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Abstract β-Catenin is a plasma membrane-associated
protein that plays a dual role in cellular signalling by
stabilizing cadherin mediated cell–cell contact and by
regulating TCF-/LEF-mediated gene transcription. Tradi-
tionally, the role of β-catenin in health and disease has
mainly been studied in the context of development and
uncontrolled cell growth in diseases such as cancer. Recent
findings indicate, however, that β-catenin also plays a
significant role in fibro-proliferative diseases of several
organ systems and that β-catenin regulates mitogenic
responses of smooth muscle cells. As several diseases of
the internal organs are characterized by structural and
phenotypic abnormalities of smooth muscle, including
increased fibro-proliferative responses, these findings im-
plicate that β-catenin could play a broad pathophysiological
role. This article will review this potential novel role for β-
catenin and associated intracellular signalling in smooth
muscle and discuss the hypothesis that it plays a central role
in smooth muscle remodelling.
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Introduction

Smooth muscle cells are key players in various internal
organs, including the vasculature, airways, urogenital, and

gastrointestinal tracts by regulation of tone and motility of
these organs, which is essential to their normal physiolog-
ical function. However, smooth muscle cells may also play
a detrimental role in these organs under pathophysiological
conditions, contributing for instance to neointima formation
in the vasculature during atherosclerosis and to airflow
limitation in the airways during asthma. Remodelling of the
smooth muscle layer underpins part of the abnormal smooth
muscle behaviour in some of these disorders. In the
vasculature for instance, smooth muscle cell proliferation
contributes to neointima formation during atherosclerosis,
restenosis after angioplasty and stent placement, and
vascular rejection (George and Dwivedi 2004). Moreover,
remodelling of the airway smooth muscle is a pathological
feature observed in asthma and in chronic obstructive
pulmonary disease (COPD). Thus, the airway smooth
muscle layer is thickened, in asthma, caused by hyperplasia
and hypertrophy (Benayoun et al. 2003; Ebina et al. 1993;
Woodruff et al. 2004). In COPD, thickening of the airway
smooth muscle bundle is not as pronounced as it is in
asthma; but several reports indicate that airway smooth
muscle thickening occurs in COPD patients (Hogg et al.
2004; Jeffery 2001; Jeffery 2004; Kuwano et al. 1993;
Lambert et al. 1993). Remodelling of the pulmonary
vasculature in asthma and COPD has also been reported
(Postma and Timens 2006). A comprehensive overview of
the nature of smooth muscle remodelling in disease is
beyond the scope of this review; nonetheless from the data
summarized above, it is evident that structural and
phenotypic abnormalities of smooth muscle has impact on
disease progression in several pathological conditions.
Though numerous cytokines and growth factors have been
demonstrated to regulate these abnormalities, the precise
intracellular mechanisms that regulate remodelling of
smooth muscle are only partially understood. Recently, it
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was demonstrated that the transcriptional co-activator β-
catenin may act as an important signal for smooth muscle
cell proliferation (George and Beeching 2006; George and
Dwivedi 2004). This article will review this potential novel
role for β-catenin and associated intracellular signalling in
smooth muscle and discuss the hypothesis that this pathway
plays a central role in smooth muscle remodelling.

The GSK-3-/β-catenin signalling axis

β-Catenin is a plasma membrane-associated protein that
plays a dual role in cellular signalling. β-Catenin is part of
a cadherin/catenin complex at the adherens junction that
stabilizes cell–cell contact. In addition, it serves a role in
activating gene transcription as translocation of β-catenin
to the nucleus, is a signal for the activation of T-cell factor
(TCF)-/lymphoid-enhancer factor (LEF) transcription fac-
tors (Clevers 2006). β-catenin localization at the plasma
membrane is controlled by a cytosolic multiprotein com-
plex consisting of the proteins axin, adenomatosis poly-
posis coli (APC) and glycogen synthase kinase-3 (GSK-3;
Clevers 2006; Doble and Woodgett 2003). This complex
regulates β-catenin phosphorylation when released into the
cytosol, which is a signal for ubiquitination and lysosomal
degradation of β-catenin (Clevers 2006; Doble and Woodgett
2003). This mechanism is crucial for maintenance of
mitogenic quiescence: when targeted to the nucleus, β-
catenin promotes transcription of TCF-/LEF-dependent
genes, which include cell cycle regulatory proteins (e.g.,
cyclin D1), growth factors (e.g., VEGF), matrix proteins
(e.g. fibronectin, versican), proteases (e.g. metalloproteinase
(MMP)-2, -7, -9) and pro-inflammatory enzymes and
mediators (e.g., cyclo-oxygenase (COX)-2 and interleukin
(IL)-8) (Brabletz et al. 1999; De Langhe et al. 2005; Gradl et
al. 1999; Howe et al. 1999; Masckauchan et al. 2005;
Rahmani et al. 2005; Tetsu and McCormick 1999; Wu et al.
2007; Zhang et al. 2001). A complete list of TCF-/LEF-
dependent genes that are regulated by β-catenin can be
found at http://www.stanford.edu/~rnusse/wntwindow.html.

