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Abstract
In this paper we derive a variety of functional inequalities for general homogeneous
invariant hypoelliptic differential operators on nilpotent Lie groups. The obtained inequal-
ities include Hardy, Sobolev, Rellich, Hardy–Littllewood–Sobolev, Gagliardo–Nirenberg,
Caffarelli–Kohn–Nirenberg andHeisenberg–Pauli–Weyl type uncertainty inequalities. Some
of these estimates have been known in the case of the sub-Laplacians, however, for more
general hypoelliptic operators almost all of them appear to be new as no approaches for
obtaining such estimates have been available. The approach developed in this paper relies on
establishing integral versions of Hardy inequalities on homogeneous Lie groups, for which
we also find necessary and sufficient conditions for theweights for such inequalities to be true.
Consequently, we link such integral Hardy inequalities to different hypoelliptic inequalities
by using the Riesz and Bessel kernels associated to the described hypoelliptic operators.
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1 Introduction

In this paper we are interested in developing approaches that allow one to derive a variety of
functional inequalities for general homogeneous invariant hypoelliptic differential operators
on nilpotent Lie groups. Inequalities of such type are important by themselves but also play
an important role in wider analysis, in particular in view of the seminal results of Rothschild
and Stein [36] linking the analysis of hypoelliptic differential operators on nilpotent (Lie)
groups to differential operators on manifolds.

To give an idea of the obtained results and to put them in perspective we start by describing
a collection of some of the obtained inequalities in the setting of sub-Laplacians on stratified
(Lie) groups (homogeneous Carnot groups).

1.1 Hardy–Sobolev–Rellich inequalities on stratified Lie groups

Hardy inequalities on stratified groups are extremely well investigated topic, with different
versions of such inequalities known, also with best constants. While we can not possibly
give a comprehensive bibliography for it here, we can refer to the recent book [37] for the
literature reviews of the subject for the horizontal norm and for norms given in terms of the
fundamental solutions of the sub-Laplacian, respectively.

However, the starting point for the investigation of this paper is the following version
of the Hardy inequality recently obtained by Ciatti et al. [6]. Let G be a stratified group of
homogeneous dimension Q and let L be a sub-Laplacian on G. Let | · | be homogeneous
norm on G. We refer to Sect. 2 for more details of this classical setting.

Let 1 < p < ∞ and let Tγ f := | · |−γL−γ /2 f with 0 < γ < Q/p. Then, as it was shown
in [6, Theorem A], the Hardy inequality for the fractional order operator Lγ /2 can take the
following form: the operator Tγ extends uniquely to a bounded operator on L p(G), and we
have

‖Tγ ‖L p(G)→L p(G) � 1 + Cγ + O(γ 2). (1.1)

We also refer to [6] for the history of (1.1).
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Among other things, in this paper we extend the boundedness in (1.1) to the setting of
general homogeneous invariant hypoelliptic differential operators taking place of the operator
L. Moreover, we extend such estimates to the range of L p − Lq estimates as well as give
their critical versions in the case of γ = Q/p.

Let us list some of such results still in the simplified setting of the sub-Laplacians. First
we observe that by combining (1.1) with Sobolev inequalities for the sub-Laplacian, we have
the following extended version of (1.1):

• (Hardy–Sobolev–Rellich inequalities on stratified groups) Let 1 < p ≤ q < ∞ and
0 < a < Q/p. Let 0 ≤ b < Q and a

Q = 1
p − 1

q + b
qQ . Then there exists a positive

constant C such that
∥
∥
∥
∥
∥

f

|x | bq

∥
∥
∥
∥
∥
Lq (G)

≤ C‖(−L)
a
2 f ‖L p(G) (1.2)

holds for all f ∈ L̇ p
a (G).

Here the space L̇ p
a (G) is the homogeneous Sobolev space over L p of order a, based on

the sub-Laplacian L. The theory of such spaces has been extensively developed by Folland
[19]. Consequently, more general results of this paper yield the following new version of the
critical case of (1.2) for a = Q/p:

• (Critical Hardy inequality for a = Q/p on stratified groups) Let 1 < p < r < ∞
and p ≤ q < (r − 1)p′, where 1/p + 1/p′ = 1. Then there exists a positive constant
C = C(p, q, r , Q) such that

∥
∥
∥
∥
∥
∥
∥

f
(

log
(

e + 1
|x |
)) r

q |x | Qq

∥
∥
∥
∥
∥
∥
∥

Lq (G)

≤ C(‖ f ‖L p(G) + ‖(−L)
Q
2p f ‖L p(G)) (1.3)

holds for all f ∈ L p
Q/p(G).

Thus, (1.3) gives the critical case of the Hardy type inequalities in [6, Theorem A].
Actually, in Sect. 3 we obtain all of the above inequalities for more general hypoelliptic

operators on more general nilpotent groups, namely, on graded (Lie) groups. As far as we are
aware there are no other Hardy type inequalities known on graded groups in the literature.

Note that the explicit best constants and explicit extremal functions to these inequalities
are still an open problem, although some constants in their non-explicit form for these and
other inequalities in this paper can be described in terms of the ground states of certain
nonlinear PDEs and extremals of variational problems, see [42] and [44].

1.2 Hardy–Sobolev–Rellich inequalities on graded Lie groups

The setting of graded groups as developed by Folland and Stein [24] allows one to work
efficientlywith higher order hypoelliptic operators, contrary to only sub-Laplacians appearing
on stratified groups.

We assume now thatG is a nilpotent Lie group with a compatible dilation structure, i.e. a
homogeneous (Lie) group. We refer to Sect. 2 for a precise (well-known) definition. Let Q
be the homogeneous dimension of G and let | · | be a homogeneous quasi-norm on G. Let
R be a positive left-invariant homogeneous hypoelliptic invariant differential operator on G
of homogeneous degree ν. Such operators are called Rockland operators. For instance, for
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the Heisenberg group, the sub-Laplacian and its powers are Rockland operators. If G is a
stratified group with a basis X1, . . . , Xn of the first stratum g1, then the operators

R = (−1)m
n
∑

j=1

a j X
2m
j , a j > 0,

are positive Rockland operators for any m ∈ N, yielding the sub-Laplacian for m = 1.
More generally, for any graded group G ∼ R

n with dilation weights ν1, . . . , νn and a basis
X1, . . . , Xn of the corresponding Lie algebra g satisfying

Dr X j = rν j X j , j = 1, . . . , n, r > 0,

the operator

R =
n
∑

j=1

(−1)
ν0
ν j a j X

2 ν0
ν j

j , a j > 0, (1.4)

is a Rockland operator of homogeneous degree 2ν0, where ν0 is any common multiple of
ν1, . . . , νn . There are other examples of Rockland operators that can be adapted to special
selections of vector fields generating the Lie algebra in a suitable way, such as for example
the vector fields from the first stratum on the stratified groups. We can refer to [20, Section
4.1.2] for many other examples and a detailed discussion of Rockland operators.

In particular, the existence of such an operator is equivalent to the condition that the group
is graded, and such operators can be characterised in terms of the representation theory of
the group by the celebrated result of Helffer and Nourrigat [28]. We note that examples of
graded groups include Rn , the Heisenberg group, and general stratified groups. Again, for
brevity, we refer to Sect. 2 for precise definitions.

Therefore, results for Rockland operators on graded groups can be viewed as the most
general differential results in the setting on nilpotent Lie groups. As far as we know, none of
the inequalities we now describe are known in such settings.

From now on we let R be a positive Rockland operator, that is, a positive left-invariant
homogeneous hypoelliptic invariant differential operator onG of homogeneous degree ν. Its
powers Ra are understood through the functional calculus on the whole of G, extensively
analysed in [20, 21].

We start with the following analogue of (1.2), which we also call the Hardy–Sobolev–
Rellich inequalities since it contains the classical Hardy, Rellich and Sobolev inequalities:

• (Hardy–Sobolev–Rellich inequalities on graded groups) Let 1 < p ≤ q < ∞ and
0 < a < Q/p. Let 0 ≤ b < Q and a

Q = 1
p − 1

q + b
qQ . Then there exists a positive

constant C such that
∥
∥
∥
∥
∥

f

|x | bq

∥
∥
∥
∥
∥
Lq (G)

≤ C‖R a
ν f ‖L p(G) (1.5)

holds for all f ∈ L̇ p
a (G).

In particular, for q = p we obtain the general hypoelliptic family of the Hardy inequalities:
∥
∥
∥
∥

f

|x |a
∥
∥
∥
∥
L p(G)

≤ C‖R a
ν f ‖L p(G), 1 < p < ∞, 0 < a < Q/p. (1.6)

In particular, for a = 1 and a = 2 we obtain the hypoelliptic versions of Hardy and Rellich
inequalities, respectively, which in this form are new already on the stratified groups since
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the operator R does not have to be a sub-Laplacian and can be of any order. At the same
time, for b = 0, (1.5) gives an alternative proof of the Sobolev inequality obtained in [21]:

‖ f ‖Lq (G) ≤ C‖R a
ν f ‖L p(G), 1 < p < q < ∞, a = Q

(
1

p
− 1

q

)

. (1.7)

The homogeneous and inhomogeneous Sobolev spaces L̇ p
a (G) and L p

a (G) based on the
positive left-invariant hypoelliptic differential Rockland operator R have been extensively
investigated in [21] and [20, Section 4.4] to which we refer for the details of their properties.
In these works, the authors generalised to graded groups the Sobolev spaces based on the
sub-Laplacian on stratified groups analysed by Folland in [19].

As a consequence of (1.5), we also get the following Heisenberg–Pauli–Weyl type
uncertainty principle for general homogeneous invariant hypoelliptic differential operators:

• (Uncertainty type principle on graded groups). Let 1 < p ≤ q < ∞ and 0 < a <

Q/p. Let 0 ≤ b < Q and a
Q = 1

p − 1
q + b

qQ . Then there exists a positive constant C
such that

‖R a
ν f ‖L p(G)‖|x |

b
q f ‖Lq′

(G)
≥ C

∫

G

| f (x)|2dx (1.8)

holds for all f ∈ L̇ p
a (G), where 1/q + 1/q ′ = 1.

As in the stratified case, we have the following critical case of Hardy–Sobolev–Rellich
inequalities:

• (Critical Hardy inequality for a = Q/p on graded groups). Let 1 < p < r < ∞
and p ≤ q < (r − 1)p′, where 1/p + 1/p′ = 1. Then there exists a positive constant
C = C(p, q, r , Q) such that

∥
∥
∥
∥
∥
∥
∥

f
(

log
(

e + 1
|x |
)) r

q |x | Qq

∥
∥
∥
∥
∥
∥
∥

Lq (G)

≤ C‖ f ‖L p
Q/p(G) (1.9)

holds for all f ∈ L p
Q/p(G).

Similarly to (1.9) was investigated in the Euclidean setting in [32].

1.3 Caffarelli–Kohn–Nirenberg and Gagliardo–Nirenberg inequalities on graded Lie
groups

First, let us recall the classical Caffarelli–Kohn–Nirenberg inequality [9]:

Theorem 1.1 Let n ∈ N and let p, q, r , a, b, d, δ ∈ R such that p, q ≥ 1, r > 0, 0 ≤ δ ≤ 1,
and

1

p
+ a

n
,
1

q
+ b

n
,
1

r
+ c

n
> 0 (1.10)

where c = δd + (1 − δ)b. Then there exists a positive constant C such that

‖|x |c f ‖Lr (Rn) ≤ C‖|x |a |∇ f |‖δ
L p(Rn)‖|x |b f ‖1−δ

Lq (Rn)
(1.11)

holds for all f ∈ C∞
0 (Rn), if and only if the following conditions hold:

1

r
+ c

n
= δ

(
1

p
+ a − 1

n

)

+ (1 − δ)

(
1

q
+ b

n

)

, (1.12)
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a − d ≥ 0 if δ > 0, (1.13)

a − d ≤ 1 if δ > 0 and
1

r
+ c

n
= 1

p
+ a − 1

n
. (1.14)

The techniques developed in this paper also allowus to derive general hypoelliptic versions
of Caffarelli–Kohn–Nirenberg and weighted Gagliardo–Nirenberg inequalities.

• (Caffarelli–Kohn–Nirenberg inequalities on graded groups). Let 1 < p, q < ∞,
δ ∈ (0, 1] and 0 < r < ∞with r ≤ q

1−δ
for δ �= 1. Let 0 < a < Q/p and β, γ ∈ Rwith

δr(Q − ap− β p) ≤ p(Q + rγ − rβ) and β(1− δ) − δa ≤ γ ≤ β(1− δ). Assume that
r(δQ+p(β(1−δ)−γ−aδ))

pQ + (1−δ)r
q = 1. Then there exists a positive constant C such that

‖|x |γ f ‖Lr (G) ≤ C
∥
∥
∥R a

ν f
∥
∥
∥

δ

L p(G)

∥
∥|x |β f

∥
∥
1−δ

Lq (G)
(1.15)

holds for all f ∈ L̇ p
a (G).

In the Euclidean case G = (Rn,+) with Q = n, if the conditions (1.10) are not satisfied,
then the inequality (1.15) is not covered by Theorem 1.1. So, this actually also gives an
extension of Theorem 1.1 with respect to the range of parameters. Let us give an example:

Example 1.2 If 1 < p = q = r < n, a = 1, R = −� and γ = β(1 − δ) − δ, then (1.15)
takes the form

‖|x |γ f ‖L p(Rn) ≤ C
∥
∥
∥(−�)

1
2 f

∥
∥
∥

δ

L p(Rn)

∥
∥|x |β f

∥
∥
1−δ

L p(Rn)
. (1.16)

Here, we can take e.g. β ≤ −n/p or γ ≤ −n/p so that the conditions (1.10) are not satisfied,
then the inequality (1.16) is not covered by Theorem 1.1.

We refer to [38] for the related analysis on stratified groups, [40] and [39] on homogeneous
groups, namely, for Caffarelli–Kohn–Nirenberg type inequalities in terms of parameters but
with radial derivative operator or horizontal gradient instead of Rockland operators.

