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The nucleoside diphosphate kinase (NDP kinase or NDPK)
protein family has been discovered several times, with
implications for the fields of development, signaling, and
cancer. In the 1950s, the Nobel laureates, Paul Berg and
Hans Krebs, independently identified a biochemical activity
that removed the terminal phosphate from a nucleoside
triphosphate (NTP), and added it to a nucleoside diphos-
phate (NDP), the NDPK activity (Berg and Joklik, 1953;
Krebs and Hems, 1953). Consequently, the correct bio-
chemical name for the enzyme is NTP/NDP transphosphor-
ylase. NDPK activity was implicated in the regulation
multiple aspects of cellular physiology, including nucleo-
tide pools and consequent growth, G-protein signaling,
microtubule dynamics, and mutational susceptibility. In the
late 1980s, a furor erupted when cancer metastasis, the

spread of tumor cells from a primary tumor to a distant site,
was linked to the loss of a gene of unknown function,
named nm23 (Steeg et al. 1988). A functional link was
established several years later when transfection of nm23
into a murine melanoma cell line significantly reduced its
metastatic spread, without effects on primary tumor size
(Leone et al. 1991). Sequencing of the two forms of human
Nm23 (Nm23-H1 and –H2) revealed an identity to two
NDPKs A and B (Wallet et al. 1990). At the same time,
developmental processes in the imaginal discs of Drosophila
were reported to be regulated by the abnormal wing disc
(awd) gene, almost 90% identical to human NDPK/Nm23
through evolution (Rosengard et al. 1989). A complex story
thus began. Today, it is clear that NDPK-A and NDPK-B
belong to a protein family encoded by the NME genes of
which ten different genes have been found in man.
Phylogenetic analyses identified two distinct subgroups
(Bilitou et al. 2009; Desvignes et al. 2009). The first group
consists of four genes (nme1-4) encoding homologous
proteins (NDPKs A–D) with NDPK activity. Group II genes
appeared also early in evolution (see (Desvignes et al. 2011;
Perina et al. 2011) in this issue of Naunyn-Schmiedeberg's
Archives of Pharmacology). They encode more divergent
proteins with low or no demonstrated NDPK activity.
Recent reviews presenting different aspects of the
proposed activities of NDPK/Nm23/Awd proteins in
tumor metastasis are presented in this issue of Naunyn-
Schmiedeberg's Archives of Pharmacology (Andolfo et al.
2011; Bruneel et al. 2011; Hsu, 2011; Marino et al. 2011;
Novak et al. 2011; Thakur et al. 2011). With over 50 years
of research experience on this protein family between the
authors, we have reviewed the reported biochemical
activities of Nme proteins with a critical eye, concentrat-
ing on the first two members of the NDPK family. Our
analysis reveals a list of tantalizing activities that may
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underlie fundamental biological processes, but also long-
standing controversies—often published in high-impact
journals—that should now be put to rest.

NDPK activity

Table 1 summarizes contributions of the first defined
biochemical activity of the family, as an NDPK. X-ray
crystallography established the structures of multiple
family members, each with an active site containing a
histidine serving as a phosphorylated intermediate
(Dumas et al. 1992; Chiadmi et al. 1993; Williams et al.
1993; Cherfils et al. 1994; Morera et al. 1995; Strelkov et al.
1995; Karlsson et al. 1996). While the NDPK biochemical
activity is straightforward, its biological implications remain
obscure. Few measurements of nucleotide pool levels have
been reported. Other enzymes have NDPK activity and
could potentially modify nucleotide pools independently. In
Drosophila, the NDPK activity of Awd was necessary but
not sufficient for normal fly development (Xu et al. 1996).

