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Abstract

The paper provides a detailed study of crucial inequalities for smoothness and interpola-
tion characteristics in rearrangement invariant Banach function spaces. We present a unified
approach based on Holmstedt formulas to obtain these estimates. As examples, we derive
new inequalities for moduli of smoothness and K -functionals in various Lorentz spaces.
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1 Introduction

Some, nowadays well-known, inequalities between moduli of continuity, or more general,
between moduli of smoothness are attached to the names of Marchaud, Ul’yanov, and
Kolyada. These inequalities play an important role in approximation theory as well as in
the theory of function spaces, in particular, they can be used to derive embedding properties
of function spaces with fixed degree of smoothness, see, e.g., [6, Section 5.4], [8], [15].
The purpose of this paper is to consider crucial inequalities (Marchaud, Ul’yanov, etc.)
from an abstract point of view. To this end, in Sect. 4 we assume suitable embeddings between
interpolation and potential spaces (the interpolation spaces may be interpreted as abstract
Besov spaces). Simultaneously, abstract versions of the Holmstedt formulas are developed,
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which allow also to cover limiting cases. In Sect. 5 applications are given in the case of general
weighted Lorentz spaces. Finally, Sect. 6 deals with applications to Lorentz—Karamata spaces.

To illustrate our results, we start in Sect. 1.1 with the formulation of the aforesaid basic
inequalities adapted to Lebesgue spaces L,(R"), 1 < p < oo. Their improvements and
extensions in the framework of Lorentz spaces L, »(R") (notethat L, , = L) aredescribed
in Sect. 1.2, proofs are given in Sect. 2.

1.1 Some basic results

A detailed study of inequalities between different moduli of smoothness on L ,(R"), 1 <
p < 00, can be naturally divided into two parts: inequalities for moduli of smoothness of
different orders in L, and inequalities in different metrics (L, L ). In the paper a modulus
of smoothness of order ¥ > 0 on an r.i. function space X (defined in Sect. 3,e.g., X = L)
is given by
o0
K K v K
o (f.Ox = sup |AFF(x)|. where Aff(x)=) (1) <v>f (x +vh). (L.1)
lh|<t v=0

Let us begin with the key inequalities on L, (R"). Trivially, if k,m,n e Nand 1 < p <
00, then

Op+m (fi )L, Soe(f, 1), forall t >0and f € L,(R"). (1.2)

In 1927 Marchaud [46] proved his famous inequality (being a weak inverse of (1.2)): Given
k,m,n € Nand 1 < p < oo, then

o0
d
o(f 0L, < r"/ u_ka)ker(f,u)LpTu forall t > Oand f € L,(R"). (1.3)
t

Using geometric properties of the L, spaces when 1 < p < oo, in 1958 M. F. Timan
improved (1.3) (see, e.g., [15, Chapter 2, Theorem 8.4]): If k, m,n € N, 1 < p < oo, and
g = min{2, p}, then

[ee) d 1/q
o (f, 01, S ( / [ oS uu,,]q%) (14)
t

for all >0 and f e L,(R").

Observe the natural formal passage from (1.4) to (1.3) when p — 1 4.

In 2008 F. Dai, Z. Ditzian and S. Tikhonov [18] derived an improvement of (1.2): If k, m, n €
N, 1 < p < 00, and r = max{2, p}, then

o0 ’d l/r
i ( / [ oin (f o002, | —”) Sax(f.0e, (1.5)
t u

for all +>0 and f e L,(R").

Observe again the natural formal passage from (1.5) to (1.2), this time when p — oco. We

call (1.5) a reverse Marchaud inequality (in [18] it is called a sharp Jackson inequality).
Consider now inequalities for moduli of smoothness in different Lebesgue metrics. In

1968 P.L. Ul'yanov [66] proved such an inequality for periodic functions in L ,(T). Its R"-

counterpart reads as follows (see, e.g., [9]): If k,n e N, 1 < p < 00,0 < § < min{n/p, k},
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and 1/p* = 1/p — §/n, then

t * l/p*
o (f 0L, S (/0 [u*%k(f,u)Lp]p du—”> as 1 — O+ (1.6)

holds for all f € L,(IR") (for which the right-hand side of(1.6) is finite).!

In 1988 V.I. Kolyada [42] gave a definite strengthening of (1.6) on L, (T"). In the R"-
setting his result is the following (see [33]):
Suppose that k,n € N, and either | < p < ocoand n > l,or p = land n > 2. If
0 <8 <min{n/p,k}and 1/p* =1/p — 8/n, then, for all f € L,(R"),

00 1/p t 1/p*
+=3 (/ [ o (f, u)Lp*]deTu) S (/0 [ (f, u)L,,]p*CfTu> (1.7)
t

as t — 0+.

Another extension of (1.6), which is not comparable with inequality (1.7), is the so-called
sharp Ul’yanov inequality proved in 2010 independently in [58] and [63]:
Ifk,neN,1 < p<00,0<é<n/p,andl/p*=1/p—6&/n,then,forall f € L,(R"),

4 * du 1/17*
wr(f, I)LP* 5 </ [u_sa)k+5(f, u)Lp]p 7) as t—> 0+4. (1.8)
0
In the case p = 1 (1.8) does not hold in general [60, Theorem 1(B)] and it requires some

modifications [24, Rem. 6.20] (see also [60, Theorem 1(A)]). If k,n € N, 0 < § < n, and
1/p* =1—34/n, then, forall f € Lj(R"),

(| In e/ &P du 1/p*
ok(fs DL, S / [ s (f,w)e, 17 o as t —> 0+.
0

The importance of these inequalities instigated much research in various areas of analysis
(theory of function spaces, approximation theory, interpolation theory) and led to numerous
publications. We mention only a few recent papers: [20-23, 34, 37, 38, 40, 43, 52, 60, 63].
Basic properties of moduli of smoothness of functions from L, (R"), 0 < p < 00, are given
in [41].

1.2 Inequalities for moduli of smoothness on Lorentz spaces

We say that a measurable function f belongs to the Lorentz space L,, = L, (R"), 1 <
p,r < oo, if (see, e.g., [6, Section 4.4])

1
e pror ) < ocit 1 < oo,

sup /P f*(r) < oo if r=o0,
>0

Ifllpr =

1 One can show that if f € Lp(R") and the right-hand side of (1.6) is finite for some # > 0, then f € L P* (R™)
and so the modulus of smoothness appearing on the left-hand side of (1.6) is well defined. Note that we always
look at inequalities involving moduli of smoothness in different metrics at this way. One can also show that if
f € Lp(R™) and the right-hand side of (1.6) is finite for some # > 0, then it is finite for all # > 0 - cf. Remark
6.8 mentioned below).
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where f* denotes the non-increasing rearrangement of f. Thus L, = L, , and || fll, =

I llp.p-

The next statements extend the inequalities mentioned above to Lorentz spaces.

Proposition1.1 If n e N, 1 < p < o0, 1 < qo,q1,7r0,71 < 00, ro < ri,and B > 0,
then, for all f € L, ;,(R"):
(A) Marchaud-type inequality.

o0 qodu\ /0
wp(fiDL,,, < 1P (/ [“7ﬂwﬁ+a(f,u)Lp.ro] 7) as t - 0+ (1.9)
t

provided o > 0 and qo < min{p,2,r}if p # 2. If p = 2 and ro < 2, then take
qgo < min{2, r1}, and in the case p =2, ro > 2 one has to take qy < 2.
(B) Reverse Marchaud-type inequality.

00 B a1 du 1/q1
P </Z [u Va)ﬁer(f, M)L‘”l:l 7) < wg(f, I)Lwo as t — 0+ (1.10)

(with usual modification if g1 = o0) provided y > 0 and g1 > max{p,2,ro} if p #2.If
p =2and r; > 2, then take q1 > max{2, ro}, and in the case p = 2, r1 < 2 one has to
take q1 > 2.

Denote by W;(R”), 1 < p < oo, k € N, the Sobolev space of order «, i.e.,

f e W’; (R™) if f and all its (weak) derivatives up to the order k belong to L,(R").
It is well known that, by Taylor’s formula,

omik(f 0L, S Y om(D f ), meN, peNg, forall f € Wi(R") and ¢ > 0.
|ul=k

Here we use the multi-index notation |u| := 27:] wj, D* = ]_[.';:1 (8/9x ;)" . We want
to state an improvement and some type of reverse of this inequality in the case 1 < p < oo.
To this end, we need Besov spaces and Riesz potential spaces, both modelled upon Lorentz
spaces.

We make use of the Fourier analytical approach in S’ (cf. [7]):

Take a C°°-function ¢ such that

suppe C {x e R" : |x| <7/4} and ¢(x) = 1if |x| < 3/2. (L.1D)
For j € Z and x € R", let
9;j(x) = e 7x) — eIt y). (1.12)

The sequence {¢;} jez is a smooth dyadic resolution of unity, i.e., 1 = Z(;O:foo @;(x) forall
xeR" x #0.
Let 1 < p,q,r < oo and o0 > 0. The Besov space BY (R™) consists of all

(p.r)q
f € L, (R") such that
00 ' 4 1/q
flsg.,. = | 2 [2-"’||f*1[<p,»]*f||L,,.,} < o0 (1.13)
j=—00

(the sum should be replaced by the supremum if ¢ = oc). Here the symbol F~! is used for
the inverse Fourier transform. An equivalent characterization of this semi-norm in terms of
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moduli of smoothness is given by
. ©r . adt\"1
flhe = [r wk(f,t)L,,,] Y, 0<o <k (1.14)
(pra 0 1ot

The Riesz potential space HI‘;", (R"), o > 0, consists of all f € L, (R") for which

oo
\flag, =D fllL,, <oo. where DEf:= Y F'Elgjlxf (115

j=—00

(the o-th Riesz derivative) converges in S’ to an L p.- (R™)-function. Note that W’; =H ;q »
if 1 <p<oo.

Proposition1.2 Let n e N, 1 < p <00, 1 < qo,q1 <00, 1 <rg=r1 =r <00, and
B,o0 > 0.