In addition, GSK-3, which is constitutively active, has
direct effects, independent of β-catenin. GSK-3 directly
phosphorylates cyclin D1 and targets it for proteolytic
breakdown (Diehl et al. 1998); GSK-3 also exerts inhibitory
effects on the transcription factors c-Myc and c-Jun, which
implies that GSK-3 suppresses cell proliferation (Boyle et
al. 1991; Pulverer et al. 1994). Furthermore, active GSK-3
inhibits myocardin (Badorff et al. 2005), a transcriptional
coactivator that is critical for contractile and contraction
regulatory protein accumulation in smooth muscle (Wang et
al. 2003). This implies a repressive role for GSK-3 in the
regulation of contractile protein expression in smooth
muscle cells and, as such, in smooth muscle maturation.

The aforementioned observations suggest that aberrant
activation of the β-catenin-/GSK-3-signalling axis, for
instance by regulated inactivation of GSK-3 through Ser9/
21 phosphorylation, triggers pathological responses. Such
an aberrant activation of mesenchymal β-catenin/GSK-3
signalling has recently been shown to play a central
initiating role in fibro-proliferative diseases of the kidney
and vasculature (Iwano and Neilson 2004; Wang et al.
2002). Furthermore, in the lung, aberrant β-catenin/GSK-3
signalling was recently implicated in idiopathic pulmonary
fibrosis (IPF) (Chilosi et al. 2003). Collectively, this
indicates an important role for β-catenin signalling in
several fibro-proliferative disorders.

Key to understanding how this pathway is regulated
during health and disease is to understand how GSK-3
phosphorylation is regulated, as this appears to be a critical
step in directing β-catenin to the nucleus. GSK-3 can be
serine phosphorylated (Ser 9 for GSK-3β/Ser 21 for GSK-
3α) by several protein kinases, including integrin-linked
kinase (ILK), protein kinase C (PKC) and protein kinase B
(PKB/Akt; Cross et al. 1995; Delcommenne et al. 1998;
Goode et al. 1992). These protein kinases are activated by a
variety of receptor classes, including cytokine receptors,
receptor tyrosine kinases (RTKs), integrins and G protein-
coupled receptors (GPCRs), suggesting that GSK-3 may act
as a point of convergence for several signalling cascades
(Doble and Woodgett 2003; Frame and Cohen 2001;
Grimes and Jope 2001). This suggests a central role for
GSK-3 in regulating tissue remodelling in response to a
variety of inflammatory mediators, growth factors, contrac-
tile agonists and matrix proteins, which will be discussed
further in the sections below. Interestingly, it also suggests
that GSK-3/β-catenin signalling may contribute to the
progressive nature of tissue remodelling as the growth
factors, cytokines and matrix proteins produced as a result
of aberrant GSK-3/β-catenin regulation may immediately
feed forward into the system by suppressing GSK-3 activity
further. This hypothesis is summarized in Fig. 1.

The β-catenin/cadherin complex

Subcellular β-catenin localization is, to a large extent, also
actively regulated by cadherins. Cadherins are transmem-
brane glycoproteins that support homophilic cell–cell
contact and maintain tissue cohesion (Halbleib and Nelson
2006). The cadherin family of proteins contains several
subclasses, of which the classical cadherins have been most
extensively studied. Classical cadherins bind to β-catenin,
which stabilizes cell–cell contact by providing a physical
link between the cadherin/catenin complex and the actin
cytoskeleton (Halbleib and Nelson 2006). Thus, classical
cadherins play an important role in adherens junction
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formation and have been widely studied for their role in
regulating epithelial and endothelial barrier function.
Components of the cadherin/β-catenin complex are, how-
ever, also expressed in mesenchymal cell types. The
cadherin subtypes expressed are different from epithelial
cells, with reported expression of P-, R- and N-cadherin in
fibroblasts (El Sayegh et al. 2007) and T-, R- and N-
cadherin in vascular smooth muscle cells (George and
Beeching 2006; George and Dwivedi 2004). Our own
studies further indicate that airway smooth muscle cells
express R-cadherin protein, and have mRNA for P-
cadherin, though E-and VE-cadherin are absent (R. Gosens
and I.S.T. Bos; unpublished observations). The precise role
of the cadherin subtypes in these cells is incompletely
understood, but initial studies indicate that disassembly of
the R- or N-cadherin/β-catenin complex in vascular smooth
muscle cells promotes cell proliferation, as detailed below
(Slater et al. 2004; Uglow et al. 2003). This suggests that
inflammatory insults that modulate cell–cell contacts in the
vessel wall may use this mechanism to regulate wound
repair and tissue remodelling.

