used previously in rats to block the opioid receptors
(Farhadinasab et al. 2009).

The studies were carried out on nonovariectomized
(NOVX) rats and ovariectomized (OVX) rats (Fig. 1). The
rats were acclimated for 7 days after delivery and then divided
into experimental groups. The bilateral ovariectomy was per-
formed 7 days before the start of drug administration, under

ketamine-xylazine (i.p.) anesthesia. Animals were divided in-
to eight groups: I NOVX control rats (n = 15), II NOVX rats
treated with morphine (n = 10), III NOVX rats treated with
buprenorphine (n = 10), IV NOVX rats treated with naloxone
(n = 10), V OVX control rats (n = 15), VI OVX rats treated
with morphine (n = 10), VII OVX rats treated with
buprenorphine (n = 10), and VIII OVX rats treated with nal-
oxone (n = 10). The rats from control groups were given the
vehicle (0.9 % NaCl solution). The drugs or 0.9 % NaCl were
administered to the rats subcutaneously, once daily for
4 weeks, at a volume of 1 ml/kg.

After 4 weeks of daily administration of the examined
drugs, the animals, after overnight fasting, were anesthe-
tized (ketamine-xylazine) and sacrificed by cardiac exsan-
guination. Blood samples were collected, and after
clotting, serum was centrifuged (microcentrifuge type
320) and divided into samples. Samples were stored at
−80 °C. The tibial and femoral bones, and L-4 vertebras,
as well as the uterus and thymus were dissected free, and
cleaned of soft tissue. The left tibias and femurs were
immediately weighed (analytical scale AS 200 S, Ohaus,
the accuracy of the measurements 0.1 mg), and their
length and the diameter at the midlength were measured
(digital caliper VOREL 15240, Toya, the accuracy of the
measurements 0.01 mm). The vertebra, uterus, and thy-
mus were weighed.

The left tibia, left femur, L-4 vertebra, and the proximal
part of the right femur were wrapped in gauze soaked in
0.9 % NaCl solution and stored below −18 °C for further
studies (Turner and Burr 1993).

Bone mechanical properties studies

The measurements of bone mechanical properties were per-
formed using Instron 3342 apparatus (measuring range 0–
500 N). To evaluate the mechanical strength of the left femoral
diaphysis and left tibial metaphysis, three-point bending tests
were performed. A compression test was used to determine
the strength of the right femoral neck. The data obtained dur-
ing the measurements were analyzed using the Bluehill 2 ver-
sion 2.14 software. The frequency of sampling was 100 Hz.

In the bending tests, values of extrinsic parameters, depend-
ing on the dimensions of the bones (load, displacement and the
energy, which was absorbed in the range of load from 0 to the
given load point) were determined at 3 points: the yield point
(0.05 % offset), the maximum load point, and the fracture point
(Fig. 2). The intrinsic parameters, independent of the size of the
bones (Young’s modulus and stress), were also evaluated.

In order to determine the strength of the left femoral
diaphysis, the bone was placed on supporting points (dis-
tance 20 mm), and the load was directed perpendicularly
to the long axis of the femur in the midlength of the bone
(Turner and Burr 1993). To obtain steady positioning, the
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bone was preconditioned (five cycles of the load 0–4 N)
(Westbroek et al. 2007; Folwarczna et al. 2013). The dis-
placement rate was 0.01 mm/s. In order to determine the
Young’s modulus and the stress values, it was assumed
that the femoral diaphysis was an elliptical pipe (Kiebzak
et al. 1988). To determine the moment of inertia, neces-
sary for calculations, the transverse cross sections of the
right femoral diaphysis were made in the midlength. The
internal and external diameters of the diaphysis were mea-
sured using Osteomeasure XP v1.3.0.1 software.

The measurement of the strength of the proximal
metaphysis of the left tibia was performed by applying
the load directed perpendicularly to the long axis of the

bone, 3 mm from the edge of the bone deprived of the
proximal epiphysis (Stürmer et al. 2006; Folwarczna et al.
2013). The bone was stabilized by pre-load of 1 N. The
displacement rate was 0.01 mm/s. In order to determine
the Young’s modulus and the stress values, it was as-
sumed that the cross section of the bone at the fracture
site had the shape of a circle with a diameter calculated as
the mean value of the diameter measured in the frontal
and sagittal planes.

