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Abstract Mammalian TRP channels display heterogenous
biophysical properties and are involved in a variety of signal
transduction pathways. To carry out their diverse biological
functions and to adapt these functions to changes of the
environment, mechanisms to regulate their molecular struc-
ture are required. Transcriptional regulation and post-tran-
scriptional RNA processing represent essential instruments
to generate TRP channel variants with modified properties.
TRP variants are expressed depending on the tissue and
developmental state. They can show distinct biophysical
properties and mechanisms of activation, and thereby deter-
mine channel function and malfunction in certain human
diseases. In this review, we give an overview of the variants
of a given TRP gene, with the focus on the TRPM sub-
family, and discuss their relevance with respect to their
function under physiological and pathological conditions.

Keywords TRP channel variants . Transcriptional
regulation . Promoter . Alternative splicing .
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Introduction

Transient receptor potential (TRP) channels were first de-
scribed in Drosophila melanogaster as gene products in-
volved in signal transduction of fly photoreceptors. The
search for mammalian homologs of these proteins finally
identified members of the classical (TRPC) subfamily and
today we know at least 28members of the TRP superfamily,
subdivided into TRPC, melastatin-related (TRPM) and va-
nilloid receptor related (TRPV) channels (Montell et al.
2002). In addition, TRPA, mucolipins (TRPML) and poly-

cystins (TRPP) can be included. All TRP channels share
structural similarity with six putative transmembrane seg-
ments (TM) and a predicted pore region between TM5 and
TM6. Some amino acid motifs are well conserved through-
out the superfamily whereas the overall amino acid se-
quence homology of distantly related TRP channels is
rather low. Thus, it is no surprise that the mechanisms of
activation, the ion permeation properties and the patterns of
expression are quite diverse. Correspondingly, the biolog-
ical functions of TRP channels are heterogeneous ranging
from pain-perception, taste- and mechanosensation up to
regulation of vasorelaxation. In the current view TRP pro-
teins form tetrameric channel complexes and at least closely
related members of one subfamily are capable to build
heteromeric channels. By combinations of different TRP
channel subunits, which build a common ion-conducting
pore, the diversity of native TRP related channels may be
widely increased.

The latter mechanism is not the only way how functional
diversity of TRP channels can be accomplished. There is
growing evidence that transcriptional regulation and alter-
native mRNA processing also contributes to the diversity of
TRP channels. At present, variants have been described for
a large number of TRP proteins. Most of them originate
from alternative splicing (Table 1). TRP channel variants
might be able to modulate functional properties of TRP
channel complexes or to impair their functions. Accord-
ingly, knowledge of these variants is essential, since they
might provide mechanisms to adapt the properties of a
given TRP channel to different functions and changes of
the cellular environment. Furthermore, comparison of such
variants may allow identification of structural domains
essential for TRP function. This might be an advantage
compared to synthetically generated mutants because the
presence or absence of a specific part of the protein in a
variant might define a naturally occurring phenotype. The
biophysical and functional features of TRPM channels
have been reviewed recently (Fleig and Penner 2004) and
in an accompanying article of this issue (Harteneck 2005).
In this review we now summarize what is currently known
about splicing and transcriptional regulation of TRPM
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channels and supplement the published data by unpub-
lished observations obtained in our lab.

Materials and methods

Northern blots Five to ten micrograms of polyA+-RNA
were hybridized under stringent conditions to [α32P] dCTP-
labeled cDNA fragments of TRPM1-Long (nucleotides 1–
1,325 and nucleotides 3,350–5,030) or to a 230-bp fragment
encoding amino acid residues Glu637 to Arg713 of TRPM8a
(Acc. no Q7Z2W7). The filters were exposed to X-ray film
with intensifying screens for 21 days and hybridized again
with a 239 bp cDNA fragment of the human glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) as control.

Cloning of TRPM1 splice variants Oligonucleotide primers
up1 (rat/mouse: 5′TCC TTC TGA GCT GAC TGA GCC),
up 2 (rat/mouse: 5′GCG GGA CCA GCT TCTAGT TAC),
down 1 (rat/mouse: 5′GGG CCA AAG ACG AAG ATC
TGG) and down 2 (rat: 5′CCATTA GCATTC AGT TTC
CGG G; mouse: 5′CAT CAG CAC TCA GTT TCC GCG)
were used to amplify mouse and rat cDNA fragments after
oligo dT(18) primed reverse transcription of total RNA from
mouse or rat brain. For amplification we used the Long
expand PCR Kit (Roche, Mannheim, Germany) and the
following conditions: 2 min at 94°C, 10 cycles (94°C, 10 s;

62°C, 30 s; 68°C, 5 min), 25 cycles (94°C, 10 s; 62°C, 30 s;
68°C, 5 min + 20 s/cycle) and 7 min at 68°C. Fragments
were subcloned and sequenced on both strands. The number
of clones analysed are indicated in Fig. 2.