One of the most intriguing hypotheses posited was that
NDPK would supply GTP to activate either mono- (small)
or heterotrimeric (large) G-proteins. NDPK/Nm23 proteins
were associated with the Gβγ dimers of heterotrimeric G
proteins (Cuello et al. 2003; Hippe et al. 2003), the Gs

protein (Kimura and Shimada, 1990), ARF6 (Palacios et al.
2002), Rho (Chopra et al. 2004), the Ras-related protein
Rad (Tseng et al. 2001), the Rac regulator Tiam (Otsuki et
al. 2001), Menin (Yaguchi et al. 2002), the guanine
exchange factor Dbl-1 (Murakami et al. 2008b), and Arf
(Randazzo et al. 1991). The evidence for these associations
varied by report, including co-immunoprecipitations,
effects on G-protein or Nm23 biochemical activities when
both were co-expressed, use of neutralizing antibodies to
one partner to abrogate a biochemical activity, etc. Only
one of these associations has been reproduced several times
(Hippe et al. 2003; Hippe et al. 2009; Hippe et al. 2011a),
and repeated by an independent group (Kowluru, 2008), i.e.,
the complex formation of the NDPK-B/Nm23-H2 isoform
with Gβγ. The mutual dependence of NDPK-B and Gβγ
for biological G-protein function has been demonstrated by

Table 1 Nucleoside diphosphate kinase (NDPK) activity of NDPK/Nm23/Awd

Features:       

 Catalyzes the -phosphorylation of nucleoside 5’-diphosphates to 
corresponding triphosphates, via a phosphohistidine intermediate: 

(1)   N1TP + NDPK   N1DP + NDPK-P  

(2)   NDPK-P + N2DP N2TP + NDPK 

 Found as tetramers and hexamers; crystal structures reported.  

 Found in all subcellular compartments 

 Postulated to maintain nucleotide pools, activate G-proteins, induce a mutator 
phenotype, regulate microtubule dynamics.  

Concerns: 

 Displays little specificity for different nucleotide bases (Mourad and Parks, 
1966, Dumas et al., 1992).  

 NDPK activity of vector- versus Nm23 transfectants comparable (MacDonald 
et al., 1993, Otero et al., 1999). 

 Other enzymes have overlapping functions in maintaining nucleotide pools (Lu 
and Inouye, 1996, Zhang et al., 2002). 

 Direct G-protein activation by NDPK-mediated GTP formation from bound 
GDP retracted (Randazzo et al., 1992).  

 Mutator activity dissociated from nucleotide pool levels (Nordman and Wright, 
2008).
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knock-down experiments in zebrafish, as well as in
fibroblasts obtained from NDPK-A and NDPK-B double-
deficient mice (Hippe et al. 2009; Hippe et al. 2011a). The
requirement of the NDPK-B/Gβγ complexes for the
formation of signal transducing caveolae reported in this
issue of Naunyn-Schmiedeberg's Archives of Pharmacology
(Hippe et al. 2011b) provides a plausible explanation to
understand these data.

The Arf case is instructive. Originally published in Science,
NDPK/Nm23 was reported to act as an NDPK to
phosphorylate GDP bound to the small G-protein Arf,
providing a novel mechanism of G-protein activation
independent of nucleotide exchange (Randazzo et al. 1991).
The same research group retracted this hypothesis after
further research using multiple purified G-proteins
(including the heterotrimeric G-protein transducin (Gt),
Ha-Ras p21, and Arf). In these latter experiments,
dissociated GDP was the substrate for the NDPK and
converted into GTP even on thin layer chromatography
plates (Randazzo et al. 1992). Thus, the G-protein
activation occurred by nucleotide exchange. Note that
the special provision of GTP appears at odds with the
limited specificity of NDPK for any particular NDP as
well. Given the wealth of the associations of NDPK B
and heterotrimeric G-proteins, an alternative biochemical
mechanism has been advanced based on the histidine
protein kinase activity of NDPK, discussed below.