To determine the femoral neck strength, the diaphysis, cut
at the midlength of the femur, was fixed in a methacrylate
plate, and the load was applied to the head of femur (after
preload of 1 N), with the displacement rate of 0.01 mm/s
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Fig. 1 Group assignments and timeline of the experiments. Morphine hydrochloride (20 mg/kg s.c.), buprenorphine hydrochloride (0.05 mg of
buprenorphine/kg s.c.), and naloxone hydrochloride dihydrate (2 mg/kg s.c.) were administered once daily for 4 weeks
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(Pytlik et al. 2004; Folwarczna et al. 2013). The maximum
load was measured.

Bone mineralization studies

The left tibias, left femurs, and L-4 vertebras were ashed at
640 °C for 48 h in a muffle furnace and weighed to determine
bone mineral mass. The ratio of bone mineral mass to bone
mass was calculated. Calcium and phosphorus content in the
bone mineral were determined spectrophotometrically, using
kits produced by Pointe Scientific, Inc. (Folwarczna et al.
2013). Before measurements, the mineralized bones were dis-
solved in 6 M HCl and then diluted in distilled water.

Biochemical studies

Serum concentrations of biochemical markers of bone forma-
tion (osteocalcin) and bone resorption (C-terminal
telopeptides of type I collagen (CTX-I)) were measured by
enzyme immunoassays (Rat-MID Osteocalcin EIA and
RatLaps EIA, respectively, produced by Immunodiagnostic
Systems Ltd). Serum tartrate-resistant acid phosphatase 5b
(TRACP 5b; RatTRAP Assay, Immunodiagnostic Systems
Ltd), serum estradiol (Mouse/Rat’s Estradiol ELISA,
Calbiotech Inc.), and serum calcitonin gene-related peptide
(CGRP; Enzyme-linked Immunosorbent Assay Kit For
Calcitonin Gene Related Peptide, USCN Life Science Inc.)
levels were also determined. Moreover, serum calcium con-
centration was measured spectrophotometrically, using a kit
produced by Pointe Scientific, Inc.

Statistical analysis

The results are presented as means ± SD. Kruskal-Wallis
ANOVA followed by Mann-Whitney U test were used for
statistical evaluation of the results. To evaluate the effects of
estrogen deficiency in control rats, the results obtained in the
OVX control rats were compared with those of the NOVX
control rats. The results obtained in NOVX rats treated with
morphine, buprenorphine, or naloxone were compared with
those of the NOVX control rats, and the results obtained in
OVX rats treated with morphine, buprenorphine, or naloxone
were compared with those of the OVX control rats.

Results

Effects of estrogen deficiency on the skeletal system

Bilateral ovariectomy caused a profound decrease in the uter-
us mass/body mass ratio and increases in the thymus mass/
body mass ratio and body mass gain compared to the NOVX
control rats (Table 1). T
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The longitudinal bone growth was intensified in the
estrogen-deficient rats (increases in the length of the
tibia and femur; Fig. 3). There was no effect of estro-
gen deficiency on the bone mass and mass of bone
mineral (not shown); however, bone mineralization was
worsened (there was a significant decrease in the bone
mineral mass/bone mass ratio in the L-4 vertebra and a
tendency to decrease the ratio in other bones). The con-
tent of calcium and phosphorus in the bone mineral was
not altered (Table 2).

Bone turnover was significantly increased in the OVX
control rats, as demonstrated by increases in the serum
concentrations of osteocalcin (bone formation marker)
and CTX-I (bone resorption marker). A decrease in the
activity of TRAP 5b, indicating a reduction in absolute
osteoclast number due the decreased bone mass
(Rissanen et al. 2008) was also observed (Fig. 4).

The mechanical properties of the tibial metaphysis
(mostly cancellous bone) were statistically significantly
worsened in relation to the NOVX control rats (Fig. 5,
Table 3). Both the extrinsic (load, displacement, energy)
and intrinsic (Young’s modulus, stress) mechanical param-
eters were affected. The maximum load and stress as well
as load and stress at the fracture point decreased, the cor-
responding displacement values increased, and the energy
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absorbed to the maximum load decreased. Similar effects
were observed at the yield point (not shown). Young’s
modulus was also decreased. Estrogen deficiency did not
affect the mechanical properties of cortical bone of the
femoral diaphysis. The strength of the femoral neck (built
of cortical and cancellous bone) was not significantly af-
fected (Table 3).