We note that for β = γ = 0, inequality (1.15) also recovers the Garliardo–Nirenberg
inequality (5.9) (see Remark 5.8), that is

‖ f ‖Lr (G) ≤ C
∥
∥
∥R a

ν f
∥
∥
∥

δ

L p(G)
‖ f ‖1−δ

Lq (G)
(1.17)

for all f ∈ L̇ p
a (G) ∩ Lq(G), previously established in [41] with an application to the global-

in-time well-posedness of nonlinear damped wave equations related to Rockland operators
on graded groups (see also [45] for nonlinear heat equations), where a > 0, 1 < p < Q/a,
1 < q ≤ r ≤ pQ/(Q − ap) and δ = (1/q − 1/r)(a/Q + 1/q − 1/p)−1.

We also refer to [4] for another type of Garliardo–Nirenberg inequality involving Besov
norms on graded groups.

In [42] and [44] the best constant in the Gagliardo–Nirenberg inequality (1.17) with q = p
and its critical version (a = Q/p) and the Sobolev inequality with inhomogeneous norm
are expressed in the variational form as well as in terms of the ground state solutions of the
nonlinear Schrödinger equation.

1.4 Integral Hardy inequalities on homogeneous Lie groups

The described hypoelliptic Hardy–Sobolev–Rellich inequalities and their critical versions
on graded groups follow from the following integral versions of Hardy inequalities that we
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can establish in the setting of general homogeneous groups. For example, we can obtain the
Hardy–Sobolev–Rellich inequalities (1.18) by taking T (1)

a in the following result to be the
Riesz kernel of a positive Rockland operator. Similarly, we obtain its critical versions by
taking T (2)

a in (1.20) to be a combination of Riesz and Bessel kernels.
Thus, let now G be a homogeneous group of homogeneous dimension Q, equipped with

any fixed homogeneous quasi-norm | · |. Then we have the following results:

• (Integral Hardy inequality on homogeneous groups) Let 1 < p ≤ q < ∞ and
0 < a < Q/p. Let 0 ≤ b < Q and a

Q = 1
p − 1

q + b
qQ . Assume that |T (1)

a (x)| ≤ C1|x |a−Q

for somepositiveC1 = C1(a, Q). Then there exists a positive constantC = C(p, q, a, b)
such that

∥
∥
∥
∥
∥

f ∗ T (1)
a

|x | bq

∥
∥
∥
∥
∥
Lq (G)

≤ C‖ f ‖L p(G) (1.18)

holds for all f ∈ L p(G).
• (Critical integral Hardy inequality on homogeneous groups) Let 1 < p < r < ∞

and p ≤ q < (r −1)p′, where 1/p+1/p′ = 1. Assume that for a = Q/p and for every
N > Q we have

|T (2)
a (x)| ≤ C2

{

|x |a−Q, for x ∈ G\{0},
|x |−N , for x ∈ G with |x | ≥ 1,

(1.19)

for some positive C2 = C2(a, Q). Then there exists a positive constant C =
C(p, q, r , Q) such that

∥
∥
∥
∥
∥
∥
∥

f ∗ T (2)
Q/p

(

log
(

e + 1
|x |
)) r

q |x | Qq

∥
∥
∥
∥
∥
∥
∥

Lq (G)

≤ C‖ f ‖L p(G) (1.20)

holds for all f ∈ L p(G).

In the proof of (1.18) and (1.20) the following characterisation ofweighted integralHardy type
inequalities plays an important role. In fact, the following results provide the characterisation
of pairs of weights for the integral versions of Hardy inequalities to hold. For brevity, we only
indicate the type of the obtained results referring to the corresponding theorems for precise
characterising conditions.

• (Integral Hardy inequality for p ≤ qon homogeneous groups) Let {φi }2i=1 and {ψi }2i=1
be positive functions on G, and 1 < p ≤ q < ∞. Then we have

(∫

G

(∫

B(0,|x |)
f (z)dz

)q

φ1(x)dx

) 1
q

≤ C3

(∫

G

( f (x))pψ1(x)dx

) 1
p

(1.21)

and

(∫

G

(∫

G\B(0,|x |)
f (z)dz

)q

φ2(x)dx

) 1
q

≤ C4

(∫

G

( f (x))pψ2(x)dx

) 1
p

(1.22)

hold for all f ≥ 0 a.e. on G if and only if Ai (φi , ψi ) < ∞, i = 1, 2, where {Ai }2i=1 are
given in (3.3)-(3.4).
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• (Integral Hardy inequality for p > q on homogeneous groups) Let {φi }4i=3 and
{ψi }4i=3 be positive functions on G, and 1 < q < p < ∞ with 1/δ = 1/q − 1/p. Then
we have

(∫

G

(∫

B(0,|x |)
f (z)dz

)q

φ3(x)dx

) 1
q

≤ C5

(∫

G

( f (x))pψ3(x)dx

) 1
p

(1.23)

and
(∫

G

(∫

G\B(0,|x |)
f (z)dz

)q

φ4(x)dx

) 1
q

≤ C6

(∫

G

( f (x))pψ4(x)dx

) 1
p

(1.24)

hold for all f ≥ 0 if and only if Ai (φi , ψi ) < ∞, i = 3, 4, where {Ai }4i=3 are given in
(3.22)-(3.23).

• (Weighted Hardy–Sobolev type inequality on homogeneous groups) Let φ5, ψ5 be
positive weight functions on G and let 1 < p ≤ q < ∞. Then there exists a positive
constant C such that

(∫

G

φ5(x)| f (x)|qdx
)1/q

≤ C

(∫

G

ψ5(x)|R|x | f (x)|pdx
)1/p

(1.25)

holds for radial functions f with f (0) = 0 if and only if A5(φ5, ψ5) < ∞, where A5 is
given in (3.69) and R|x | := d

d|x | is the radial derivative.
We note that Hardy, Rellich and other related inequalities with respect to the radial derivative
R|x | have been investigated in [37] and [43].

1.5 Weighted Hardy–Littlewood–Sobolev inequalities

Let us give another illustration of the method of applying inequalities on homogeneous
groups to obtain the corresponding hypoelliptic inequalities. First, in this paper we show that
the integral Hardy inequalities (1.18) and (1.20) imply the following weighted versions of
Hardy–Littlewood–Sobolev inequalities, still on general homogeneous groups:

• (Weighted Hardy–Littlewood–Sobolev, or Stein–Weiss inequalities on homogeneous
groups) Let 0 < λ < Q and 1 < p, q < ∞ be such that 1/p + 1/q + (α + λ)/Q = 2
with 0 ≤ α < Q/p′ and α +λ ≤ Q, where 1/p+1/p′ = 1. Then there exists a positive
constant C = C(Q, λ, p, α) such that

∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)

|x |α|y−1x |λ dxdy
∣
∣
∣
∣
∣
≤ C‖ f ‖L p(G)‖g‖Lq (G) (1.26)

holds for all f ∈ L p(G) and g ∈ Lq(G).
• (Critical Hardy–Littlewood–Sobolev inequalities on homogeneous groups) Let 1 <

p < ∞, 1 < q ≤ p′ < (r − 1)q ′ and q < r < ∞, where 1/p + 1/p′ = 1 and
1/q + 1/q ′ = 1. Let T (2)

Q/p(x) be as in (1.19). Then there exists a positive constant
C = C(p, q, r , Q) such that

∣
∣
∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)T (2)
Q/q(y

−1x)
(

log
(

e + 1
|x |
)) r

p′ |x |
Q
p′
dxdy

∣
∣
∣
∣
∣
∣
∣

≤ C‖ f ‖L p(G)‖g‖Lq (G) (1.27)

holds for all f ∈ L p(G) and g ∈ Lq(G).
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Consequently, similar to the outline of Sect. 1.4, by working with Riesz kernels of positive
Rockland operators, we subsequently obtain the following hypoelliptic differential versions
of Hardy–Littlewood–Sobolev inequalities:

• (Weighted Hardy–Littlewood–Sobolev inequalities on graded groups). Let 1 <

p, q < ∞, 0 ≤ a < Q/p and 0 ≤ b < Q/q . Let 0 < λ < Q, 0 ≤ α < a + Q/p′ and
0 ≤ β ≤ b be such that (Q − ap)/(pQ) + (Q − q(b − β))/(qQ) + (α + λ)/Q = 2
and α + λ ≤ Q, where 1/p + 1/p′ = 1. Then there exists a positive constant
C = C(Q, λ, p, α, β, a, b) such that

∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)

|x |α|y−1x |λ|y|β dxdy
∣
∣
∣
∣
∣
≤ C‖ f ‖L̇ p

a (G)‖g‖L̇q
b (G) (1.28)

holds for all f ∈ L̇ p
a (G) and g ∈ L̇q

b(G).
• (Critical Hardy–Littlewood–Sobolev inequalities on graded groups). Let 1 < p, q <

∞, 0 ≤ a < Q/p, 0 ≤ β ≤ b < Q/q . Q(1/p + 1/q − 1) + β − a − b ≥ 0,
max{ Qq

Q−bq+βq ,
pq(a+b−β+2Q)−Q(p+q)

pq(Q+a)−Qq } < r < ∞. Then there exists a positive constant
C = C(p, q, a, b, β, r , Q) such that

∣
∣
∣
∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)BQ/q(y−1x)
(

log
(

e + 1
|x |
)) r(pQ−Q+ap)

pQ |x |a+ Q
p′ |y|β

dxdy

∣
∣
∣
∣
∣
∣
∣
∣

≤ C‖ f ‖L̇ p
a (G)‖g‖L̇q

b (G)

(1.29)

holds for all f ∈ L̇ p
a (G) and g ∈ L̇q

b(G), where BQ/p is the Bessel kernel from (2.7).

Certainly, the Hardy–Littlewood–Sobolev inequalities is a very classical subject going back
to Hardy–Littlewood [26], [27] and Sobolev [49]. In the setting of homogeneous groups, it
was established by Folland and Stein [23] on the Heisenberg group, and its sharp constants
were also investigated in [29] and [18] in the Euclidean and in the Heisenberg group settings.
As for the logarithmic Hardy-Littlewood-Sobolev inequalities we can refer to e.g. [10], [30],
[5] and the recent paper [15] as well as the references therein. In the appendix in Sect. 6
we note a simple equality between best constants in certain Hardy–Littlewood–Sobolev and
Sobolev inequalities.

The organisation of the paper is as follows. In Sect. 2 we briefly recall the necessary
concepts of homogeneousLie groups andfix the notation. In Sect. 3we introduce theweighted
integral Hardy inequalities and in Sect. 4 we apply them to obtain the Hardy–Littlewood–
Sobolev inequalities on homogeneous groups. The Hardy–Sobolev–Rellich and Caffarelli–
Kohn–Nirenberg inequalities on graded groups are established in Sect. 5. In the appendix
in Sect. 6 we breifly discuss the best constants in certain Hardy–Littlewood–Sobolev and
Sobolev inequalities.

The authors would like to thank Fulvio Ricci for a valuable discussion.

2 Preliminaries

Following Folland and Stein [24, Chapter 1] and the recent exposition in [20, Chapter 3] let
us recall that a family of dilations of a Lie algebra g is a family of linear mappings of the
following form
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Dλ = Exp(A lnλ) =
∞
∑

k=0

1

k! (ln(λ)A)k,

where A is a diagonalisable linear operator on g with positive eigenvalues. We also recall
that Dλ is a morphism of g if it is a linear mapping from g to itself satisfying the property

∀X , Y ∈ g, λ > 0, [DλX , DλY ] = Dλ[X , Y ],
where [X , Y ] := XY −Y X is the Lie bracket. Then, a homogeneous groupG is a connected
simply connected Lie group whose Lie algebra is equipped with a morphism family of
dilations. It induces the dilation structure on G which we denote by Dλx or just by λx .

We call G a graded Lie group if its Lie algebra g admits a gradation

g =
∞
⊕

i=1

gi ,

where the g1, g2, ..., are vector subspaces of the Lie algebra g, all but finitely many equal to
{0}, and satisfying

[gi , g j ] ⊂ gi+ j ∀i, j ∈ N.

Every graded Lie group is also a homogeneous group with the dilation structure induced
by the commutator relations.

The triple G = (Rn, ◦, Dλ) is called a stratified group if it satisfies the conditions:

• For some natural numbers N = N1, N2, . . . , Nr with N + N2 + . . . + Nr = n, the
following decomposition Rn = R

N × . . .×R
Nr is valid, and for each λ > 0 the dilation

Dλ : Rn → R
n defined by

Dλ(x) = Dλ(x
′, x (2), . . . , x (r)) := (λx ′, λ2x (2), . . . , λr x (r))

is an automorphism of the stratified group G. Here x ′ ≡ x (1) ∈ R
N and x (k) ∈ R

Nk for
k = 2, . . . , r .

• Let N be as in above and let X1, . . . , XN be the left invariant vector fields on the stratified
group G such that Xk(0) = ∂

∂xk
|0 for k = 1, . . . , N . Then

rank(Lie{X1, . . . , XN }) = n,

for each x ∈ R
n , that is, the iterated commutators of X1, . . . , XN span the Lie algebra

of the stratified group G.

Note that the left invariant vector fields X1, . . . , XN are called the (Jacobian) generators
of the stratified group G and r is called a step of this stratified group G. For the expressions
for left invariant vector fields on G in terms of the usual (Euclidean) derivatives and further
properties see e.g. [20, Section 3.1.5].

As usual we always assume that G is connected and simply connected. If we fix a basis
{X1, . . . , Xn} of g adapted to the gradation, then by the exponential mapping expG : g → G

we obtain points x ∈ G:

x = expG(x1X1 + . . . + xn Xn).