(A) If f € Ly, (R") then, under the assumptions on the parameters qo and r of
Proposition 1.1 (A), forall t > 0,

ro_ g0 du\ V%0
wg(Dﬁf, DL, S </0 [u Pwpiq(f, M)Lp,,:l 7) . (1.16)
In particular, if B =m ando =k € N, then, for all u € Nj with || = m,
r _ a0 du\ /0
o (D* f, 0L, S (/ [u " ktm (f, M)Lp.,:l 7) . (1.17)
0

B) If f e Hﬁr(R”) then, under the assumptions on the parameters q\ and r of
Proposition 1.1 (B), forall t > 0,

t d 1/q1
</0 [mﬁwﬂw(f,u)w]q'%) <o, (D f, 0L, (1.18)

In particular, if B = m and o =k € N, then

' g du\ " f
omye sy, ") < "I
([ Lot n. )" < o (50,

Finally consider inequalities between moduli of smoothness in different metrics.
Proposition 1.3 Supposen e N, 1 < p < 00,0 <8 <n/p, 1/p* =1/p—368/n,1 <

q0, 41,70, 71 < 00, and 8 > 0.
(A) Sharp Ul'yanov inequality. If ro, g1 < 11, then, forall t > 0 and f € L, ;,(R"),

dun1/
1—“) " (1.19)

t
0p(Fu01p S ([ 107 a0, 1

(B) Kolyada-typeinequality.If ro < qo, q1 < 11, then, forall t > Oand f € L ,,(R"),

P “r s 0 du\ M/
t [“ wp+s5(f, u)Lp*vrl:I W
t

t 5 du 1/q1
S (/0 [ wpis(f, u)Lp.,OJ"l;) (1.20)
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2 Remarks and proofs in outlines

Peetre’s K-functional K for the compatible couple (L, H,‘Z,r) plays a decisive role in the
proofs of Propositions 1.1-1.3. It is defined by

KO(f7 N Lp,ra Hg,r) = geul-llf"’ (”f - g”p,r + t|g|Hl‘,7_r)7 f € Lp,ra t>0.
p.r

We also need the characterization, for | < p < oo, 0 >0, 1 <r < o0,
Ko(f, 1% Ly, Hl‘,’,,) ~ws(f,DL,,, fe€Lpr t>0, 2.1

(see [67] and its extension in [30, (1.13)]) and the identification of the interpolation space
given by

(Lpr Hy 1 og =B8;”r),q, 0>0,0<0<1,1<p<oo, 1<r,g<oo,

where (-, -)g,, denotes Peetre’s real interpolation method. The improvements and extensions
of inequalities (1.3)—(1.8) can be easily proved via the Holmstedt formulas [6, Section 5.2].
One only needs to exchange in [63] the embeddings between Besov and potential spaces mod-
elled on Lebesgue spaces by the corresponding ones modelled on Lorentz spaces. Therefore,
we only sketch the proofs of the propositions stated in Sect. 1.2.

Concerning (1.9) and (1.10), note that, under the restrictions on go and ¢; given in
Proposition 1.1, the following embeddings are true:

B rova0 = Hpr 2.2)

if 1 < p<oo,1<qo,ro,r <00, 19 < rp (see Theorem 1.1, (iv)—(vi) in [S7]) and
HV

%
pro > B

(p.r).q1 (2.3)

if1 < p<oo,1<qq,ro,r <00, g < rp (see Theorem 1.2, (iv)—(vi) in [S7]).

Remark 2.1 In parts (i) and (ii) of this remark we assume the same restrictions on the
parameters under which (1.9) and (1.10) hold, respectively.
(i) Divide equation (1.9) by P and let + — 0 + . Then on the right-hand side one

gets | f[* . One way how to handle the left-hand side is to introduce the generalized
(p.r0).490

Weierstrall means W,ﬂf = F’l[e(’m)ﬂ] * f. By [30, (1.11)], one has

Ko(f 1% Ly HE YN =W, fllpn. f€Lpp. 1>0.

Also, by [13, Corollary 3.4.11],
lim +f)f — w’ ~ )
Jim WP Flpr S 1Ly

Hence, in view of (2.1), (1.9) implies (2.2). In particular, (1.9) and (2.2) are equivalent asser-
tions. This means the following: if inequality (1.9) holds under certain range of parameters,
then embedding (2.2) is valid for such parameters and vice versa.

(1) If (1.10) is true, then its right-hand side is equivalent to Ko(f, L poros H ,’im), which
trivially is smaller than tﬁlleg . Dividing inequality (1.10) by ¢4, one gets

[ee) a1 du Yar
—y au <
</t [u wp+y (s M)Ll”l] u ) ~ |f|H5~*0

uniformly in ¢ > 0, and (2.3) follows. Thus, (1.10) and (2.3) are again equivalent statements.
O
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Concerning Proposition 1.2 (A), let f € B’ . Then, by (2.2), f € Hl’i,, hence

(p.r).q0
lef €L,,,and
ws (DR f.0L,, SIDESf—hlL,, +|hlug, forallhe HY,. 2.4)

+
If ¢ € Hy” then Dfg € HJ, |Dfglu; = 18l yg4s and IDECS = O, S

p,r p.r’
|f— g|Bﬁ . Now choose h = le g in (2.4) to obtain

(p.r).q0

p.r

0o (DR f, D)1, S1f = gl +1°|Dg glug, ~|f - 8l 181700 1718 o8

where in Peetre’s (-, -)g,¢,-interpolation method one has to put 8 = §/(8 + o). Taking the

minimumoverall g € H, ;ﬁﬂ in the last display and using the appropriate Holmstedt formula
( [6, p. 310]), we arrive at (1.16).

Regarding (1.17), observe that the j-th Riesz transform R, 1 < j < n, (with the Fourier
symbol £;/|¢], & € R") is a bounded operator from L, into L,, 1 < p < oo, hence also
bounded from L, , into L,,, 1 < p <00, 1 <r < oo. Now set R* := [’ R;Lj to

j=1
. Il Il
obtain [[D*fll.,, =IR*Dg fllL,, SIIDg fllL,, - Hence,

(D D1, = sup IAkREDY FIL,, = sup IRCAKDE fllL,, S ox(DRf. 0L,
It It

and (1.17) follows from (1.16).
Concerning Proposition 1.2 (B), we follow the argument starting with (12.13) in [23].
Thus, by [30, Lemma 1.4 with @ = 0],

0o (DR f.0)L,, ~ Ko(DR .17 Lyp.r. H,) ~ IDR(f = Vi P)llp.r + 11 DRVi flng, .

where V; f are the de la Vallée-Poussin means of f. Now use Theorem 1.2 (iv) - (vi) in [57],
subsequently, the lifting property of Besov spaces, and again [30, Lemma 1.4] to obtain

g (DR f- 01, 2 1DR(f = Vif)lg | +17IDRV:flng,
Nf=Viflge WSl ~ Ko(f 17 BL o HEEO),
p.r ’

;
(ol (p.r).qn

Since pr,r),ql = (Lp,r, Hﬁfa)g,ql , B=6(B+ o) (see, e.g., [7, Theorem 6.3.1]), hence
1 — 60 =0o/(B + o) and, therefore, by the Holmstedt formula, we finally derive

t _ du 1/q1
(/(‘) [M ﬁa)ﬁ+0'(f’u)Lp_r]ql7> 5wU(D£f7t)Lp»,- .

In particular, if 8 =m € N, then, for even m and hence y; € 2Ny,

Dhf =7 [(&% +-- +s,%>'"/2f[f]] =y r‘[]‘[s}fﬂﬂ} y € No".
j=1

lyl=m

If y; is odd, observe that

e |E|m71(512++%_3)/|&_| _ |§.|mfl (&-1 . E:—l' +--- 4, - %)
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24 Page 8of 41 A. Gogatishvili et al.

and that &;/|&| is the symbol of the j-th Riesz transform being a bounded operator on
L?, 1 < p < oo, and hence also on the Lorentz spaces under consideration. Therefore,
when 0 =k € N,

v f
(DR fiD)L,, S sup o (877/’ f)
lyl=m X Lpr
and hence the assertion follows along the lines of the paper [23]. O
For the proof of Proposition 1.3, suppose that 8,5 > 0 and that p, p* and § satisfy the
assumptions. By Theorem 1.1 (iii) in [57],

Bl og = Lorrn i 1< q1<ri<oo, 1<rg< o0 (2.5)

Moreover, Theorem 1.6 (i, iii) in [57] contains a version of the Hardy-Littlewood-Sobolev
theorem on fractional integration, which states that

Hﬁ+§ s H'B

(35 fer i 1< <rn<oo, B0, 2.6)

The use of Holmstedt’s formula completes the proof of (1.19).
Concerning the proof of (1.20), we need the embedding

HYH s BOL 0 i 1<rg<go<oo, 1< <oo, 2.7)

which holds by [57, Theorem 1.2 (iii)], and also embedding (2.5), which requires the
additional restriction g1 < 7y . O

Remark 2.2 Similarly to Remark 2.1, we may derive that each of inequalities (1.16)—(1.20)

implies the corresponding embedding. For example, let (1.19) be true. Since H ffff ={f¢€

Lyry : ops(frw)L,, < CuP*3}, inequality (1.19) implies ngo‘s TN Hf*’rl, which is
(2.6). Likewise, (1.20) yields (2.7).
Remark2.3 Letn e N, 1 < p<oo, 0<8§<n/p, 1/p*=1/p—258/n,and B > 0.

(a) The combination of the Kolyada inequality with the Marchaud inequality leads to
a special case of the Ul'yanov inequality. If 1 < r :=ry) =r; = go = q1 < 00 and
r < min{p*, 2}, then, for all f € L, ,(R"),

' dun/r
wp(f 0L, S ( (™ wpys (f, u)Lm]’—“) as 1 — 0+ . 2.8)
JZ8n 0 u

This follows on applying to the left-hand side of (1.20) Marchaud inequality (1.9), where we
replace p by p*.

(b) Similarly, if 1 < r:=r9 =r; = q1 < 00, r > max{p*, 2}, and y > 0, then the
combination of Ul’yanov inequality (1.19) and reverse Marchaud inequality (1.10) (where
p is replaced by p*) yields a special case of the Kolyada inequality, namely, for all f €
Ly, @®R"Y),

*° _ rdu Ir t _ rdu 1
Z:B</; [u ﬂa)ﬁﬁ—)/(f, H)Lp*.,] 7) 5(\/0' [u 5w,3+6(f’u)14]1_r] 7) (29)

as t — 0+.

Note that in the case 0 < y < § the order of the modulus of smoothness on the left-hand
side is smaller than the one on the right-hand side.
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2.1 Sharp Ul'yanov and Kolyada inequalities forp = 1

As it was mentioned above both (1.19) and (1.20) do not hold in general when p = 1.
However, under some additional conditions on parameters both results are still valid even in
the Lorentz space setting.

Proposition 1.3°. Supposen e Nyn 22,1 <8 <mn, 1/p*=1—-68/n,1 <q1 <r <0
and B > 0,846 € N.
(A) Then, forall t > 0 and forall f € Li(R"),

1/q1

! d
ws(f00,. . S| Wlops(frw 1) (2.10)
P 1 0 u

B) If1 < qo < oo then, forall t > 0 and forall f € L1(R"),

00 du)\ V40 t du 1/q1
P </ [u P wpys(f. WLy, ]"°7> N (fo (P wpts(f, u)p, 19 7) .
t

Proof of Proposition 1.3'(A). If g € H , then in light of (2.1), for all f € L+ ,, and
all positive ¢,

Op(f+ DLy, X Koo tPs Lyr Hye ) SIUF = gllpen + 1718l e . 21D

Py

Now we take into account the following result by Alvino [3] (appeared in 1977, rediscovered
by Poornima [54] in 1983 and by Tartar [59] in 1998)

n>2. 2.12)

3xj

Together with Hormander’s multiplier criterion and [57, Theorem 1.6 (iii)], this yields

B+35 B+8—1 B+8—1 B B .

W = Wn/(n 1 = Hyjn—n,1 = Hp*’1 — Hp o =1 (2.13)
and for the corresponding seminorms we have, for all g € Wﬁ J”S,
1 8

glys Slglys Slglyses, O0<—=1->, r>L (2.14)
p*.ry 1 1 p n

Note that using Alvino’s result, we necessarily assume § > 1
By [57, Theorem 1.1 (iii)], the first embedding below is valid, the second one is elementary
and, therefore,

)
B(l,l),q1 > Lpx g <> Lp* Il pr S |f|B(1 Dy (2.15)

forall f € By ), if 1 <g1 <ri <oo.
Applying estimates (2.14), (2.15), and (2.11), we arrive at

0p(fs DLy, S —8lp

B
t
2 e + |g|W{3+6

forall g € Wlﬁ . Together with Holmstedt’s formula, this yields

8
wp(f 0Ly, S Ko(f 1P BY ) 0 WEP)
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24 Page 10 of 41 A. Gogatishvili et al.