The interaction of NDPK/Nm23 proteins with micro-
tubules has also been controversial. NDPK/Nm23/Awd
proteins co-purified with microtubules in some (Jacobs
and Caplow 1976; Biggs et al. 1990; Lombardi et al. 1995;
Pinon et al. 1999) but not all studies (Melki et al. 1992;
Roymans et al. 2000), and were postulated to provide GTP
for polymerization. Defects in mitosis presumably resulting
from impaired interaction leading to microtubule failure
were debated, as was transphosphorylation. Collectively,
we view the data to date as unsupportive of any specific
provision of NTPs via the NDPK activity without evidence
for an additional explanatory mechanism.

Transcriptional regulation of c-myc and other genes

Table 2 provides a timeline of the major findings supportive
of the role of NDPK-B/Nm23-H2 as a c-myc transcriptional
regulator. Also published in Science, a “95%” purified
recombinant NDPK-B/Nm23-H2 protein was reported to
bind the nuclease hypersensitive element (NHE) in the c-myc
promoter (Postel et al. 1993). Purification of the protein was
only shown on Coomassie-stained gels, known to be less

sensitive than a silver stain. The story of NDPK-B/Nm23-H2
evolved when the c-myc NHE was reported to fold into a
quaternary structure, a G-quadraplex; NDPK-B/Nm23-H2
was postulated to either cleave the DNA or remodel it to
change the quadraplex structure, resulting in increased
transcription (Postel 1999; Postel et al. 2000a). The
arguments against this activity have been numerous and
broad. Briefly, regulation of c-myc transcription by NDPK/
Nm23 was not observed using traditional promoter-driven
fusion protein transcriptional assays used throughout the
myc field (Michelotti et al. 1997), NDPK/Nm23 was
reported to bind to any single-stranded DNA without
specificity (Hildebrandt et al. 1995; Agou et al. 1999), and
the DNA cleavage activity postulated for remodeling of the
quadraplex was a contaminant (Dexheimer et al. 2009).
Another paper on the G-quadraplex binding activity of
NDPK/Nm23 was published in a high-ranking journal and
later retracted (Grand et al. 2004). We view the c-myc
transcriptional activity as a likely artifact, and lament that
this is the activity most connected with the NDPK/Nm23

Table 2 Transcriptional activation of c-myc and other genes by
NDPK/Nm23/Awd

Features:

• In 1993, Postel et al. (1993) identified NDPK-B/Nm23-H2 as the
PuF transcription factor binding the nuclease hypersensitive element
(NHE) at positions −142 to −115 of the c-myc promoter.

• DNA binding and transactivational activities were maintained in a
NDPK catalytically inactive Nm23-H2 H118F mutant (Postel and
Ferrone, 1994). Other amino acids in NDPK (Arg 34, Asn-69, Lys 135),
all charged, were identified as important to DNA binding
(Postel et al. 1996).

• NDPKs A and B/Nm23-H1 and –H2 were reported to repress the
transcriptional activity of the pdgf promoter (Cervoni et al. 2003).

• The c-myc NHE was reported to form a G-quadraplex structure
which suppresses c-myc transcription. NDPK-B/Nm23-H2 was
postulated to remodel this structure, either by an intrinsic DNA
endonuclease activity or by DNA unwinding (Postel et al. 2000a).

Concerns:

• For the identification of the c-myc promoter transcriptional activity,
bacterially produced NDPK-B/Nm23-H2 was only demonstrated to
be pure on Coomassie stained gels (Postel et al. 1993).

• NDPK-B/Nm23-H2 bound to both single stranded and duplex portions
of the c-myc NHE (Postel et al. 2000b, Postel et al. 2002). NDPK/
Nm23 proteins bound to single stranded DNA in a non-sequence
specific manner (Hildebrandt et al. 1995, Agou et al. 1999).

• Nm23-H2 did not function as a c-myc transcription factor using multiple
promoter activity constructs (Michelotti et al. 1997, Chae et al. 1998).

• The c-myc expression of control and Nm23 transfected cell lines
was unchanged.

