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Abstract The epithelial Ca2+ channels TRPV5 and TRPV6
represent a new family of Ca2+ channels that belongs to the
superfamily of transient receptor potential channels. TRPV5
and TRPV6 constitute the apical Ca2+ entry mechanism in
active Ca2+ transport in kidney and intestine. The central
role of TRPV5 and TRPV6 in active Ca2+ (re)absorption
makes it a prime target for regulation to maintain Ca2+

balance. This review covers the hormonal regulation, in-
teraction with accessory proteins and (patho)physiological
implications of these epithelial Ca2+ channels.
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Introduction

The maintenance of the body Ca2+ balance is of crucial
importance for many vital physiological functions including
neuronal excitability, muscle contraction and bone forma-
tion. The extracellular Ca2+ concentration is tightly con-
trolled by the concerted action of intestinal Ca2+ absorption,
exchange of Ca2+ from bone and renal Ca2+ reabsorption
(Fukugawa and Kurokawa 2002; Hurwitz 1996). Both in
kidney and intestine, Ca2+ can (re)enter the extracellular fluid
by passive paracellular as well as active transcellular Ca2+

transport (Bindels 1993; Wasserman and Fullmer 1995).

Active Ca2+ (re)absorption is the primary target for regula-
tion by calciotropic hormones, including 1,25-dihydroxy-
vitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH),
enabling the organism to regulate Ca2+ (re)absorption and
respond to the body’s demand (Fig. 1; Hoenderop et al.
2000b; Wasserman and Fullmer 1995). Active absorption of
dietary Ca2+ occurs primarily in the proximal small intestine,
while in kidney active Ca2+ reabsorption is restricted to the
distal convoluted tubule (DCT) and the connecting tubule
(CNT; Bronner et al. 1986; Friedman and Gesek 1995).

At the cellular level, active Ca2+ (re)absorption is gener-
ally envisaged as a three-step process (Fig. 1), consisting of
passive entry of Ca2+ across the luminal or apical membrane,
cytosolic diffusion of Ca2+ bound to vitamin D3-sensitive
Ca2+-binding proteins (calbindin-D28K and/or calbindin-
D9K) and active extrusion of Ca2+ across the opposite baso-
lateral membrane by the Na+-Ca2+-exchanger (NCX1) and/
or Ca2+-ATPase (PMCA1b; Bronner 2003; Hoenderop et al.
2002b). The molecular identity of the apical Ca2+ entry
pathway remained elusive until the epithelial Ca2+ channels
TRPV5 (previously named ECaC1; Hoenderop et al. 1999)
and TRPV6 (previously named Ca2+ transporter 1) were
identified (Montell et al. 2002b; Peng et al. 1999). These
channels convey the rate-limiting step in active Ca2+ transport
and play, therefore, a pivotal role in Ca2+ homeostasis. This
review highlights the regulation and (patho)physiological
implications of these two epithelial Ca2+ channels.

Molecular features of TRPV5 and TRPV6

The genes of TRPV5 and TRPV6 comprise 15 exons, en-
coding proteins of about 730 amino acids, sharing 75%
homology (Hoenderop et al. 1999; Muller et al. 2000b; Peng
et al. 1999, 2001a). TRPV5 and TRPV6 constitute a distinct
class of highly Ca2+-selective channels within the transient
receptor potential (TRP) superfamily, which encompasses a
diversity of non-voltage operated cation channels (Clapham
et al. 2001; Harteneck et al. 2000; Montell et al. 2002b).
These two channels belong to the TRPV (vanilloid) sub-
family, which is one of the subfamilies comprising this su-
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perfamily (Hoenderop et al. 2005;Montell et al. 2002a; Peng
et al. 2003; Vennekens et al. 2002).

The tissue distribution of TRPV5 and TRPV6 has been
studied extensively by Northern blot, RT-PCR analysis and
immunohistochemistry. In human, both channels are co-
expressed in organs that mediate transcellular Ca2+ transport
such as duodenum, jejunum, colon, and kidney, but also in
pancreas, prostate, mammary, sweat and salivary gland
(Hirnet et al. 2003; Hoenderop et al. 1999, 2000a, b; Janssen
et al. 2002; Muller et al. 2000a; Peng et al. 1999, 2000,
2001a; Weber et al. 2001; Wissenbach et al. 2001; Zhuang et
al. 2002). In general, TRPV5 seems to be the major isoform
in kidney, whereas TRPV6 is more ubiquitously expressed
with the highest concentrations in the prostate, stomach,
brain, lung and small intestine. The relative mRNA level of
TRPV5 and TRPV6 in tissues co-expressing these channels
is different. For instance, in duodenum the TRPV5 mRNA
levels are much lower than that of TRPV6 or even below
detection levels (Song et al. 2003; van Abel et al. 2003; van
Cromphaut et al. 2001). In kidney, however, TRPV5 mRNA
is at least 100 times higher expressed compared to TRPV6.
Variations in TRPV5 and TRPV6mRNAexpression patterns
found in several studies could have resulted from differences
between species or the employed detection methods. Ulti-
mately, it will be important to analyze the expression dif-
ferences quantitatively at the protein level.

The structure of TRPV5 and TRPV6 shows typical to-
pology features shared by all members of the TRP family,
including six transmembrane regions, a short hydrophobic
stretch between transmembrane segments 5 and 6, which is

predicted to form the Ca2+ pore, and large intracellular N-
and C-terminal domains (Hoenderop et al. 2002b). These
intracellular regions contain several conserved putative regu-
latory sites that might be involved in regulation of channel
activity and trafficking, like phosphorylation sites, PDZmotifs
(post synaptic density protein, disk large, zona occludens), and
ankyrin repeat domains (Hoenderop et al. 2002b).