([

t d 1/q1
~ </ [ wpys(f,u)p, 1" l) ,
0 u

where the condition 8 4+ § € N allows us to identify the resulting Ko-functional with the
classical modulus of smoothness in Lj. O

Proof of Proposition 1.3'(B). Following the proof of (1.20), we need analogues of (2.5)
and (2.7) for p = 1. In fact, in this case (2.5) holds whenever 1 < g1 < r; < oo (see (2.15)).
Concerning (2.7), we modify it by repeating the argument in (2.13) to get

1B+

1/q1
d
=/ D Ko (f s Ly, w1 ”)
u

W{Ha oy WhHel _ ppte-l

n/(n—1),1 n/(n—1),1°
Hence, applying (2.7) upon Hf /4('”8:11) |» under our assumptions, we arrive at
wit < B’ L 1222061 0, N, 1<q <
1 — (p*.r1),q0 ° E— _;> ) = 7ﬁ> s +ﬁ€ ) S 90 X O0.

By the Holmstedt formula,

p*.ri

00 du\ /40
_ 8 u
Iy = B/ (B+3) (/ [u ﬂ/(ﬁ+5)K0(f, u; Ly s )alins )]%7)
t

%

+48
Ko(f s tP/ 5 Ly (L H]I)S*,rl)ﬁ/(ﬁ+5)q110)
S f = gl + 1P EH1g]

(P*.rp). a0

SUf—glg  +P/Egl s, 1<q1<r <o0.
(1,1),91 Wi

Since this estimate holds for all g € Wl’g M, we have

S S
Iy S Ko(f, 1P/ Ly, WP)s 0805 0 W)

t 5/(B+5) B+ du 1/q1
~ (f [/ PO Ko(f, u; Ly, W} )]‘ﬂ;) :
0

Now simple substitutions, the characterizations of the Ko-functionals via moduli of
smoothness of integer order give the assertion. O

Remark 2.4 Proposition 1.3’ contains the corresponding results for Lebesgue spaces (for part
(A), take p* = g1 = r1 and see [40, 41, 63], for part (B), take p* = g1 = r1, go = | and
see [40-42, 63]). We also note that even though (1.8) does not hold in general for p = 1 and
p* < o0, itis still valid for p = 1 and p* = oo ( [40, Corollary 8.3]), i.e., there holds

ro du
wr(f, DLy 5/ u " wrn (f, M)Llj, keN.
0

3 Notation and preliminaries
Throughout the paper, we write A < B (or A 2 B)if A < ¢ B (or ¢ A > B) for some positive

constant ¢, which depends only on nonessential variables involved in the expressions .A and
B,and A~ Bif A< Band A2 B.
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In the whole paper the symbol (R, 1) denotes a totally o -finite measurable space with a
non-atomic measure ©, and M(fR, ) is the set of all extended complex-valued ;+-measurable
functions on R. By MT (R, u) we mean the family of all non-negative functions from
MR, n). When R is an interval (a,b) € R and w is the Lebesgue measure on (a, b),
we denote these sets by M(a, b) and M ™ (a, b), respectively. Moreover, by M™ (a, b; |)
(and M™ (a, b; 1)) we mean the subset of M™ (a, b) consisting of all non-increasing (non-
decreasing) functions on (a, b). We denote by A, the n-dimensional Lebesgue measure on
R".

For two normed spaces X and Y, we will use the notation ¥ — X if ¥ C X and
I1£llx S 1INy forall fev.

A normed linear space X of functions from M (R, n), equipped with the norm || - | x, is
said to be a Banach function space if the following four axioms hold:

0 < g < fp-ae implies [|gllx < fllx;
0< fu /' f p-ae implies || fullx /7 IIfllxs

lxEllx < oo forevery E C fR of finite measure;?
if w(E) < oo, then there is a constant Cg such that
Je 1 f()du(x) < Cell fllx forevery f € X.

Given a Banach function space X, which satisfies

Rl S

(5)  1Iflx = llglx whenever f* = g*

we obtain a rearrangement-invariant Banach function space (shortly ri. space). Note that, by
[6, Chapter 2, Theorem 6.6] and [6, Chapter 2, Theorem 2.7], L1 N Loo = X < L1+ Lo
for any r.i. space X.

Given a Banach function space X on (*R, u), the set

X = :f e MR, ) : / | f(x)g(x)|dp < oo forevery g € X},
R
equipped with the norm

Ifllx = sup /mlf(X)g(X)ldu,

llgllx=<1

is called the associate space of X. It turns out that X’ is again a Banach function space and
that X” = X. Furthermore, the Holder inequality

/m [fg)ldmw < I flixllglx

holds for every f and g in M (R, ). It will be useful to note that

I fllx = sup /mlf(X)g(X)IdM. 3.D

liglx =<1
For every r.i. space X on (R, 1), there exists an r.i. space X over ((0, o0), dt) such that

I fllx =l f*llxy forevery feX

2 The symbol xf stands for the characteristic function of the set E.

3 Recall that f* and g* denote the non-increasing rearrangements of functions f and g.
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24 Page 12 of 41 A. Gogatishvili et al.

(cf. [6, Chapter 2, Theorem 4.10]). This space, equipped with the norm

o
I fllx = sup / g ar,
liglyr<1J0
is called the representation space of X.
A Banach space F of real valued measurable functions defined on the measurable space
(R, ) is called a Banach function lattice if its norm has the following property:

[fl<lg)] p-ae, geF = feF and |fllr<lglF.

In this paper we will consider a Banach lattice F over a measurable space ((0, 00), dt/t),
satisfying the condition

(1) < oo, (3.2)

where ®(x) := || min(x, -)||r for all x € (0, o0). (The function @ is sometimes called the
fundamental function of the lattice F'.) Note that ® is a quasiconcave function on (0, c0),
which means that ® € M™*((0, c0); 1) and % € M™T((0, 00); |) (here Id stands for the
identity map on (0, 00)). Condition (3.2) implies that ®(x) < oo for any x € (0, c0),
moreover, ® € C(0, 0o) (cf. [27, Remark 2.1.2]).

Let (X, Y) be a compatible couple of Banach spaces (cf., [6, p. 310]). The K -functional
is defined foreach f € X +Y and ¢t > O by

K(fuXoyy=inf (Ifilx +lfly), (3.3)

where the infimum extends over all representation f = f; + f> with fj € X and f, € Y.
As afunction of t, K(f, t; X, Y) is quasiconcave on (0, 00).
Similarly, we define, foreach f € X + Y and ¢t > 0,

Ko(f,t; X,Y) = inf +t 34
o(f ) et h (”fl”X |f2|Y) (3.4)
and

Ki(f X7y = int (1filx +11f1y), (3.5)

where | - |[x and | - |y are seminorms on X and Y.
If (X, Y) is a compatible couple of Banach spaces and F is a Banach lattice, then we
define the space (X, Y)r to be the set of all f € X + Y for which the norm

I flleeyre = IKCf 5 X, V)l F

is finite. Note thatif 1 < r < 00,60 € (0, 1) and the Banach lattice F is the set of all functions
h € M(O0, co) such that

i s= ([ (s mon) )" < .

then the space (X, Y)r coincides with the classical space (X, Y)g , defined, e.g., in [6,
p- 299].

We will also work with more general classes of functions, which are not linear. Let p be
a functional on M™(R", A,) satisfying

(N1) p(f) > Oforany f € MT(R", Ay) and p(f) =0 & f =0, Ay-ace.,

(N2) p(a f) = ap(f) forany f € MFT(R"?, A,;,) and a > 0.
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Such a functional is called a gage and the collection
X =XR") = XR", ) ={f € MTR", 1) : p(f) < o0}
is said a (function) gaged cone (cf. [17]). Moreover, we put

Iflx :==p(f), feX.

An associate space of a gaged cone X is defined in the same way as for Banach function
spaces.

If X is a gaged cone, then the functional | - [x : X — R is called a semi-gage on X
provided that the functional | - |x is non-negative and positively homogeneous on X.

Given two function gaged cones X and Y, the embedding ¥ <> X means that Y C X and
Ifx SISy forall feY.

A pair of function gaged cones (X, Y) is said a compatible couple of function gaged
cones if there is some Hausdorff topological vector space, say Z, in which each of X and Y is
continuously embedded. Given a compatible couple (X, Y) of function gaged cones, the K -
functionals K (f,t; X, Y), Ko(f,t; X,Y), and K1(f,t; X,Y) are defined analogously to
(3.3)—(3.5). Moreover, if F is a Banach lattice over a measure space ((0, 00), dt/t) satisfying
(3.2), then the space (X, Y)F is defined analogously to the case when (X, Y) is a compatible
couple of Banach spaces.

In this paper we work with function gaged cones being the subsets of L (R") + L, (R").

Given k € N and a Banach function space X = X(R"), we denote by WXX the cor-
responding Sobolev space, that is, the space of all functions on R” whose distributional
derivatives D* f, |«| < k, belong to X. This space is equipped with the norm

1 wex = 1F x4 1 flwix = Il + D 1D Flix.

k=|a|

Note that W¥X = A¥X, where A is the Sobolev integral operator; see, for example, the
representation theorem in [12, Section 3.4]. If X is a function gaged cone, then the Sobolev
class WX X is defined similarly.

We are going to use the classical equivalence between the K -functional K¢ and modulus
of smoothness: for any k € N and an r.i. Banach function space X, one has

wr(f,Dx ~ Ko(f,t*; X, WkX)  forall t >0and f € X (3.6)
provided that in the space WX X we choose the seminorm | flwex == > IID*fllx. The
k=la|

proof follows the same reasoning as the one given for X = L, in [6, pp. 339-341].

Let —oo < a <b < 4ooandleté : (a, b) — R be a non-decreasing function on (a, b).
Put £(a) = lim;— 44 £(t) and £(D) = lim;—,,— £(t). The generalized reverse function R€ of
& is defined by

(RE)(1) = inf{r € (@, b): £() > t} for all £ € (£(a), £(b)).
The following properties of the generalized reverse function can be easily verified.

Lemma 3.1 If the function & given above is left continuous on (a, b), then

§(RE)®)) <t forany t € (§(a), (b))

and

1 < (RE)(E() forany t € (a,b).
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24 Page 14 of 41 A. Gogatishvili et al.

Moreover, if ¢ € C((a, b)), then
E(RE)(M) =1t forany t € (£(a), £(D)).

We note that Lemma 3.1 does not hold without the assumption that & is left continuous.
Moreover, an analogue of E((RS)(t)) = t, namely (R&)(&(¢)) = ¢t forany ¢ € (a, b), need
not hold even if £ € C((a, b)).

If (a, b)) C Rand p € (0, o], then the symbol || - || y, (4,») stands for the quasinorm in the
Lebesgue space L, ((a, b)).

As usual, for p € [1, co], we define p’ by 1/p + 1/p’ = 1. Throughout the paper we use
the abbreviations LHS () (RHS(x)) for the left- (right-) hand side of the relation (x).