Cloning of TRPM8 splice variants Oligonucleotide primers
5′ATG AAA TCC TTC CTT CCT GTC and 5′TTA TTT
GAT TTT ATT AGC AAT CTC TTT CAG were used to
amplify human cDNA fragments after oligo dT(18) primed
reverse transcription of RNA obtained from prostate cancer
tissues (stage pT3b) of four patients. Fragments were am-
plified and subcloned using the following conditions: 2 min
at 94°C, 35 cycles (94°C, 30 s; 58°C, 30 s; 72°C, 4 min) and
10min at 72°C. Five independent clones were sequenced on
both strands.

TRPM1

Melastatin (TRPM1, MLSN) is the founding member of the
TRPM family. Its first initial was chosen to rename all eight
relatives “TRPM” (Montell et al. 2002). Although it was the
first TRPM to be cloned, there are no published reports
about its biophysical properties. Originally, it has been
identified by differential cDNA display in mouse B16
melanoma cell lines in search for genes whose expression
correlates with the aggressive metastatic behavior of the
cells (Duncan et al. 1998). A 2,722 bp transcript encoding
542 amino acid residues (aa) was cloned (see Fig. 2c),
which was highly expressed in poorly metastatic cells but
strongly reduced in a highlymetastatic line. This correlation
suggested that this protein may serve as a tumor suppressor
protein but this idea could not be further substantiated.
Nevertheless, TRPM1 may have clinical importance since
down-regulation of TRPM1 mRNA in primary cutaneous
tumors may serve as a prognostic indicator in patients with
melanoma (Deeds et al. 2000; Duncan et al. 2001; Miller
et al. 2004). The TRPM1 mouse variant was initially not
recognized as member of the TRP family since it included
only the aminoterminal part of a TRP protein and lacked a
transmembrane region and the characteristic “Trp”- domain
(see Fig. 2c). However, a human ortholog with 1,533 amino
acids in length (Gene accession no. AF071787) was iden-
tified in a hybridization screen of a retinal cDNA library
(Hunter et al. 1998; see Fig. 2c). The human and mouse
genes map to chromosome 15q13-q14 and to chromosome
7, respectively, and show a similar organization (see Fig. 2a).
The mouse gene was reported to consist of 27 exons with
the initiation codon in exon 3 located 345 nucleotides
downstream of the transcription start site (Hunter et al.
1998). However, this 5′ untranslated region shows sequence
homology to other TRPM coding sequences suggesting that
additional exons might exist, which may encode an ex-
panded TRPM1 amino terminus. Exon 14 is the final exon
in the mouse 2,722 bp transcript and so far no mouse
transcripts that correspond to the longer human form have
been isolated. Directly upstream of the transcription ini-
tiation site a proximal promoter region (see Fig. 2a) con-
tains transcriptional regulatory elements unique to genes

Table 1 Selected literature reporting alternative processing of TRPC,
TRPV, and TRPM transcripts

Gene Reference

TRPC 1 (Sakura and Ashcroft 1997; Chang et al. 1997; Wang et al.
1999; den Dekker et al. 2001; Yang et al. 2002; Antoniotti
et al. 2002)

TRPC 2 (Berg et al. 1997; Wissenbach et al. 1998; Vannier et al.
1999; Hofmann et al. 2000; Chu et al. 2002, 2004; Yildirim
et al. 2003)

TRPC 3 (Ohki et al. 2000; Yang et al. 2002)
TRPC 4 (Freichel et al. 1998; Walker et al. 2001, 2002; Mery et al.

2001; Schaefer et al. 2002; Yang et al. 2002; Qian et al.
2002; Satoh et al. 2002)

TRPC 6 (Philipp et al. 2000; Zhang and Saffen 2001)
TRPC 7 (Walker et al. 2001)
TRPV1* (Schumacher et al. 2000; Sanchez et al. 2001; Xue et al.

2001; Wang et al. 2004)
TRPM1 (Fang and Setaluri 2000; Xu et al. 2001; Zhiqi et al. 2004);

this manuscript
TRPM2 (Wehage et al. 2002; Zhang et al. 2003a)
TRPM3 (Lee et al. 2003)
TRPM4 (Launay et al. 2002; Nilius et al. 2003; Murakami et al.