Let A be a diagonalisable linear operator on the Lie algebra g with positive eigenvalues.
Then, a family of linear mappings of the form

Dr = Exp(A lnr) =
∞
∑

k=0

1

k! (ln(r)A)k
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is a family of dilations of the Lie algebra g. Each Dr is a morphism of g, that is, Dr is a linear
mapping from the Lie algebra g to itself with the following property

∀X , Y ∈ g, r > 0, [Dr X , DrY ] = Dr [X , Y ],
where [X , Y ] := XY −Y X is the Lie bracket. We can always extend these dilations through
the exponential mapping to the group G by

Dr (x) = r x := (rν1x1, . . . , r
νn xn), x = (x1, . . . , xn) ∈ G, r > 0, (2.1)

where ν1, . . . , νn are weights of the dilations. The sum of these weights

Q := Tr A = ν1 + · · · + νn

is called the homogeneous dimension ofG. Recall the fact that the standardLebesguemeasure
dx on R

n is the Haar measure for G (see, e.g. [20, Proposition 1.6.6]). The continuous
non-negative function

G � x �→ |x | ∈ [0,∞)

satisfying the following properties:

• |x−1| = |x | for any x ∈ G,
• |λx | = λ|x | for any x ∈ G and λ > 0,
• |x | = 0 if and only if x = 0,

is called a homogeneous quasi-norm on G.
In the sequel we will need the following well-known facts, see e.g. [20, Proposition 3.1.38

and Theorem 3.1.39]:

Proposition 2.1 LetG be a homogeneous Lie group and let | · | be an arbitrary homogeneous
quasi-norm on G. Then there exists a constant C0 such that

|xy| ≤ C0(|x | + |y|) (2.2)

holds for all x, y ∈ G. At the same time, there always exists a homogeneous quasi-norm | · |
on G which satisfies the triangle inequality

|xy| ≤ |x | + |y| (2.3)

for all x, y ∈ G.

The quasi-ball centred at x ∈ G with radius R > 0 can be defined by

B(x, R) := {y ∈ G : |x−1y| < R}.
There exists a (unique) positive Borel measure σ on the sphere

S := {x ∈ G : |x | = 1}, (2.4)

such that for all f ∈ L1(G) there holds
∫

G

f (x)dx =
∫ ∞

0

∫

S
f (ry)r Q−1dσ(y)dr . (2.5)

We denote by Ĝ the unitary dual of G and by H∞
π the space of smooth vectors for a rep-

resentation π ∈ Ĝ. If the left-invariant differential operatorR on G, which is homogeneous
of positive degree, satisfies the following condition:
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(Rockland condition) for every representation π ∈ Ĝ, except for the trivial representa-
tion, the operator π(R) is injective on H∞

π , that is,

∀υ ∈ H∞
π , π(R)υ = 0 ⇒ υ = 0,

then the left-invariant differential operator R is called a Rockland operator. Here, π(R) :=
dπ(R) is the infinitesimal representation of the Rockland operatorR as of an element of the
universal enveloping algebra of G.

Different characterisations of the Rockland operators have been obtained by Rockland
[34] and Beals [3]. We refer to [21] and [20, Chapter 4] for an extensive presentation about
Rockland operators and for the theory of Sobolev spaces on graded groups, and refer to [12]
for the Besov spaces on graded Lie groups.

By Helffer and Nourrigat [28], we know that one can also define Rockland operators as
left-invariant homogeneous hypoelliptic differential operators on G, since this is equivalent
to the Rockland condition.

Sincewewill dealwith theRiesz andBessel potentials, let us recall themon graded groups,
and prove some useful estimates. Let R be a positive Rockland operator of homogeneous
degree ν. Then, the operators R−a/ν for {a ∈ R, 0 < a < Q} and (I + R)−a/ν for a ∈ R+
are called Riesz and Bessel potentials, respectively. If we denote their kernels by Ia and Ba ,
then we have

Ia(x) := 1

�
( a

ν

)

∫ ∞

0
t
a
ν
−1ht (x)dt (2.6)

for 0 < a < Q with a ∈ R, and

Ba(x) := 1

�
( a

ν

)

∫ ∞

0
t
a
ν
−1e−t ht (x)dt (2.7)

for a > 0, where � denotes the Gamma function, and ht is the heat kernel associated to the
positive Rockland operator R. We refer for more details to [20, Section 4.3.4].

Before using Ia(x) and Ba(x), we recall the following results:

Theorem 2.2 [20, Theorem 4.2.7] Let R be a positive Rockland operator on a graded Lie
groupG. Let | · | be a fixed homogeneous quasi-norm. Let ht be a heat kernel associated with
the Rockland operator. Then each ht is Schwartz and we have

∀s, t > 0 ht ∗ hs = ht+s, (2.8)

∀x ∈ G, r , t > 0 hrν t (r x) = r−Qht (x), (2.9)

∀x ∈ G ht (x) = ht (x−1), (2.10)
∫

G

ht (x)dx = 1. (2.11)

Moreover, we have

∃C = Cα,N ,� > 0 ∀t ∈ (0, 1] sup
|x |=1

|∂�
t X

αht (x)| ≤ Cα,N t
N (2.12)

for any N ∈ N0, α ∈ N
n
0 and � ∈ N0.

Lemma 2.3 [20, Lemma 4.3.8] LetR be a positive Rockland operator on graded Lie group
G and let ht be its heat kernel as in Theorem 2.2. Let | · | be a homogeneous quasi-norm and
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α ∈ N
n
0 be a multi-index. Then for any real number a with 0 < a < (Q +[α])/ν there exists

a positive constant C such that
∫ ∞

0
ta−1|Xαht (x)|dt ≤ C |x |−Q−[α]+νa . (2.13)

Replacing a by a/ν and putting α = 0 in Lemma 2.3, and using the representation (2.6) for
Ia(x), we obtain
Lemma 2.4 Let | · | be a homogeneous quasi-norm. Let 0 < a < Q and a ∈ R. Then there
exists a positive constant C = C(Q, a) such that

|Ia(x)| ≤ C |x |−(Q−a). (2.14)

Now let us prove the following useful lemma for Ba , which may be not optimal (for example,
the exponential decay is known on Rn , see [1]), but sufficient for our purposes.

Lemma 2.5 Let | · | be a homogeneous quasi-norm. Let 0 < a < Q and a ∈ R. Then there
exists a positive constant C = C(Q, a) such that

|Ba(x)| ≤ C

{

|x |−(Q−a), for x ∈ G\{0},
|x |−N , for x ∈ G with |x | ≥ 1

(2.15)

for every N.

Proof of Lemma 2.5 We split the integral in (2.15) as follows

Ba(x) = 1

�
( a

ν

)

∫ ∞

0
t
a
ν
−1e−t ht (x)dt

= 1

�
( a

ν

)

∫ |x |ν

0
t
a
ν
−1e−t ht (x)dt + 1

�
( a

ν

)

∫ ∞

|x |ν
t
a
ν
−1e−t ht (x)dt

=: J1(x) + J2(x). (2.16)

To estimate J1 using the property of homogeneity of ht in (2.9), we calculate

|J1(x)| =
∣
∣
∣
∣
∣

1

�
( a

ν

)

∫ |x |ν

0
t
a
ν
−1e−t |x |−Qh|x |−ν t

(
x

|x |
)

dt

∣
∣
∣
∣
∣

≤ 1

�
( a

ν

) |x |−Q

(

sup
|y|=1,0≤t1≤1

|ht1(y)|
)
∫ |x |ν

0
t
a
ν
−1dt

= ν

a�
( a

ν

) |x |a−Q

(

sup
|y|=1,0≤t1≤1

|ht1(y)|
)

≤ C |x |a−Q, (2.17)

where we have used that sup
|y|=1, 0≤t1≤1

|ht1(y)| is finite by (2.12).

Now we estimate J2. A direct calculation gives that

|J2(x)| =
∣
∣
∣
∣
∣

1

�
( a

ν

)

∫ ∞

|x |ν
t
a
ν
−1e−t ht (x)dt

∣
∣
∣
∣
∣

≤ 1

�
( a

ν

)

∫ ∞

|x |ν
t
a
ν
−1t−

Q
ν |h1(t− 1

ν x)|dt
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≤ 1

�
( a

ν

)‖h1‖L∞(G)

∫ ∞

|x |ν
t
a
ν
−1− Q

ν dt

≤ C |x |a−Q, (2.18)

where we have used that ‖h1‖L∞(G) is finite since h1 is Schwartz. Combining (2.16), (2.17)
and (2.18), we obtain (2.15).

On the other hand, when |x | ≥ 1, using that h1 is Schwartz, one has for every N that

|J1(x)| �
∫ |x |ν

0
t
a−Q

ν
−1e−t h1

(

t−
1
ν x
)

dt

� |x |−N
∫ |x |ν

0
t
a−Q+N

ν
−1e−t dt

� |x |−N
∫ ∞

0
t
a−Q+N

ν
−1e−t dt

� |x |−N , (2.19)

and, again using the first line in (2.19), and that h1 is Schwartz, we get

|J2(x)| �
∫ ∞

|x |ν
t
a−Q

ν
−1e−t dt �

∫ ∞

|x |ν
t
a−Q−N

ν
−1dt, (2.20)

showing that Ba(x) is rapidly decreasing at ∞. Combining (2.16), (2.19) and (2.20), we
obtain (2.15) for |x | ≥ 1. ��

3 Weighted integral Hardy inequalities on homogeneous Lie groups

In this section we introduce various types of weighted L p − Lq inequalities for the Hardy
operator on homogeneous groups for different ranges of indices 1 < p, q < ∞. We obtain
necessary and sufficient condition on weights for such inequalities to be true. Subsequently,
we apply them (Theorem 3.1) to obtain an integral Hardy inequality on general homogeneous
groups which will be crucial for the further investigation of this paper. For a version of this
result on more general metric measure spaces with polar decomposition see also [46].

Theorem 3.1 LetG be a homogeneous Lie group of homogeneous dimension Q. Let {φi }2i=1
and {ψi }2i=1 be positive functions on G, and let 1 < p ≤ q < ∞. Then the inequalities

(∫

G

(∫

B(0,|x |)
f (z)dz

)q

φ1(x)dx

) 1
q

≤ C3

(∫

G

( f (x))pψ1(x)dx

) 1
p

(3.1)

and

(∫

G

(∫

G\B(0,|x |)
f (z)dz

)q

φ2(x)dx

) 1
q

≤ C4

(∫

G

( f (x))pψ2(x)dx

) 1
p

(3.2)

hold for all f ≥ 0 a.e. on G if and only if, respectively, we have

A1 := sup
R>0

(∫

{|x |≥R}
φ1(x)dx

) 1
q
(∫

{|x |≤R}
(ψ1(x))

−(p′−1)dx

) 1
p′

< ∞ (3.3)

123



Hypoelliptic functional inequalities Page 15 of 41    22 

and

A2 := sup
R>0

(∫

{|x |≤R}
φ2(x)dx

) 1
q
(∫

{|x |≥R}
(ψ2(x))

−(p′−1)dx

) 1
p′

< ∞. (3.4)

Moreover, if {Ci }4i=3 are the smallest constants for which (3.1) and (3.2) hold, then

Ai ≤ Ci ≤ (p′)
1
p′ p

1
q Ai , i = 3, 4. (3.5)

Remark 3.2 In the abelian case G = (Rn,+) and Q = n, if we take q = p > 1 and
φ1(x) = |B(0, |x |)|−p and ψ1(x) = 1 in (3.1), then we have A1 = (p − 1)−1/p and

(∫

Rn

∣
∣
∣
∣

1

|B(0, |x |)|
∫

B(0,|x |)
f (z)dz

∣
∣
∣
∣

p

dx

) 1
p

≤ p

p − 1

(∫

Rn
| f (x)|pdx

) 1
p

, (3.6)

where |B(0, |x |)| is the volume of the ball B(0, |x |). The inequality (3.6) was obtained in
[8].

Proof of Theorem 3.1 We prove (3.1)⇔(3.3), the case (3.2)⇔(3.4) can be proved similarly.
First, we show (3.3)⇒(3.1). Then, using polar coordinates on G and denoting r = |x |,

we write
∫

G

φ1(x)

[∫

B(0,r)
f (z)dz

]q

dx

=
∫ ∞

0

∫

S
r Q−1φ1(ry)

[∫ r

0

∫

S
sQ−1 f (sy)dσ(y)ds

]q

dσ(y)dr . (3.7)

Setting

g(r) =
{∫

S

∫ r

0
sQ−1(ψ1(sy))

1−p′
dsdσ(y)

}1/(pp′)
, (3.8)

and using Hölder’s inequality, we calculate
∫ r

0

∫

S
sQ−1 f (sy)dσ(y)ds =

∫

S

∫ r

0
s(Q−1)/p f (sy)(ψ1(sy))

1/pg(s)s(Q−1)/p′

× (

(ψ1(sy))
1/pg(s)

)−1
dsdσ(y)

≤
(∫

S

∫ r

0
sQ−1 [ f (sy)(ψ1(sy))

1/pg(s)
]p

dsdσ(y)

)1/p

×
(∫

S

∫ r

0
sQ−1 [(ψ1(sy))

1/pg(s)
]−p′

dsdσ(y)

)1/p′

.

(3.9)

If we define U , V and W1 by

U (s) =
∫

S
sQ−1 ( f (sy)(ψ1(sy))

1/pg(s)
)p

dσ(y), (3.10)

V (r) =
∫ r

0

∫

S
sQ−1 ((ψ1(sy))

1/pg(s)
)−p′

dσ(y)ds, (3.11)

W1(r) =
∫

S
r Q−1φ1(ry)dσ(y), (3.12)
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for s, r > 0, respectively, then plugging (3.9) into (3.7) we obtain
∫

G

φ1(x)

(∫

B(0,r)
f (z)dz

)q

dx ≤
∫ ∞

0
W1(r)

(∫ r

0
U (s)ds

)q/p

(V (r))q/p′
dr .