4 General inequalities for K-functionals
4.1 Holmstedt-type formulas

The next theorem is a folklore in some way and it can be considered as an abstract form of
the limiting cases of the Holmstedt-type formulas (see, e.g., [6, Corollary 2.3, p. 310 and p.
430] and [11, p. 466]). Since we have not been able to find an explicit reference of the needed
general form (cf. [2, 48]), we prove it below. The importance of this result can be seen in,
e.g., [55].

Theorem 4.1 Let (Xo, X1) be a compatible couple of Banach function spaces.

(A) Let Fy be a Banach lattice over ((0, 00), dt/t). Assume that the function E(t) :=
[l min(., )| g, t € (0, 00), satisfies E(1) < oo. If ¢ is the generalized reverse function of
B, then

K(f, t; (X0, X1 R, X1) = |K(f,s; Xo, X1)Xx0,60) ) R
+ K(f, o) Xo, XD X@p).00) ) Fy 4.1
forallt € (E(0), E(c0)) and f € (Xo, X1)Fy + X1.
(B) Let F| be a Banach lattice over ((0, 00), dt/t). Assume that the function ©(t) :=

t/|| min(-, t)||F,, t € (0, 00), satisfies ® (1) < 0o. If Y is the generalized reverse function of
®, then

K(f,¥(@); Xo, X1)
Y (1)
+HIK(f, 53 Xo, X)X @),000 ) I 7y “4.2)

forallt € (©(0), ®(00)) and f € Xo + (X0, X1 F,-

K(f,t; X0, X0, X)) F) =t Is X,y @) F

Remark 4.2 (i) Formulas (4.1) and (4.2) remain valid for K-functionals given by (3.4) and
(3.5).

(ii) By Theorem 4.1, estimate (4.1) holds forall ¢ € (E(0), E(o0)) and f € (Xo, X1)F, +
X1,orequivalently, forallr € (E(0), E(c0)) and f € X for which RHS(4.1) is finite. Similar
remark can be made about equivalence (4.2).

Proof of Theorem 4.1 We start with (A). As the function E is quasiconcave, it is continuous
and hence E(¢ (1)) = || min(s, ¢(1))||r, = ¢ for any ¢ € (E(0), E(c0)) by Lemma 3.1. If
f = fo+ fi, where fy € (Xo, X1)F, and fi € X1, then, for all t € (E(0), E(c0)),

IK(f,s; Xo, X1)x0,60) R < NK(fo, 55 X0, X1)x0,00) ) R
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+ 1K (f1, 55 X0, X1)x0,000) ) Ry

| K (fo, 55 Xo, XDl F + s X©0.00) S E 1 f111x,
L follxo.x1) 5, + I minGs, @) 7 I f11lx,

= Il follxo.xnm +20/11x,

<
<

and

K(f,o@); X0, XD 1 X@@).000 Ry < K(fo, @5 Xo, XD X ).00) )| Ry

+ K(f1,0®); Xo, XX 1),00) ) Fy

| K (fo, 5 Xo, XDk, + @O f1llx, 1 X 0).00) ()| By
Lfoll(xo.x1)5, + I minGs, @) R 111l x,

=l follxo.x0m, + 2011, -

<
<

Thus, taking the infimum over all decompositions f = fo + f1 of the function f, with
fo € (Xo, X1)F, and fi € X, we arrive at the estimate LHS(4.1)>RHS(4.1).

To prove the opposite estimate, take ¢ € (E(0), E(c0)) and suppose that

f = fo+ fi, with fy € Xo, fi € X1, be such a representation that

I follxg + @@ fillx, <2K(f,¢(); Xo, X1).

Since, for all s > 0,

K (fo,s; X0, X1) < I follxy < 2K(f, ¢(2); Xo, X1)

and
K (f1,s; Xo, X1) 2
KULS X0 XD iy, < 2 K(f. 6 0): Xo. X1,
@)
we get, for all f € (X0, X1)r, + X1,

K(f.t; (Xo, XD Fy» X1) < I follxo. x5, + 21/ 11lx,
K(f,¢@®); Xo, X1)
< IK o5 Xo Xl + 1 o
S IK (fo, 85 X0, X1 x0,60) ) Ry
+ 1K (fo, 53 X0, X1) X(¢(),00) O Ry
[K(f,¢>(t);Xo,X1)
@)

= J1+h+ /s

As fo = f — f1, we obtain

J1 < IK(f, 55 X0, XD x0,00) ) R + 1K (1,53 Xo, X1) x0,600) ) R
<K, 55 Xo, X X0,60) O F + 1 lx 15X0,600) ) R

K(f,¢@); Xo, X1)
< IK (. 55 Xo, XD 20,000 )l 7y +

(1)
SIK(f,s: Xo, X0 x0.00) ) R

s x0,00)) () Ky

and

I S follxol X @).00 O Ry S KL (0); Xo, XX 0).00) () | o -
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Since t = E(¢ (1)) < I8 X0,00) O Fy + DO X@1),00) ()| Fy» WE gL

K(f,¢@); Xo, X1)
()
< IK(f,s5 Xo, X1 X0,60) O F + K(f, ()5 Xo, XD X@1),00) () Fy -

Consequently, for all t € (E(0), E(00)) and f € (X0, X1)F, + X1,

K(f.t; Xo, XDry» X1) SIK(f, 55 X0, XD x0,600) ) Ry
+K(f, d); Xo, XD X(@1),00) ) Fy-

To prove part (B), we notice that (cf. [6, Chapter V, Prop. 1.2])

J3 < (s x©0.60) IR +¢(t)||X(¢>(z),oo)(S)||Fo)

K(f.1; Xo, (X0, X)) = tK(f, 1/t; (Xo, X1) Ry, Xo) = tK(f, 1/t (X1, X0) 77, Xo),
where I:"] ={f:tf(1/t) € F1} and ||f||ﬁ = |ltf(1/t)|l r,. Now we apply part (A) and the

reverse preceding substitutions to arrive at the statement. O

4.2 Inequalities for K-functionals involving the potential-type operators

Let {A%};eom, where 9T = {t : 0 < 7 < 9} or M = {k € Ny : k < 19} for some
70 € (0, 00), be a family of linear operators defined on L1 (R") 4+ L, (R") satisfying

(P1) A" : X — X forany t € 9t and for any function gaged cone X C L (R")+ L (R");

(P2) A%X = X for any function gaged cone X C L1 (R") + Loo(R");

(P3) AT(A°X) = A°(A'X) = A" X for any function gaged cone X C L{(R") +
L (R") and for any o, 7,0 + 7 € 9.

Here A" X, T € 901, is the range of A" equipped with the gage (or norm)

I fllarx = Ifllx + 1 flarx, where |flarx =inf{ligllx : f = A"g}

Theorem 4.3 (Ul’yanov-type inequalities) Assume that X is an ri. Banach function space
andY,Z C L1 + L are function gaged cones.
Let

A°TTX < Y, A°X — Z, forsomet > 0ando > 0. (4.3)
(A) Let Fy be a Banach lattice over ((0, 00), dt/t) satisfying
X, Y)p, — Z. “4.4)

Assume that the function Eo(t) := || min(-, t)||f, t € (0, 00), is such that Bo(1) < oo. If
@ is the generalized reverse function of B, then

K(f, t;Z,A"Z) SIK(f, 53 X, AT X) x00.00(0) ) | By
+ K(f, do0); X, AT X)X (g0(1),00) ()l Ry 4.5)

forallt € (Ep(0), Eg(c0)) and f € X (for which RHS (4.5) is finite).
(B) Let Fy be a Banach lattice over ((0, 00), dt /t) satisfying

Z< (X,Y)p, = V. (4.6)
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Assume that the function B1(t) := ||min(-, t)|| r, t € (0, 00), is such that E1(1) < oo. If ¢1
is the generalized reverse function of 21, then

K(f.t; V,A™V) SIK(f, 53 X, A7 X) x0.01 ) )l 7y
+ K(f, 10); X, AT X)Xy (1).00) ) | Fy 4.7
forallt € (E1(0), E1(c0)) and f € X (for which RHS (4.7) is finite).
Remark 4.4 (i) It is clear from the proof that inequality (4.5) holds provided that
A°TTX < Y forsomet > 0ando >0
and
A’X - (X,Y)p =: Z.

(ii) A different, abstract approach to UI’yanov inequalities, based on semi-groups of linear
equibounded operators in Banach spaces, is given in [65].

Proof of Theorem 4.3 The property (P3) of operators A and the second embedding in (4.3)
imply that

ATTX — ATZ. (4.8)
Further, using the first embedding in (4.3) and (4.4), we get
(X, A" X)p, — (X, Y)p, — Z.

This, (4.8), and Theorem 4.1 (A) (see also Remark 4.2 (ii)) yield, for all t € (Eo(0), Eg(c0))
and f € X,

K(f.1;Z,A"Z) SK(f.1; (X, A" X)R,, AT7X)
~NK(f,s: X, AT X) %0.000) ) 1 Ry
+ K(f, do(t); X, AT X)X (g0 1),00) ) | Fo s

and (4.5) is proved.
To obtain (4.7), using (4.8) and (4.6), we arrive at

ATTX 5 ATV.
Moreover, applying the first embedding in (4.3) and definition of V, we obtain
X, A" X)p, = (X, Y)p, = V.
Consequently, for all # > 0,
K(f,t; V,A"V) SK(f,t; (X, A" X)p,, ATTX),
which, together with Theorem 4.1 (A) (and Remark 4.2 (ii)), yields (4.7). ]

Using part (B) of Theorem 4.1, one can prove the following results (Marchaud and reverse
Marchaud-type inequalities).

Theorem 4.5 Assume that X is an ri. Banach function space. Let F| be a Banach lattice

over ((0, 00), dt/t). Assume that the function ©(t) :=t /| min(-, t)|| f,, t € (0, 00), satisfies
O (1) < oo and that  is the generalized reverse function of ®.
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(A) (Marchaud-type inequality) If
(X, AT X)p, <> A"X, with somet,0 > 0, 4.9)
then
K(f, ¥ (1); X, A7*7X)
v()
+tIK(f, 55 X, AT X) Xw0),00) ) I Ry (4.10)

forallt € (©(0), ®(c0)) and f € X (for which RHS(4.10) is finite).
(B) (Reverse Marchaud-type inequality) If

K(f.1; X, ATX) St

s x©,w @) A

A™X < (X, A" X)p,, with some 7,0 > 0, 4.11)
then
K(f,¥(@); X, A°TTX)

70 s X0, ) O FFEIK (85 X0 AT X) Xy (1),00) ) 1 7y

SK(f.1;X,ATX) (4.12)

forallt € (©(0), ®(c0)) and [ € X (for which RHS (4.12) is finite).
Proof To prove (A), we obtain, by (4.9) and Theorem 4.1 (B) (see also Remark 4.2 (ii)),

K(f.t: X, ATX) SK(f.1; X, (X, A" X))
K(f, ¥@1); X, A7 X)
v
+ 1K (f,s: X, AT X) Xy ).00) ) |y
for any t € (®(0), ®(c0)) and f € X.

In part (B) embedding (4.11) is reverse to (4.9), therefore the above inequality sign is also
reverse. O

ls x©,v @) A

Combining parts (A) and (B) of Theorem 4.1, we obtain the following result.