• A manuscript describing the interaction of NDPK/Nm23 with a c-myc
quadraplex structure was retracted (Grand et al. 2004).

• Further purification of recombinant NDPK/Nm23 resulted in a
separation of the DNA nuclease activity from the protein, implying
a contaminant (Dexheimer et al. 2009).
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protein family among the scientific readership. The data
highlight the continuing problem of the purity of recombi-
nant NDPK/Nm23 preparations for biochemical activities;
this is an extraordinarily sticky set of proteins.

Other DNA-based activities?

The laboratory of Edith Postel also postulated that the DNA
cleavage activity of NDPK/Nm23 protein could be impor-
tant to DNA repair, and underlie the “mutator” phenotype
observed in bacteria with ndk (homolog of ndpk) deletions
(Lu et al. 1995). In a PNAS paper, NDPK was reported to
be a DNA repair nuclease whose substrate was uracil
misincorporated into DNA (Postel and Abramczyk 2003).
While not formally retracted, a subsequent manuscript from
the lab identified this DNA-based activity as a uracil-DNA
glycosylase contaminating the recombinant NDPK prepa-
ration (Goswami et al. 2006).

Given the outcome of these studies, other DNA-
based activities are met with healthy skepticism. At
least two other DNA-based activities have been pro-
posed. The laboratory of Judy Lieberman reported in
Cell that granzymes released by cytotoxic T-lymphocytes
activate a DNase which is NDPK-A/Nm23-H1, which in
turn induces apoptosis and is inhibited by the Set protein
(Fan et al. 2003). Low Nm23-H1 expression in metastatic
tumor cells was hypothesized to facilitate escape from
apoptosis (Chakravarti and Hong 2003). Again, the issue
of NDPK/Nm23 purification is critical. The Set complex
was isolated by affinity purification and gel filtration, but
no silver-stained gel to demonstrate purity was shown.
Recombinant Nm23 was prepared using ammonium
sulfate precipitation, hydroxyapatite, ATP agaraose, and
DEAE columns; a silver-stained gel was not shown.
Silencing of Nm23-H1 but not Nm23-H2 reduced DNA
nicking, and overexpression of Nm23-H1 increased DNA
nicking. More recently, overexpression of a related Sei1
candidate oncogene was reported in esophageal cancers,
and was proposed to interact with Set and Nm23-H1 to induce
genomic instability (Li et al. 2010). Our view of the evidence
is that it is partial; it is clear that NDPK/Nm23 protein is part
of the relevant protein complex; however, the possibility of a
contaminant binding NDPK/Nm23 with DNase activity
remains. Furthermore, in multiple Nm23-H1 transfections,
an increase in tumor cell apoptosis was not observed.

The laboratory of David Kaetzel reported a 3′-5′ DNA
exonuclease activity for NDPK-A/Nm23-H1 (Ma et al. 2004).
Co-elution of NDPK-A/Nm23-H1 and a 3′ exonuclease
activity was demonstrated on hydroxylapatite and gel
filtration columns; it is stated that Coomasie- or silver-
stained gels were used to assess purification but the latter
was not shown. The conclusion that this enzymatic activity

belongs to NDPK-A/Nm23-H1 is however supported by
mutation data. A K12Q mutation of NDPK-A/Nm23-H1
diminished its exonuclease activity. Mutation of the NDPK/
Nm23 catalytic histidine abolished its NDPK but not
exonuclease activity. The K12Q mutation also altered the
protein's elution pattern on columns, but the exonuclease
activity continued to copurify with NDPK-A/Nm23-H1. In a
follow-up study, an E5A mutation was reported to diminish
the exonuclease activity of NDPK-A/Nm23-H1 without
effects on its NDPK or histidine protein kinase activities
(Table 3). This mutation reduced the metastasis suppressor
function of NDPK-A/Nm23-H1 in vivo but, surprisingly, not
motility suppression in vitro (Zhang et al. 2010).