Effects of morphine on the skeletal system

Administration of morphine hydrochloride (20 mg/kg s.c.) for
4 weeks to NOVX and OVX rats decreased the body mass
gain (Table 1), in relation to the corresponding control rats.
There was no effect on the serum concentration of estradiol
and the uterus mass/body mass ratio, but after administration

of morphine, the thymus mass/body mass ratio significantly
decreased. The use of morphine did not affect the serum level
of CGRP. Administration of morphine to NOVX and OVX
rats reduced the longitudinal growth of the femur (Fig. 3),
without affecting bone mass (not shown).

In rats receiving morphine, bone mineralization was
intensified, as evidenced by statistically significant in-
crease in the ratio of bone mineral mass to bone mass in
the femur of NOVX rats and in the tibia of OVX rats.
There was no effect on the content of calcium and phos-
phorus in the bone mineral (Table 2).

The use of morphine did not statistically significantly
affect the serum levels of bone turnover markers
(osteocalcin, CTX-I, and TRAP 5b) in NOVX rats
(Fig. 4). In OVX rats, concentrations of osteocalcin and
CTX-I were statistically decreased. Morphine did not af-
fect the serum calcium level (Table 1).

Administration of morphine to NOVX rats resulted in the
increase in the maximum load applied to the tibial metaphysis,
without other significant effects on bone mechanical proper-
ties (Fig. 5, Table 3). In estrogen-deficient (OVX) rats,
Young’s modulus of the tibial metaphysis increased to the
values of the NOVX control rats. The maximum load and
stress, and the load at the fracture point statistically signifi-
cantly increased in comparison with the OVX control rats.
The values of energy absorbed to these points did not change,
compared to the results obtained in the OVX control rats, due
to the reduction in the displacement values. There was no
effect of morphine on mechanical parameters of the femoral
diaphysis and neck (Table 3).

Effects of buprenorphine on the skeletal system

Administration of buprenorphine (0.05 mg /kg s.c.) for
4 weeks to NOVX and OVX rats decreased the body mass
gain and did not affect the serum estradiol concentration, and
the ratios of mass of the uterus and thymus to the bodymass in
relation to the corresponding control rats (Table 1).
Buprenorphine did not affect the longitudinal growth of the
tibia and femur (Fig. 3).

Bone mineralization was improved after administration of
buprenorphine (as evidenced by statistically significant in-
creases in the ratio of bone mineral mass to bone mass in the
femur of NOVX rats, and in the tibia and L-4 vertebra of OVX
rats; Table 2). The content of calcium and phosphorus in the
bone mineral was not changed in relation to the appropriate
controls (Table 2).

Administration of buprenorphine did not affect the serum
bone turnover markers in NOVX rats. In OVX rats, the levels
of osteocalcin and CTX-I statistically significantly decreased
in comparison to the OVX control rats (Fig. 4). There was no
effect of buprenorphine on the serum levels of TRAP 5b and
calcium (Table 1).

Fig. 4 Effects of morphine hydrochloride (M; 20 mg/kg s.c.),
buprenorphine hydrochloride (B; 0.05 mg of buprenorphine/kg s.c.),
and naloxone hydrochloride dihydrate (N; 2 mg/kg s.c.), administered
for 4 weeks, on serum levels of bone turnover markers in
nonovariectomized (NOVX) and ovariectomized (OVX) rats. Results
are presented as means ± SD. RatLaps C-terminal telopeptides of type I
collagen released during bone resorption, TRAP tartrate-resistant acid
phosphatase. ^p < 0.05, ^^p < 0.01, ^^^p < 0.001, significant differences
between the NOVX and OVX controls (C); #p < 0.05, ##p < 0.01,
###p < 0.001, significantly different from the OVX control rats
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The use of buprenorphine did not affect the mechanical
properties of the tibial metaphysis in NOVX rats (Fig. 5,
Table 3). In OVX rats, administration of buprenorphine in-
duced significant increases in the maximum load applied to
the tibial metaphysis (Fig. 5) and in the load and stress at the
fracture point (Table 3), counteracting the effects of estrogen
deficiency. Administration of buprenorphine did not affect the
mechanical properties of the femoral diaphysis and neck both
in NOVX and OVX rats (Table 3).