Electrophysiological studies using human embryonic
kidney cells (HEK293), heterologously expressing TRPV5
or TRPV6, show that both channels are permeable for
monovalent and divalent cations with a high selectivity
for Ca2+ (Gunthorpe et al. 2002; Hoenderop et al. 2001b;
Vennekens et al. 2002). The characteristic pore region of
TRPV5 and TRPV6 is unique for its high Ca2+ selectivity,
in which a single aspartic residue at position number 542
(D542) is crucial for Ca2+ permeation (Nilius et al. 2001b;
Vennekens et al. 2001). The current-voltage relationship of
TRPV5 and TRPV6 shows inward rectification and they
exhibit a Ca2+-dependent feedback mechanism regulating
channel activity (Nilius et al. 2001a; Vennekens et al. 2000).
However, TRPV5 and TRPV6 exhibit different channel
kinetics with respect to Ca2+-dependent inactivation and
recovery, Ba2+ selectivity and sensitivity for inhibition by
ruthenium red (Hoenderop et al. 2001b; Nilius et al. 2002;
Vennekens et al. 2000). Furthermore, it has been demon-
strated that TRPV5 and TRPV6 can operate as homo- and
heterotetrameric ion channels, which implies that four of the
aspartic residues (D542) form a negatively charged ring
operating as a selectivity filter for Ca2+ (Hoenderop et al.
2003b).

Fig. 1 Mechanism of active epithelial Ca2+ transport. Active trans-
cellular Ca2+ transport is generally regarded as the site for fine-tuning
Ca2+ (re)absorption and is regulated by calciotropic hormones. The
active form of vitamin D, 1,25 (OH)2D3, stimulates the individual
steps of transcellular Ca2+ transport by increasing the expression
levels of the luminal Ca2+ channels, calbindins, and the extrusion
systems. Active and transcellular Ca2+ transport is carried out as a

three-step process. Following entry of Ca2+ through the (hetero)
tetrameric epithelial Ca2+ channels, TRPV5 and TRPV6, Ca2+ bound
to calbindin diffuses to the basolateral membrane. At the basolateral
membrane, Ca2+ is extruded via an ATP-dependent Ca2+-ATPase
(PMCA1b) and a Na+-Ca2+-exchanger (NCX1). In this way, there is
net Ca2+ (re)absorption from the luminal space to the extracellular
compartment.
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Regulation of TRPV5 and TRPV6

A tight control of the amount of Ca2+ influx across the
plasma membrane is important in many physiological pro-
cesses. A delicate regulation of the expression and activity of
TRPV5 and TRPV6 is, therefore, of utmost importance to
maintain the extracellular Ca2+ balance.

Transcriptional regulation

Vitamin D

The active metabolite of vitamin D, 1,25(OH)2D3, is an
important regulator of the body Ca2+ homeostasis, having
a significant role in the regulation of Ca2+ (re)absorption
(Reichel et al. 1989). This is reflected by mutations in
the genes encoding 25-hydroxyvitamin D3-1α-hydroxylase
(1α-OHase), a renal enzyme controlling its synthesis, and
the 1,25(OH)2D3-receptor (VDR; Hughes et al. 1988;
Kitanaka et al. 1998). As TRPV5 and TRPV6 form the rate-
limiting entry step in active Ca2+ (re)absorption, regulation
of these channels by 1,25(OH)2D3 has been investigated
using different vitamin D-deficiency models. The first evi-
dence for a vitamin D-sensitivity was obtained from in vivo
studies in which rats were depleted for vitamin D3. The
reduced renal TRPV5 expression and accompanied hypo-
calcemia were completely restored after 1,25(OH)2D3 sup-
plementation (Hoenderop et al. 2001a). Similar results were
obtained using different animal models and cell lines, in-
cluding VDR and 1α-OHase knockout mice and the human
intestinal cell line Caco-2, confirming the vitamin D-depen-
dent regulation of TRPV5 and TRPV6 (Fleet et al. 2002;
Hoenderop et al. 2002a; van Abel et al. 2003; van Cromphaut
et al. 2001; Weber et al. 2001; Wood et al. 2001). Together
these findings indicate that the expression of TRPV5 and
TRPV6 is indeed controlled by 1,25(OH)2D3.

Dietary Ca2+

Several aforementioned studies provide evidence that the
TRPV5 and TRPV6 channels are regulated by 1,25(OH)2D3,
however, it is difficult to distinguish the effects of hypo-
calcemia from those of vitamin D-deficiency. Interestingly,
dietary Ca2+ enrichment resulted in the normalization of
the reduced renal TRPV5 and duodenal TRPV6 expres-
sion levels in 1α-OHase knockout mice, as well as for the
other Ca2+ transport proteins participating in active Ca2+

(re)absorption (Hoenderop et al. 2002a; van Abel et al.
2003). In mice lacking a functional vitamin D receptor,
dietary Ca2+ levels regulated the expression of TRPV5 and
TRPV6 in kidney and duodenum, respectively (Panda et
al. 2004; van Cromphaut et al. 2001; Weber et al. 2001).
These findings indicate that dietary Ca2+ can exert a reg-
ulatory effect on TRPV5 and TRPV6 expression inde-
pendent of 1,25(OH)2D3.

