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Natriuretic peptide receptors and heart failure:
to B or not to B blocked?
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The role of natriuretic peptides in the dynamic regulation of
blood volume and pressure is now well established and com-
prises the complementary endocrine actions of atrial (ANP)
and brain (BNP) natriuretic peptides, with the more local,
paracrine bioactivity of C-type natriuretic peptide (CNP).
This family of mediators also coordinates to maintain cardiac
function and integrity (Potter et al. 2009). However, much
of the information pertaining to the physiological functions
of these peptides has not been garnered via the use of
selective pharmacological tools. Indeed, there are a paucity
of such reagents and this has been the bane of researchers
in the field for their inception with the identification of
ANP in 1981(de Bold et al. 1981). Several selective agonists
and antagonists at natriuretic peptide receptors (NPRs), the
membrane spanning proteins that transduce signals conveyed
by natriuretic peptides, have been described, but the vast
majority are high molecular weight, often peptide-based,
molecules with suboptimal pharmacodynamic and pharma-
cokinetic properties.

Perhaps the most useful tool to date has been HS-142-1, a
polysaccharide extracted from Aureobasidium sp. (Morishita
et al. 1991). This reagent inhibits activation of both guanylate
cyclase-coupled NPRs (i.e. NPR-A and NPR-B) through an
allosteric interaction, but does not bind NPR-C (Poirier et al.
2002). It has therefore been an ideal intervention to define
mechanisms reliant on the activation of particulate guanylate
cyclases (and to differentiate between these membrane-bound
isoforms and the NO-sensitive soluble guanylate cyclase).
Regrettably, the production of HS-142-1 has now been
halted and is no longer available. Several additional molecules

have been reported to selectively inhibit NPR-A (the cognate
receptor for ANP and BNP, e.g. A71915 (Delporte et al. 1992),
S-28-Y (Minamitake et al. 1990), anantin (Weber et al. 1991;
Wyss et al. 1991) and PL-3994 (Edelson et al. 2013)) or NPR-B
(the cognate receptor for CNP, e.g. a monoclonal antibody
3G12 (Drewett et al. 1995) and P19 (Deschenes et al. 2005)).
A truncated, modified natriuretic peptide, cANF4-23, has been
established as a useful pharmacological tool for dissecting the
biology of NPR-C. Originally, it was used to identify NPR-C
binding sites in vivo and subsequently shown to block the
clearance of natriuretic peptides from the circulation (Maack
et al. 1987). However, this peptide also has positive signalling
roles, courtesy of the Gi coupling of NPR-C (Anand-Srivastava
et al. 1996); thus, cANF4-23 may well represent a partial agonist
at this receptor. Additional molecules described as selective
NPR-C antagonists have been developed more recently (e.g.
AP-811,M372049 (Veale et al. 2000)) and used to establish the
importance of endothelium-derived CNP in regulating vascular
reactivity in vitro (Chauhan et al. 2003).

As a consequence of the various shortcomings of these
molecules (e.g. source, cost, solubility, selectivity and route
of administration), they have either been unavailable or not
readily amenable for use in vivo, and many of the physi-
ological roles of natriuretic peptides have only been
established unequivocally with the recent development of
global and tissue-specific transgenic animals. Good exam-
ples of this are the cardiac hypertrophy and fibrosis in
ANP- and BNP-deficient mice (Kuhn 2009) and the
perturbed bone homeostasis and dwarfism in mice lacking
the CNP (Nppc ) gene (Chusho et al. 2001). However,
whilst pharmacological tools have not been used avidly to
dissect the physiological and pathological roles of natriuretic
peptides, the administration of native or synthetic natriuretic
peptides has been far more successful in terms of therapeutic
intervention. ANP (carperitide) and BNP (nesiritide) are used
in the treatment of heart failure, but with limited efficacy,
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predominantly due to reductions in systemic blood pressure
and renal perfusion. Novel chimeric peptides, which harness
several favourable actions by combining portions from two or
more native natriuretic peptides, perhaps hold greater promise
(Lisy et al. 2008; Dickey et al. 2008). For example, CD-NP
(cenderitide) consists of CNP with an additional 15aa corre-
sponding to the C-terminal tail of DNP. This peptide activates
both NPR-A and NPR-B and promotes the venodilatory,
antifibrotic properties of CNP in tandem with the natriuretic
properties of DNP (the peptide is also more resistant to enzy-
matic degradation) without the therapeutically limiting hypo-
tensive response. CD-NP had a favourable pharmacodynamic
profile in phase I (Lee et al. 2009), and in a small phase IIa
safety and tolerability study (Lieu et al. 2011), and is currently
under phase IIb evaluation. A similar favourable pharmaco-
dynamic profile has also been established for a mutant ANP
consisting of the native peptidewith a C-terminal 12aa extension
(McKie et al. 2009)