Effects of naloxone on the skeletal system

Administration of naloxone hydrochloride dihydrate (2 mg/kg
s.c.) for 4 weeks to NOVX and OVX rats did not affect the
body mass gain, the serum concentration of estradiol, and the
ratios of the uterus and thymus mass to the body mass in rela-
tion to the corresponding control rats (Table 1). Naloxone did
not affect the longitudinal growth of the tibia and femur (Fig. 3).

Administration of naloxone in NOVX rats induced in-
creases in the ratio of bone mineral mass to bone mass in the
femur (statistically significant) and L-4 vertebra (Table 2).
There was no effect of naloxone on the bone mineral mass/
bone mass ratio in OVX rats. Naloxone did not significantly
affect calcium and phosphorus content in the bone mineral
(Table 2).

Administration of naloxone did not affect the serum bone
turnover markers and calcium levels both in NOVX and OVX
rats (Fig. 4, Table 1).

Naloxone did not affect the mechanical properties of the
tibial metaphysis in NOVX rats (Fig. 5, Table 3). In OVX rats,

the fracture point load increased and the values of displace-
ment and energy decreased in relation to the OVX control rats
(Table 3). Administration of naloxone did not affect the me-
chanical properties of the femoral diaphysis and neck both in
NOVX and OVX rats (Table 3).

Discussion

The effects of drugs acting through opioid receptors on the
skeletal system, investigated in the present study, did not con-
firm the damaging action of opioid analgesics, which might
have been expected based on the literature. In fact, beneficial
effects of morphine and buprenorphine in rats with estrogen
deficiency were observed. A similar, though weaker, effects
were present in rats with normal estrogen levels.
Administration of an opioid receptor antagonist, naloxone,
did not exert opposite effects to those induced by the investi-
gated opioid analgesics.

The only unfavorable effect of morphine on the skeletal
system in the present study was the inhibition of the longitu-
dinal growth of the tibia and femur, concurrently with the
decrease in body mass gain. The inhibition was observed both
in NOVX and OVX rats. Consistently, a reduction in the
number of cells in the proliferation zone of the growth plate
(and the growth plate width) under the influence of morphine
was demonstrated in young rats (Ezzatabadipour et al. 2011).
Also, a restriction of fetal growth often occurs during preg-
nancy in opioid-dependent women, although numerous stud-
ies have demonstrated the stimulatory effect of opioids on the

Fig. 5 Effects of morphine hydrochloride (M; 20 mg/kg s.c.),
buprenorphine hydrochloride (B; 0.05 mg of buprenorphine/kg s.c.), and
naloxone hydrochloride dihydrate (N; 2 mg/kg s.c.), administered for
4 weeks, on mechanical properties of the tibial metaphysis (parameters
for the maximum load point) in nonovariectomized (NOVX) and

ovariectomized (OVX) rats. Results are presented as means ± SD.
^p < 0.05, ^^^p < 0.001, significant differences between the NOVX and
OVX controls (C); *p < 0.05, significantly different from the NOVX con-
trol rats; #p < 0.05, ##p < 0.01, significantly different from the OVX control
rats
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secretion of growth hormone (Olsen et al. 2014). Neither
buprenorphine, a partial μ receptor agonist and κ receptor
antagonist, nor naloxone, an opioid receptor antagonist, af-
fected the longitudinal bone growth. Also, bone growth was
not affected in Dyn−/− mice lacking dynorphin (which act
mainly through κ receptors) expression (Baldock et al. 2012).

Morphine and buprenorphine counteracted the develop-
ment of osteoporotic changes in the skeletal system of OVX
rats. Estrogen deficiency in rats, similarly as in postmenopaus-
al women, leads to increased bone remodeling processes with
the predominance of resorption over formation, and cancel-
lous bone is more affected than compact bone (Lelovas et al.
2008). This was confirmed in the present study; both bone
formation and bone resorption were increased, and bone min-
eralization was impaired in OVX rats. These changes led to
worsening of mechanical properties of cancellous bone of the
tibial metaphysis.

After administration of the opioid agonists to OVX rats,
bone turnover rate slowed down, as demonstrated by signifi-
cant reduction of bone formation and bone resorptionmarkers.
Also, bone mineralization was improved. These activities led
to the increase in the strength of the tibial metaphysis (cancel-
lous bone). Both drugs did not affect mechanical properties of
the femoral diaphysis (cortical bone) and neck (cortical and
cancellous bone). The effects of opioid agonists on the skeletal
system of NOVX rats were limited to the improvement of
bone mineralization (morphine and buprenorphine) and me-
chanical properties of cancellous bone (morphine).