Theorem 4.6 (Kolyada-type inequality) Assume that X and Z, Z C X, are r.i. Banach
function spaces. Let Fy, Fy be Banach lattices over ((0, 00), dt /t) satisfying, for some T > 0
ando 20,

(X, A™X)p, — Z (4.13)

and
ATX — (Z,A"Z)F,. (4.14)
Assume that the functions E(t) := || min(:, t)|| g, and O(t) = t/||min(., )|, t € (0, 00),

satisfy E(1) < oo and ©(1) < oo. If ¢ and  are the generalized reverse functions of &
and O, respectively, then

K(f,¢@);Z,A"Z)
(40
SUIKf, s X, A" X) x0,.00) ) | R
+K(f, 1) X, AT X)) x(60).00) ) o (4.15)
forallt € (E(0), E(c0)) N (B(0), ®(c0)) and f € X (for which RHS (4.15) is finite).

s X, O F +HIK(f, 85 Z, AYZ2) Xy (1),00) ) | 7y
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Proof Taking into account (4.13) and (4.14), we get
K(f,t;Z,(Z,A"Z)r) SK(f, 1; (X, AT X) g, A7 X) forall t > 0.
To complete the proof, note that, by Theorem 4.1 (B),
K(f.t; Z,(Z, A"Z)F,) ~ LHS(4.15) forall t € (©(0), ©(c0))
and, by Theorem 4.1 (A),
K(f,t; (X, A" X)g,, A"™77 X) ~ RHS(4.15) forall t € (E(0), E(00)).
O

Remark 4.7 (i) Note that Theorems 4.3, 4.5, and 4.6 remain true if the K-functional K is
replaced by the K -functional K¢ or by the K -functional K given by (3.4) or by (3.5).

(ii) Theorems 4.1, 4.3, 4.5, and 4.6 are true if the Banach function spaces are replaced by
function gaged cones.

To give a flavor of how to use Theorems 4.3, 4.5, and 4.6, we present the following
examples on the classical Ul’yanov inequality (1.6) and sharp Ul’yanov inequality in the
Lorentz setting, cf. Proposition 1.3.

Example 4.8 We obtain the following extension of the classical Ul’yanov inequality (1.6):
Ifl<p<oo,k,neN,0<§ < min(k,n/p),and 1/p* =1/p — &/n, then

o (fr )L, ' cdu\ V7"
70 sup — e S ( f [ ens o, ] l) as t — 0+ (4.16)
t<u<l u 0 u

holds for all f € L,(R").

Note that, since LHS(1.6)< LHS(4.16), inequality (1.6) follows from (4.16). More-
over, (4.16) provides a sharper bound from below. Indeed, considering f € C° implies
w(fou), ~ uk, 0 <u < 1, for any 1 < r < oo. Thus, inequality (1.6) even for smooth
functions gives only the rough estimate t* < t*=% while (4.16) becomes an equivalence.

To prove (4.16), first, we apply Sobolev’s embedding WkLp o L% with1 < p <n/k
and 1/p = 1/p — k/n (here, as usual, WkL p is the homogeneous Sobolev space and
L% = Lj/{constants} is the factor space with the norm ||f||L% = inf 1|l f — cllp). See
the book [45, 1.77,1.78] for the case k = 1. Fork > 1, itfollows from the Poincaré inequality,
namely,

# #
If=cli, S WM S WL, S lwee,. 1< p <n/k,

where ¢ = limyo f*(7) and f,f is the maximal function given by f,f x) =

.
Sup =%
xeQ 1QI'"n

nomials of degree at most k, and f* = fo# . The first estimate follows from [5, Corollary 4.3]
and Hardy type inequalities, the second and third estimates from [19, Theorem 9.3, Theorem
5.6, and Corollary 2.2].

For p = 1 we obtain by same way

#
1=l o o S 1A
-

By truncated method ( [1, Theorem 7.2.1]), we can obtain

f 0 |f — Prfl, Pcf is a linear projection mapping L onto the space of poly-

#
n ,)OS”fk ”L n oof,|f|W’<L1-

n—k>" n—k’

1f =ellea S1f e
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By interpolation (see [53]),

(Lp, WKL p)apr = B, o > L% = (Lp, LS)a - 4.17)

witha :=§/kand 1/p* =1/p — §/n.
' On the other hand, since L, — Lpo = (Lpumtph) L;*)l—a,oo and
WkLp*n/(n+p*k) <> L+, we obtain

WkLP — Wk(Lp*n/(n+p*k), Lp#)1-a,00
= WEL st ps WELp)1-ai00 > (L s WELp#)1-a00, (4.18)

where the equality follows from [51] and [50].
Embeddings (4.17), (4.18), Theorem 4.6 (with ¢ = 0 and Ky instead of K), and the
known relation wy (f, tl/k)Lp ~ Ko(f,t; Ly, WkLp) give

(s fro »rdu "
! “supr§</(; [u O’a)k(f,ul/k)Lp] 7) (4.19)

t<s

for f e L,and? > 0if0 < @ < 1 and 1/p* = 1/p — ak/n. Finally, (4.19) and the change
of variables yield (4.16).

Note that in the previous example, we did not use optimal Sobolev embeddings and thus
did not obtain the sharp Ul’yanov inequality (1.19). The optimal embeddings require to use
Lorentz spaces.

Example4.9 Letn e N, 1l < p<o00,0<8§<n/p,0<pB,and 1 < rg < ry < oo. Take 0
satisfying max {ﬁ, Ij—f} < 6 < 1 and set
. 1 1§ 1 1 8
X:qurO,Y:Lﬁ‘ro,Z:Lp*’rl with E:;—;, E » n@
Then, in light of (2.6), one has Hﬁ,ro <> Ly« . Thus, the second embedding in (4.3) holds
with ASX = Hg! r, and o = 8, where A is the Sobolev integral operator.
Since

5+p _
Hp,ro g LPJ’O’

which holds by [57, Theorem 1.6 (i)] (note that § + 8 > § = n(5; — 7)), and

. 1 1-6 0
Lp*,rl = (L]?,r()7 Lﬁ,ro)e,rl with e =—+ =

(see [7, Theorem 5.3.1]), we derive that (4.3) and (4.4) hold with 0 = §, t = B, and
the Banach lattice Fy defined as the set of all functions g € M(0, co) such that ||g|lr, =

—6-1/r1 . . /=gy _ B
[lu &) |lr,(0,00)- Finally, Theorem 4.3 (A) with ¢o(¢) ~ ¢ =1t F implies

wp(f 1P~ Ko(f 13 Ly HP Ly )

Bt

t B
< ( / T s (F ut BN du)
0 "0

1/(B+8) > a1, \/n
+wp1s(f,t / )LM)(/% u~on du)
t

1/r
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p+s

7 or1—1 1/(B+8)Nr 1/

~ (/ u " wp s (f ul/PT >)L‘p,0du) :
0 )

with the usual modifications for r; = oo. The latter is equivalent to the sharp Ul’yanov

1/r
inequality wp(f,0)r,., < (fo’[uﬂ‘ wp+s(fow)rL,,, 1" %) Vast — 0+ for f € Ly
see (1.19).

5 The Ul'yanov inequality between weighted Lorentz spaces
5.1 Definitions and preliminaries

The following definition is motivated by the known result on the equivalence between the
classical Lorentz space norm and the one involving f**(¢) — f*(¢), namely,

00 ’ 1/r
I fllz,, ~ (/O (t]/p_l/’(f**(t) - f*(t))) dt) ., l<p,r<oo,

where f**(t) = % fot f*(s)ds provided that f**(c0) = 0, see [6, Proposition 7.12, p. 384].
Let X be anr.i. space over (R”, A,,) and let w be a weight, that is, a nonnegative measurable
function on (0, co). We define the function gaged cone

Sx ()R, Ay) == {f € MR", k) : f*(00) =0, | fllsyqw) := I(f™ = fHwlx < oo},
where X is a representation space of X.

We will also need weighted Lorentz spaces defined as follows (cf., e.g., [16]): If 1 < r <
00, we put

0 , 1/r
AR ) = | f € MR 2) 2 1 f Iy = (/0 (F*@) wesrds) " < oo},

00 - 1/r
L @)®" ) = [ f € MR 30 2 1F I = (/0 (1) wisds) " <o),

S, )R ) = [ € MR 2) 2 1400) =0, [ flls,0 < 00},

where
1/r

I flls, ) = (/0 (f**(s) = f*()) w(s) ds)

We will use the following conditions on weights:

e w € B, (i.e., w satisfies the B, condition) if there is ¢ > 0 such that
o0 t
t’f s Tw(s)ds < cf w(s)ds forevery ¢ > 0;
t 0
e w € B (ie., w satisfies the B;" condition) if there is ¢ > 0 such that

t t
tr/ sTw(s)ds < c/ w(s)ds forevery > 0;
0 0
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e w € B} (ie., w satisfies the B} condition) if there is ¢ > 0 such that

t t t
/ log — w(s)ds < c/ w(s)ds forevery ¢t > 0.
0 s 0

In general, A, (w)(R", A,) and S, (w)(R", A,) are not r.i. spaces, they are not even linear.
On the other hand, T, (w) (R", A,,) is always an r.i. space for 1 < r < oo and in this case the
representation space of ', (w)(R", A,,) is T, (w) ((0, 00), dt).

If A, (w)(R", Ap) is an r.i. space (e.g.,if | <r < ooand w € By, see Lemma 5.1 below),
then the representation space of A, (w)(R", A,) is the space A, (w)((0, 00), dt).

Similarly, if S,(w)(R”", A,) is an r.i. space (e.g., if | < r < coand w € RB,, i.e.
w(l/t)t”2 € B,; see [16, Theorem 3.3]), then the representation space of S, (w)(R", A,)
is the space S, (w)((0, 00), dt). Moreover, if w € RB,, 1 < r < oo, then S, (w)(R", A,)
coincides with I (w) (R”, A,,).

The dilation operator E;, t € (0, 00), is defined on M (0, co) by

(E:f)(s) := f (ts) forall s € (0, 00).

Given anr.i. space X and ¢ € (0, 00), the operator E; is bounded from X to X (cf. [6, p- 148]).
If hx denotes the dilation function, i.e.,

hx(t) = |E1;llx_x forall t € (0, 00),
then the lower and upper Boyd index of the space X is given by
loghx(t) _ log hx (1)
ay = —————~ and @y := lim ———
t—0+ logt t—oo logt

respectively. The Boyd indices satisfy (cf. [6, p. 149])
0< ay <ax < 1.

The Hardy averaging operator P and its dual Q are defined on M™ (0, 0o), for each

t € (0, 00), by
L > f(s)
(PH@) = — | fs)ds and (Q)0):= [ == ds.
0 t

respectively. Recall that (cf. [6, p. 150]) given an r.i. space X, the operator P is bounded on
X if and only if @x < 1, while the operator Q is bounded on X if and only if 0 < ay.

We will need the following result, which is partially known but the present formulation
seems to be new.

Lemma 5.1 Let w be a weight, | < r < 00, and X := A, (w)(R", Ap).
1. The following conditions are equivalent:

(@) w e By,

(b) X is an r.i. space,

(c) the operator P is bounded on X,
(d oy <1,

(e) X =T (w)R", An).

2.Ifw € B, and n € (0, 1), then the following conditions are equivalent:

(a) w € By withq =nr,
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(b) the operator
o d
©Nw =1 [0, re .00,
!

is bounded on X,
(©) n<ay.

3. If w € By, then the following conditions are equivalent:

(a) we BZ, -
(b) the operator Q is bounded on X,
(©) 0 <ay.