However, the dearth of small molecule, receptor-selective
NPR tools (and ultimately therapeutics) may have come to an
end with the report by Bach et al. in this issue. This work
describes the development of a high-throughput screen to
identify non-peptidic, small-molecule antagonists at NPR-B.
Using HEK293 cells transfected with human NPR-A or NPR-
B cDNA, and cGMP production as functional read-out, the
authors have identified a series of compounds that block NPR-
B and exhibit discernible selectivity over NPR-A. The ex vivo
pharmacology of the novel small molecules was confirmed
using rat myocardial muscle strips in which C10, one of the
compounds with greatest antagonist potency at NPR-B, was
shown to inhibit the CNP-driven potentiation of inotropic
responses to β1-adrenoceptor activation. The novel NPR-B
antagonists exert a non-competitive, reversible antagonism
(little or no change in the EC50 to CNP but a signification
reduction in Emax), suggesting allosteric modulation of the
receptor, conceivably akin to that produced by HS-142-1.
Further work is now needed to define this binding site. A
crystal structure for NPR-B has not been reported, but co-
crystals with these new molecules, in tandem with molecular
data, might reveal a new allosteric site on NPR-B (and possi-
bly mirrored by other NPRs) that is tractable for therapeutic
benefit. One important unknown for the utility of these mol-
ecules as tools and therapeutics is binding and activity at
NPR-C. Whether they can act as NPR-C agonists and mimic
some of the beneficial effects of CNP in the cardiovascular
system we have reported (Chauhan et al. 2003) remains to be
determined. Nonetheless, even if these novel compounds
bound tightly to NPR-C and prevent clearance of endogenous
natriuretic peptides, this might also be construed as a benefi-
cial activity, certainly in disorders such as pulmonary hyper-
tension in which augmenting NP bioactivity has been proven
to be beneficial in experimental models and humans (Baliga
et al. 2008; Klinger et al. 2006).

In addition, this work has identified molecules that exhibit
antagonist activity at NPR-B, but potentiate BNP-triggered
activation of NPR-A (although the molecules do not appear to
be NPR-A agonists per se). This is an intriguing profile of
activity since activation of NPR-A is established to result in a
positive effect in preclinical models and patients with different
cardiovascular diseases, including heart failure, renal I/R in-
jury and pulmonary hypertension, and may therefore offer an
even greater therapeutic effect. Moreover, the structure–activ-
ity relationship (SAR) data from this study intimates that
relatively minor and readily achievable modifications to this
series of molecules can generate compounds with very differ-
ent activity and selectivity at NPRs. Thus, this work should be
an excellent starting point for the development of small mol-
ecules that can target specific NPRs that might be useful in a
plethora of cardiovascular disorders. Interestingly, one of the
molecules shown to modulate NPR-B activity, C37, was
subsequently identified as loperamide (an opioid receptor
agonist with antidiarrhoeal activity). Since this compound
was shown to block NPR-B activation by CNP, it may well
interact with the intestinal epithelium guanylate cyclase C
(GG-C), which regulates salt and water excretion. This raises
the fascinating possibility that part of the therapeutic effect of
loperamide might be mediated via GC-C and that this work
might stimulate the development of small molecules with
therapeutic potential outside the cardiovascular system.

The rationale for the development of NPR-B antagonists is
derived from previous work by the authors exploring the
cardiac contractility effects of CNP in normal versus failing
hearts. Using isolated myocardial strips, these authors have
shown that CNP causes an increase in cGMP, via NPR-B, that
leads to inhibition of PDE3 thereby promoting the actions of
catecholamine-driven cAMP signalling, which exerts positive
inotropic and chronotropic activities (Qvigstad et al. 2010).
This is considered detrimental to the failing heart, with phar-
macological inhibition of PDE3 associated with increased
mortality (Packer et al. 1991; Amsallem et al. 2005). This fits
with other reports in ex vivo systems showing that CNP can
exert a positive inotropic activity (Pierkes et al. 2002). Thus,
blockade of NPR-B may be a favourable approach in heart
failure. However, the net effect of NPR-B antagonism in vivo
may not be so clear cut. In rats over-expressing a dominant
negative form of NPR-B in cardiomyocytes, development of
cardiac hypertrophy, fibrosis and contractile dysfunction is
accelerated compared to WT animals (Langenickel et al.
2006). Moreover, there appears to be a shift from NPR-A to
NPR-B signalling in pressure-overload-induced cardiac
hypertrophy, suggesting that CNP takes on the principal
role as the natriuretic peptide guardian of cardiac integrity
(Dickey et al. 2007). This concept is reinforced by the obser-
vations that cardiomyocyte-specific over-expression of CNP
protects against MI-induced hypertrophy (Wang et al. 2007)
and that CD-NP exerts a potent salutary effect in a preclinical
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model of cardiac fibrosis (Martin et al. 2012). Finally,
systemic administration of a NPR-B targeted drug would
have to be evaluated carefully for effects on bone morphology
(Chusho et al. 2001).

Regardless, the work reported by Bach et al. is an exciting
and welcome addition to the pharmacology of natriuretic
peptides and their receptors and should pave the wave for
the design and development of more selective molecules that
have new, unique activities across the NPR spectrum and
should prove vital in advancing knowledge of the role of these
receptors in mediating the biological activity of natriuretic
peptides and in the pursuit of better therapeutics for cardio-
vascular disease.
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