β-catenin signalling in smooth muscle remodelling

Based on the data described above, there is a strong
rationale for a role for β-catenin and associated intracellular
signalling in regulating responses that drive tissue remod-
elling. So what is the available evidence that this pathway
regulates smooth muscle function?

Cell proliferation Compelling evidence exists for a role of
the GSK-3-/β-catenin signalling axis in proliferation and
apoptosis of smooth muscle cells. Pharmacological inhibi-
tion of GSK-3 increases cyclin D1 abundance in human
airway smooth muscle cells, and potentiates growth-factor-
induced retinoblastoma (Rb) protein phosphorylation and
cell cycle progression, as assessed by flow cytometric
analysis (Gosens et al. 2007). This indicates a repressive
role for GSK-3 in airway smooth muscle cell proliferation,
as would be expected from the data described in earlier
sections. Interestingly, the repressive role of GSK-3 could
be reversed by platelet-derived growth factor (PDGF) and
foetal bovine serum that both induced sustained GSK-3
phosphorylation (Gosens et al. 2007). Similarly, baseline
GSK-3 phosphorylation was highest in cells with a
proliferative phenotype compared to quiescent cultures. A
similar role for GSK-3 exists in vascular smooth muscle.
For example, transfection of rat aortic smooth muscle cells
with GSK-3β induces apoptosis, which can be reversed by
co-transfection of these cells with a nondegradable β-
catenin mutant (Wang et al. 2002). Furthermore, balloon
injury in the rat carotid artery induced GSK-3 phosphory-
lation within the vascular smooth muscle bundle (Hall et al.
2001), and gene transfer of a dominant negative GSK-3
(S9A) inhibits balloon injury-induced neointima formation
in the rat carotid artery, reduced smooth muscle cell
proliferation and augmented apoptosis (Park et al. 2003).
Increased phosphorylation and inhibition of GSK-3 by IGF-
1 also protects human intestinal smooth muscle cells from
apoptosis (Kuemmerle 2005). Collectively, these data
indicate that GSK-3 suppresses smooth muscle cell prolif-
eration and induces apoptosis, which can be actively
reversed by growth factor stimulation. This suggests a
central role for GSK-3 in regulating smooth muscle
remodelling in response to a variety of stimuli. This
hypothesis is summarized in Fig. 1.

β-Catenin likely plays a central role in the observed
effects of GSK-3. First, β-catenin expression can be
induced by growth factor treatment, presumably as a result
of sustained GSK-3 inhibition, which results in reduced
intracellular breakdown of the protein. Thus, proliferating
human airway smooth muscle cells express increased levels
of β-catenin protein compared to quiescent cultures, and
prolonged treatment of airway myocytes with foetal bovine
serum increases β-catenin protein expression (Nunes et al.,

Fig. 1 Hypothetical role of the GSK-3/β-catenin signalling axis in
smooth muscle remodelling. β-Catenin is a membrane-associated
protein that is bound to cadherins and stabilizes cell–cell contact in
quiescent cells. Under normal circumstances, this complex is stably
expressed at the plasma membrane in smooth muscle cells (left panel).
β-Catenin that enters the cytoplasm is immediately broken down by
GSK-3-dependent phosphorylation, resulting in its ubiquitination.
GSK-3 also suppresses cell growth directly, by promoting the
degradation of cyclin D1. During inflammation and remodelling,
however, growth factors, cytokines, matrix proteins and proteases are
released that could inhibit GSK-3 and disassemble cadherin–catenin
complexes by promoting cadherin degradation (right panel). This
results in β-catenin nuclear translocation, which promotes the
transcription of TCF-/LEF-dependent genes, resulting in cell growth
and the release of growth factors, cytokines, matrix proteins and
proteases. The released substances could immediately feed forward
into the system, possibly creating a vicious circle that may underpin
aberrant repair and progressive smooth muscle remodeling
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unpublished observations). Moreover, IGF-1 treatment of
human intestinal smooth muscle cells prevents β-catenin
phosphorylation by GSK-3, resulting in reduced intracellu-
lar β-catenin breakdown (Kuemmerle 2005). Moreover,
overexpression of a β-catenin mutant that cannot be
degraded by GSK-3 prevents GSK-3 induced apoptosis,
whereas overexpression of wild-type β-catenin does not
have this anti-apoptotic effect (Wang et al. 2002). Second,
the subcellular localization of β-catenin is also regulated by
growth factor treatment. Thus, foetal bovine serum treat-
ment induces accumulation of β-catenin protein in the
nuclear fraction, which is responsible for its effects on β-
catenin-dependent gene transcription in smooth muscle of
the human saphenous vein (Uglow et al. 2003). These data
collectively indicate that GSK-3 promotes intracellular β-
catenin breakdown. This inhibitory role is reversed by
growth factors, resulting in intracellular β-catenin accumu-
lation and nuclear translocation.