Proof Part 1 is known; in more detail, for (a) < (b) see [56, Theorem 4], for (a) < (c) see
[4, Theorem 1.7], for (¢) < (d) see [6, p. 150], and (c) < (e) is clear.

The proof of part 2 easily follows from the paper [49, Theorem 3.1]. The conditionw € By,
is equivalent (cf. [49, Theorem 3.1]) to the fact that the operator Q) is bounded in

00 1/r
Lhw) = {f € M*©0,00 ) 1f 1, :=(f0 FOFw@ydr) " < oof.

It remains to show that the operator 9, is bounded on Li (w) if and only if it is bounded in
Ay (w). Part “if" is clear. To prove the part “only if", we first note that, by Fubini’s theorem
and the Hardy-Littlewood rearrangement inequality (see [6, p. 44]),

I—n
[(an)(x)dx——f mln< ) ) du

m mm(l 7)1 T (u )du—/ (0 f5)(x)dx. (5.1)

Therefore, the fact that Q,, f € MT(0, o0; |), the B, condition, the first part of this lemma,
inequality (5.1), and the boundedness of Q, on L,l (w) imply, for any f € M (0, o0),

([T temnreyusas)” = ([T (@no)yuss)”

~ (/Ooo (% /OS(an)(u) du)rw(s) ds>1/r - (/000 <% /()S(Q;;f*)(”)du)rw(s)ds)l/r
N (/Oo((an*)(s))’wmds)”’ < (/“’ (f*(s>)’w<s)ds)”’
0 0

The proof of part 3 is similar, one makes use of the fact that the condition w € BX is

equivalent to the boundedness of the operator Q on the space Lri (w) (cf. [49, Theorem 3.3]).
O

In the rest of this section we work with spaces over (R", A,,) and sometimes we omit the
symbol (R”, A,,) from the notation of spaces in question.

Lemma5.2 Let1 < r < 00, w € By, B € R, and let v(t) = t# forallt € (0,00). If
X = A (w)R", Ay,), then

Sx ()R, Ap) — S (wuHR?, Ap).
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Proof LetB e R, 1 < r < oo,and f € MT(R", A,). Since fIZI sPVds ~ B forall ¢ > 0,
and since

the function ¢ — ¢t(f**(#) — f*(¢)) is non-decreasing on (0, 00) (5.2)
(cf. [14, Prop. 4.2]), on putting
g(s) = (S () = X605’ s € (0,00,
we obtain that

2t
(f™(0) — f*Ne? < %/ g(s)ds < (Pg*)(t) forallt > 0.

t
Therefore,
1/r

oo l/r oo
([ uro-roreorena)” < ([ wweorvoa)
0 0

B)gether with the condition w € B, and the first part of Lemma 5.1 (recall that in our case
X = A, (w)((0, 00), dt)), this implies that

00 1/r
1/l 0w S ( /O @ Oy wnydr) " = llglx = 1f Isew @ s,
the required result. O
In what follows, given y > 0 and n € N, we define the weight v, , by
vya(t) :i=1"n forallz > 0. (5.3)

The next lemma represents a key step in the proof of Proposition 5.4 below. It was proved
in [32, Theorem 1.1] for k = 1, the proof for k € N is analogous.

Lemma5.3 Ifk,n € Nand X is an ri. space, satisfying 0 < ay < &x < 1, then, for all
t>0and f € X+ Sx(vkn),

K(f.t; X, Sx(vi.n))
=) — A @)x, 2 Olx+ tllsfg(f**(s) - f*(s))x(tg’oo)(s)lly

(0,1%)

W) = F DX, 8, O+l 6 = F e o @l

Proposition5.4 Ifk,m,n e N, 1 <r < oo, and w € B, N BX,, then

(Ar(w)» SAr(w)(vk+m,11)) m_ . = SA,(wvm”l)(UO,n)-

k+m >

Proof Let X := A,(w) = A,(w)(R", A,). Then the space A, (w)((0, 00), dt) is the repre-
sentation space of X. By Lemma 5.1, our assumptions guarantee that 0 < oy < oy < I.
Therefore, using Lemma 5.3 (with k + m instead of k), we obtain, for all + > 0 and
f e X+ SxWigmn),

n l/r

t k+m
K(fs 13 X, Sx pamn)) ~ /0 () — £ wis)ds

o </t:) ([(f**(s) - f*(s))si%]*)r w(s)dS)

1/r
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If
Y := (Ar(w), Sa, w) (Wk4m,n)) .

then

o0 m rdt Ir
Il = ( / (7 FT KL 15 8 ), S, ) Vktman)) ) )
0 t

1/r

~
~

o (b sk TN dt
f ! k+m/ ([ = f*©]) wis)ds—
0 0 t

" </ooo (5 /t; ([(f**(S) — f*) s‘k%’"]*)’ w(S)dsd:>l/r

=11 + D.

Applying Fubini’s theorem, we arrive at

n~ ( fo ([ - f*(z)]*)’r—%mdr)

1/r
= 1 S, oy (00 (5.4

and
1/r
(5.5)

b~ (/Ooot%’ ([(f**(t) - f*(t))z—k%’"]*)r w(t)dt)

Thus, it remains to show that RHS(5.5)< RHS(5.4).
Let f € MT(R", A,) and g(s) := f**(s) — f*(s) forall s > 0. Making use of (5.2) and

k+ .
2 ds forallt > 0, we obtain that

. _kd+m _ _
the estimate ¢~ » ' ~ ftoos

<+m o0 -m
) — frap S < f e~ 21 gy forall 1 > 0.
t

kr
Together with the fact that the function ¢ + ¢ » is non-decreasing on (0, c0), this implies

RHS(5.5) < (/Ooot%(/oog(s)s_HTm_lds)rw(t) dt)l/r
t

< (/000 (/too g(s)s—n! ds)rw(t) dz)l/r.

~

that

Given ¢ > 0, we define the non-increasing function /, by
hi(s) ;= min{s~n 1, =71} foralls > 0.

Then
o0 m o0
f g(s)s—rldsgf g(h,(s)ds forallt >0

t 0

and, on applying the Hardy-Littlewood-Pdlya rearrangement inequality, we arrive at

/ g(s)s*%*ldsg/ g ()i (s) ds
t 0

m t o0 m
=t_7_1/ g*(s)ds—i—/ g (s)s™n lds
0

t
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< (P(g*(s)s™m)(1) + (Q(g*(s)s~m))(r) forallz > 0.
Consequently,

e m 1/r o m
RESGS) < ([ e e Borvod) ([ Tiowes Hhorvo)

=: N1+ N,.

Making use of the assumption w € B, N B, and Lemma 5.1, the fact that the function
t g*(t)t_% is non-increasing on (0, co) and the definition of g, we get

N1 S (/OOO ([g*(t)t*%]*)’w(z)dt>
— (/Ooo (g*(t)t‘%)rw(t) dt)l/r

© m\r 1/r
= (/0 (L@ = 1) W(t)dt)
= RHS(5.4)

1/r

and, similarly,

Ny S RHS(5.4).

Lemma5.5 Ifm,neN, 1 <r < oo, andw € B, N B, then
SA,(wvm,T”)(vO,n) — SA,(w)(Um,n)- (5.6)

Proof Put X := A,(wvprn), ¥ = A,(w). Embedding (5.6) means that, for all f €
Sx (vo,n)s

I = ) mally S U = frlxs

i.e.,

1/r

(f (10 = ot ©) woan)” 5 ( / T (1 = PTO) w0

This can be proved quite analogously as the estimate RHS(5.5)< RHS(5.4). O

To prove the needed embeddings for Sobolev spaces modelled upon weighted Lorentz
spaces given in Proposition 5.7 below, we make use of the following lemma, which is closely
related to the results from [47] and can be seen as a Sobolev-Gagliardo-Nirenberg type
inequality.

Lemma 5.6 Suppose that X (R") is an r.i. space such that kn;l <ay, keN, k <n, and the
set of bounded functions is dense in X. Then

IEn (@O = FFlx S 1D fIF | f e WEX,

where

1/2
D" f1 = ( > ID“f|2> :

lor|=k
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Proof First, from Theorem 2 in [47], we have

(5O = ) g S 1Dy £ e CR®R™. (5.7)

Further, we show that the condition kn;I < ay implies lim;_, o4 @x () = 0, where @y is the

fundamental function of X. Indeed, for ¢ € (0, 1), it follows that e < Qi1 (xo.n) (0

fork > 1 and log% < Qi (X(O,l)) (¢) for k = 1 and using boundedness of Q1 in X (see
[6, Theorem 5.15, p. 150]), we derive

k=l k=1 .
ox(®) = lxonllg St IIQk’;Il (xon) Ix St lIxonlx if k>1,

N I\—1 .
ex(®) = lxonly S <log ;) 1Q -t (xo.n) Iy S (log ;) Ixonlly if k=1

Thus, lim;—, 0+ ¢x (t) = 0. Using [6, Theorem 5.5, Chapter 2, p. 67], we obtain that X, = X,
and X, is separable, where X, is the subset of functions f € X which have absolutely
continuous norms and X, is the closure in X of the set of simple functions. By our assumption
X = Xp. Thus X = X, = Xp. Then in light of Semenov’s theorem (see [44, Theorem 8,
Chapter I1]), it follows that continuous functions are dense in X . Further, by standard density
argument, one can see that Cgo (R™) is dense in Xj. (For another proof see Remark 3.13 in
[25]. Somewhat similar argument can be found in [39].)

By Lorentz-Shimogaki result [6, Theorem 7.4, p. 169] and [6, Theorem 4.6, p. 61], if
Il fi — fllx — O, then || f — f*llx — 0as k — oc. Thus, using a limiting argument, we
may extend the validity of (5.7) from functions in C3°(R") to all functions in wkx.

Since ¢ (f**(r) — f*(¢)) is an increasing function, we have

—k * *k * . —k_o
R — A 0) S 1 (r)—f(r))f x5 2 dx
t
S 0w (O - ) .

Taking into account the condition kn;l < oy, the operator Q-1 is bounded on X and
n
therefore

17 7O = SOl S Qe (177 (0 = ) Iy
SH(EF GO = 11@) I S 1041

O
Proposition5.7 Ifk,m,n e N, k+m <n, 1 <r < oo, and w € B, N B}, _,, then
WmAr(w) — SA,(w)(Um,n) (5.8)
and
W AL (w) <> Sa, ) WVkctm.n)- (5.9)

Proof Set X := A,(w)(R", A,,). By Lemma 5.1, part 2, the assumption w € B, N B}, _,

implies that k*’”ﬁ < oy, which, in turn, gives ”’T’l < ay. Consequently, if | € {m, k+m},
then, by Lemma 5.6,

1D £1* 5 2 177 (F** () = FH@DIgs
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and embeddings (5.8) and (5.9) follow. O

5.2 The Ul'yanov inequality between weighted Lorentz spaces

The next theorem provides an estimate of the K -functional K (f, t; S, (w), Wk, (w)). Note
that in general, the function gaged cone S, (w) is not linear (cf., e.g., [16]). For the definition
of the K -functional for the couple (S, (w), WXS..(w)) see the discussion in Sect. 3.