Estrogen

It is known that estrogen is involved in Ca2+ homeostasis
and that the deleterious effects of estrogen deficiency after
menopause result in a negative Ca2+ balance associated
with postmenopausal osteoporosis (Prince 1994; Young
and Nordin 1969). In addition, it has been demonstrated
that estrogen deficiency after menopause is associated
with increased renal Ca2+ loss and intestinal Ca2+ malab-
sorption, which can be corrected by estrogen replacement
therapy (Colin et al. 1999; Gennari et al. 1990; Nordin
et al. 1991; Prince et al. 1991). Therefore, the effect of
estrogen on the proteins involved in active Ca2+ (re)ab-
sorption was investigated. In ovariectomized 1α-OHase
knockout mice 17β-estradiol replacement therapy resulted
in upregulation of renal TRPV5 mRNA and protein levels,
which was accompanied by a normalization of serum Ca2+

levels. In addition, in duodenum both TRPV5 and TRPV6
mRNA levels were upregulated in these supplemented
mice (van Abel et al. 2002, 2003). Thus, TRPV5 and
TRPV6 expression is transcriptionally controlled by estro-
gen in a vitamin D-independent manner. These data sug-
gest that the function of estrogen in the maintenance of
Ca2+ balance might be at least in part fulfilled by con-
trolling (re)absorption of the amount of Ca2+ through the
regulation of TRPV5 and TRPV6.

Regulation of TRPV5 and TRPV6 membrane
expression

A first indication for trafficking of TRPV5 towards the
plasma membrane came from immunohistochemical stud-
ies of kidney sections. The late part of the DCT (DCT2)
mainly express TRPV5 along the apical domain, whereas
the CNT display a more cytoplasmic TRPV5 staining
(Loffing et al. 2001). This suggests that TRPV5 is present in
intracellular compartments from where it can be shuttled to
the plasmamembrane in a controlled fashion. Trafficking of
TRPV5 or TRPV6 towards the plasma membrane provides
a short-term regulatory mechanism to increase renal and
intestinal Ca2+ uptake, respectively.

S100A10-annexin 2 complex

The S100A10-annexin 2 complex plays an important role
in biological processes including endocytosis, exocytosis
and membrane-cytoskeletal interactions (Gerke and Moss
2002). Recently, we demonstrated a regulatory role for the
S100A10-annexin 2 complex in the trafficking of TRPV5
and TRPV6 (van de Graaf et al. 2003). S100A10 and
annexin 2 were present along the apical membrane of
TRPV5-expressing tubules and along the brush-border
membrane of duodenum, which is in agreement with the
TRPV6 localization. Moreover, disruption of the S100A10-
binding motif in TRPV5 or TRPV6 (Table 1) prevented the
facilitation of Ca2+ inward currents, which was accom-
panied by a major disturbance in their subcellular locali-
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zation (van de Graaf et al. 2003). Importantly, downregu-
lation of annexin 2 using annexin 2-specific siRNAs sig-
nificantly inhibited the currents through TRPV5, indicating
that annexin 2 in conjunction with S100A10 is crucial for
TRPV5 activity (van de Graaf et al. 2003). These results
clearly show that the S100A10-annexin 2 complex is a
significant component for the trafficking of the epithelial
Ca2+ channels towards the plasma membrane and, there-
fore, the functionality of these channels.

PDZ motifs

PDZ motifs are recognized by PDZ domains that are mod-
ular protein interaction domains that play a role in protein
targeting and protein complex assembly (Hung and Sheng
2002). TRPV5 and TRPV6 contain a PDZ motif, which
could bind to a PDZ domain-harboring protein. The Na+-
H+- exchanger regulating factors, NHERF1 or NHERF2,
have been shown to modulate the targeting and traffick-
ing of several renal proteins, like the epithelial Na+-H+- ex-
changer NHE3 and epithelial K+ channel ROMK1, as well
as members of the TRP superfamily (Mery et al. 2002;
Shenolikar andWeinman 2001; Yun et al. 2002). Recently, it
has been demonstrated that TRPV5 forms a complex, in-
volving NHERF2 (Table 1) and serine/threonine kinases
SGK1 and 3. The concerted action of these proteins increased
cell surface TRPV5 abundance and activity (Embark et al.
2004).

Ankyrin repeats

In general, ankyrins link transporters and cell adhesion
molecules to the spectrin-based cytoskeletal elements in
specializedmembrane domains (Bennett and Lambert 1999).
Ankyrin-binding proteins include the voltage-dependent
Na+ channel, Na+-K+-ATPase, Na+-Ca2+- exchanger, IP3 re-
ceptor and ryanodine receptor Ca2+ release channels. The
membrane-binding domain of ankyrins is comprised of one
or more copies of a 33-residue repeat known as the ankyrin
repeat. This protein-protein interaction module is involved in
a diverse set of cellular functions, and consequently, defects
in ankyrin repeat proteins result in a number of human
diseases (Mosavi et al. 2002, 2004). TRPV5 and TRPV6
contain several ankyrin repeat domains in their amino-
terminal region, which could be involved in the mainte-
nance and targeting of these channels to specific membrane
regions, as has been demonstrated for a neural-specific iso-
form of ankyrin in the localization of Na+ channels (Bennett
et al. 1999). In addition, recent studies on TRPV6 showed
that a specific N-terminal domain encompassing the third
ankyrin repeat is required for the assembly of TRPV6
subunits within a functional tetramer (Table 1; Erler et al.
2004). This repeat initiates a molecular zippering process
that proceeds past the fifth ankyrin repeat and creates an
intracellular anchor that is necessary for functional subunit
assembly. Moreover, deletion of this repeat or mutation of
critical residues within this repeat rendered non-functional
channels and prevented TRPV6-TRPV6 association (Erler
et al. 2004). In addition, experiments with TRPV5 showed
that predominantly the N-tail and to a lesser extent the