The crucial role for GSK-3 inhibition and β-catenin
nuclear translocation in smooth muscle cell proliferation is
evidenced based on the fact that overexpression of a
dominant negative TCF-4, which mediates the nuclear
effects of β-catenin on gene transcription in human aortic
and saphenous vein smooth muscle, inhibited the effects of
PDGF and foetal bovine serum on smooth muscle prolif-
eration (Quasnichka et al. 2006). Furthermore, overexpres-
sion of inhibitor of β-catenin and TCF-4 (ICAT), a protein
that interferes with the interaction of β-catenin and TCF,
reduced smooth muscle proliferation (Quasnichka et al.
2006). Collectively, these results points to a crucial role for
β-catenin in mediating the effects of growth factors on
smooth muscle cell growth, likely through regulated
inactivation of GSK-3 by phosphorylation. Therefore, β-
catenin could play a role in smooth muscle thickening,
which is further indicated by observations that β-catenin
expression and nuclear localization are increased after
balloon injury of the rat carotid artery (Slater et al. 2004;
Wang et al. 2002) and by observations that overexpression
of a dominant negative TCF-4 inhibits smooth muscle cell
proliferation induced by foetal bovine serum in the human
saphenous vein in situ (Quasnichka et al. 2006).

GSK-3 is also involved in the cooperative induction of
smooth muscle cell proliferation by GPCR agonists RTKs.
GPCR agonists, including those that lack effect on smooth
muscle cell proliferation by themselves, often augment the
proliferative effects of RTK ligands in a synergistic fashion
(Deshpande and Penn 2006). For example, the G protein-
coupled muscarinic receptor agonist methacholine, which
does not induce airway smooth muscle proliferation by itself,
potentiates PDGF-induced cell cycle progression and Rb
phosphorylation (Gosens et al. 2007). Notably, the effects of
methacholine and PDGF on GSK-3 phosphorylation can
explain these differential effects on cell proliferation. Thus,

GSK-3 phosphorylation induced by PDGF sustained over
time and resulted in cell cycle progression, whereas GSK-3
phosphorylation induced by muscarinic receptor stimula-
tion was transient and not sufficient for cell proliferation
(Gosens et al. 2007). The combination of methacholine
with PDGF, however, was associated with synergistic
effects on GSK-3 phosphorylation that sustained over
several hours (Gosens et al. 2007). Of note, cross-talk of
GPCR and RTK ligands likely requires multiple signalling
arms, which include GSK-3 and PI3K, the latter also being
cooperatively regulated by Gq-derived βγ subunits and
RTK stimulation (Billington et al. 2005; Kong et al. 2006).
Therefore, PI3K and GSK-3 may act as points of
convergence for GPCR and RTK signalling and explain,
in part, the receptor cross-talk between these receptor
systems that drives synergistic cell responses.

In addition to GSK-3, cadherins also play a crucial role
in repressing smooth muscle cell proliferation. Growth
factors reduce N-cadherin expression in cultured vascular
smooth muscle cells derived from the human saphenous
vein, which is dependent on matrix metalloproteinase
(MMP) activity, suggesting a mechanism in which cleavage
of N-cadherin promotes β-catenin release from the plasma
membrane, resulting in nuclear translocation and cell
proliferation (Uglow et al. 2003). Moreover, balloon injury
reduces R-cadherin expression in the rat carotid artery,
which is associated with increased β-catenin and cyclin D1
abundance within the smooth muscle layer (Slater et al.
2004). These studies indicate that dynamic regulation of
cadherin expression regulates smooth muscle cell prolifer-
ation in the systemic vasculature. Collectively, the afore-
mentioned data indicate that β-catenin, GSK-3 and
cadherins regulate mitogenic behaviour of smooth muscle
derived from several organ systems. Its role in systemic
vascular smooth muscle remodelling in particular has been
focus of study. The potential role of this pathway in other
diseases involving smooth muscle remodelling, e.g., airway
and pulmonary vascular smooth muscle remodelling in
asthma and COPD, still needs to be elucidated.