(3.13)

Now we need to use the following continuous version of Minkowski’s inequality (see e.g.
[14, Formula 2.1]): Let θ ≥ 1. Then for all f1(x), f2(x) ≥ 0 on (0,∞), we have

∫ ∞

0
f1(x)

(∫ x

0
f2(z)dz

)θ

dx ≤
(
∫ ∞

0
f2(z)

(∫ ∞

z
f1(x)dx

)1/θ

dz

)θ

. (3.14)

Using this with θ = q/p ≥ 1 on the right-hand side of (3.13), we get
∫

G

φ1(x)

(∫

B(0,r)
f (z)dz

)q

dx

≤
(
∫ ∞

0
U (s)

(∫ ∞

s
W1(r)(V (r))q/p′

dr

)p/q

ds

)q/p

. (3.15)

In order to simplify the right-hand side of above, denoting

T (s) :=
∫

S
sQ−1(ψ1(sy))

1−p′
dσ(y),

and using (3.8), (3.11), the integration by parts, (3.3) and (3.12) we compute

V (r) =
∫

S

∫ r

0
sQ−1(ψ1(sy))

1−p′
(∫ s

0

∫

S
t Q−1(ψ1(tw))1−p′

dσ(w)dt

)−1/p

dsdσ(y)

=
∫ r

0
T (s)

(∫ s

0
T (t)dt

)−1/p

ds

= p′
∫ r

0

d

ds

(∫ s

0
T (t)dt

)1/p′

ds

= p′
(∫ r

0
T (s)ds

)1/p′

= p′
(∫ r

0

∫

S
sQ−1(ψ1(sy))

1−p′
dσ(y)ds

)1/p′

≤ p′A1

(∫ ∞

r
sQ−1

∫

S
φ1(sw)dσ(w)ds

)−1/q

= p′A1

(∫ ∞

r
W1(s)ds

)−1/q

.

Similarly, applying the integration by parts and (3.3), we have from above
∫ ∞

s
W1(r)(V (r))q/p′

dr

≤ (p′A1)
q/p′

∫ ∞

s
W1(r)

(∫ ∞

r
W1(s)ds

)−1/p′

dr

= (p′A1)
q/p′

p

(∫ ∞

s
W1(r)dr

)1/p
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= (p′A1)
q/p′

p

(∫ ∞

s

∫

S
r Q−1φ1(ry)dσ(y)dr

)1/p

≤ (p′A1)
q/p′

pAq/p
1

(∫ s

0
r Q−1

∫

S
(ψ1(ry))

1−p′
dσ(y)dr

)−q/(p′ p)

= Aq
1(p

′)q/p′
p(g(s))−q , (3.16)

where we have used (3.8) in the last line. Putting (3.16) in (3.15) and recalling (3.10), we
obtain
∫

G

φ1(x)

(∫

B(0,r)
f (z)dz

)q

dx ≤
(∫ ∞

0
U (s)Ap

1 (p′)p−1 pp/q (g(s))−pds

)q/p

= Aq
1(p

′)q/p′
p

(∫ ∞

0
U (s)(g(s))−pds

)q/p

= Aq
1(p

′)q/p′
p

(∫ ∞

0

∫

S
sQ−1( f (sy))pψ1(sy)dσ(y)ds

)q/p

= Aq
1(p

′)q/p′
p

(∫

G

ψ1(x)( f (x))
pdx

)q/p

, (3.17)

yielding (3.1) with C3 = A1(p′)1/p′
p1/q .

Now it remains to show (3.1)⇒(3.3). For that, we take f (x) = (ψ1(x))1−p′
χ(0,R)(|x |)

with R > 0 to get
(∫

G

ψ1(x)( f (x))
pdx

)1/p (∫

|x |≤R
(ψ1(x))

1−p′
dx

)−1/p

=
(∫

|x |≤R
(ψ1(x))

1−p′
dx

)1/p (∫

|x |≤R
(ψ1(x))

1−p′
dx

)−1/p

= 1. (3.18)

Consequently, by (3.1) we have

C = C

(∫

G

ψ1(x)( f (x))
pdx

)1/p (∫

|x |≤R
(ψ1(x))

1−p′
dx

)−1/p

≥
(∫

G

φ1(x)

(∫

|z|≤|x |
f (z)dz

)q

dx

)1/q (∫

|x |≤R
(ψ1(x))

1−p′
dx

)−1/p

≥
(∫

|x |≥R
φ1(x)

(∫

|z|≤|x |
f (z)dz

)q

dx

)1/q (∫

|x |≤R
(ψ1(x))

1−p′
dx

)−1/p

=
(∫

|x |≥R
φ1(x)dx

)1/q (∫

|z|≤R
(ψ1(z))

1−p′
dz

)1/p′

. (3.19)

Combining (3.18) and (3.19), we obtain (3.3) with C ≥ A1. ��
Nowwe show the case q < p of Theorem 3.1. For a (later) version of this result on metric

measure spaces see also [47].

Theorem 3.3 LetG be a homogeneous Lie group of homogeneous dimension Q. Let {φi }4i=3
and {ψi }4i=3 be positive functions on G, and let 1 < q < p < ∞ with 1/δ = 1/q − 1/p.
Then the inequalities

(∫

G

(∫

B(0,|x |)
f (z)dz

)q

φ3(x)dx

) 1
q

≤ C5

(∫

G

( f (x))pψ3(x)dx

) 1
p

(3.20)
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and
(∫

G

(∫

G\B(0,|x |)
f (z)dz

)q

φ4(x)dx

) 1
q

≤ C6

(∫

G

( f (x))pψ4(x)dx

) 1
p

(3.21)

hold for all f ≥ 0 if and only if, respectively, we have

A3 :=
∫

G

(∫

G\B(0,|x |)
φ3(z)dz

)δ/q (∫

B(0,|x |)
(ψ3(z))

1−p′
dz

)δ/q ′

(ψ3(x))
1−p′

dx < ∞
(3.22)

and

A4 :=
∫

G

(∫

B(0,|x |)
φ4(z)dz

)δ/q (∫

G\B(0,|x |)
(ψ4(z))

1−p′
dz

)δ/q ′

(ψ4(x))
1−p′

dx < ∞.

(3.23)

Proof of Theorem 3.3 We show (3.20)⇔(3.22), the case (3.21)⇔(3.23) can be proved
similarly.

First, we prove (3.22)⇒(3.20). Denote

W2(r) :=
∫

S
r Q−1φ3(ry)dσ(y) (3.24)

and

G(s) :=
∫

S
sQ−1h(sy)(ψ3(sy))

1−p′
dσ(y) (3.25)

for h ≥ 0 on G. Then using polar coordinates on G, we calculate
∫

G

φ3(x)

(∫

B(0,|x |)
h(z)(ψ3(z))

1−p′
dz

)q

dx

=
∫ ∞

0

∫

S
r Q−1φ3(rw)dσ(w)

(∫ r

0

∫

S
sQ−1h(sy)(ψ3(sy))

1−p′
dσ(y)ds

)q

dr

=
∫ ∞

0
W2(r)

(∫ r

0
G(s)ds

)q

dr

= q
∫ ∞

0
G(s)

(∫ s

0
G(r)dr

)q−1 (∫ ∞

s
W2(r)dr

)

ds

= q
∫

S

∫ ∞

0
sQ−1h(sy)(ψ3(sy))

1−p′
(∫ s

0

∫

S
r Q−1h(rw)(ψ3(rw))1−p′

dσ(w)dr

)q−1

×
(∫ ∞

s
W2(r)dr

)

dsdσ(y)

= q
∫

S

∫ ∞

0
sQ−1h(sy)(ψ3(sy))

(1−p′)( 1
p + q−1

p + p−q
p )

×
(∫

S

∫ s
0 r Q−1h(rw)(ψ3(rw))1−p′

drdσ(w)
∫

S

∫ s
0 r Q−1(ψ3(rw))1−p′drdσ(w)

)q−1

×
((∫

S

∫ s

0
r Q−1(ψ3(rw))1−p′

drdσ(w)

)q−1 (∫ ∞

s
W2(r)dr

))

dsdσ(y).
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Here, using Hölder’s inequality (with three factors) for 1
p + q−1

p + p−q
p = 1 we get

∫

G

φ3(x)

(∫

B(0,|x |)
h(z)(ψ3(z))

1−p′
dz

)q

dx ≤ qK1K2K3, (3.26)

where

K1 =
(∫

S

∫ ∞

0
sQ−1(h(sy))p(ψ3(sy))

1−p′
dsdσ(y)

)1/p

=
(∫

G

(h(x))p(ψ3(x))
1−p′

dx

)1/p

(3.27)

K2 =
(
∫

S

∫ ∞

0
sQ−1(ψ3(sy))

1−p′
(∫

S

∫ s
0 r Q−1h(rw)(ψ3(rw))1−p′

drdσ(w)
∫

S

∫ s
0 r Q−1(ψ3(rw))1−p′drdσ(w)

)p

dsdσ(y)

) q−1
p

(3.28)

and

K3 =
⎛

⎝

∫

S

∫ ∞

0
sQ−1(ψ3(sy))

1−p′
(∫

S

∫ s

0
r Q−1(ψ3(rw))1−p′

drdσ(w)

) (q−1)p
p−q

×
(∫ ∞

s
W2(r)dr

) p
p−q

dsdσ(y)

) p−q
p

. (3.29)

We have for K2 that

K2 =
(
∫

G

(ψ3(x))1−p′

(
∫

B(0,|x |)(ψ3(z))1−p′dz)p

(∫

B(0,|x |)
(ψ3(z))

1−p′
h(z)dz

)p

dx

) q−1
p

.

To apply (3.1) for K2 with q = p, f (x) = (ψ3(x))1−p′
h(x) and

φ1(x) = (ψ3(x))1−p′

(
∫

B(0,|x |)(ψ3(z))1−p′dz)p
, ψ1(x) = (ψ3(x))

(1−p′)(1−p),

we need to check the condition that

A1(R) =
(
∫

|x |≥R
(ψ3(x))

1−p′
(∫

B(0,|x |)
(ψ3(z))

1−p′
dz

)−p

dx

)1/p

×
(∫

|x |≤R
(ψ3(x))

1−p′
dx

)1/p′

< ∞ (3.30)

holds uniformly for all R > 0. Indeed, once (3.30) has been established, the inequality (3.1)
implies that

K2 ≤ C

(∫

G

(ψ3(x))
(1−p′)(1−p+p)(h(x))pdx

) q−1
p

= C

(∫

G

(h(x))p(ψ3(x))
1−p′

dx

) q−1
p

. (3.31)
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To check (3.30), denoting S(s) = ∫

S sQ−1(ψ3(sw))1−p′
dσ(w) and using the integration by

parts we compute

A1(R) =
(
∫

S

∫ ∞

R
r Q−1(ψ3(rw))1−p′

(∫ r

0
S(s)ds

)−p

drdσ(w)

)1/p (∫ R

0
S(s)ds

)1/p′

=
(
∫ ∞

R

(∫ r

0
S(s)ds

)−p

S(r)dr

)1/p (∫ R

0
S(s)ds

)1/p′

≤
(

1

p − 1

(∫ R

0
S(s)ds

)1−p
)1/p (∫ R

0
S(s)ds

)1/p′

= (p − 1)−1/p < ∞.

Next, for K3, taking into account 1
δ

= 1
q − 1

p = p−q
pq and using (3.22), we have

K3 =
(
∫ ∞

0

∫

S

(∫ ∞

s
W2(r)dr

)δ/q (∫

S

∫ r

0
r Q−1(ψ3(rw))1−p′

drdσ(w)

)δ/q ′

×sQ−1(ψ3(sy))
1−p′

dσ(y)ds
) p−q

p

=
(
∫

G

(∫

G\B(0,|x |)
φ3(z)dz

)δ/q (∫

B(0,|x |)
(ψ3(z))

1−p′
dz

)δ/q ′

(ψ3(x))
1−p′

dx

) p−q
p

= A
p−q
p

3 < ∞. (3.32)

Now, plugging (3.27), (3.31) and (3.32) into (3.26), we obtain

∫

G

φ3(x)

(∫

B(0,|x |)
h(z)(ψ3(z))

1−p′
dz

)q

dx ≤ CA
p−q
p

3

(∫

G

(h(x))p(ψ3(x))
1−p′

dx

) 1
p + q−1

p

,

which implies (3.20) after the setting h := f ψ p′−1
3 .

To show (3.20)⇒(3.22), as in the Euclidean case [14, Theorem 2.2] we put the functions

fk(x) =
(∫

|z|≥|x |
φ3(z)dz

)δ/(pq) (∫

αk≤|z|≤|x |
(ψ3(z))

1−p′
dz

)δ/(pq ′)

×(ψ3(x))
1−p′

χ(αk ,βk )(|x |), k = 1, 2, . . . ,

instead of f (x) in (3.20) to get (3.22), where 0 < αk < βk with αk ↘ 0 and βk ↗ ∞ for
k → ∞. ��

Now we introduce another integral Hardy inequality.

Theorem 3.4 Let G be a homogeneous Lie group of homogeneous dimension Q. Let | · |
be an arbitrary homogeneous quasi-norm. Let 1 < p ≤ q < ∞ and 0 < a < Q/p. Let
0 ≤ b < Q and a

Q = 1
p − 1

q + b
qQ . Assume that |T (1)

a (x)| ≤ C1|x |a−Q for some positive
C1 = C1(a, Q). Then there exists a positive constant C = C(p, q, a, b) such that

∥
∥
∥
∥
∥

f ∗ T (1)
a

|x | bq

∥
∥
∥
∥
∥
Lq (G)

≤ C‖ f ‖L p(G) (3.33)

holds for all f ∈ L p(G).

123



Hypoelliptic functional inequalities Page 21 of 41    22 

Proof of Theorem 3.4 We split the integral into three parts:
∫

G

|( f ∗ T (1)
a )(x)|q dx

|x |b ≤ 3q(M1 + M2 + M3), (3.34)

where

M1 :=
∫

G

(∫

{2|y|<|x |}
|T (1)

a (y−1x) f (y)|dy
)q dx

|x |b ,

M2 :=
∫

G

(∫

{|x |≤2|y|<4|x |}
|T (1)

a (y−1x) f (y)|dy
)q dx

|x |b
and

M3 :=
∫

G

(∫

{|y|>2|x |}
|T (1)

a (y−1x) f (y)|dy
)q dx

|x |b .