2003)
TRPM5 (Prawitt et al. 2000)
TRPM6 (Schlingmann et al. 2002; Walder et al. 2002; Chubanov

et al. 2004)
TRPM8 This manuscript

*For a comparison of TRPV1 splice variants see review by
B. Niemeyer (2005)
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with restricted melanocytic expression pattern (Hunter et
al. 1998; Miller et al. 2004; Zhiqi et al. 2004). This pro-
moter is capable to drive reporter gene expression in
mouse and human melanoma cells. Recently, it could be
shown that MITF is an essential transcription factor for
melanocytic development and a major transcriptional reg-
ulator of TRPM1 expression through its interaction within
the proximal promoter region (Miller et al. 2004; Zhiqi et
al. 2004). RT-PCR analysis of mouse (Duncan et al. 1998)
and Northern blots of rat tissues (Fig. 1) revealed TRPM1
transcripts in eye and melanoma cells but failed to detect
transcripts in lung, heart, liver, spleen, kidney and intestine.
Additionally, long TRPM1 transcripts seem to be expressed
in human B- and T-cell lines and in monocytes (Perraud
et al. 2004). Northern blot analysis of pigmented human
SK-MEL-19 and 23c22 melanocytes showed a variety of
long (5.4 kb) and short (1.3, 1.8, and 4.0 kb) transcripts,
whose expression was upregulated after induction of cell
differentiation (Fang and Setaluri 2000). In addition,
transcripts of 0.8, 1.7, 2.3, and >3.0 kb were generated
constitutively by alternative splicing and may include 3′
terminal exons. Thus, multiple transcripts were generated
and it has been suggested that TRPM1 expression can be
regulated at the level of both transcription and mRNA
processing (Fang and Setaluri 2000). The inducible short
transcripts were predicted to encode short human TRPM1
variants (MLSN-S) of ∼500 amino acids which—similar to
the 542 aa mouse melastatin—include only the N-terminal
segment but lack any transmembrane domain of the long

(1,533 aa) TRPM1 protein (MLSN-L). Although such short
variants have never been identified in human tissues, this
prediction inspired the idea that MLSN-S may represent a
cytoplasmic isoform, which regulates MLSN-L (Xu et al.
2001). It has been shown that overexpression of 500 ami-
noterminal amino acids of TRPM1 altered the membrane
localization of the long variant presumably by direct in-
teraction of the two variants. In addition, MLSN-S seemed
to suppress MLSN-L mediated Ca2+ entry. Therefore, it has
been hypothesized that control of translocation through
interaction between MLSN-S and MLSN-L represents a
mode for regulating ion channel activity (Xu et al. 2001).

TRPM1 transcripts are expressed in several human
melanocytic lines (Fig. 1).Whereas short transcripts of ∼1.3
and ∼1.8 kb and transcripts larger than 10 kb are present
in SK-MEL-28 cells only a ∼1.8 kb mRNA is abundant
in MeWo cells. These patterns differ to those described
for human SK-MEL-19 and SK-MEL-23c22 melanocytes
(Fang and Setaluri 2000), indicating that alternative splic-
ing of TRPM1 strongly depends on the cell subtype. In
addition, we found TRPM1 mRNA of ∼6.5, ∼8.0 and ∼10
kb in rat eye were it may be abundant in the pigmented
epithelium of the retina. Finally, large TRPM1 transcripts
are expressed (∼7 kb, ∼10 kb, >12 kb) in kidney epithelial
cells from dog (MDCK2) but not in human embryonic
kidney cells (HEK-293) showing that its expression is not
limited to pigmented epithelial cells from skin and eye.