Table 1 Amino acid sequences of binding domains in TRPV5 and TRPV6 for various interacting proteins

TRPV5 TRPV6 Reference

N-tail C-tail N-tail Transmembrane C-tail

S100A10 VATTV VATTV van de Graaf et al. (2003)
rabbit,
598–602

rabbit, 597–601

NHERF2 YHF Embark et al. (2004);
van de Graaf et al.
(unpublished)

rabbit,
728–730

Calmodulin C-tail motif Niemeyer et al. (2001)
human, 694–725

Rabbit,
1–327

Rabbit,
578–730

1-5-10 motif TM-domain 1-8-14 motif Lambers et al. (2004)

mouse, 93–103 mouse,
327–577

mouse, 649–667

80K-H MLERK Gkika et al. (2004)
mouse,
596–601

TRPV5 ANK 1 MLERK Chang et al. (2004)
mouse,
64–77

mouse,
596–601

TRPV6 ANK 3+ANK 5 Erler et al. (2004)
human, 116–140+192–230

ANK ankyrin repeat
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C-tail are critical for channel assembly (Table 1). The as-
sembly domain in the N-tail of TRPV5 overlapped with the
first ankyrin repeat. Deletion of these assembly domains
abolished channel assembly and thereby the trafficking to-
wards the plasma membrane and subsequent channel activ-
ity (Chang et al. 2004). However, Erler et al. indicated that
tetramer formation is not essential for trafficking of TRPV6
to the cell surface since deletion of the N-terminal assembly
domain did not affect plasma membrane staining (Erler et
al. 2004). Deleting or mutating assembly domains could
cause a change in tertiary structure and/or prevent the in-
teraction with auxiliary proteins, thereby affecting channel
trafficking and activity. For instance, the assembly domain
in the C-terminal tail of TRPV5, the MLERK sequence, is
also known to bind the protein 80K-H (Gkika et al. 2004).
Impaired trafficking observed in the MLERK-mutant of
TRPV5 could be explained by the inability to interact with
the necessary auxiliary proteins. However, 80K-H was iden-
tified as a Ca2+ sensor regulating TRPV5 activity at the
plasma membrane rather than a role in routing towards the
plasma membrane as discussed below. Importantly, these
studies provide evidence that ankyrin repeats in the N-tail
of TRPV5 and TRPV6 are essential for subunit assembly
(Chang et al. 2004; Erler et al. 2004). In addition, it is
likely that assembly also occurs in the N-tail and C-tail of
TRPV5 and TRPV6, because they share more than 75%
homology at the amino acid level, raising the possibility that
both N-tail and C-tail assembled together in order to form
functional heterotetrameric channel complexes of TRPV5
and TRPV6 (Hoenderop et al. 2003b). Detailed sequence
comparison of the N- and C-tails of the TRPV5 and TRPV6
channels reveals significant differences, which may account
for the unique electrophysiological properties (Hoenderop
et al. 2001b). In addition, the assembly domains could
differ between the two channels in order to specifically allow
self-assembly or the formation of heterotetrameric channels.

Regulation of TRPV5 and TRPV6 activity

TRPV5 and TRPV6 are constitutively active, unlike many
other TRP channels that are activated by binding of ligands
(Montell et al. 2002b). This implies that in order to regulate
TRPV5/6 activity, short-term acting mechanisms must exist
that control the activity of these channels located on the
plasma membrane.

Ca2+-dependent inactivation

Intracellular Ca2+ exerts a negative feedback mechanism on
TRPV5 and TRPV6 activity (Hoenderop et al. 2001b). This
Ca2+-dependent inactivation is different between TRPV5
andTRPV6. The inactivation of TRPV6 is characterized by a
slow decline after an initial fast inactivation phase, whereas
TRPV5 only shows the slow inactivation phase (Nilius et al.
2001a, 2002). In line with a Ca2+-dependent regulation is the
observation that chelation of intracellular Ca2+ with ethylene
glycol-bis(b-aminoethyl ether)-N,N,N′,N′-tetra acetic acid

(EGTA) or 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-
acetic acid acethoxymethylester (BAPTA) resulted in in-
creased channel activity (Bodding and Flockerzi 2004;
Hoenderop et al. 2001b; Peng et al. 1999). Together, these
data indicate that intracellular Ca2+ exerts a negative feed-
backmechanism onTRPV5 and TRPV6 activity. In addition,
it has been demonstrated that the difference in Ca2+-depen-
dent inactivation between TRPV5 and TRPV6 is restricted to
the first intracellular loop between transmembrane domain 2
and 3 (Nilius et al. 2002).