Although long-term use of opioids in humans leads to the
development of hypogonadism, administration of morphine,
buprenorphine, and naloxone in the present study did not af-
fect the serum estradiol level and uterus mass/body mass ratio.
In fact, the skeletal effects of morphine and buprenorphine in
OVX rats were similar to those induced by estradiol supple-
mentation in our previous studies (Folwarczna et al. 2009;
Cegieła et al. 2012). Taken together, drugs acting through
opioid receptors did not significantly affect the systemic es-
trogen levels in rats.

Results of the present study are at variance with the widely
held view that opioid analgesics unfavorably affect the skele-
tal system in humans, based on most of previous reports.
There are epidemiological data indicating the decreased
BMD in patients treated with opioids in relation to nontreated
controls (Kim et al. 2006; Dürsteler-MacFarland et al. 2011;
Grey et al. 2011; Duarte et al. 2013). Interestingly, the de-
creased BMD during methadone maintenance therapy was
observed in male patients only (Grey et al. 2011). However,
those studies did not determine the changes in the skeletal
system, and the data were rather not adjusted for other factors,
like the treated diseases and poor general health status. Other
studies demonstrated that the use of opioid analgesics is asso-
ciated with an increased risk of fractures, to which the in-
creased risk of falls may contribute (Ensrud et al. 2003;T
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Vestergaard et al. 2006; Saunders et al. 2010; Miller et al.
2011; Carbone et al. 2013; Li et al. 2013).

Nevertheless, results of the present study are consistent
with recently published reports on the possible favorable opi-
oid effects on the skeletal system in women (Vestergaard et al.
2012; Lee et al. 2013). A small trend to a smaller decline in the
spine bone mineral density over 10 years in postmenopausal
women using opioids, in comparison to non-exposed, was
demonstrated (however with a nonsignificant trend towards
more fractures) in Danish Osteoporosis Prevention Study
(Vestergaard et al. 2012). It was also demonstrated in a
population-based nested case-control study that morphine
tends to exert the protective action on the skeletal system of
female patients with cancer. The use of morphine in patients
treated with bisphosphonates significantly reduced the risk of
osteoporosis (compared with patients on bisphosphonates on-
ly) (Lee et al. 2013). Results of these studies indicate on the
possibility of favorable direct opioid effects on bones.

Previous experimental studies demonstrated rather bone-
damaging effects of opioid receptor agonists. The development
of osteoporosis in rats was reported after 3-month administra-
tion of morphine at a lower dose (Boshra 2011); the author
associated the skeletal changes with reduced levels of estrogen,
not observed in the present study. Morphine unfavorably af-
fected the skeletal system in mice with experimental sarcoma,
with no influence on control animals (King et al. 2007). The
inhibition of fracture healing by morphine was demonstrated in
rats; this effect, however, was associated with inhibition of
callus resorption (Chrastil et al. 2013). Morphine inhibited the
orthodontic movement of teeth in rats, which also indicates the
inhibition of bone resorption (Akhoundi et al. 2010), consis-
tently with results of the present study (inhibition of bone re-
sorption by morphine and buprenorphine).

The mechanism of the beneficial effect of morphine and
buprenorphine observed in the present study may be associated
with their direct effects on opioid receptors in bone cells. All
opioid receptors were demonstrated to be present in human
osteoblast-like MG-63 cells (Pérez-Castrillón et al. 2000). The
stimulation of opioid receptors leads to the inhibition of adenyl-
ate cyclase and reduction of the cellular cAMP level (Al-Hasani
and Bruchas 2011). Since increased cAMP levels (for example
induced by parathormone) activate cAMP-dependent protein ki-
nase A in marrow stromal cells and osteoblasts, inducing both
bone formation and bone resorption (the latter by stimulating the
secretion of RANKL) (Kondo et al. 2002;Wang et al. 2006), it is
possible that decreased bone turnover induced by the opioid
analgesics may be due to the reduced level of cAMP in osteo-
blasts. Similar actions of morphine (an agonist of μ, δ, and κ
receptors) and buprenorphine (a partial μ receptor agonist and κ
receptor antagonist) suggest the responsibility of μ receptors for
the observed effects. Also, based on the results of Baldock et al.
(2012), the antagonistic effect on κ receptors could contribute to
the beneficial effects of buprenorphine in present study.