Protein–protein interactions

One of the most widely reported biochemical activities
for NDPK/NM23/Awd proteins is their association with
other proteins, thereby affecting the function of one or

both of the pair. Protein–protein interactions involving
NDPK/Nm23/Awd proteins are detailed elsewhere in this
volume but include a number of oncogenic, viral, and
cytoskeletal proteins. These data, to the extent that the
interactions are specific, suggest the hypothesis that

Table 3 The histidine protein kinase (HPK) activity of NDPK/Nm23/
Awd proteins

Features:

• Unlike serine and tyrosine kinases, involves the formation of a
histidine phosphorylated intermediate, which then transfers the
phosphate to the substrate protein.

• Ubiquitous in bacteria where two-component signal transduction
pathways regulate responses to environmental stimuli. NDPK/Nm23
protein substituted for the histidine kinase component in the EnvZ
and CheA two-component pathways (Lu et al. 1996).

• NDPK/Nm23 proteins functioned as HPKs for Aldolase C
(Wagner and Vu, 2000), ATP citrate lyase (Wagner and Vu, 1995),
the potassium channel KCa3.1 (Srivastava et al. 2006), and
βγ subunits of heterotrimeric G-proteins (Cuello et al. 2003).
A counteracting phosphatase (PHP-1) has been identified
(Wieland et al. 2010).

• Phosphorylation of serine residues by Awd (Inoue et al. 1996)
and NDPK/Nm23 (Engel et al. 1995) was reported; NDPK/Nm23
phosphorylated serine residues on the Kinase suppressor of ras
(Hartsough et al. 2002).

• The HPK activity of wild type and mutant NDPK-A/Nm23-H1s
was correlated with its tumor motility suppressing activity
(Freije et al. 1997, Wagner et al. 1997).

Concerns:

• The active pocket of NDPK/Nm23/Awd for its NDPK activity on
x-ray crystallography appears too small to accommodate a
protein substrate.

• Little is known about HPKs due to technical limitations.
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NDPK/Nm23 proteins may suppress tumor metastasis, in
part, by binding and inactivating signaling pathways
promoting aggressiveness. The contribution of this type
of inactivating interaction has not been fully explored for
the many G-proteins previously described. Several of the
reported interactions overcame suppression of in vitro
motility or in vivo metastasis by NDPK/Nm23, including
Dbl-1 (Murakami et al. 2008a) Prune (Reymond et al.
1999; D'Angelo et al. 2004) and the Epstein–Barr latent viral
proteins (Subramanian et al. 2001; Murakami et al. 2005),
while an interaction of NDPK-A/Nm23-H1 and the TGF-β
receptor interacting protein Strap regulated Nm23-H1 regu-
lation of proliferation (Seong et al. 2007).

An example of these interactions, the Prune (Pn)
protein, provides insight into the validation needed. In
Drosophila, mutations in pn are responsible for the
brownish-purple “prune” eye color. Null pn mutations
did not affect Drosophila viability or fertility. In contrast,
both the homozygous and hemizygous pn mutants were
lethal in the presence of a single copy of a gain-of-
function mutation in the awd gene (Biggs et al. 1988;
Timmons and Shearn 1997). This awd mutation is
analogous to the P96S “killer of prune” mutation studied
in NDPK/Nm23. A mechanistic understanding of NDPK/
Nm23/Awd-Pn interaction was resolved in mammalian
cells when a direct interaction was revealed by two-way
co-immunoprecipitation assays using endogenous levels of
protein expression (Reymond et al. 1999). Further refine-
ment of this interaction identified the region on NDPK/
Nm23/Awd responsible for the interaction, serines 120,
122, and 125 (Garzia et al. 2008). These mutations, alone
or in combination, impaired the formation of NDPK/
Nm23/Awd-Prune complex. NDPK-A/Nm23-H1 S120 is
highly conserved throughout evolution and undergoes
serine phosphorylation by casein kinase I (CKI), which
is essential for the formation of the NDPK-A/Nm23-H1–Pn
complex (Garzia et al. 2008). As reported in this issue of
Naunyn-Schmiedeberg's Archives of Pharmacology, a natu-
rally occurring mutant of NDPK-A at S120, the S120G
mutant, has the tendency to aggregate into amyloid
structures (Georgescauld et al. 2011). In addition to CKI,
casein kinase II (CKII) might phosphorylate S120 in nm23-
H1, too. This phosphorylation might be important in the
regulation of the interplay of NDPK with AMP-activated
protein kinase (see (Annesley et al. 2011) in this issue of
Naunyn-Schmiedeberg's Archives of Pharmacology) or its
histidine kinase substrates, both hypothetically involved in
the regulation of the cystic fibrosis transmembrane conduc-
tance regulator (see (Venerando et al. 2011), in this issue of
Naunyn-Schmiedeberg's Archives of Pharmacology).