Calmodulin

Calmodulin (CaM) plays a pivotal role in Ca2+-dependent
inactivation, acting as a Ca2+ sensor, thereby facilitating both
activation and inactivation of ion channels, including volt-
age- and ligand-gatedCa2+ channels (Saimi andKung 2002).
Moreover, CaM has been shown to modulate several chan-
nels from the TRP superfamily (Boulay 2002; Numazaki
et al. 2003; Phillips et al. 1992; Singh et al. 2002; Tang
et al. 2001; Trost et al. 1999, 2001; Warr and Kelly 1996;
Zhang et al. 2001). TRPV5 and TRPV6 activity is negatively
regulated by the intracellular Ca2+ concentration and CaM
could mediate the regulation of the activity of both channels.
Niemeyer et al. showed for the first time that CaM binds to
the C-terminus of human TRPV6 in a Ca2+-dependent
manner (Table 1; Niemeyer et al. 2001). In addition, Nilius
et al. indicated that the rabbit TRPV5 C-terminal region is
also important for the Ca2+-dependent inactivation process
(Nilius et al. 2003). Recently, CaMwas shown to bind to the
C- and N-tails of TRPV5 and TRPV6 as well as the trans-
membrane domain of TRPV6 in a Ca2+-dependent fashion
(Table 1). Furthermore, electrophysiological measurements
of HEK293 cells heterologously co-expressing Ca2+-insen-
sitive CaM mutants and TRPV6 revealed a significantly
reduced inward Ca2+ current, whereas, no effect was demon-
strated on currents of TRPV5-expressing cells (Lambers et
al. 2004). It remains, therefore, to be established whether
CaM is the general Ca2+ sensor or that other processes
play a role in the Ca2+-dependent inactivation of TRPV5
(Hoenderop et al. 2001b; Lambers et al. 2004; Nilius et al.
2003). Moreover, the high affinity EF-hand Ca2+-binding
sites of CaM were demonstrated to contribute primarily to
the observed CaM effect upon TRPV6 activity (Lambers et
al. 2004). The C-terminal CaM-binding site of TRPV6 is
identical between mouse and rat, but not similarly present
in human TRPV6, which might explain the previous ob-
servation that CaM binding to human TRPV6 is localized
to a different region (Hirnet et al. 2003; Lambers et al.
2004; Niemeyer et al. 2001). Together, these results sug-
gest that CaM positively affects TRPV6 activity.

80K-H

80K-H was initially identified as a PKC substrate and sub-
sequently associated with intracellular signaling (Hirai and
Shimizu 1990). A study by Gkika et al. demonstrated a
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functional role for 80K-H in the Ca2+-dependent regulation
of TRPV5 channel activity (Gkika et al. 2004). TRPV5
and 80K-H co-localized in 1,25 (OH)2D3-responsive epi-
thelia, forming a heteromeric complex along the plasma
membrane. Furthermore, 80K-H acted like a Ca2+-sensor,
facilitating the Ca2+ influx through TRPV5 after binding
Ca2+ to its two EF-hand structures. Inactivation of the
EF-hand pair reduced the TRPV5-mediated Ca2+ current
and increased TRPV5 sensitivity to intracellular Ca2+, ac-
celerating the feedback inhibition of channel activity. The
membrane localization of 80K-H and TRPV5 was not al-
tered, suggesting that 80K-H has a direct effect on TRPV5
activity (Gkika et al. 2004). The 80K-H binding-site
identified in the C-terminal tail of TRPV5 corresponds to
the amino acid sequence MLERK, which is the same region
where TRPV5 self-assembly can occur (Table 1; Chang et
al. 2004). Regulation of TRPV5 at this site could involve
competition between the proteins, thereby differently reg-
ulating the channel. More interestingly, multiple regulations
could take place through the four sites available in the tet-
rameric channel-complex.

TRPV5 and TRPV6 in disease

The role of TRPV5 and TRPV6 in diverse Ca2+-related
disorders has been considered, including variation in the
urinary Ca2+ excretion during treatment with pharmaceutical
agents.

Vitamin D-deficiency rickets

Vitamin D-deficiency rickets type I (VDDR-I) is an auto-
somal recessive disease characterized by low or undetectable
levels of 1,25(OH)2D3 resulting in hypocalcemia, rickets,
osteomalacia, growth retardation and failure to thrive. The
disease is caused by mutations in the 1α-OHase gene
(Dardenne et al. 2001; Kitanaka et al. 1998). In clinical
practice, patients are treated with vitamin D analogues and/
or an enriched Ca2+ diet to prevent rickets, which correct
the major perturbations in Ca2+ homeostasis. As previously
mentioned, in 1α-OHase knockout mice, a downregulation
of renal TRPV5 as well as intestinal TRPV6 expression was
demonstrated, whereas supplementation with 1,25(OH)2D3

or an enriched Ca2+ diet restored expression levels of these
Ca2+ transporters and serumCa2+ concentrations (Hoenderop
et al. 2002a; van Abel et al. 2003). These data suggest that
decreased channel abundance contributes to defective renal
and intestinal Ca2+ absorption and, thereby, the sustained
hypocalcemia in VDDR-I. In addition, patients with he-
reditary hypocalcemic vitamin D-deficiency rickets type II
(VDDR-II), an autosomal recessive disorder caused by de-
fects in the gene encoding the nuclear vitamin D receptor
(VDR), display a similar phenotype except for the elevated
serum 1,25(OH)2D3 levels. Experiments performed with
VDR knockout mice revealed disturbed Ca2+ absorption
and inappropriately high renal Ca2+ excretion, which was
accompanied by a downregulation of TRPV5 and TRPV6

in kidney and duodenum (van Cromphaut et al. 2001;
Weber et al. 2001). Together, these data demonstrate that
1,25(OH)2D3 regulates the epithelial Ca2+ channels and
thus affecting Ca2+ (re)absorption. Moreover, this sug-
gests that TRPV5 and TRPV6 play a central role in the
pathophysiology of vitamin D-deficiency rickets and de-
termine, at least in part, the clinical phenotype of VDDR-I
and VDDR-II.