In search of the mechanism of action of the opioid
analgesics on bones, serum CGRP levels were deter-
mined. CGRP, apart of the involvement in the pain trans-
mission and modulation, directly affects bone cells, in-
creasing bone formation and decreasing bone resorption
(Mrak et al. 2010). Although serum CGRP levels in OVX
rats slightly increased in relation to NOVX controls, in
accordance with higher CGRP levels in postmenopausal
than in premenopausal women (Gupta et al. 2008), there
was no effect of the opioids on the serum CGRP level.

A surprising result of the present study is the observation
that naloxone not only did not exert opposite to morphine and
buprenorphine effects but also affected some parameters sim-
ilarly to the opioid receptor agonists. The administration of
naloxone to OVX rats increased the fracture point load in
cancellous bone of the tibial metaphysis; in NOVX rats, there
was an increase in the femur mineralization. The improvement
of some bone parameters induced by naloxone in rats is con-
sistent with the effect of administration of low-dose naloxone
in the sheep: increased mineralization and callus remodeling
in a model of bone damage (Petrizzi et al. 2007). However, the
reports on effects of opioid receptor antagonists on bone re-
sorption are inconsistent; naltrexone caused a decrease of or-
thodontic tooth movement in rats with experimentally induced
cholestasis (Nilforoushan et al. 2002), and the topical applica-
tion of naloxone intensified alveolar bone loss in experimen-
tally induced periodontitis in rats (Queiroz-Junior et al. 2013).

The lack of opposing effect of naloxone in relation to
morphine and buprenorphine may be due to the fact that
the naloxone dose chosen as the dose blocking opioid
receptors, might lead to agonistic effects within the skel-
etal system. It has been shown that naloxone in small
doses has an analgesic effect in humans and animals
(Petrizzi et al. 2007). Due to the enormous complexity
of the endogenous opioid peptide system, and opioid re-
ceptors, it is possible that the use of naloxone at a partic-
ular dosage may differentially modify the action of indi-
vidual peptides. For example, the Dyn−/− mice had in-
creased bone formation markers, which indicates that
dynorphin inhibits bone formation (Baldock et al. 2012).
Thus, blocking of κ receptors by naloxone and
buprenorphine may lead to improvement of certain pa-
rameters related to bone formation.

The significance of the study is that it for the first time
reports on the favorable effects of opioid receptor agonists
(morphine and buprenorphine), used in the therapeutic dose
range, on the skeletal system in female rats, especially in con-
ditions of estrogen deficiency. Results of the study, indicating
the improvement in bone mechanical properties and mineral-
ization by the opioid analgesics, support and provide the ex-
perimental background for the isolated so far observations
made in female patients indicating some positive skeletal ef-
fects of opioids on bone (Vestergaard et al. 2012; Lee et al.
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2013). Based on the results of the present study, it seems likely
that opioids also in humans may not only not damage the
skeletal system but also exert some direct favorable effects,
which are counteracted by indirect detrimental ones. This
seems to be important in the light of numerous, both reason-
able and unfounded, concerns over the use of the opioid anal-
gesics in the long-term therapy of pain.

The limitation of the study is that it concerns the ex-
perimental conditions in rats only and does not provide
the data on the bone microstructure. Moreover, since the
three drugs differently affecting opioid receptors were in-
vestigated at one dose each, and there was one duration
(4 weeks) of drug administration, results of the study do
not exclude the possibility of unfavorable skeletal effects
of opioids used in larger doses and for longer duration. It
is also possible that the beneficial effects of opioid anal-
gesic drugs may be limited to females. Taken together, the
study may be treated as preliminary one.

In conclusion, results of the present study confirmed the
role of opioid receptors in the regulation of bone remodeling
processes and demonstrated, in experimental conditions, that
the use of opioid analgesics at moderate doses may have ben-
eficial effects on the skeletal system, especially in estrogen
deficiency. Since the favorable opioid effects were demon-
strated in female rats, and some positive skeletal effects were
reported in female patients, it seems interesting to answer the
question whether the effects of opioid analgesics on the skel-
etal system depend on sex.
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