By database analysiswe identified a newTRPM1 transcript
cloned from a mouse retinal library (Acc no. AK044507).
As shown in Fig. 2c this 2,008 nt mRNA is predicted to
encode 461 amino acids with overlapping sequence homol-
ogy to mouse and human melastatin but extending these
sequences at the aminoterminal end by 116 amino acid res-
idues. Just as the whole TRPM1 gene, the coding nucle-
otides are well conserved in the mouse and human genes
and in the rat gene, which is located on chromosome 1q22
and consists of 28 exons (Fig. 2a). The additional 116 amino
acid residues are encoded by an additional exon 1a and by
exons 2 and 3. Exons 2 and 3 are non-coding in mouse and
human melastatin sequences when they are expressed from
the proximal promoter (Fig. 2a). Exon 1a is located ∼33.5 K
upstream to a region homologous to the human and mouse
proximal promoter (AF 084519) which is responsible for
TRPM1 expression in melanocytes. We suggest that a sec-
ond distal promoter may exist, which drives expression of
aminoterminal extended variants of TRPM1. Using a RT-
PCR based strategy (Fig. 2b) and primer up1 deduced from
the genomic sequence upstream of the initiation codon of
AK044507 in combination with primer down1 located in
exon 10, we cloned cDNA fragments from mouse brain and
eye which confirmed the sequence of AK044507. Using
primer up1 in combination with primer down2, which is
located at a position corresponding to the translation stop of
humanMLSN (AF071787), we failed to amplify cDNA frag-
ments longer than ∼2,200 bp. We suppose that secondary
mRNA structures may inhibit reverse transcription of lon-
ger transcripts. However cloning of these ∼2,200-bp am-
plification products identified a new TRPM1 variant from
mouse called TRPM1Δ189–1,078 (Fig. 2b, c). In this variant

Fig. 1 TRPM1 transcripts of different length are expressed in human,
rat, and dog tissues. PolyA+-RNA was hybridized to labeled cDNA
fragments of TRPM1-Long (upper panel). The lower panel shows a
control hybridization of the same blot with the glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) cDNA.
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exon 4 is spliced to exon 24. It spans a reading frame of 738
amino acid residues. Similar to AK044507 it contains 116
additional residues at the aminoterminus as well as carboxy-
terminal end homologous to the human variant AF047714
(Fig. 2c). This new variant indicates that also inmouse tissues
carboxyterminal extended TRPM1 variants are expressed.

With the primer combinations up1/down1 and up2/
down2 we amplified overlapping cDNA fragments from rat
brain and eye (Fig. 2a, b). The predicted new TRPM1 splice
variant TRPM1-Long (TRPM1-L) contains 1,628 amino
acid residues. A stop codon upstream and in frame of the
initiation codon (Fig. 2b) indicates that the reading frame is
complete. Apart from the extended aminoterminal end, this

Fig. 2 Identification of TRPM1 splice variants. a Scheme of the rat
TRPM1 gene consisting of 28 exons (gray boxes), highly similar to
themouse and human genes. Splice donor and splice acceptor sites are
invariant in all intervening intron sequences (black boxes). As in
b, the location of an initiation codon (ATG) corresponding to mouse
and human melastatin (AF047714 and AF071787) is indicated by
an open circle. A hollow arrow marks a region homologous to the
human and mouse proximal promoter (AF084519). This promoter
is 5′ flanking to exon 1b present in the mouse and human melas-
tatin mRNA (AF047714, AF071787) shown in c. An additional start
ATG (closed circle) present in the alternative exon 1a of AK044507
(c) and of the obtained rat and mouse clones shown in b is located
33.5 K upstream. Just as in b, positions of primers up1, up2, down1,
and down2 used to amplify mouse and rat cDNA (b) are indicated.

b Cloning strategy of rat (light gray bars) and mouse (dark gray
bars) TRPM1 cDNAs. Number of clones sequenced as indicated
in parentheses. Stop codons in frame are shown. In two mouse
clones exon 4 is spliced to exon 24. In one rat clone splicing to an
alternative splice donor site within exon 22 leads to the extension
of exon 22 by 18 nucleotides (exon 22b). c Scheme of different
TRPM1 splice variants from rat, mouse, and human with 461–1,628
amino acids (aa) in length. Black bars represent regions with >90%,
dark gray bars with 80–90%, and light gray bars with 50–60%
sequence identity. Dotted lines indicate missing domains compared
with TRPM1-Long. Sequences of TRPM1-Long, TRPM1Δ1066–1071,
and TRPM1Δ189–1078 have been deposited in the GeneBank database.
Trp TRP domain.
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variant is highly homologous to human and mouse se-
quences with more than 90% amino acid sequence identity
(black bars in Fig. 2c). However, the last ∼300 amino acid
residues show considerable sequence divergence, unex-
pected for orthologous proteins. Whereas mouse and rat
sequences are 89% identical within this region (dark gray
bars in Fig. 2c), the human sequence shows only ∼50%
identity (light grey bars in Fig. 2c) and several additional
short sequence insertions (not shown), indicating that in this
region alternative splicing may occur, too. TRPM1-L con-
tains six additional amino acid residues compared to a fur-
ther identified variant, called TRPM1Δ1,066–1,071 (Fig. 2b, c)
and compared to the human variant AF071787. Their
presence arise by the usage of an alternative splice donor
site within the intron between exon 22 and exon 23 leading
to an extended exon 22b. Interestingly, these residues are
located within the putative pore region of TRPM1. This
findingmay have special importance, since it may designate
alternative splicing as a mechanism to adapt the permeation
properties of the channel.We do not know the physiological
significance of the new variants. However our findings may
be a step forward to understand TRPM1 channels andmight
explain, why there is only little known about the functional
properties of this first identified member of the TRPM
subfamily.