Hypertrophy GSK-3 plays an important role in regulating
myocyte hypertrophy (Kerkela et al. 2007). This may not
be primarily dependent on β-catenin, but rather on the
direct effects of GSK-3 on protein translation and gene
transcription of contractile proteins. Phosphorylation of
GSK-3, for instance by hypertrophic growth factors such as
IGF-1 or insulin, removes the inhibitory constraint on
eukaryotic initiation factor (eIF)2B, which stimulates
protein translation that is necessary for cellular hypertrophy
in skeletal muscle (Jefferson et al. 1999; Rommel et al.
2001). Recent studies in vascular and airway smooth
muscle indicate that this mechanism is also operative in
smooth muscle cells. First, mechanisms that direct protein
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translation, including PKB (which is upstream of GSK-3),
and its downstream effectors mammalian target of rapamy-
cin (mTOR), 4EBP-1 and p70S6K are known to play a
crucial role in regulating airway smooth muscle cell hyper-
trophy and contractile protein accumulation (Goldsmith et al.
2006; Gosens et al. 2003; Halayko et al. 2004; Schaafsma et
al. 2007). Second, induction of total protein expression
(suggestive of hypertrophy) by endothelin-1 in rat aortic
smooth muscle was associated with phosphorylation and
inactivation of GSK-3 (Taurin et al. 2007). Third, GSK-3
phosphorylation removes the inhibitory constraint on myo-
cardin (Badorff et al. 2005), a transcription factor that is
necessary for smooth muscle-specific protein expression
(Wang et al. 2003), and finally, initial studies in airway
smooth muscle cells indicate that lithium, which inhibits
GSK-3 activity or GSK-3 siRNA both increase cell size and
contractile protein expression (Deng et al. 2007). Collective-
ly, these results indicate that GSK-3 inhibition likely plays
an important role in contractile protein expression and
cellular hypertrophy in smooth muscle, by regulating protein
translation and by regulating myocardin-dependent smooth
muscle-specific gene transcription.

Pro-fibrotic and secretory function Although β-catenin and
TCF-dependent gene transcription has been associated with
the production of pro-inflammatory mediators, growth
factors and cytokines (e.g., COX-2, VEGF, IL-8; Howe et
al. 1999; Masckauchan et al. 2005; Zhang et al. 2001), the
importance of this mechanism for cytokine production by
smooth muscle is unknown and warrants future investiga-
tion. However, the production of the matrix component
versican has been linked to a GSK3-/β-catenin-/TCF-
dependent mechanism in rat aortic smooth muscle cells
(Rahmani et al. 2005), suggesting that this pathway may
contribute to extracellular matrix production. Whether the
capacity of smooth muscle cells to synthesize other relevant
molecules (e.g., matrix protein production, cytokine pro-
duction) is also β-catenin-dependent is unknown at this
point, however, future studies in this area are needed.

Conclusions and future perspectives

The β-catenin signalling pathway has traditionally been
associated with development and with diseases such as
cancer (Barker and Clevers 2006). However, recent
research indicates that this pathway is also activated during
fibrosis and tissue remodelling in several organ systems
(Chilosi et al. 2003; Douglas et al. 2006). The contention
that the role of β-catenin exceeds development is reinforced
by studies that demonstrate that this pathway is regulated in
response to mediators of inflammation, including MMPs,

growth factors and cytokines (George and Dwivedi 2004).
Indeed, the output of β-catenin-/TCF-/LEF-dependent gene
transcription (cell cycle regulatory proteins, growth factors,
proteases, cytokines, matrix proteins) suggests that this
pathway may actively regulate essential aspects of inflam-
mation and remodelling. Convincing in vitro evidence now
indicates a role for this pathway in myocyte function,
including cell proliferation (Gosens et al. 2007; Slater et al.
2004; Uglow et al. 2003). Therefore, a thus far unappreci-
ated role for β-catenin in pathological remodelling of
smooth muscle can be hypothesized.

Several open questions exist, however, which preclude
stronger conclusions at this point. In particular, the role of
β-catenin in smooth muscle secretory and pro-fibrotic
function is not well studied, even though a clear rationale
for such a role exists. Most importantly, the functional
contribution of this pathway to smooth muscle remodelling
and inflammation needs to be determined using appropriate
animal models and clinical samples. Current evidence
available in the literature provides a strong and attractive
rationale for such studies, and suggests that inhibition of β-
catenin-/TCF-/LEF-dependent gene transcription using
small molecule inhibitors holds promise as a new pharma-
cological principle (Barker and Clevers 2006).
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