First, let us estimate M1. We can assume that | · | is a norm without loss of generality because
of the existence of a homogeneous norm (Proposition 2.1) and since replacing the seminorm
by an equivalent one only changes the appearing constants. Although we could give a proof
without this hypothesis, it simplifies the arguments below. Then, by the reverse triangle
inequality and 2|y| < |x | we have

|y−1x | ≥ |x | − |y| > |x | − |x |
2

= |x |
2

, (3.35)

which is |x | < 2|y−1x |. Taking into account this and that T (1)
a (x) is bounded by a radial

function which is non-increasing with respect to |x |, we calculate

M1 ≤
∫

G

(∫

{2|y|<|x |}
| f (y)|dy

)q
(

sup
{|x |<2|z|}

|T (1)
a (z)|

)q
dx

|x |b

≤ C
∫

G

(∫

{2|y|<|x |}
| f (y)|dy

)q ( |x |
2

)(a−Q)q dx

|x |b .

(3.36)

In order to apply (3.1) for M1, let us check the condition (3.3), that is, that

(
∫

{2R<|x |}

( |x |
2

)(a−Q)q dx

|x |b
) 1

q (∫

{|x |<R}
dx

) 1
p′ ≤ A1 (3.37)

holds for all R > 0. Indeed, taking into account a
Q = 1

p − 1
q + b

qQ , hence (a−Q)q−b+Q =
− Qq

p′ �= 0, we have

(
∫

{2R<|x |}

( |x |
2

)(a−Q)q dx

|x |b
) 1

q (∫

{|x |<R}
dx

) 1
p′

≤ CR
Q
p′
(
∫

{2R<|x |}

( |x |
2

)(a−Q)q dx

|x |b
) 1

q

≤ CR
Q
p′
(∫

{2R<|x |}
|x |(a−Q)q−bdx

) 1
q

≤ CR
Q
p′ R

(a−Q)q−b+Q
q
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≤ C, (3.38)

since (a − Q)q − b + Q = − Qq
p′ �= 0.

Thus, we have checked (3.37), then we can apply (3.1) for M1 to obtain

M
1
q
1 ≤ (p′)

1
p′ p

1
q A1‖ f ‖L p(G). (3.39)

Now let us estimate M3. Without loss of generality, we may assume again | · | is the norm.
Then, similarly to (3.35) we note that 2|x | < |y| implies |y| < 2|y−1x |. Taking into account
this we obtain for M3 that

M3 ≤
∫

G

(
∫

{|y|>2|x |}

( |y|
2

)(a−Q)

| f (y)|dy
)q

dx

|x |b .

To apply (3.2) for M3, we check the following condition:

(∫

{|x |<R}
dx

|x |b
) 1

q
(
∫

{2R<|x |}

( |x |
2

)(a−Q)p′

dx

) 1
p′

≤ A2. (3.40)

Taking into account Q �= ap, one gets

(
∫

{2R<|x |}

( |x |
2

)(a−Q)p′

dx

) 1
p′

≤ C

(∫

{2R<|x |}
|x |(a−Q)p′

dx

) 1
p′ ≤ CRa− Q

p , (3.41)

that is,

(∫

{|x |<R}
dx

|x |b
) 1

q
(
∫

{2R<|x |}

( |x |
2

)(a−Q)p′

dx

) 1
p′

≤ CRa− Q
p + Q−b

q ≤ C,

since b < Q and a − Q
p + Q−b

q = 0 due to a
Q = 1

p − 1
q + b

qQ .
Thus, we have checked (3.40), then we can apply (3.2) for M3 to get

M
1
q
3 ≤ (p′)

1
p′ p

1
q A2‖ f ‖L p(G). (3.42)

Finally, we estimate M2. We write

M2 =
∑

k∈Z

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|T (1)

a (y−1x) f (y)|dy
)q dx

|x |b .

Since |x | ≤ 2|y| ≤ 4|x | and 2k ≤ |x | < 2k+1, we have 2k−1 ≤ |y| < 2k+2. As in (3.35),
assuming | · | is the norm and using the triangle inequality, we have

3|x | = |x | + 2|x | ≥ |x | + |y| ≥ |y−1x |, (3.43)

which implies 0 ≤ |y−1x | ≤ 3|x | < 3 · 2k+1. If we denote Ĩa(x) := C1|x |a−Q , then
|T (1)

a (x)| ≤ Ĩa(x). Taking into account these, applying Young’s inequality (well-known, see
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e.g. [20, Proposition 1.5.2]) for 1 + 1
q = 1

r + 1
p with r ∈ [1,∞] we estimate M2 by

M2 ≤
∑

k∈Z
2−kb

∫

G

(([ f · χ{2k−1≤|·|<2k+2}] ∗ Ĩa)(x))
qdx

=
∑

k∈Z
2−kb‖[ f · χ{2k−1≤|·|<2k+2}] ∗ Ĩa‖qLq (G)

≤
∑

k∈Z
2−kb‖ Ĩa · χ{0≤|·|<3·2k+1}‖qLr (G)

‖ f · χ{2k−1≤|·|<2k+2}‖qL p(G)

= C1

∑

k∈Z
2−kb

(∫

|x |<3·2k+1
|x |(a−Q)r dx

) q
r ‖ f · χ{2k−1≤|x |<2k+2}‖qL p(G)

≤ C
∑

k∈Z
2−kb(3 · 2k+1)

(
(a−Q)pq
pq+p−q +Q

)
pq+p−q

p ‖ f · χ{2k−1≤|x |<2k+2}‖qL p(G)

= C
∑

k∈Z
2−kb(3 · 2k+1)b‖ f · χ{2k−1≤|x |<2k+2}‖qL p(G)

≤ C
∑

k∈Z
‖ f · χ{2k−1≤|x |<2k+2}‖qL p(G)

≤ C‖ f ‖qL p(G)
,

(3.44)

since (a−Q)pq
pq+p−q + Q = bp

pq+p−q > 0 and q ≥ p.

Thus, (3.39), (3.42) and (3.44) complete the proof of Theorem 3.4. ��
Remark 3.5 Let us now very briefly discuss an alternative proof of Theorem 3.4 by using
Schur’s test [22].

In the case q = p, we have b = ap from a
Q = 1

p − 1
q + b

qQ . Let Sa f := |x |−b/p( f ∗
|x |a−Q), then S∗

a g := (|x |−b/pg) ∗ |x |a−Q , where ( f , S∗
a g) = (Sa f , g). Since the integral

kernel of Sa is positive, by Schur’s test we see that instead of proving the estimate

‖Sa f ‖L p(G) ≤ A1/p′
a,p B1/p

a,p ‖ f ‖L p(G)

for all f ∈ L p(G), it is enough to exhibit a positive function h and constants Aa,p and Ba,p

such that

Sa(h
p′

)(x) ≤ Aa,p(h(x))p
′
and S∗

a (h
p)(x) ≤ Ba,p(h(x))p

for almost all x ∈ G.
Let us take hc(x) := |x |c−Q with c > 0 and consider the convolution integrals

h p′
c ∗ |x |a−Q and (|x |−b/ph p

c ) ∗ |x |a−Q,

which arise in the computation of Sa(h
p′
c ) and S∗

a (h
p
c ). We see that the homogeneity orders of

h p′
c and |x |−b/ph p

c are (c− Q)p′ and (c− Q)p − b/p, respectively. Then, the homogeneity

of h p′
c ∗|x |a−Q and (|x |−b/ph p

c )∗|x |a−Q are a−Q+(c−Q)p′ and a−Q+(c−Q)p−b/p,
respectively. Therefore, these convolution integrals converge absolutely inG\{0} if and only
if 0 < (c − Q)p′ + Q < Q − a and 0 < (c − Q)p − b/p + Q < Q − a, that is,

max

(
Q

p
,
a

p
+ Q

p′

)

< c < Q − a

p′

123



   22 Page 24 of 41 M. Ruzhansky, N. Yessirkegenov

since b = ap. This condition is true if 0 < a < Q/p.
Thus, we have obtained

‖|x |−b/p( f ∗ |x |a−Q)‖L p(G) ≤ A1/p′
a,p B1/p

a,p ‖ f ‖L p(G),

where 0 < a < Q/p, 1 < p < ∞, f ∈ L p(G) and b = ap.
Taking into account this and |T (1)

a (x)| ≤ C |x |a−Q , we obtain
∥
∥
∥
∥
∥

f ∗ T (1)
a

|x | bp

∥
∥
∥
∥
∥
L p(G)

≤ C

∥
∥
∥
∥
∥

| f | ∗ |T (1)
a |

|x | bp

∥
∥
∥
∥
∥
L p(G)

≤ C‖|x |−b/p(| f | ∗ |x |a−Q)‖L p(G) ≤ C‖ f ‖L p(G). (3.45)

In the case q > p, the operator in (3.33) is dominated pointwise by

|x |− b
q

((

| f | ∗ Ka− b
q

)

∗ K b
q

)

,

where Ka(x) = |x |−Q+a , and the above is the composition of g �→ g ∗ Ka− b
q
, which maps

L p into Lq , followed by h �→ |x |− b
q

(

h ∗ K b
q

)

which falls in the q = p case.

Now we also show the critical case a = Q/p of Theorem 3.4.

Theorem 3.6 Let G be a homogeneous Lie group of homogeneous dimension Q. Let | · | be
an arbitrary homogeneous quasi-norm and let 1 < p < r < ∞ and p ≤ q < (r − 1)p′,
where 1/p + 1/p′ = 1. Assume that for a = Q/p we have

|T (2)
a (x)| ≤ C2

{

|x |a−Q, for x ∈ G\{0},
|x |−N , for x ∈ G with |x | ≥ 1,

(3.46)

for some positive C2 = C2(a, Q) and for every N > Q. Then there exists a positive constant
C = C(p, q, r , Q) such that

∥
∥
∥
∥
∥
∥
∥

f ∗ T (2)
Q/p

(

log
(

e + 1
|x |
)) r

q |x | Qq

∥
∥
∥
∥
∥
∥
∥

Lq (G)

≤ C‖ f ‖L p(G) (3.47)

holds for all f ∈ L p(G).

Proof of Theorem 3.6 Let us split the integral into three parts
∫

G

|( f ∗ T (2)
Q/p)(x)|q

dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
≤ 3q(N1 + N2 + N3), (3.48)

where

N1 :=
∫

G

(∫

{2|y|<|x |}
|T (2)

Q/p(y
−1x) f (y)|dy

)q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
,

N2 :=
∫

G

(∫

{|x |≤2|y|<4|x |}
|T (2)

Q/p(y
−1x) f (y)|dy

)q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
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and

N3 :=
∫

G

(∫

{|y|>2|x |}
|T (2)

Q/p(y
−1x) f (y)|dy

)q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
.

First, let us estimate N1. Similar to (3.35) from 2|y| < |x | we get

|y−1x | ≥ |x | − |y| > |x | − |x |
2

= |x |
2

, (3.49)

which is |x | < 2|y−1x |. Denote

|T (2)
a (x)| ≤ B̃a(x) := C2

{

|x |a−Q, for x ∈ G\{0},
|x |−N , for x ∈ G with |x | ≥ 1,

(3.50)

for every N > Q. Since T (2)
Q/p(x) is bounded by B̃Q/p(x) which is non-increasing with

respect to |x |, then using (3.49) we get

N1 ≤
∫

G

(∫

{2|y|<|x |}
| f (y)|dy

)q
(

sup
{|x |<2|z|}

|T (2)
Q/p(z)|

)q
dx

∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

≤
∫

G

(∫

{2|y|<|x |}
| f (y)|dy

)q (

B̃Q/p

( x

2

))q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
. (3.51)

To apply (3.1) for N1, we need to check the condition (3.3), that is, that

⎛

⎜
⎝

∫

{2R<|x |}

(

B̃Q/p

( x

2

))q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

⎞

⎟
⎠

1
q
(∫

{|x |<R}
dx

) 1
p′ ≤ A1 (3.52)

holds for all R > 0. In order to check this, let us consider two cases: R ≥ 1 and 0 < R < 1.
Then, for R ≥ 1 using the second equality in (3.50) and N > Q, one calculates

⎛

⎜
⎝

∫

{2R<|x |}

(

B̃Q/p

( x

2

))q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

⎞

⎟
⎠

1
q
(∫

{|x |<R}
dx

) 1
p′

≤ CR
Q
p′
(∫

{2R<|x |}

(

B̃Q/p

( x

2

))q dx

|x |Q
) 1

q

= CR
Q
p′
(∫

{2R<|x |}
|x |−Nq−Qdx

) 1
q

≤ CR−N R
Q
p′

≤ C . (3.53)

Now let us check (3.52) for 0 < R < 1. We write
∫

{2R<|x |}

(

B̃Q/p

( x

2

))q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
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=
∫

{2R<|x |<2}

(

B̃Q/p

( x

2

))q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

+
∫

{|x |≥2}

(

B̃Q/p

( x

2

))q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
. (3.54)

We note that the second integral on the right-hand side of (3.54) is integrable by the second
equality in (3.50). Then, using the first equality in (3.50) we get for the first integral that

∫

{2R<|x |<2}

∣
∣
∣B̃Q/p

( x

2

)∣
∣
∣

q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

≤
∫

{2R<|x |<2}

∣
∣
∣B̃Q/p

( x

2

)∣
∣
∣

q dx

|x |Q

≤ C
∫

{2R<|x |<2}
|x |−Qq/p′−Qdx

≤ CR−Qq/p′
.

It implies with (3.54) that

⎛

⎜
⎝

∫

{2R<|x |}

∣
∣
∣B̃Q/p

( x

2

)∣
∣
∣

q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

⎞

⎟
⎠

1
q
(∫

{|x |<R}
dx

) 1
p′

≤ C(R−Q/p′ + 1)RQ/p′ ≤ C

for any 0 < R < 1. Thus, we have checked (3.52), then applying (3.1) for N1 one gets

N
1
q
1 ≤ (p′)

1
p′ p

1
q A1‖ f ‖L p(G). (3.55)

Now we estimate N3. Without loss of generality, we may assume again that | · | is the norm.
Similarly to (3.49) we obtain |y| < 2|y−1x | from 2|x | < |y|. Then, we have for N3 that

N3 ≤
∫

G

(∫

{|y|>2|x |}

(

B̃Q/p

( y

2

))

| f (y)|dy
)q dx

∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
.