TRPM2

The TRPM2 gene (LTRPC2) was originally identified on
human chromosome 21q22.3 within a region which is
linked to a variety of human genetic disorders (Nagamine et
al. 1998). However, the hope to identify a gene which is
linked to a human disease has not yet been fulfilled. When
overexpressed in HEK-293 cells the TRPM2 cDNA en-
codes non-selective cation channels of 1,503 amino acids
which can be activated by ADP-ribose, β-NAD or H2O2

(Perraud et al. 2001; Sano et al. 2001; Hara et al. 2002).
TRPM2 is unique for its C-terminal NudT9-homology
domain (NudT9-H) which shows considerable homology to
NudT9ADP-ribose hydrolase (ADPRase). This domain has
been shown to be essential for channel activation by ADP-
ribose (Perraud et al. 2001). The channel is thought to be
involved in pathways which respond to oxidants and might
play a role as a Ca2+ permeable channel that mediates cell-
death induced by oxidative stress. Comprehensive reviews
about the structure and function of TRPM2 (Perraud et al.
2003) and their potential role in immune cells (Perraud et al.
2004) have been published recently. Furthermore, a review
on the regulation of TRPM2 channels in neutrophil gran-
ulocytes by ADP-ribose is included in this issue (Heiner et al.
2005).

Northern blots unmasked TRPM2 transcripts of different
length in human brain areas (Nagamine et al. 1998) and in
mouse spleen (Hara et al. 2002). Amplification of two
adjacent cDNA segments from HL-60 neutrophils identi-
fied two alternative splice events (Wehage et al. 2002).
Splicing internal to exon 11 led to the absence of amino acid
residues 538–557within the aminoterminus and skipping of

exon 27 was connected to the loss of residues 1,292–1,325
within the carboxyterminus of the protein. Additionally,
two amino acid exchanges (S1088N and D1291E) were
detected (Wehage et al. 2002). Thus transcripts missing a
part of exon 11 and/or the complete exon 27 may exist,
although their relative abundance in blood leukocytes, HL-
60 cells and neutrophil granulocytes seemed to be rather
low (Wehage et al. 2002; Perraud et al. 2003). Recombinant
TRPM2 proteins carrying one or both deletions were over-
expressed in HEK-293 cells and showed intriguing prop-
erties. In contrast to TRPM2 these variants did not respond
to ADP-ribose indicating that both regions may be essential
for channel activation. Most interestingly, while the C-ter-
minal variant TRPM2Δ1,292–1,325 lost its activitywhen exposed
to ADP-ribose it retained the ability to gate in response to
H2O2. This result is in line with the idea of an independent
mechanism of TRPM2 activation by H2O2 and argues
against a model in which NAD and its breakdown product
ADP-ribose serve as diffusible mediators of oxidant-in-
duced gating. However, the mechanisms underlying oxi-
dant induced gating are under debate.

An additional splicing event has been detected in human
bone marrow cells (Zhang et al. 2003a). Amplification of
five partial cDNA fragments together covering the com-
plete TRPM2 open reading frame detected an alternative
splice acceptor site within intron 16 which encodes a stop
codon. The deduced protein called TRPM2-S was predicted
to contain the complete aminoterminus and the first two
transmembrane spanning domains. Although it is not yet
clear, if such a variant exists in vivo, its heterologous ex-
pression in HEK-293 cells gave further insights into the
structure–function relationship of TRPM2. TRPM2-S co-
immunoprecipitated with the long variant (TRPM2-L) and
both variants seemed to be localized in the plasma mem-
brane indicating that the aminoterminal part of TRPM2 is
sufficient for protein–protein interaction. Expression of
TRPM2-S suppressed H2O2 induced Ca2+ influx through
TRPM2-L as well as oxidant induced cell death suggesting
that this variant modulates TRPM2 channel activity and
thereby providing an instrument through which cells can
control their reaction to damaging oxidants.