Idiopathic hypercalciuria and renal stone disease

Normocalcemic hypercalciuria in the absence of any known
underlying cause is termed idiopathic hypercalciuria (IH).
The pathogenesis of this autosomal dominant disorder is
either excessive intestinal Ca2+ absorption (absorptive IH)
or defective renal tubular Ca2+ reabsorption (Asplin et al.
1996). Furthermore, an increased urinary excretion of Ca2+

is a considerable risk factor and hypercalciuria is implicated
in 40–50% of kidney stone formers, which represents an
important clinical problem with considerable socio-eco-
nomic impact (Asplin et al. 1996). Several potential can-
didate genes, which could be associated with idiopathic
nephrolithiasis, have been analyzed using familial cluster-
ing. However, promising genes like the VDR, 1α-OHase
and the Ca2+-sensing receptor (CaSR) gene were shown not
to be associatedwith IH (Lerolle et al. 2001;Scott et al. 1998;
Zerwekh et al. 1995). In addition, the TRPV5 gene was
screened in nine families with a high-penetrance autosomal
dominant inheritance and a phenotype suggesting a pri-
mary renal defect. However, no mutations were identified
in the open reading frame containing 15 exons and 3 kb of
the 5′-flanking region of the TRPV5 gene (Muller et al.
2002). Since the IH population is a heterogenous group,
TRPV5 cannot be completely excluded as a candidate gene.
Moreover, activating or silencing mutations in TRPV5 and
TRPV6 can hypothetically lead to primary renal as well as
absorptive IH. Single nucleotide polymorphisms (SNPs) in
the Ca2+-sensing receptor (CaSR) have been shown to
significantly increase the relative risk of hypercalciuria
(Vezzoli et al. 2002). The same may be applicable to SNPs
in the genes encoding the epithelial Ca2+ channels or genes
involved in the regulation of TRPV5 and TRPV6 activity
and, therefore, may be involved in the complex genetic
background of IH.

Estrogens and postmenopausal osteoporosis

As previouslymentioned, the deleterious effects of estrogen
deficiency after menopause, leads to a negative Ca2+ bal-
ance associated with renal Ca2+ loss, intestinal Ca2+ malab-
sorption and postmenopausal osteoporosis, which can be
corrected with estrogen replacement therapy (Colin et al.
1999; Nordin et al. 1991; Prince et al. 1991; Young and
Nordin 1969). In addition, estrogen has been implicated in
the protection against Ca2+ nephrolithiasis via an increased
reabsorption of Ca2+. In premenopausal women kidney
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stone formation is less commonly than in age-matched men,
which is associated with a lower urinary Ca2+ excretion
(Heller et al. 2002; Soucie et al. 1994). As shown by van
Abel et al. estrogen has a stimulatory effect on the expres-
sion of active Ca2+ transport proteins in both kidney and
duodenum, including TRPV5 and TRPV6 (van Abel et al.
2002, 2003). Thus, the presence of estrogen may protect
premenopausal women against Ca2+ nephrolithiasis by in-
creasing TRPV5 expression and stimulating Ca2+ reabsorp-
tion. Conversely, decreased active Ca2+ transport through
TRPV5 and TRPV6 as a result of estrogen deficiencywould
be in line with increased Ca2+ wasting and Ca2+ malab-
sorption in postmenopausal women.

PTH-related disorders

Parathyroid hormone (PTH) is an essential component of
Ca2+ homeostasis. Secretion of PTH from the parathyroid
glands is regulated by the parathyroid CaSR, which senses
the ambient Ca2+ concentration (Brown et al. 1993). There
are several disorders with disturbed Ca2+ homeostasis, char-
acterized by hypo- or hyperparathyroidism. Primary hyper-
parathyroidism (PHPT) is a common endocrine disorder
characterized by elevated PTH levels (Khosla et al. 1993).
Others involve inactivating mutations in the CaSR gene,
resulting in familial hypocalciuric hypercalcemia (FHH) or
neonatal severe hyperparathyroidism (NSHPT; Pollak et al.
1993), whereas autosomal dominant hypocalcemia (ADH) is
caused by activatingmutations (Pollak et al. 1994). From the
clinical symptoms of these PTH-related disorders, like hypo-
or hypercalciuria and renal stone formation, it is clear that
also renal Ca2+ handling is affected.We recently investigated
the role of PTH in regulating renal Ca2+ transport proteins,
including TRPV5 and TRPV6. Data gathered from para-
thyroidectomized rats showed that reducing serum PTH
levels resulted in down-regulation of renal TRPV5 expres-
sion, which is in line with reduced Ca2+ reabsorption, con-
tributing to the observed hypocalcemia. Supplementation
with PTH in these rats restored the expression of TRPV5
and serum Ca2+ levels (van Abel et al., unpublished data).
In addition, calcimimetic compounds were used to reduce
serum PTH levels in mice. Calcimimetics are small organ-
ic compounds that, upon binding to the CaSR, enhance the
sensitivity of the CaSR for Ca2+ in an allosteric fashion,
thereby inhibiting PTH secretion by the parathyroid glands,
and may provide a novel therapy for treating hyperpara-
thyroidism (Nemeth 1996; Nemeth et al. 1998). Infusion of
these calcimimetic compounds in normal mice resulted in
decreased serum PTH levels, serum Ca2+ levels and renal
expression of TRPV5 as well as reduced expression of
TRPV6 in duodenum (van Abel et al., unpublished data).
Thus, PTH could affect Ca2+ balance by regulating Ca2+ (re)
absorption through the expression of Ca2+ transport pro-
teins, including TRPV5 and TRPV6, and these epithelial
Ca2+ channels could, therefore, be involved in the pathogen-
esis of PTH-related disorders.