Nevertheless, due to the sticky nature of NDPK/
Nm23/Awd proteins, we view suspiciously data based
on co-immunofluorescence or two hybrid analyses only.

Supporting data should use endogenous protein levels,
identify the binding site, and demonstrate an alteration in
function.

Histidine protein kinase

Histidine protein kinases (HPKs) are well known in
bacteria and other lower organisms where they form two
or more component signal transduction pathways, a major
form of response to environmental stimuli. Briefly, an
environmental stimulus induces the histidine phosphoryla-
tion of a sensor histidine kinase, which transfers the
phosphate to an aspartate on a response regulator, often a
transcription factor capable of altering gene expression and
consequently cellular function. In more complex systems in
lower eukaryotes, a phosphorelay occurs: The first histidine
phosphoryl group is transferred to an aspartate of a single
domain response regulator and, subsequently, to a second
histidine residue of a phosphotransferase that finally
phosphorylates an effector moiety on a second aspartate.
The presence and function of HPKs in mammalian cells is
poorly studied, owing to the lack of suitable anti-
phosphohistidine antibodies. In theory, the NDPK activity
of NDPK/Nm23/Awd proteins acts as the reversible first
step in a HPK reaction:

1. NDPK+NTP NDPK-histidine phosphate+NDP,
the NDPK equation.

2. NDPK-histidine phosphate+substrate NDPK+
phosphorylated substrate.

Questions arise over the nature of the phosphorylated
residue in the substrate, which in experimental systems has
included high-energy histidines and aspartates as well as
lower energy (and therefore irreversible) serines.