TRPM3

TRPM3 is the closest relative of TRPM1. It is expressed in
human kidney, testis and in the central nervous system but
seemed to be absent in a variety of other human tissues
(Grimm et al. 2003; Lee et al. 2003). Two publications
described the cloning and functional properties of human
TRPM3 (Grimm et al. 2003; Lee et al. 2003) but the data are
inconsistent in view to molecular as well as functional
aspects. Using 5′ and 3′ RACE strategies Grimm and col-
leagues identified three overlapping cDNA fragments from
fetal brain and kidney together predicting a protein of 1,325
amino acid residues (Grimm et al. 2003). HEK-293 cells
overexpressing TRPM31,325 showed constitutive Ca2+ en-
try, which was increased during treatment with hypotonic
extracellular solutions. Electrophysiological analysis re-
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vealed that TRPM31,325 build nonselective Ca
2+-permeable

channels sensitive to the osmolarity of the extracellular
medium (Grimm et al. 2003) and recent results indicated
that TRPM31,325 can be activated by some sphingolipids
(Grimm et al. 2005). TRPM31,325 seemed neither to be
activated by phospholipase C (PLC) coupled receptors, Ca2+

store depletion (Grimm et al. 2003), fatty acids nor lipid
metabolites from the phospholipase A2 pathway (Grimm
et al. 2005). Due to its osmosensitivity and its presence in
the kidney it has been suggested to play a role in renal
Ca2+ homeostasis.

Another publication described a human protein of 1,554
amino acid residues designated TRPM3a (Lee et al. 2003).
TRPM3a is in part identical to the protein described by
Grimm and colleagues but differ in its amino- and car-
boxyterminus. Whereas 153 amino terminal residues pres-
ent in TRPM31,325 are missing, TRPM3a possess additional
382 amino acids at the C-terminal end. TRPM3a also
showed constitutive Ca2+ entry when expressed in HEK-
293 cells but in contrast to TRPM31,325 this Ca

2+ influx was
augmented after stimulation of PLC coupled muscarinic
receptors and after passive Ca2+ store depletion with thap-
sigargin. Northern blots showed TRPM3 transcripts of
different length (Grimm et al. 2003; Lee et al. 2003) and five
additional splice variants, TRPM3b–f, have been isolated
from human kidney varying in size from 1,544 to 1,579
amino acid residues but none of them was identical to
TRPM31,325. However, these data showed that TRPM3 is
subject to frequent alternative splicing, implying that the
functional differences described so far may be caused by the
different primary structure of the variants. Hopefully, future
comparative analysis of TRPM3 splice variants will illu-
minate their different functional behavior and will probably
allow deeper insights into the functional domains of TRPM3.

TRPM4/5

Originally human TRPM4 has been described as a protein
of 1,040 residues (Xu et al. 2001) but later it turned out, that
this protein is a N-terminal truncated variant of a longer
protein with 1,214 residues designated TRPM4b (Launay
et al. 2002; Nilius et al. 2003). The human TRPM4 gene
consists of 25 exons located at chromosome 19q13.33.
TRPM41,040 (TRPMa) arises by splicing of exon 2 to an
alternative splice acceptor site within exon 5. Ca2+ imaging
experiments showed elevated Ca2+ influx in HEK-293 cells
upon transient transfection of TRPM4a suggesting that this
variant might build a Ca2+ influx pathway (Xu et al. 2001).
This finding is somewhat surprising, since both variants
share the same pore structures and extensive analysis char-
acterized the longer variant TRPM4b as a Ca2+-activated
but Ca2+-impermeable monovalent cation channel (Launay
et al. 2002) whose activity is voltage-dependent (Hofmann
et al. 2003;Nilius et al. 2003), blocked byATP4− (Nilius et al.
2004b) andmodulated by decavanadate (Nilius et al. 2004a).
Most interestingly, a mutant highly similar to TRPM4a co-
immunoprecipitated with TRPM4b, had dominant negative
effects on endogenous Ca2+-activated currents in lympho-

cytes and modulated the oscillatory pattern of the intracel-
lular Ca2+ concentration after T-cell activation (Launay et al.
2004). A third human variant TRPM4c has been cloned
from prostate (Nilius et al. 2003). This variant starts with a
truncated exon 11, which is alternatively spliced to exon 12.
It contains 678 amino acid residues starting at Met537 of
TRPM4b. Although functional data are lacking, this variant
might also build functional channels since it possesses the
complete transmembrane region and a putative pore.