Vitamin D analogues

Secondary hyperparathyroidism (SHPT), a common disor-
der in patients with chronic renal failure, develops in re-
sponse to low serum levels of Ca2+ and active vitamin D
metabolites. SHPT requires treatment to minimize the effect
of elevated PTH on bone and other tissues (Bro and Olgaard
1997). Vitamin D compounds have been widely used in the
treatment of this disorder. However, use of compounds such
as 1,25(OH)2D3 has frequently been accompanied by the
undesired side effects of hypercalcemia and hyperphospha-
temia, which increase the risk of soft tissue and vascular
calcification (Goodman et al. 2000). To avoid these side
effects, vitamin D analogues have been developed with the
aim of suppressing PTH secretion with minimal calcemic
action (Slatopolsky et al. 2003). 1α-hydroxyvitamin D2

(1α(OH)D2) is a vitamin D prodrug, less calcemic than 1,25
(OH)2D3 in animal studies (Bro et al. 1997), which must be
metabolized to become active, resulting in altered pharma-
cokinetics relative to active vitamin D compounds. 1α,24-
dihydroxyvitamin D2 (1,24(OH)2D2) is an activemetabolite
of 1α(OH)D2 with greatly reduced calcemic activity rela-
tive to 1,25(OH)2D3 (Knutson et al. 1995, 1997). The 1α-
OHase knockout mice were used to study the activity of
vitamin D compounds, namely 1,25(OH)2D3, 1α(OH)D2,
and 1,24(OH)2D2, on serumCa2+ and the expression of Ca2+

transport genes (Hoenderop et al. 2004). All three com-
pounds were able to increase serum Ca2+ levels, although at
different time-scales, reflecting their individual pharmaco-
kinetics, thereby increasing serum 1,25(OH)2D3 levels. In-
terestingly, TRPV5 and TRPV6 mRNA levels in duodenum
increased in parallel with serum levels of Ca2+. Effects of
vitamin D compounds on Ca2+ regulatory genes in kidney
were more diverse, of which 1,24(OH)2D2 did not up-regu-
late TRPV5. Taken together, the differences in calcemic
effects of the various vitamin D compounds could result
from their effect on Ca2+ channel proteins in target organs,
through either reduced magnitude of induction or reduced
duration of induction.

Prostate cancer

First evidence that TRP channels could be involved in the
progression of certain types of cancer came from analy-
sis of TRPM1, which gene expression is inversely cor-
related with the aggressiveness of malignant melanoma
cells (Duncan et al. 1998). In addition, TRPM8 has orig-
inally been cloned from prostate cancer tissue (Tsavaler et
al. 2001). Moreover, TRPV6 was shown to be strongly up-
regulated in prostate cancer (Peng et al. 2001b; Wissenbach
et al. 2001, 2004). Also in carcinomas of other tissues, such
as breast, thyroid, colon and ovary, TRPV6 expression is
increased (Zhuang et al. 2002). Thus, TRPV6 might be a
new marker for tumor progression. Indeed, northern blot
analysis, in situ hybridization experiments and immunohis-
tochemistry clearly demonstrated that TRPV6 is highly
expressed in prostate cancer cells compared to healthy pro-
state epithelia (Fixemer et al. 2003;Wissenbach et al. 2001).
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In addition, TRPV6 transcripts are abundantly expressed in
lymph node metastasis of prostate origin (Wissenbach et
al. 2001). The appearance of TRPV6 correlates positively
with the tumor grade and TRPV6 might, therefore, be a
promising target for the development of drugs against
prostate cancer.

Interestingly, prostate carcinoma is a hormone-sensitive
malignancy and anti-androgens are frequently used in pros-
tate cancer treatment. Peng et al. showed that in a human
prostate adenocarcinoma cell line TRPV6mRNAexpression
was decreased upon dihydrotestosterone treatment, whereas
an androgen receptor antagonist significantly increased
TRPV6 mRNA levels (Peng et al. 2001b). Furthermore, es-
trogens, also used therapeutically in prostate cancer, posi-
tively regulate TRPV6 (van Abel et al. 2003). In addition,
vitamin D has received considerable interest as a possible
anticancer drug, particularly in prostate cancer (Liu et al.
2002). VDR presence was demonstrated in prostate epithe-
lial cells and vitamin D analogues were shown to inhibit the
growth of primary cultures of human prostate tissue and
cancer cell lines (Miller et al. 1992; Peehl et al. 1994; Zhao
et al. 2000). As discussed previously, the positive regula-
tion of TRPV6 by 1,25(OH)2D3 and several analogues has
been clearly established (Fleet et al. 2002; Hoenderop et
al. 2004; Weber et al. 2001; Wood et al. 2001). Apoptosis
is induced by either depleting the cell or by overloading
the cell with Ca2+ (Haverstick et al. 2000; Nicotera and
Orrenius 1998; Rabinovitch et al. 2001). Therefore, an
increased Ca2+ influx through TRPV6 could be involved
in the apoptotic anti-cancer effects of vitamin D and other
compounds on prostate carcinoma and TRPV6 might be
a possible target in the development of novel anticancer
therapy in prostate carcinoma.

Thiazide diuretics

Thiazide diuretics, widely used in hypertension therapy,
have the unique characteristic of increasing renal Na+ ex-
cretion by inhibiting the apical Na+-Cl− cotransporter (NCC)
in DCT, resulting in an increased salt and water loss and,
thereby, decrease the extracellular volume (ECV; Monroy
et al. 2000). Moreover, these drugs concomitantly increase
Ca2+ reabsorption (Costanzo and Windhager 1978). This
hypocalciuric effect provides therapeutic opportunities in
for instance idiopathic hypercalciuria and nephrolithiasis.
Furthermore, thiazides have been shown to increase bone
mineral density and decrease fracture risk, spiking interest in
the favorable long-term effects of these diuretics in coun-
teracting osteoporosis (Reid et al. 2000). The decreasedCa2+

excretion during chronic thiazide administration has been
explained by ECV contraction enhancing the paracellular
Ca2+ reabsorption in proximal tubules as well as a direct
stimulation of activeCa2+ reabsorption in theDCT (Costanzo
et al. 1978; Ellison 2000; Friedman 1998; Friedman and
Bushinsky 1999; Loffing et al. 2001; Nijenhuis et al. 2003).