In order to apply (3.2) for N3, we need to check the following condition:

⎛

⎜
⎝

∫

{|x |<R}
dx

∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

⎞

⎟
⎠

1
q
(∫

{2R<|x |}

(

B̃Q/p

( x

2

))p′
dx

) 1
p′ ≤ A2. (3.56)

To check this, let us consider the cases: R ≥ 1 and 0 < R < 1. Then, for R ≥ 1 by the
second equality in (3.50), we get

(∫

{2R<|x |}

(

B̃Q/p

( x

2

))p′
dx

) 1
p′ ≤ C

(∫

{2R<|x |}
|x |−Np′

dx

) 1
p′ ≤ CR− N

p . (3.57)

Moreover, we have
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∫

{|x |<R}
dx

∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
=

∫

{|x |< 1
2 }

dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

+
∫

{
1
2≤|x |<R

}

dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
,

and we note that the first summand on the right-hand side of above is integrable since r > 1.
For the second term, we get

∫

{
1
2≤|x |<R

}

dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
≤
∫

{
1
2≤|x |<R

}

dx

|x |Q ≤ C(1 + log R). (3.58)

Combining (3.57) and (3.58), we have for R ≥ 1 that

⎛

⎜
⎝

∫

{|x |<R}
dx

∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

⎞

⎟
⎠

1
q
(∫

{2R<|x |}

∣
∣
∣B̃Q/p

( x

2

)∣
∣
∣

p′
dx

) 1
p′

≤ CR− N
p (1 + log R)

1
q ≤ C .

Now let us check the condition (3.56) for 0 < R < 1. We split the integral
∫

{2R<|x |}

(

B̃Q/p

( x

2

))p′
dx =

∫

{2R<|x |<2}

(

B̃Q/p

( x

2

))p′
dx +

∫

{|x |≥2}

(

B̃Q/p

( x

2

))p′
dx .

(3.59)

We note that the second integral on the right-hand side of above is integrable by the second
equality in (3.50). Then, using the first equality in (3.50) we get for the first integral that

∫

{2R<|x |<2}

(

B̃Q/p

( x

2

))p′
dx ≤ C

∫

{2R<|x |<2}
|x |−Qdx ≤ C log

(
1

R

)

,

which implies with (3.59) that
∫

{2R<|x |}

(

B̃Q/p

( x

2

))p′
dx ≤ C

(

1 + log

(
1

R

))

. (3.60)

Since
∫

{|x |<R}
dx

∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
≤ C

(

log

(

e + 1

R

))−(r−1)

,

and (3.60), and taking into account r > 1 and q < (r − 1)p′ we obtain that

⎛

⎜
⎝

∫

{|x |<R}
dx

∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

⎞

⎟
⎠

1
q
(∫

{2R<|x |}

(

B̃Q/p

( x

2

))p′
dx

) 1
p′

≤ C

(

log

(

e + 1

R

))− r−1
q
(

1 +
(

log

(
1

R

)) 1
p′
)

≤ C . (3.61)
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Thus, we have checked (3.56), then applying (3.2) for N3 we obtain

N
1
q
3 ≤ (p′)

1
p′ p

1
q A2‖ f ‖L p(G). (3.62)

Now let us estimate N2. We write

N2 =
∑

k∈Z

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|T (2)

Q/p(y
−1x) f (y)|dy

)q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
.

Since the function
(

log
(

1
|x |
))r |x |Q is non-decreasing with respect to |x | near the origin,

there exists an integer k0 ∈ Z with k0 ≤ −3 such that this function is non-decreasing in
|x | ∈ (0, 2k0+1). We decompose N2 with k0 as follows

N2 = N21 + N22, (3.63)

where

N21 :=
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|T (2)

Q/p(y
−1x) f (y)|dy

)q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q

and

N22 :=
∞
∑

k=k0+1

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|T (2)

Q/p(y
−1x) f (y)|dy

)q dx
∣
∣
∣log

(

e + 1
|x |
)∣
∣
∣

r |x |Q
.

Let us first estimate N22. Since |x | ≤ 2|y| ≤ 4|x | and 2k ≤ |x | < 2k+1, we have 2k−1 ≤
|y| < 2k+2. Before starting to estimate N22, using (3.46), N > Q and q ≥ p, let us show
that

∫

G

|T (2)
Q/p(x)|r̃ dx =

∫

|x |<1
|T (2)

Q/p(x)|r̃ dx +
∫

|x |≥1
|T (2)

Q/p(x)|r̃ dx

≤ C2

(∫

|x |<1
|x |− Qq(p−1)

pq+p−q dx +
∫

|x |≥1
|x |− Npq

pq+p−q dx

)

< ∞, (3.64)

where r̃ ∈ [1,∞) is such that 1 + 1
q = 1

r̃ + 1
p .

Then, (3.64) and Young’s inequality (e.g. [20, Proposition 1.5.2]) for 1+ 1
q = 1

r̃ + 1
p with

r̃ ∈ [1,∞) imply that

N22 ≤ C
∞
∑

k=k0+1

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|T (2)

Q/p(y
−1x) f (y)|dy

)q

dx

≤ C
∞
∑

k=k0+1

‖[ f · χ{2k−1≤|·|<2k+2}] ∗ T (2)
Q/p‖qLq (G)

≤ C‖T (2)
Q/p‖qLr̃ (G)

∞
∑

k=k0+1

‖ f · χ{2k−1≤|·|<2k+2}‖qL p(G)

= C
∞
∑

k=k0+1

(∫

{2k≤|x |<2k+1}
| f (x)|pdx

) q
p
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≤ C

(
∑

k∈Z

∫

{2k≤|x |<2k+1}
| f (x)|pdx

) q
p

= C‖ f ‖qL p(G)
. (3.65)

To complete the proof it is left to estimate N21. As in (3.49), assuming | · | is the norm and
using the triangle inequality, we have

3|x | = |x | + 2|x | ≥ |x | + |y| ≥ |y−1x |, (3.66)

wherewe have used |y| ≤ 2|x |. Since
(

log
(

1
|x |
))r |x |Q is non-decreasing in |x | ∈ (0, 2k0+1)

and 3|x | ≥ |y−1x |, we have
(

log

(
1

|x |
))r

|x |Q ≥
⎛

⎝log

⎛

⎝
1

∣
∣
∣
y−1x
3

∣
∣
∣

⎞

⎠

⎞

⎠

r
∣
∣
∣
∣

y−1x

3

∣
∣
∣
∣

Q

.

Then, these and (3.46) yield

N21 ≤ C
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

(∫

{|x |≤2|y|≤4|x |}
|y−1x |−

Q
p′ | f (y)|dy

)q dx
(

log
(

1
|x |
))r |x |Q

= C
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

⎛

⎜
⎜
⎝

∫

{|x |≤2|y|≤4|x |}
|y−1x |−

Q
p′ | f (y)|

((

log
(

1
|x |
))r |x |Q

) 1
q

dy

⎞

⎟
⎟
⎠

q

dx

≤ C
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

⎛

⎜
⎜
⎝

∫

{|x |≤2|y|≤4|x |}
|y−1x |−

Q
p′ | f (y)|

((

log
(

1
|(y−1x)/3|

))r |(y−1x)/3|Q
) 1

q

dy

⎞

⎟
⎟
⎠

q

dx .

Since |x | ≤ 2|y| ≤ 4|x | and 2k ≤ |x | < 2k+1 with k ≤ k0, we get 2k−1 ≤ |y| < 2k+2 and
|y−1x | ≤ 3|x | < 3 · 2k0+1 ≤ 3/4 by (3.66) and k0 ≤ −3. Taking into account these and
setting

g(x) :=
χB 3

4
(0)(x)

(

log
(

1
|x |
)) r

q |x |
Q
q + Q

p′
,

we have for N21 that

N21 ≤ C
k0∑

k=−∞

∫

{2k≤|x |<2k+1}

⎛

⎜
⎝

∫

{|x |≤2|y|≤4|x |}
| f (y)|

(

log
(

1
|y−1x |

)) r
q |y−1x |

Q
q + Q

p′
dy

⎞

⎟
⎠

q

dx

≤ C
k0∑

k=−∞
‖[ f · χ{2k−1≤|·|<2k+2}] ∗ g‖qLq (G)

.
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Since p ≤ q < (r − 1)p′, we use Young’s inequality for 1+ 1
q = 1

r̃ + 1
p with r̃ ∈ [1,∞) to

get

N21 ≤ C‖g‖q
Lr̃ (G)

k0∑

k=−∞
‖ f · χ{2k−1≤|·|<2k+2}‖qL p(G)

≤ C‖ f ‖qL p(G)
, (3.67)

provided that g ∈ Lr̃ (G). Since
(
Q
q + Q

p′
)

r̃ = Q, rr̃
q = rp′

p′+q and q < (r − 1)p′, then
changing variables, we obtain

‖g‖r̃
Lr̃ (G)

=
∫

B(0,3/4)

dx
(

log
( 1
x

)) rp′
p′+q |x |Q

= C
∫ ∞

log
(
4
3

)

dt

t
rp′
p′+q

< ∞.

Thus, (3.55), (3.62), (3.63), (3.65), (3.67) and (3.48) complete the proof of Theorem 3.6. ��
As an application of Theorem 3.1, we can also obtain the following weighted L p − Lq

differential Hardy–Sobolev type inequality with the radial derivative:

Theorem 3.7 Let G be a homogeneous Lie group of homogeneous dimension Q. Let φ5, ψ5
be positive weight functions on G and let 1 < p ≤ q < ∞. Then there exists a positive
constant C such that

(∫

G

φ5(x)| f (x)|qdx
)1/q

≤ C

(∫

G

ψ5(x)|R|x | f (x)|pdx
)1/p

(3.68)

holds for all radial functions f with f (0) = 0 if and only if

A5 := sup
R>0

(∫

|x |≥R
φ5(x)dx

)1/q
(
∫ R

0

(∫

S
r Q−1ψ5(ry)dσ(y)

)1−p′

dr

)1/p′

< ∞,

(3.69)

where R|x | := d
d|x | is the radial derivative.

In the abelian case G = (Rn,+) and Q = n, (3.68) was obtained in [14] and in [48].

Proof of Theorem 3.7 If we denote f̃ (r) = f (x) for r = |x | and
�(r) =

∫

S
r Q−1φ5(ry)dσ(y), �(r) =

∫

S
r Q−1ψ5(ry)dσ(y),

then using f̃ (0) = 0 we have
(∫

G

φ5(x)| f (x)|qdx
)1/q

=
(∫

S

∫ ∞

0
r Q−1φ5(ry)| f̃ (r)|qdrdσ(y)

)1/q

=
(∫ ∞

0
�(r)| f̃ (r)|qdr

)1/q

=
(∫ ∞

0
�(r)

∣
∣
∣
∣

∫ r

0
Rr f̃ (r)dr

∣
∣
∣
∣

q

dr

)1/q

≤ C

(∫ ∞

0
�(r)

∣
∣
∣Rr f̃ (r)

∣
∣
∣

p
dr

)1/p

= C

(∫

G

ψ5(x)|R|x | f (x)|pdx
)1/p

if and only if the condition (3.69) holds by Theorem 3.1, namely by (3.1) and (3.3). ��
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4 Hardy–Littlewood–Sobolev inequalities on homogeneous Lie groups

In this section we apply the integral Hardy inequalities from the previous section to obtain
the Hardy–Littlewood–Sobolev and logarithmic Hardy–Littlewood–Sobolev type inequali-
ties on homogeneous Lie groups. We also discuss the reversed Hardy–Littlewood–Sobolev
inequalities on general homogeneous Lie groups.

Now we start with the Hardy–Littlewood–Sobolev inequality (see [26, 27] and [49]).
We also refer to [23] for the case of the Heisenberg group and to [29] and [18] for sharp
constants of the Hardy–Littlewood–Sobolev inequality. Here, we investigate the weighted
Hardy–Littlewood–Sobolev inequalities on general homogeneous groups.

Theorem 4.1 Let G be a homogeneous Lie group of homogeneous dimension Q and let | · |
be an arbitrary homogeneous quasi-norm. Let 0 < λ < Q and 1 < p, q < ∞ be such that
1/p + 1/q + (α + λ)/Q = 2 with 0 ≤ α < Q/p′ and α + λ ≤ Q, where 1/p + 1/p′ = 1.
Then there exists a positive constant C = C(Q, λ, p, α) such that

∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)

|x |α|y−1x |λ dxdy
∣
∣
∣
∣
∣
≤ C‖ f ‖L p(G)‖g‖Lq (G) (4.1)

holds for all f ∈ L p(G) and g ∈ Lq(G).

Proof of Theorem 4.1 Let T (3)
a (x) := |x |a−Q with 0 < a < Q/r for some 1 < r < ∞. Then,

using Hölder’s inequality we calculate
∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)

|x |α|y−1x |λ dxdy
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∫

G

f (x)
(g ∗ T (3)

Q−λ)(x)

|x |α dx

∣
∣
∣
∣
∣

≤ ‖ f ‖L p(G)

∥
∥
∥
∥
∥

g ∗ T (3)
Q−λ

|x |α
∥
∥
∥
∥
∥
L p′ (G)

.

(4.2)

Note that the conditions α + λ ≤ Q and 1/p + 1/q + (α + λ)/Q = 2 imply q ≤ p′, while
0 < λ < Q, α < Q/p′ and 1/p + 1/q + (α + λ)/Q = 2 give

0 < Q − λ = Q − Q

(

2 − 1

p
− 1

q

)

+ α < Q − Q

(

2 − 1

p
− 1

q

)

+ Q

p′ = Q/q.