The mouse TRPM4 gene is localized in chromosome 7.
B2 and displays a similar organization as the human gene
with 25 exons. The mouse TRPM4b cDNA has been cloned
from heart encoding a protein of 1,213 residues (Nilius et al.
2003) with 83% amino acid sequence identity to human
TRPM4b. In addition, two shorter splice variants were
identified which start at Met187. One of them displays 1,027
amino acids identical to TRPM4b. The other one is pre-
dicted to have 592 residues since an insertion in the tran-
script results in a shift of the reading frame and a premature
stop. This variant lacks all transmembrane spanning domains
and the carboxyterminus of TRPM4b. Two further splice
variants have been reported (Murakami et al. 2003). Unfor-
tunately theywere also called TRPM4a (Acc. no. AB112658)
and TRPM4b (AB112657) but should not to be confused
with the above mentioned variants. Due to the strategy used
for cloning of the transcripts, they both start within exon 16
and seem to be encoded by 5′ incomplete cDNA clones.
Whereas AB112658 is identical to 488 carboxyterminal res-
idues of TRPM4b starting at Met726 within the first trans-
membrane segment, AB112657 lacks additional 66 residues
of transmembrane segment 2 which are encoded by a part of
exon 17. AB112658 still appeared to mediate Ca2+ entry
whereas AB112657 was non-functional.

The closest relative of TRPM4 is TRPM5 (MTR1).
Similar to TRPM4 it is a Ca2+-activated, monovalent selec-
tive cation channel (Hofmann et al. 2003; Liu and Liman
2003; Prawitt et al. 2003) which is involved in taste
transduction (Perez et al. 2002; Zhang et al. 2003b). It has
been initially identified in search for genes causal for
Beckwith–Wiedemann syndrome (Prawitt et al. 2000) but
so far it is not clear whether TRPM5 is involved in a disease.
4.5 kb TRPM5 transcripts with a putative open reading
frame encoded by 24 exons are expressed in a variety of
tissues. Alternative splicing leads to two predicted proteins
of 872 or 1,165 residues (Prawitt et al. 2000). The longer
form has been extensively studied in a variety of functional
studies but the properties of the shorter one have not been
studied so far.

TRPM6/7

TRPM6 (Chak2) and TRPM7 (Chak1, LTRPC7, TRP-
PLIK) are unique among ion channels because they contain
a α−kinase domain at their C-terminus. The emerging roles
of TRPM6/TRPM7 channel kinase signal transduction com-
plexes are reviewed in an accompanying article of this issue
(Gudermann et al. 2005). Both channels are thought to be
involved inMg2+ transport (reviewed byMontell 2003). They
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are known to build heteromultimeric structures (Chubanov
et al. 2004) but they differ in their expression pattern.
TRPM7 is abundant in various tissues (Runnels et al. 2001)
but TRPM6 is mainly expressed in kidney and intestine,
where it is responsible forMg2+ (re)absorption (Schlingmann
et al. 2002; Walder et al. 2002; Voets et al. 2004b). TRPM6
gives an excellent example for the physiological importance
of correct mRNA processing: As reported by two indepen-
dent groups (Schlingmann et al. 2002; Walder et al. 2002)

several mutations leading to missplicing of TRPM6 tran-
scripts are associated with an autosomal recessive hereditary
disorder called hypomagnesemia with secondary hypocalce-
mia (HSH). This disease is characterized by very low mag-
nesium and calcium serum levels and HSH-patients suffer
from generalized convolutions, muscle spasm, and tetany.
These findings also document the first example that TRPM
dysfunction is responsible for a human disease. In addi-
tion, multiple TR PM6 mRNA isoforms encoding proteins

Fig. 3 Identification of TRPM8 splice variants in human prostate
cancer. a Northern blot analysis identifies expression of different
TRPM8 transcripts in prostate cancer, but not in benign prostate tissue
(BPH). Lower panel shows control hybridizations of the same blots
with the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA.
b RT-PCR amplification of TRPM8b fragments. The longest frag-
ment (arrow) encodes the complete TRPM8b cDNA. c Schematic
structure of a part of the TRPM8 gene. The lower panel shows nu-