Theorem5.8 Ifk,m,n e NN k+m <n, 1 <r < 00, Uy p(t) = tJZTr, and w € B, N
Bt(k+n1—])’ then

K(f, tk; Sr(wvmr,n)»WkSr(wvmr,n))

1
< (/0, (s*'"K(f, S A (w), Wk+’”A,(w)))r ‘ii)? (5.10)
forall t > 0and f € Ar(w) (for which RHS (5.10) is finite).
Proof By Lemma 5.2,
Z = Sp, wyWm,n) = Sr(Wupr n),
which implies that
K(f 15 Sy Womr ), WESp (womrn) S K (f 15 Z, WXZ) (5.11)

forall f € Zandallt > 0.

To estimate RHS(5.11), we are going to apply Theorem 4.3 (A), with X := A, (w), Y =
SA, (w)(Vk+m,n), the function gaged cone Z mentioned above, with the Sobolev integral
operator as the potential operator A, and the Banach lattice Fy defined as the set of all
functions & € M (0, oo) such that

Al 7y = (/OOO (s*k%m|h(s)|)rdsi)]/r < o0.

Note also that the assumption w € B,NB},,,_;, and Lemma 5.1 imply thatw € B, NBZ..

Embeddings (5.9) and (5.8) of Proposition 5.7 show that assumption (4.3) of Theorem 4.3
(A) is satisfied with o := m and 7 := k. Using Proposition 5.4, we arrive at

(Ar (w), SA,(w)(vk+m,11)) = SA,(wum,,”)(UO,n)-

Tm
Since, by Lemma 5.5,
SA,(wvm,,,,)(UO,n) — SAr(w)(Um,n)y

we obtain that

(Ar(w), Sa, ) Wktmon)) m_

m_ SA,(w)(Um,n)»
k+m>

which means that assumption (4.4) of Theorem 4.3 (A) is also satisfied. Consequently,
estimate (4.5) of Theorem 4.3 (A) implies that

=

K(f.t: Z.W*2) < / (s K (.5 Ar), W A )
0 S
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1
m o0 m \"d r
+ KT A ), WE A, () (/ (s77%) i)
t

e s
k+m %
t ok m rd
~ / (S_kT'”K(f, 83 Ar(w), Wk+m1\r(w))> — (5.12)
0
Combining estimates (5.11) and (5.12), we obtain (5.10). ]

Remark 5.9 Note that Theorem 5.8 remains true if the K -functionals K are replaced by the
K -functionals K (cf. Remark 4.7).

Since S,(w) is not a linear space, the calculation of the K-functional
K(f,t; Sr(Womr.n), WkSr(wvmr,”)) may cause additional difficulties. In order to use
the previous theorem, we would like to find a Banach function space Y such that
Sy (WUmr.n) <> Y. The smallest such space Y is the second associate space (Sy (W, )"

By [16, Theorem 4.1], if

/Oot_%_’w(t)dt = o0, (5.13)
0
then
(Sr(wvmr,n))/ = Fr’(w)’
where
R r 1/r
I, @) = {f e M®): IflIram = ( /0 (=) s)rds) < oo}
and

7

o0 —r
w) =1t "w) (/ s_T_’w(s)ds> for all t > 0. (5.14)
t
Now we can use [28, Theorem A] to get that
(Sr (wvmr,n))// = (Fr’(w))/ =TI, (v),

where

e L ws)ds [0 5T wis)ds
1

(fé Wis)ds + 17 [ s—r’ms)ds)r
Consequently, S, (WVur,n) < ' (v). Hence, forall t > 0 and f € S, (wWvmr.n),

K(f, t; Tr(v), WET, () S K(f, 15 Sr (WUmr )y WES, (w0mr ).

v(t) =

forall r > 0. (5.15)

Thus, using Theorem 5.8 (together with Remark 5.9), the facts that I, (v) and A, (w) are r.i.
spaces and that, for all ¢ > 0,

Ko(f,t*; T, (v), WD, (0)) & ok (f, D, )

and
Ko(f, 75 Ap(w), WK AL (w)) & @ (f s D) A, ()

(cf. (3.6)), we arrive at the following result.
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Corollary 5.10 Letk,m,n e N, k+m < n,and1 <r < oo. Ifw € BN B}, _,, satisfies
(5.13) and v is given by (5.15), then !

t o ds\ "
o (f,Or, 0 S (/0 (™" Dram (f A, ) %) (5.16)

forall t > 0and f € A,(w) (for which RHS(5.16) is finite). Equivalently (see Lemma 5.1,
Part 1), we have

t . - ds ;
wk(f,t)r,(u)i(/o (s ™" Okm (f+ ), ) j) .

As an important example, we obtain Ul'yanov’s inequalities between the Lorentz-
Karamata spaces. To define the Lorentz-Karamata spaces L ,.,(R"), 1 < p,r < oo,
we introduce slowly varying functions.

Definition 5.11 A measurable function b : (0, co) — (0, 00) is said to be slowly varying on
(0, 00), notation b € SV (0, co) if, for each ¢ > 0, there is a non-decreasing function g,
and a non-increasing function g_, such that t°b(¢) ~ g.(¢) and t°b(t) =~ g_(t), for all
t € (0, 00).

Clearly, P (Lo ) € SV(0, 00), etc., where B, y € Rand £(t) = (1 + |logt]), t > O.
Convention. For the sake of simplicity, in the following we assume that r*¢h(r) are
already monotone.

5.3 The Ul'yanov inequality for Lorentz-Karamata spaces: a first look

We introduce the Lorentz-Karamata space L ,.,(R"), p,r € [1,00], b € SV (0, 00), as
the set of all measurable functions f on R” such that

> di\1/r
”f”p,r;b = (V/O‘ [tl/Pb(t)f*(t)]th> -0

(with the usual modification for » = c0).
If

w(t) =17 ' (@), 1<p<oo, 1<r<oo, beSV(0,00),

then A,(w) = L, ,.p. Let 1 < r < oo. First we note that the condition 1 < p < oo implies
that w € B,. Moreover, if p < n/(k +m — 1), then w € B}, _,, . Itis easy to see that the
n

function given by (5.14) satisfies

/ /
mr r
+

wt)~t " Vflb”’(t) forall t > 0.
Furthermore, if p < n/(k +m — 1), then

/ /

mr r

—+-
Vi

t o0
f w(s)ds +t" / s w(s)ds ~t " 7b"(t) forallt > 0,
0 t

which, together with (5.15), implies that

1 m
vt) ~ "5 forallt > 0,
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and

1 m

1
p* p n
Therefore, by Corollary 5.10, forallt > Oand f € L ,.p,

[ (v) = L+, with

1
! du\" 1 1 m
—m r _
i (f, t)Lp*.,;b < (/0 (14 Okt (f s M)Lpﬁr;;,) 7) ., where E = ; - Pl
Using the estimate @y, (f, M)L,,,,-,b < Opqm (f, M)L,,,;;b with 7 < r, we immediately obtain
the following corollary.

Corollary5.12 If k,m,n e NN k4+m <n, 1 < p <nf/k+m—1),1 <7 <r < oo,
b e SV(0,00), and 1/p* =1/p —m/n, then

P - du ;
wk(f7 t)Lp*.,;b S (,/0 (M wk+m(f9 M)Lp;;},) 7) (517)

forall t > 0and f € L, 7, (for which RHS (5.17) is finite).

In particular, if b = 1, then (5.17) yields the known estimate (1.19) for integer parameters k
and m satisfying k + m < n. Note that the restriction 7 < r is natural since (5.17) does not
hold in general for 7 > r, see [30, Theorem 1.1(iii)].

In the next section we will investigate inequalities of type (5.17) in more details.

6 Sharp Ul'yanov inequality between the Lorentz-Karamata spaces

In the previous section we obtained the Ul’yanov-type inequalities for K-functionals and
moduli of smoothness between the general weighted Lorentz spaces, which causes restrictions
on the parameters. In particular, we assumed that k, m € N. On the other hand, it is clear
that, when dealing with more specific Lorentz spaces, one could get better results, i.e., sharp
Ul’yanov inequalities for a wider range of parameters.

Our main goal in this section is to establish new sharp Ul’yanov inequalities between the
Lorentz—Karamata spaces introduced in the previous subsection.

First we mention some simple properties of slowly varying functions (recall that slowly
varying functions have been introduced in Definition 5.11 at the end of Sect. 5.2). In what
follows we write only SV instead of SV (0, 00).

Lemma 6.1 (cf. [31, Prop. 2.2]) Letb,b1,br € SV.

(i) Then biby € SV, b" € SV and b(t") € SV foreachr € R.

(ii) If € and k are positive numbers, then there are positive constants c; and Cg
such that

ce min{x %, kb (1) < b(kt) < Cemax{k®, k ¢}b(t) forevery t > 0.
(iii) If ¢ > 0 and g € (0, o], then, forallt > 0,
12 b(@)llg.00) % 1°b() and ||tV b(@)llg. .00 ¥ 17D).
If b € SV, then also b~! := 1/b € SV. We will show that these functions have

comparable, sufficiently smooth regularizations:
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(a) Given N € N, following [35, Lemma 6.3], we set
1

1 t
ap(t) == b~ (1) = m ap(t) = ;/(; ag—1(u)du, (6.1)

t>0, £eN, 1 <N,

Then, by direct computation, we obtain, forall # > 0and £ e N, 1 <€ < N, that

1
a®~b~' (@) and ay(t) = — @) — a0, (6.2)

and hence, forall t > 0and j,£eN, 1 <j<l<N,

j
a1 = 1177 Ciuaei@®) S 17T b7 0) 6.3)
k=0

(with some constants C; ).
(b) Analogously, given N € N, we define

 co_1(u)
2

co(t) :=0b(1), ce(t) =t/ du, t>0, LeN, 1<LN, (64
t

u

to obtain, forall t > 0and £ e N, 1 <L <N,

ce@®) =~ b(t) and (1) = ;

[ce(®) — ce-1(D], (6.5)
and hence, forall + >0and j,£e N, 1 <j<L€N,

. . J .
e’ =177y Djicer )] <177 b(e) (6.6)
k=0

(with some constants D; ).
Now we introduce the subclass SV; of non-decreasing slowly varying functions by

SVy :={b € SV : bis non-decreasing, lim b(t) = oo, lim b(t) > 0}, 6.7)
t—00 t—04
and extend the classical Riesz potential
I°f :=ky % f, where ky(x):=F '[E]7°1(x), 0<o <n,

to a fractional integration with slowly varying component b=, where b € S V4 . To this end,
if the slowly varying function ay, N € N, is given by (6.1), set

-1
I;\’,’b fi=kop1.yx f, where kypo1y = .7-'_1[|§|_Ua1v(|.§|)](x), 0<o <n.

When we choose N > (n 4 1)/2, we can apply the formula

x|~ %
7m0 S / V2N @) di 4 x| TV T0D2 f (N2 )],
0 I

x| 2

contained in [62], with m(¢) = t=°/2an (v/7). To this end, observe that

N t
_ _ k _
mO0) = 3 ) B (PP
£=0 k=0
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(with some constants cx_ ¢ y) which, by (6.3), implies that |[m™) (t)| < t=N=9/2b=1( /1),
and hence for all x # 0,

-2

x|
|ko—’b*1;[\l(x)| S/ tN_1+n/2t_N_U/2b_l(\/;)dt
0

oo
+|x|—N—(n—1)/2/ tN/2+(n_3)/4t_N_U/2b_1(\/;)dt S |x|g_"b_1(|x|_l).

|x|~2
Consequently,

K@ SEE @) ST @) forall £ > 0.

o, o,

Therefore, the proof of [26, Theorem 4.6] can be taken over to get the following analog of a
fractional integration theorem.