Since we have 1 < q ≤ p′ < ∞, 0 ≤ α p′ < Q, 0 < Q − λ < Q/q and (Q − λ)/Q =
1/q − 1/p′ + α/Q, using Theorem 3.4 in (4.2) we obtain (4.1). ��
Let us now introduce the critical caseα = Q/p′ of theHardy–Littlewood–Sobolev inequality
(4.1):

Theorem 4.2 Let G be a homogeneous Lie group of homogeneous dimension Q and let | · |
be an arbitrary homogeneous quasi-norm. Let 1 < p < ∞, 1 < q ≤ p′ < (r − 1)q ′ and
q < r < ∞, where 1/p+ 1/p′ = 1 and 1/q + 1/q ′ = 1. Let T (2)

Q/p(x) be as in Theorem 3.6.
Then there exists a positive constant C = C(p, q, r , Q) such that

∣
∣
∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)T (2)
Q/q(y

−1x)
(

log
(

e + 1
|x |
)) r

p′ |x |
Q
p′
dxdy

∣
∣
∣
∣
∣
∣
∣

≤ C‖ f ‖L p(G)‖g‖Lq (G) (4.3)

holds for all f ∈ L p(G) and g ∈ Lq(G).
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Proof of Theorem 4.2 By Hölder’s inequality we have
∣
∣
∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)T (2)
Q/q(y

−1x)
(

log
(

e + 1
|x |
)) r

p′ |x |
Q
p′
dxdy

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∫

G

f (x)
(g ∗ T (2)

Q/q)(x)
(

log
(

e + 1
|x |
)) r

p′ |x |
Q
p′
dx

∣
∣
∣
∣
∣
∣
∣

≤ ‖ f ‖L p(G)

∥
∥
∥
∥
∥
∥
∥

g ∗ T (2)
Q/q

(

log
(

e + 1
|x |
)) r

p′ |x |
Q
p′

∥
∥
∥
∥
∥
∥
∥

L p′ (G)

.

(4.4)

Since we have 1 < q < r < ∞ and q ≤ p′ < (r − 1)q ′, then by applying Theorem 3.6 we
derive (4.3) from (4.4). ��
Remark 4.3 Let us make some remarks concerning the reversed Hardy–Littlewood–Sobolev
inequality on homogeneous groups (see [16, 31] and [13] for the recent Euclidean analysis
of such inequalities). Namely, let us look at the validity of the inequality

∫

G

∫

G

f (x)|y−1x |λ f (y)dxdy ≥ CQ,λ,p‖ f ‖θ
L1(G)

‖ f ‖2−θ
L p(G)

(4.5)

for any 0 ≤ f ∈ L1 ∩ L p(G) with f �≡ 0 and 0 < p < 1, where λ > 0 and θ :=
(2Q− p(2Q+λ))/(Q(1− p)).WhenG = (Rn,+), hence Q = n, the case p = 2n/(2n+λ)

is investigated in [16] and [31], and the case p > n/(n + λ) is studied in [13].
We show that in the case 0 < p ≤ Q/(Q+λ) the inequality (4.5) is not valid, namely we

show that (4.5) fails for any CQ,λ,p > 0. This is showed in the Euclidean case in [7] when
p < n/(n + λ) and in [13] when p ≤ n/(n + λ).

We consider

fε(x) := f (x) + Aε−Qh(x/ε),

for a non-negative function f with compact support and for a non-negative smooth fuction
h with the property

∫

G
h(x)dx = 1, and for some A > 0. Suppose (4.5) holds for some

CQ,λ,p > 0. Putting this fε in the inequality (4.5), we obtain

CQ,λ,p ≤
∫

G

∫

G
fε(x)|y−1x |λ fε(y)dxdy

‖ fε‖θ
L1(G)

‖ fε‖2−θ
L p(G)

→
∫

G

∫

G
f (x)|y−1x |λ f (y)dxdy + 2A

∫

G
|x |λ f (x)dx

(
∫

G
f (x)dx + A)θ (

∫

G
( f (x))pdx)(2−θ)/p

(4.6)

as ε → 0+, where we have used
∫

G
fε(x)dx = ∫

G
f (x)dx + A, and when ε → 0+ the

following facts
∫

G

( fε(x))
pdx →

∫

G

( f (x))pdx

and
∫

G

∫

G

fε(x)|y−1x |λ fε(y)dxdy

=
∫

G

∫

G

f (x)|y−1x |λ f (y)dxdy + 2A
∫

G

∫

G

f (x)|(ε−1y)−1x |λh(y)dxdy

+A2ε−2Q
∫

G

∫

G

h
( x

ε

)

h
( y

ε

)

dxdy
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→
∫

G

∫

G

f (x)|y−1x |λ f (y)dxdy + 2A
∫

G

|x |λ f (x)dx,

since
∫

G
h(x)dx = 1. Note that we can take the limit as A → +∞ in (4.6), since it is valid

for all A > 0. Then, when θ > 1, i.e., p < Q/(Q+λ), taking A → +∞ in (4.6) we see that
CQ,λ,p = 0. In the case θ = 1, that is, p = Q/(Q + λ), taking again the limit as A → +∞
in (4.6) we get

CQ,λ,p ≤ 2
∫

G
|x |λ f (x)dx

(
∫

G
( f (x))pdx)1/p

. (4.7)

Now we show that the right-hand side of (4.7) goes to zero when R → ∞ if we put there the
function

fR(x) =
{

|x |−(Q+λ), for 1 ≤ |x | ≤ R,

0, otherwise,
(4.8)

for any R > 1. Indeed, taking into account p = Q/(Q + λ) we obtain from (4.7) that

CQ,λ,p ≤ 2
∫

G
|x |λ fR(x)dx

(
∫

G
( fR(x))pdx)1/p

= 2(|S| log R)−λ/Q → 0 (4.9)

as R → ∞, where |S| is a Q − 1 dimensional surface measure of the unit quasi-sphere in
G.

Thus, we have proved that the reversed Hardy–Littlewood–Sobolev inequality (4.5) is not
valid with any positive constant CQ,λ,p for 0 < p ≤ Q/(Q + λ).

5 Hypoelliptic Hardy, Sobolev, Rellich, Caffarelli–Kohn–Nirenberg and
Hardy–Littlewood–Sobolev inequalities

In this section we obtain Hardy–Sobolev–Rellich inequality on graded groups, which implies
Hardy, Sobolev andRellich inequalities on graded groups.Moreover, we establish Caffarelli–
Kohn–Nirenberg andHardy–Littlewood–Sobolev inequalities, and uncertainty type principle
on graded Lie groups.

Since we have (2.14) for the Riesz kernel Iα from (2.6), taking T (1)
a (x) = Ia(x) in

Theorem 3.4 and noting that R− a
ν f = f ∗ Ia by [20, Corollary 4.3.11], we obtain the

following Hardy–Sobolev–Rellich inequality:

Theorem 5.1 Let G be a graded Lie group of homogeneous dimension Q and let R be a
positive Rockland operator of homogeneous degree ν. Let | · | be an arbitrary homogeneous
quasi-norm. Let 1 < p ≤ q < ∞ and 0 < a < Q/p. Let 0 ≤ b < Q and a

Q = 1
p − 1

q + b
qQ .

Then there exists a positive constant C such that
∥
∥
∥
∥
∥

f

|x | bq

∥
∥
∥
∥
∥
Lq (G)

≤ C‖R a
ν f ‖L p(G) (5.1)

holds for all f ∈ L̇ p
a (G).

Remark 5.2 In the case b = 0, the inequality (5.1) implies the Sobolev inequality on graded
groups [20, Proposition 4.4.13, (5)]: Let 1 < p < q < ∞ and 0 < a < Q/p with
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a
Q = 1

p − 1
q . Then there exists a positive constant C such that

‖ f ‖Lq (G) ≤ C‖R a
ν f ‖L p(G) (5.2)

holds for all f ∈ L̇ p
a (G).

Remark 5.3 In particular, for q = p from (5.1) we derive the general hypoelliptic family of
the Hardy inequalities:

∥
∥
∥
∥

f

|x |a
∥
∥
∥
∥
L p(G)

≤ C‖R a
ν f ‖L p(G), 1 < p < ∞, 0 < a < Q/p, (5.3)

for all f ∈ L̇ p
a (G).

Remark 5.4 In the case q = p, the inequality (5.1) gives on graded groups the Hardy
inequality

∥
∥
∥
∥

f

|x |
∥
∥
∥
∥
L p(G)

≤ C‖R 1
ν f ‖L p(G), 1 < p < Q, f ∈ L̇ p

1 (G), (5.4)

when a = 1, and the Rellich inequality
∥
∥
∥
∥

f

|x |2
∥
∥
∥
∥
L p(G)

≤ C‖R 2
ν f ‖L p(G), 1 < p <

Q

2
, f ∈ L̇ p

2 (G), (5.5)

when a = 2.

Similarly, putting T (2)
a (x) = Ba(x) in Theorem 3.6 and using (2.15) with the Bessel kernel

Ba from (2.7), by noting (I + R)− a
ν f = f ∗ Ba by [20, Corollary 4.3.11], we obtain the

critical case a = Q/p of Theorem 5.1:

Theorem 5.5 Let G be a graded Lie group of homogeneous dimension Q and let R be a
positive Rockland operator of homogeneous degree ν. Let | · | be an arbitrary homogeneous
quasi-norm and let 1 < p < r < ∞ and p ≤ q < (r − 1)p′, where 1/p + 1/p′ = 1. Then
there exists a positive constant C = C(p, q, r , Q) such that

∥
∥
∥
∥
∥
∥
∥

f
(

log
(

e + 1
|x |
)) r

q |x | Qq

∥
∥
∥
∥
∥
∥
∥

Lq (G)

≤ C‖ f ‖L p
Q/p(G) (5.6)

holds for all f ∈ L p
Q/p(G).

The Hardy–Sobolev–Rellich inequality (5.1) implies the following Heisenberg–Pauli–
Weyl type uncertainty principle for general homogeneous invariant hypoelliptic differential
operators:

Corollary 5.6 Let G be a graded Lie group of homogeneous dimension Q and let R be a
positive Rockland operator of homogeneous degree ν. Let | · | be an arbitrary homogeneous
quasi-norm. Let 1 < p ≤ q < ∞ and 0 < a < Q/p. Let 0 ≤ b < Q and a

Q = 1
p − 1

q + b
qQ .

Then there exists a positive constant C such that

‖R a
ν f ‖L p(G)‖|x |

b
q f ‖Lq′

(G)
≥ C

∫

G

| f (x)|2dx (5.7)

holds for all f ∈ L̇ p
a (G), where 1/q + 1/q ′ = 1.
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Proof of Theorem 5.6 Using Hölder’s inequality and (5.1), we have

‖R a
ν f ‖L p(G)‖|x |

b
q f ‖Lq′

(G)
≥ C

∥
∥
∥
∥

f

|x |b/q
∥
∥
∥
∥
Lq (G)

‖|x | bq f ‖Lq′
(G)

≥ C
∫

G

| f (x)|2dx,

which is (5.7). ��
As another consequence of Theorem 5.1, we also obtain a family of extended Caffarelli–

Kohn–Nirenberg inequalities on graded groups.

Theorem 5.7 Let G be a graded Lie group of homogeneous dimension Q and let R be a
positive Rockland operator of homogeneous degree ν. Let | · | be an arbitrary homogeneous
quasi-norm. Let 1 < p, q < ∞, δ ∈ (0, 1] and 0 < r < ∞ with r ≤ q

1−δ
for δ �= 1.

Let 0 < a < Q/p and β, γ ∈ R with δr(Q − ap − β p) ≤ p(Q + rγ − rβ) and

β(1− δ)− δa ≤ γ ≤ β(1− δ). Assume that r(δQ+p(β(1−δ)−γ−aδ))
pQ + (1−δ)r

q = 1. Then there
exists a positive constant C such that

‖|x |γ f ‖Lr (G) ≤ C
∥
∥
∥R a

ν f
∥
∥
∥

δ

L p(G)

∥
∥|x |β f

∥
∥
1−δ

Lq (G)
(5.8)

holds for all f ∈ L̇ p
a (G).

Remark 5.8 We note that the conditions β = γ = 0, a > 0, 1 < p < Q/a, 1 < q ≤
r ≤ pQ/(Q − ap) and δ = (1/q − 1/r)(a/Q + 1/q − 1/p)−1 satisfy all the conditions
of Theorem 5.7. Indeed, δ = (1/q − 1/r)(a/Q + 1/q − 1/p)−1, r ≥ q and Q − ap > 0
imply r ≤ q

1−δ
, while r ≤ pQ/(Q − ap) gives δr(Q − ap − β p) ≤ p(Q + rγ − rβ)

since β = γ = 0 and δ ≤ 1. In this case, δ = (1/q − 1/r)(a/Q + 1/q − 1/p)−1 and

β(1 − δ) − δa ≤ γ ≤ β(1 − δ) are equivalent to r(δQ+p(β(1−δ)−γ−aδ))
pQ + (1−δ)r

q = 1 and
aδ ≥ 0, respectively. Thus, (5.8) recovers also the Gagliardo-Nirenberg inequality previously

obtained in [41] and [42] on graded groups

‖ f ‖Lr (G) ≤ C
∥
∥
∥R a

ν f
∥
∥
∥

δ

L p(G)
‖ f ‖1−δ

Lq (G)
(5.9)

for all f ∈ L̇ p
a (G) ∩ Lq(G).

We also note that whenG = (Rn,+), Q = n andR = −�, in the special case p = q = 2
and a = 1, the inequality (5.9) essentially gives the classical Gagliardo–Nirenberg inequality
[25] and [33].

Note that another type of Garliardo–Nirenberg inequality involving Besov norms on graded
groups was obtained in [4].

Proof of Theorem 5.7 Case δ = 1.Notice that in this case, r(δQ+p(β(1−δ)−γ−aδ))
pQ + (1−δ)r

q = 1

gives a
Q = 1

p − 1
r − γ

Q , which implies that the condition δr(Q−ap−β p) ≤ p(Q+rγ −rβ)

is equivalent to the trivial estimate pQ ≤ pQ. The condition β(1− δ)− δa ≤ γ ≤ β(1− δ)

gives −a ≤ γ ≤ 0, which implies r ≥ p with a
Q = 1

p − 1
r − γ

Q . Taking into account these
we see that (5.8) is equivalent to (5.1).