What is the evidence that NDPK/Nm23/Awd proteins
possess HPK activity? (1) NDPK clones can substitute for
histidine protein kinases in bacterial two-component sys-
tems (Lu et al. 1996). (2) NDPK-A/NM23-H1 but, to a
lesser extent, its P96S and S120G mutants, phosphorylated
an aspartate on aldolase C in vitro; this aspartate cannot
autophosphorylate, ruling out the provision of a phosphate
for autophosphorylation by the NDPK activity (Wagner and
Vu 2000). In addition, the phosphorylation of another
metabolic enzyme, ATP citrate lyase by NDPK-A/NM23-
H1 (Wagner and Vu 1995) has been reproduced by others
(Klumpp et al. 2003; Wieland et al. 2010) (3) An intriguing
pathway involving the βγ subunits of heterotrimeric G-
proteins was uncovered, in which NDPK-B/Nm23-H2 phos-
phorylated the histidine 266 in Gβ (Cuello et al. 2003). Since
the phosphorylated Gβ can only use the high-energy
phosphate to transfer to a GDP (Wieland et al. 1993), the
reaction in essence could account for the GTP specificity in
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NDPK-B/Nm23-H2 stimulation of G-protein function. By
re-expression of NDPK-B/Nm23-H2 or its catalytic inactive
H118N mutant in a combined NDPK-A and NDPK-B null
background, it has been demonstrated that this phospho-
transfer regulates basal, receptor-independent G-protein
activation (Hippe et al. 2011a). (4) NDPK-B/Nm23-H2
phosphorylated the KCa3.1 potassium channel on histidine
358, facilitating its activation (Srivastava et al. 2006).
Activation of this channel mediates K+ efflux building up a
negative membrane potential, required to establish a favor-
able electrochemical gradient for Ca2+ influx. KCa3.1
channels are important for diverse physiological responses
in a variety of cell types, including osmotic and volume
regulation in red blood cells, mitogen-dependent activation
of T-lymphocytes, Cl− secretion of exocrine epithelial cells,
and control of proliferation of T-and B-lymphocytes,
vascular smooth muscle cells, and some cancer cell lines.
The importance of its NDPK-B dependent regulation for
T-lymphocyte function in vivo has recently been demon-
strated in NDPK-B deficient mice (Di et al. 2010). A
review on the role of HPK and its counter regulator
phosphohistidine phosphatase in the regulation of insulin
secretion in the pancreatic β cell can be found in this issue
of Naunyn-Schmiedeberg's Archives of Pharmacology
(Kowluru et al. 2011). (5) Using homology to a eukaryotic
two-component pathway in Arabidopsis, the kinase sup-
pressor of ras (Ksr) was hypothesized to be a HPK
substrate. NDPK-A/Nm23-H1 phosphorylated Ksr on
two serine residues (Hartsough et al. 2002). Ksr is a
scaffold for the Erk Map kinase pathway central to
proliferation and other activities. Phosphorylation of Ksr
by NDPK-A/Nm23-H1 resulted in altered Hsp90 binding
to the scaffold with consequences for its stability and Erk
activation (Salerno et al. 2005). Finally, the potential relevance
of the HPK activity to the metastasis suppressive activity of
NDPK-A/Nm23-H1 was demonstrated in two studies where
mutations that decreased its HPK activity correspondingly
abrogated the ability of the protein to inhibit tumor cell
motility in vitro (Freije et al. 1997; Wagner et al. 1997).

The potential problems with adoption of HPK as a
relevant mechanism of action for NDPK/Nm23/Awd
proteins lie in its structure determined by crystallization.
The active site for its NDPK activity forms a small cleft and
thus regularly fits nothing more than a nucleotide. Although
at least some of the phosphorylated histidine residues, e. g.,
His266 in Gβ (Cuello et al. 2003), stick out of the protein
surface, it is difficult to imagine that protein substrates
can fit into the cleft and gain access to the intermediately
phosphorylated histidine of NDPK isoform. HPK status
co-crystals or NMR studies will address these problems.
Alternative explanations for this paradox are still lacking.
However, it is noted that NDPK/Nm23 proteins can
assume other structures, for instance, a molten globule

conformation (Lascu, 2006). Unless, for example, co-
crystallization efforts with a peptide or a protein substrate
solve this mystery, we consider the HPK activity of
NDPK/Nm23/Awd proteins a tantalizing but incompletely
understood biochemical mechanism.

Conclusions

It is undisputed that NDPK/Nm23/Awd family of proteins
have more biological functions than originally anticipated
from the primary enzymatic activity. The biochemical
mechanisms underlying these biological functions have
been the subject of a multitude of hypotheses, some
published in high-profile journals and widely disseminated.
Several well-known hypotheses concerning NDPK/Nm23/
Awd function relied on impure protein preparations and
other types of potentially inadequate evidence and should
be discounted. Emerging evidence has identified novel
biochemical functions and interactions. Stringent biochem-
istry, coupled with developmental and molecular cellular
biology, including cellular compartment definition,
mutational analysis, and animal model proof of concept
(see (Boissan and Lacombe 2011) in this issue of
Naunyn-Schmiedeberg's Archives of Pharmacology), will
undoubtedly enhance the discovery and validation of NDPK/
Nm23/Awd functions in normal and pathological states.
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