cleotide sequences of exons (upper case) 2, 3, 4, 5a, and 5b including
intron borders (lower case) and the encoded amino acid sequences of
TRPM8a and TRPM8b. Alternative splice acceptor sites (ag) are
marked, a stop codon in frame to the translation initiation site of
TRPM8b is highlighted in gray. Nucleotides of a TRPM8b specific
primer are underlined. The sequence of TRPM8b has been deposited
in the GeneBank database.
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of 569–2,022 residues were identified (Chubanov et al.
2004). TRPM6a, TRPM6b and TRPM6c differ only in their
aminoterminal end and derive from alternative use of exons
1a, 1b, and 1c located within a 700-bp region on chromo-
some 9q22. Obviously the TRPM6 gene harbors a promoter
with alternative transcription initiation sites. These variants
seemed to have individual expression patterns. TRPM6a
and TRPM6b are present in kidney, testis and cells derived
from lung but TRPM6c is absent in kidney cells. Fur-
thermore, three splice variants lacking the transmembrane
region were described in the same manuscript (Chubanov
et al. 2004). They were called M6-kinases, since their
aminoterminus is still homologous to melastatin and their
carboxyterminus carries the kinase domain. The identifi-
cation of these variants implies that the function of the
kinase domain is not restricted to ion channel modulation.
Finally, splicing in exon 36 has been reported, leading to
a premature stop codon and a C-terminal truncation. The
resulting variant was designated TRPM6t since it seems
to be specifically expressed in testis (Chubanov et al. 2004).

TRPM8

TRPM8 (formerly CMR1 or Trp-p8) comprises 1,104 amino
acids and is expressed in a subset of sensory neurons which
can be stimulated by cold temperatures (McKemy et al.
2002; Peier et al. 2002). TRPM8 also responds to menthol
and icilin and shows voltage dependent gating but a link
between temperature sensitivity and voltage dependence is
controversially discussed (Voets et al. 2004a; Brauchi et al.
2004). TRPM8 is expressed in malign prostate cancer cells
(Tsavaler et al. 2001) but in benign prostate hyperplasia
(BPH) TRPM8 transcripts are not detectable (Fig. 3a). The
human TRPM8 gene consists of at least 27 exons located
at chromosome 2q37. Several human expressed sequence
tags (EST CA394721, BX283818, BE274448, BE390627)
encode an altered aminoterminus of TRPM8. We identified
a splice variant of TRPM8 called TRPM8b, which differ
from the 1,104 aa protein (now defined as TRPM8a) in its
aminoterminus (Fig. 3b, c). We used a primer specific for
TRPM8b deduced from the exon 5b in combination with a
primer located downstream of the reading frame of both
variants to amplify 3,165-bp fragments from prostate cancer
(Fig. 3b, arrow). Amplification products were subcloned
and sequencing identified TRPM8b with 1,054 amino acids
in length. The shorter amplification products (Fig. 3b) are
not yet characterized but might encode further TRPM8
splice forms. Figure 3c shows the part of the TRPM8 gene
which encodes the alternative aminotermini of TRPM8a
and TRPM8b. Exon 1 and exon 3 are non-coding. Trans-
lation of TRPM8a starts in exon 2, the one of TRPM8b in
exon 5b. In TRPM8a exons 1, 2, 4, and 5a are fused. In
TRPM8b exons 3 and 4 are fused. An alternative splice
acceptor site within the following intron leads to an ex-
tension of exon 5 (exon 5b) by 47 nucleotides. In the re-
sulting transcript of variant b the first ATG is in frame to an
upstream located stop codon (Fig. 3c). Starting with the
amino acid sequence ENV in exon 5 the reading frames of

both proteins are identical. The functional significance of
the new variant in prostate cancer cells is still unclear.
However, TRPM8b might serve as a dominant negative
regulator of TRPM8a similar as suggested for amino- and
carboxyterminal truncated variants of TRPM4 (Launay et al.
2004), TRPM2 (Zhang et al. 2003a), and TRPM1 (Xu et al.
2001).

Conclusions

Genomic database resources have largely facilitated the
identification of most of the TRP genes in the last 10 years
by similarity screens. However, because transcriptional
regulation and post-transcriptional mRNA processing are
hardly predictable from genomic information, we need now
to decipher the TRP transcriptome. Two major aspects have
to be considered: First, comparative analysis of different
variants can help us understand structure–function relation-
ships of TRP channel proteins. Second, as some examples
already show, TRP variants are differentially expressed and
might serve particular functions in different cell types.
Thus, to understand the physiological role and the molec-
ular identity of native TRP channels it is necessary to
determine the subset of TRP variants expressed in a specific
kind of cell. Hitherto, we know little about alternative TRP
transcripts. Some variants are already identified but there
are presumably more. Some of themmay only be accidental
and with unknown significance. Therefore, future studies
should initially show if alternative transcripts are abundant
and if the encoded proteins are really present in the cell before
we draw conclusions about their physiological relevance.
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