Case δ ∈ (0, 1). We write

‖|x |γ f ‖Lr (G) =
(∫

G

|x |γ r | f (x)|r dx
) 1

r =
(
∫

G

| f (x)|δr
|x |r(β(1−δ)−γ )

· | f (x)|(1−δ)r

|x |−βr(1−δ)
dx

) 1
r

.
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Note that δ > 0, Q > ap andβ(1−δ)−γ ≥ 0 imply r(δQ+ p(β(1−δ)−γ −aδ)) > 0,while
δr(Q − ap − β p) ≤ p(Q + rγ − rβ), δ < 1 and r ≤ q

1−δ
give pQ

r(δQ+p(β(1−δ)−γ−aδ))
≥ 1

and q
(1−δ)r ≥ 1, respectively. Then by using Hölder’s inequality for r(δQ+p(β(1−δ)−γ−aδ))

pQ +
(1−δ)r

q = 1, we obtain

‖|x |γ f ‖Lr (G) ≤
⎛

⎝

∫

G

| f (x)| δ pQ
δQ+p(β(1−δ)−γ−aδ)

|x | pQ(β(1−δ)−γ )
δQ+p(β(1−δ)−γ−aδ)

dx

⎞

⎠

δQ+p(β(1−δ)−γ−aδ)
pQ (∫

G

| f (x)|q
|x |−βq

dx

) 1−δ
q

=
∥
∥
∥
∥
∥

f

|x | β(1−δ)−γ
δ

∥
∥
∥
∥
∥

δ

L
δ pQ

δQ+p(β(1−δ)−γ−aδ) (G)

∥
∥
∥
∥

f

|x |−β

∥
∥
∥
∥

1−δ

Lq (G)

. (5.10)

We also note that the conditions δ pQ
δQ+p(β(1−δ)−γ−aδ)

≥ δr > 0 and β(1− δ) − γ ≥ 0 imply

δ pQ

δQ + p(β(1 − δ) − γ − aδ)
· β(1 − δ) − γ

δ
≥ 0, (5.11)

while Q > ap and δ > 0 give

δ pQ

δQ + p(β(1 − δ) − γ − aδ)
· β(1 − δ) − γ

δ
< Q. (5.12)

Then, (5.11), (5.12) and

a

Q
= 1

p
− 1

δ pQ
δQ+p(β(1−δ)−γ−aδ)

+
β(1−δ)−γ

δ

Q

with γ ≥ β(1 − δ) − δa imply δ pQ
δQ+p(β(1−δ)−γ−aδ)

≥ p, so that we can use Theorem 5.1 in
(5.10) to obtain (5.8). ��
Now we show the weighted improved Hardy–Littlewood–Sobolev/Stein–Weiss inequality
on graded groups. Note that in this version we can put derivatives on the right-hand side.

Theorem 5.9 Let G be a graded Lie group of homogeneous dimension Q and let | · | be an
arbitrary homogeneous quasi-norm. Let 1 < p, q < ∞, 0 ≤ a < Q/p and 0 ≤ b < Q/q.
Let 0 < λ < Q, 0 ≤ α < a + Q/p′ and 0 ≤ β ≤ b be such that (Q − ap)/(pQ) + (Q −
q(b − β))/(qQ) + (α + λ)/Q = 2 and α + λ ≤ Q, where 1/p + 1/p′ = 1. Then there
exists a positive constant C = C(Q, λ, p, α, β, a, b) such that

∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)

|x |α|y−1x |λ|y|β dxdy
∣
∣
∣
∣
∣
≤ C‖ f ‖L̇ p

a (G)‖g‖L̇q
b (G) (5.13)

holds for all f ∈ L̇ p
a (G) and g ∈ L̇q

b(G).

Proof of Theorem 5.9 We first prove it for a �= 0 and b �= 0. We want to use Theorem 4.1 on
the left-hand side of (5.13) to get

∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)

|x |α|y−1x |λ|y|β dxdy
∣
∣
∣
∣
∣
≤ C‖ f ‖L p1 (G)

∥
∥
∥
∥

g

|y|β
∥
∥
∥
∥
Lq1 (G)

, (5.14)
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where p1 := pQ
Q−ap and q1 := qQ

Q−q(b−β)
. For this, let us check conditions of Theorem 4.1.

Note that 0 < a < Q/p togetherwith 1 < p < ∞ implies 1 < p1 < ∞,while 0 < b < Q/q
and 0 ≤ β ≤ b give 1 < q1 < ∞. We also note that 0 ≤ α < a + Q/p′ ⇒ 0 ≤ α < Q/p′

1
with p′

1 = p1/(p1 − 1) and 2 = (Q − ap)/(pQ) + (Q − q(b − β))/(qQ) + (α + λ)/Q =
1/p1 + 1/q1 + (α + λ)/Q. Thus, since we also have 0 < λ < Q and α + λ ≤ Q, we obtain
(5.14).

We have 1 < p < p1 < ∞, 0 < a < Q/p and a
Q = 1

p − 1
p1

since p1 = pQ
Q−ap , then

applying the Sobolev inequality (5.2) on graded groups (or [20, Proposition 4.4.13, (5)]) we
get

‖ f ‖L p1 (G) ≤ C‖ f ‖L̇ p
a (G). (5.15)

Since Q−q(b−β) > 0 and Q−qb > 0 we have 0 ≤ βqQ
Q−q(b−β)

< Q, that is, 0 ≤ βq1 < Q

since q1 = qQ
Q−q(b−β)

. We also have b/Q = 1/q − 1/q1 + β/Q since q1 = qQ
Q−q(b−β)

and
1 < q ≤ q1 < ∞. Then we can use (5.1), i.e.

∥
∥
∥
∥

g

|y|β
∥
∥
∥
∥
Lq1 (G)

≤ C‖g‖L̇q
b (G). (5.16)

Finally, putting (5.15) and (5.16) in (5.14), we obtain (5.13).
In the case a = 0, the inequalities (5.16) and (5.14) give (5.13).
When b = 0, we have β = 0 since 0 ≤ β ≤ b, then (5.14) with (5.15) implies (5.13). ��

Let us now discuss the critical case α = a + Q/p′ of the Hardy–Littlewood–Sobolev
inequality (5.13) on graded Lie groups.

Theorem 5.10 Let G be a graded Lie group of homogeneous dimension Q and let | · | be an
arbitrary homogeneous quasi-norm. Let 1 < p, q < ∞, 0 ≤ a < Q/p, 0 ≤ β ≤ b < Q/q.
Q(1/p + 1/q − 1) + β − a − b ≥ 0, max{ Qq

Q−bq+βq ,
pq(a+b−β+2Q)−Q(p+q)

pq(Q+a)−Qq } < r < ∞.
Then there exists a positive constant C = C(p, q, a, b, β, r , Q) such that

∣
∣
∣
∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)BQ/q(y−1x)
(

log
(

e + 1
|x |
)) r(pQ−Q+ap)

pQ |x |a+ Q
p′ |y|β

dxdy

∣
∣
∣
∣
∣
∣
∣
∣

≤ C‖ f ‖L̇ p
a (G)‖g‖L̇q

b (G) (5.17)

holds for all f ∈ L̇ p
a (G) and g ∈ L̇q

b(G), where BQ/p is the Bessel kernel from (2.7).

Proof of Theorem 5.10 As in the previous case, let us first show it for a �= 0 and b �= 0. If we
use Theorem 4.2 on the left-hand side of (5.17), then we obtain

∣
∣
∣
∣
∣
∣
∣
∣

∫

G

∫

G

f (x)g(y)BQ/q(y−1x)
(

log
(

e + 1
|x |
)) r(pQ−Q+ap)

pQ |x |a+ Q
p′ |y|β

dxdy

∣
∣
∣
∣
∣
∣
∣
∣

≤ C‖ f ‖L p1 (G)

∥
∥
∥
∥

g

|y|β
∥
∥
∥
∥
Lq1 (G)

,(5.18)

where p1 := pQ
Q−ap and q1 := qQ

Q−q(b−β)
. For this, we need to check conditions of Theorem

4.2. Observe that 0 < a < Q/p and 1 < p < ∞ give 1 < p1 < ∞, while 0 < b < Q/q and
0 ≤ β ≤ b imply 1 < q1 < ∞.We also note that Q(1/p+1/q−1)+β−a−b ≥ 0, Q > bq ,
p, q > 1, a > 0 and β ≥ 0 yield q1 ≤ p′

1, while max{ Qq
Q−bq+βq ,

pq(a+b−β+2Q)−Q(p+q)
pq(Q+a)−Qq } <

r < ∞ gives p′
1 < (r−1)q ′

1 and q1 < r < ∞ since Q−bq+βq > 0 and Qq(p−1)+apq >

0. Thus, we obtain (5.18).
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Since we have 1 < p < p1 < ∞, 0 < a < Q/p and a
Q = 1

p − 1
p1
, then we can use the

Sobolev inequality (5.2) on graded groups (or [20, Proposition 4.4.13, (5)]) to get

‖ f ‖L p1 (G) ≤ C‖ f ‖L̇ p
a (G). (5.19)

Note that 0 ≤ βqQ
Q−q(b−β)

< Q due to Q − q(b − β) > 0 and Q − qb > 0, that is,

0 ≤ βq1 < Q since q1 = qQ
Q−q(b−β)

. Moreover, we have b/Q = 1/q−1/q1+β/Q in virtue

of q1 = qQ
Q−q(b−β)

and 1 < q ≤ q1 < ∞. Then, the Hardy–Sobolev–Rellich inequality (5.1)
yields

∥
∥
∥
∥

g

|y|β
∥
∥
∥
∥
Lq1 (G)

≤ C‖g‖L̇q
b (G). (5.20)

Finally, using (5.19) and (5.20) in (5.18) implies (5.17).
When a = 0 we obtain (5.17) from (5.20) and (5.18).
In the case b = 0, we have β = 0 since 0 ≤ β ≤ b, then (5.18) with (5.19) concludes

(5.17). ��

6 Appendix: On best constants in HLS and Sobolev inequalities

In this section we discuss the relation between the best constants of Sobolev and Hardy–
Littlewood–Sobolev inequalities on graded groups for certain families of parameters.

Since the homogeneous order of IQ−λ(y−1x) (where Ia is the Riesz potential for a positive
Rockland operator R, see (2.6)) and |y−1x |−λ is −λ, then putting p = q , f = g and
λ = Q − 2a for 0 < a < Q/2 in (4.1) with α = 0 we obtain the following version of the
Hardy–Littlewood–Sobolev inequality on graded groups

∣
∣
∣
∣

∫

G

∫

G

I2a(y
−1x) f (x) f (y)dxdy

∣
∣
∣
∣
≤ C‖ f ‖2

L
2Q

Q+2a (G)

(6.1)

for all f ∈ L
2Q

Q+2a (G).
Let CHLS be the best constant in (6.1). We show the relation between this constant and

the best constant CS in the Sobolev inequality (5.2) with p = 2Q/(Q + 2a), 0 < a < Q/2,
and q = 2, that is, CS is the best constant in the inequality

‖ f ‖L2(G) ≤ C‖ f ‖
L̇

2Q
Q+2a
a (G)

(6.2)

for all f ∈ L̇2Q/(Q+2a)
a (G).

We note here that the Riesz potential Ia as well as homogeneous Sobolev spaces norm in
(6.2) above correspond to the particular fixed positive Rockland operatorR of homogeneous
degree ν, and is defined by ‖ f ‖L̇ p

a (G) = ‖R a
ν f ‖L p(G). While it is known [20, 21] that these

Sobolev spaces are independent of the choice of a positive Rockland operator R, the best
constants clearly depend on the precise expressions of the norms.

Theorem 6.1 Let G be a graded Lie group of homogeneous dimension Q, and let 0 < a <

Q/2. Then the Hardy–Littlewood–Sobolev (6.1) and Sobolev (6.2) inequalities are dual.
Moreover, we have the equality between their best constants,

CS = CHLS. (6.3)
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Remark 6.2 In the Euclidean case, we refer to [5, 17, 29] for the best constant in Hardy–
Littlewood–Sobolev inequality, and refer to [2, 35, 50] and [29] for the best constant in
Sobolev inequality. We also note that according to our knowledge the best constant in the
Hardy–Littlewood–Sobolev inequality is not known yet on general stratified groups (beyond
the Heisenberg group). Indeed, in [18], Frank and Lieb found the value of the best constant in
theHardy–Littlewood–Sobolev inequality on theHeisenberg group, however, using |y−1x |−λ

instead of theRiesz potential in (6.1). Although the homogeneous functions |·|−λ and IQ−λ(·)
are equivalent, the best constant in the Hardy–Littlewood–Sobolev inequality does depend
on the choice of this weight. In our case, it is the use of the Riesz potential that implies the
validity of Theorem 6.1.

Remark 6.3 In [11, 51] and [42] the best constant in the Sobolev inequality with inhomo-
geneous norm for the parameters different than those in (6.2) is expressed in the variational
form as well as in terms of the ground state solutions of the nonlinear Schrödinger equation
when G is (Rn,+), the Heisenberg group, and a general graded Lie group, respectively.

Proof of Theorem 6.1 Taking into account thatR− a
ν f = f ∗ Ia (see [20, Corollary 4.3.11]),

we rewrite the left-hand side of (6.1) as
∣
∣
∣
∣

∫

G

∫

G

I2a(y
−1x) f (x) f (y)dxdy

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

G

f R− 2a
ν f dx

∣
∣
∣
∣
= |(R− 2a

ν f , f )|

= |(R− a
ν f ,R− a

ν f )| = ‖R− a
ν f ‖2L2(G)

. (6.4)

Putting (6.4) in (6.1), we arrive at

‖ f ‖L2(G) ≤ CHLS‖ f ‖
L̇

2Q
Q+2a
a (G)

. (6.5)

SinceCS is best constant in (6.2), that is,CS is the best constant in (6.5), we haveCS ≤ CHLS.
On the other hand, similarly, one can obtain (6.1) with the constantCS from (6.2) using (6.4),
which means that also CHLS ≤ CS .
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