In addition, in Gitelman’s syndrome, a recessive disor-
der caused by mutations in the gene encoding NCC, hy-
pocalciuria is invariably present (Lemmink et al. 1996;

Schultheis et al. 1998). Some hypotheses concerning the
mechanism responsible for this hypocalciuria also center on
stimulation of active Ca2+ transport (Ellison 2000). How-
ever, Nijenhuis et al. showed that chronic hydrochlorothia-
zides (HCTZ) treatment consistently decreased the mRNA
expression and protein abundance of the transporters respon-
sible for active Ca2+ reabsorption, including TRPV5, while
prevention of ECV contraction during HCTZ treatment pro-
hibited the development of hypocalciuria (Nijenhuis et al.
2003). These results suggest that ECV contraction is the
critical determinant of the thiazide-induced hypocalciuria,
excluding a stimulatory role of TRPV5. In addition, Loffing
et al. showed recently in a mouse model for Gitelman’s
syndrome that mutation in NCC did not lead to increased
abundance of renal TRPV5 and NCX1. Moreover, in vivo
micropuncture experiments indicated that the hypocalciuria
is not related to increased Ca2+ transport rates in DCT and
CNT. These results provided evidence for reduced glomer-
ular filtration and stimulation of proximal reabsorption,
which could be causative for the hypocalciuria in NCC-
deficient mice and in patients with Gitelman’s syndrome
(Loffing et al. 2004).

Tacrolimus

Immunosuppressant drugs, like tacrolimus, are prescribed in
various disorders and to organ transplant recipients. Besides
the immunosuppressive actions, tacrolimus also affects min-
eral homeostasis. Treatment with tacrolimus has been asso-
ciated with increased bone turnover, negative Ca2+ balance
and hypercalciuria. This hypercalciuric effect has been at-
tributed to increased bone resorption and decreased renal
Ca2+ reabsorption (Aicher et al. 1997; Reid and Ibbertson
1987; Reid 1997). Recently, it has been demonstrated that
treatment with tacrolimus in rats enhanced renal Ca2+ wast-
ing, which was accompanied by a decreased expression of
the active Ca2+ transport proteins TRPV5 and calbindin-
D28K (Nijenhuis et al. 2004). Thus, down-regulation of the
renal Ca2+ transport proteins could contribute to the patho-
genesis of tacrolimus-induced hypercalciuria.

TRPV5 knockout mice

As described in the aforementioned paragraphs, TRPV5
plays a critical role in active Ca2+ transport across the renal
epithelia and, therefore, in Ca2+ homeostasis. In order to
investigate the physiological function of TRPV5 in main-
taining Ca2+ balance, TRPV5 knockout mice were gener-
ated (Hoenderop et al. 2003a). Mice lacking TRPV5
(TRPV5−/−) displayed a significant calciuresis compared
to their wild-type littermates (TRPV5+/+) while remaining
normocalcemic. In addition to the increased renal Ca2+

excretion, polyuria and an acidic urine were consistently
observed in TRPV5−/− mice. Increasing the amount of
urine and acidification of the urine reduce the potential
risk of renal stone formation (Baumann 1998; Frick and
Bushinsky 2003; Miller and Stapleton 1989). Micropunc-
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ture studies indicated that the renal Ca2+ transport defect
was localized primarily to the DCT/CNT. Ablation of
TRPV5 in the distal convolution was accompanied by a
concomitant decrease in calbindin-D28K and NCX1 mRNA
levels. Importantly, serum 1,25(OH)2D3 levels were ele-
vated, causing an compensatory increase in intestinal
TRPV6 and calbindin-D9K mRNA expression as well as
Ca2+ absorption in TRPV5−/− mice, explaining the remain-
ing normal serum Ca2+ levels. Furthermore, the TRPV5−/−

mice exhibited significant disturbances in bone structure,
including reduced trabecular and cortical bone thickness
compared to TRPV5+/+ mice (Hoenderop et al. 2003a).
Together, ablation of the TRPV5 gene seriously disturbed
renal Ca2+ handling, resulting in compensatory intestinal
hyperabsorption and bone abnormalities. These deficien-
cies in Ca2+ handling have been reported frequently in
patients with idiopathic hypercalciuria, in which TRPV5
dysfunction could contribute to the pathogenesis. Finally,
the increased 1,25(OH)2D3 levels and effects on bone struc-
ture indicate that alterations in TRPV5 may have implica-
tions for age-related bone disorders, including osteoporosis.

Conclusion

TRPV5 and TRPV6 comprise a unique pair of Ca2+ chan-
nels among the TRP superfamily. Distinctive physiological
functions important for body Ca2+ homeostasis have now
been established for these channels, but many areas remain
open for further investigation. Dysregulation or dysfunction
of these epithelial Ca2+ channels may contribute to distur-
bances in Ca2+ homeostasis and be associated with several
diseases. In this respect, further examination of interacting
proteins will disclose more detailed information concerning
the molecular regulation of the Ca2+ channel activity. Fur-
thermore, characterization of (tissue-specific) TRPV5 and
TRPV6 knockout models should reveal the diseases that are
associated with Ca2+ channel dysfunction.
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