Lemma6.2 Let 1 < p <o00,0<o0 <n/p, 1/p*=1/p—0o/n, 1 <r <s < oo, and
BeSV,beSV4 . IfNeN, N> m+1)/2, and

bu(t) == b~ ¢V forall t >0, (6.8)
then

b1
||[1(\7/' f”p*,s:B S f”p,r;b,,B forall f € Lp,r;b,,B(Rn)-

The next lemma deals with a Bernstein inequality for slowly varying derivatives, based
on the regularization of b. Throughout this section, given R > 0, we put

Br(0):={§ e R" : || < R}
and denote by x a C°°[0, co)—function such that

@ =1 if 0<u<1 and xu) =0 if u>2. (6.9)

Lemma6.3 Let 1 < p <00, 1 <r < o0, and g € Li(R") + Loo(R") with suppg C
Br(0), R>0.If Be SV, be SVy,and N € N, N > n/2, then

17 en UEDE T I p.rin S DR NIgllp.rip  forall R >0,

where the slowly varying function cy is given by (6.4).

Proof Take R > 0, N € N, N > n/2, and define
mp.n(t):=x(t/R)cn(t)/b(R) forall t > 0.

Then mpg. y satisfies (cf. (6.5) and (6.6)) the condition

l+1
sup [m g, (1)] —I—sup/ N mlg (ldr <C. N >nj2, (6.10)
t>0 teZ J2t ’

which, by e.g. [10, Theorem 0.2], implies that m g, (|§|) generates a uniformly bounded

operator family on L,(R"), 1 < p < o0, i.e., ||]-'_1[mR;N(|§|)§] I, Sliglly, ifl <p <

oo. Hence, cf. [25, Corollary 3.15], this is also true for the interpolation space L ,,g(IR").

Since b(R)ymg:n(IEN)E = cn(1EDg if g € L1(R") + Loo(R") with suppg C Bg(0), the

assertion follows. O

A combination of these two lemmas gives the following embedding.
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Lemma64 Let | < p <00, 0<0o <n/p, I/p*=1/p—0o/n, 1 <r<s<oo, Be
SV, b € SV4. If by is defined by (6.8), then

1778l p=.5;8 S D(R) NIgl prib, B
for all R > 0 and for all entire functions g € L, ,., g(R") with supp g C Bg(0).
Proof Let N € N, N > (n+ 1)/2 and let the slowly varying functions ay, ¢y be given by
(6.1) and (6.4). Then 1 = aycy/(aycy) on the interval (0, 0o). Therefore, supposing that

the Fourier symbol 1/(ay (I£])cn (I£])) generates a bounded operatoron L,(R"), 1 < p <
00, then, by Lemma 6.2 and by Lemma 6.3, we obtain that

1 gllp ;8 S IF ' IEI an (1EDen (EDZE] Il p=.5:8

SHF Men1EDEE N privun S ORNEN porin
for all R > 0 and for all entire functions g € L, ,.;,, s(R") with suppg C Bg(0).

Thus, by [10, Theorem 0.2], it remains to show that 1/(aycy) satisfies the condition
(6.10) (with the function mg. y replaced by 1/(aycy)). Introduce the differential operator
D = t(d/dt), define DY to be the identity operator and D/ = DD/, j € N. Now
note that tV(d /dz)N can be expressed as a linear combination of D/, 1< j < N, that
D lan(t)en(®)] = ay—1(@®)en () — an(t)en—1(t) and, by induction, that

J .
D/ (aN(ncN(r))=Z(—l)”l(,’{)azv_k(r)cN_,-+k<r), I<j<N. (611
k=0

Therefore,

J

=3

k=1

1
an(t)cen (@)

M; (1)

(an(@®) en @) | 1<j<N, forallt >0, (6.12)

S

where the numerators M y(¢) are appropriate linear combinations of terms of the type

J . k.j J
[T{r=" (ak(t)cz(t))]ﬂ‘ cdM B ey Y abig =
i=1 i=1

In view of (6.1) — (6.6), it is clear that the denominators on the right-hand side of (6.12)
satisfy (ay (1) ey ()1 ~ 1 forall # > 0, and that, on account of (6.11), [M; ()| < 1
forallt > 0if1 < j < Nand 1 < k < j. Therefore, 1/(aycy) satisfies (6.10) and the
proof is complete. O

The following variant of a Nikol’ski [ inequality will turn out to be useful.

Lemma6.5 Let | < p <00, 0<o <n/p, I/p*=1/p—0o/n, 1 <r<s<oo, Be
SV, b € SV4. If by is defined by (6.8), then

lgllpesis < R"YPPOD(R) gl poriv, 5
forall R > 0 and forall g € Ly, ., g(R™) with suppg C Bg(0).

Proof Take y defined by (6.9) and set vg(x) := F~'[x(|€]/R)](x), x € R", R > 0. Then,
forallx e R"?, t € (0, 00) and R > 0,

n n

< )< —
[vg (x)] ~ (1 +R|X|)n’ UR( ) ~ (1 +Rtl/n)n’

1
vj;*(z)gmin{R", ;}.
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By the assumption on the support of the Fourier transform of g, we have vg *x g = g.
Therefore, by O’Neil’s inequality,

(1) = (g + )" (1) S U (D™ (1) + / V(g™ ) du.
t

Hence, for all R > 0,*
Ly 1 [ sdr)'*
Iglp ;8 < /7" B(t)y min { R", = g*(u)du —
P t t
0

1/s
n l/p 8 (Lt) Sﬂ .
+R (/O B(t)/ T RaT du] =) =N

Since t°b,(t), ¢ > 0, is almost non-decreasing and 7~ ¢b, (¢) is almost non-increasing,
elementary estimates lead to

R R ! sar\'"”
m<r ([0 [0 on 00 [ eaad S
0

0

o0 " t s dt 1/s
+</ [{11/1’ —1/Pb,;1(r)}tl/P—lbn(t)B(z)f g*(u)du] 7>
R 0 t

" o0 t A
< RM/P=1/P)p(Ry (f [rl/P—lbn(t)B(r)/ g*(u)du] 7) forall R > 0.
0 0

Now apply a Hardy-type inequality [29, Lemma 4.1] to obtain
Ny S R"YPTYPOB(R) gl p.rib, -

Similarly, handle the term N», use [29, Lemma 4.1] to arrive at

—n 1/r
00 . * (¢ 1/r R 00

NZSRn (/ [tl/p 'H_]/’B(t)%]rdl) — R" / _,’_/ )
0 (1+Rt ) 0 R—™

Apply Minkowski’s inequality, observe that

(14 Ry ~ { }Q’”t, ?;;fn’Rw’
and use again almost monotonicity properties of b, (¢) to get
N2 S R"YPTVPOBR) N8l porin, 5 -
[}

We will need the Besov-type space B( B, ;(R"), modelled upon the Lorentz-Karamata
space L, . g(R"),1 < p <o00,1 <r <s <00, B e SV, whose smoothness order o > 0
is perturbed by a slowly varying function b € SV;. To this end, we introduce the modulus
of smoothness of fractional order ¥ > 0 on the Lorentz-Karamata space L ,,g(R") by (cf.

(1.1)
@S Dty = s [ALFON L, )

4 We assume that r, s < 00. If s = 00 or r = o0, then the proof is going along the same lines.
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and then we set

B R = {f €Lprs®Y:|flLos < OO}, (6.13)
(pr B),s
where
|f| o.b = ||M*O'71/Sb(lzt*1)w,(+g(f, M)Lp,r;B”s'
(pr B),s

This definition does not depend upon « > 0, which follows from the Marchaud inequality
(cf. [64, (1.12)]).
The following lemma is the key result to prove Theorem 6.7 mentioned below.

Lemma6.6 If 1 < p <o00,0 <0 <n/p, 1/p*=1/p—0o/n, 1 <r <s < oo, and
B e SV, be SV, then
1yt S 1 lyos - Jorall f & BEL gy ().
p.ribn s
The proof follows the same lines as the one of [30, Lemma 2.6]. Indeed, we use the
Nikol’ski1 inequality from Lemma 6.5, and the sequence space Z;’ (X), X anormed space,
as the space of X-valued sequences (F;);cz with

) ) 1/q
ICF),jlleg = (Z[zf”||b(2f>F,-||X]'1> < 00,

JEL
Since, by [36] (see also [31, Lemma 5.5]),
(Lpf;,s;Bv LpT,s;B)H,q = Lp*,q;Ba 1/]7* = (1 - 9)/P€)k +9/p;ks 0<0< 17

the rest of the proof of [30, Lemma 2.6] carries over. O

We will also need the Riesz potential space H 1’} = H'L p.r; B(R™) modelled upon
the Lorentz-Karamata space L, ,.p, B € SV, and deﬁned analogously to the space H
introduced in Sect. 1.2. If 1 < p < o0, then the estimate

0. (f 0Ly ~ Ko(f 1 Ly g Hb . p) forall f € Lp,pands >0 (6.14)

can be verified analogously to estimate (1.13) in [30, Lemma 1.4].
Now we are in a position to prove the sharp Ul'yanov inequality between Lorentz—
Karamata spaces.

Theorem 6.7 Let k > 0,1 < p <o00,0<o0 <n/p, 1/p*=1/p—0o/n, 1 <r <s<
oo, and B € SV, b € SV4. If by, is defined by (6.8), then

8 dty\1/s
OOy S ( /0 [7b07 ) Ocsa (01,1 ) T 804 (615)

forall f e B(pr by B). SR

As an example, recalling that b is non-decreasing, we consider in Theorem 6.7

b()_:(1+|1nt|)y, y >0, iii(l)ll)
and

B(t) = (1+|Int))*, a€eR, 1€ (0,00);
cf. [30].
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Remark 6.8 Let all the assumptions of Theorem 6.7 be satisfied. Note that if f €
Ly .p,5(R") and RHS(6.15) < oo for some § > 0, then f € B((;’br_an) (R"). Indeed, if
8 > 0, then, by Lemma 6.1 (iii), for all f € L, ,.;,, s(R"),
== bu™) Ocio (1) pri s, 6,000 S N porsts 175D @™ s, 5,00
~ N fpribas 8bE).
Consequently, for all f € L, ,.;, s(R"),

| 1o SRHS(6.15) + [ £l p.rib, 8 875G < o0,

(p.ribpB),s

and the result follows.

Since also
RHS(6.15) < lflzél‘,’i;hns),x forall fe Bl o (R,
we see that
BOD gy R ={f € Lpr.p,s(R") : RHS(6.15) < 0o for some § > 0}.

Proof of Theorem 6.7 By (6.14), forall f € B("., o . g€ HE. .pandt >0,

wl((f7 I)Lp*.J;B %Ko(f? tK7 Lp*,S;Bs H;*,S;B)

<IF = gllpr 5B + 1 I(=AY" gl pr 5.5 (6.16)

Take g € H ; Jr“;]n g and consider its de la Vallée-Poussin means defined by

g =F [xED]*xg, >0,
where y is the cut-off function from (6.9). Then suppg; C B> /t(0). Note also that

< K+o
Igellgers S lIgllgere - forallz>0Oand g € H o) g

since [|F~ [x €D < 1forallz > 0 by [61, Corollary 2.3]. Thus, using Lemma 6.4, we
obtain

(=AY gl pe s S DA/ (=D T 2], b8 (6.17)

+
forall t >0andg € HJ7S p.

Moreover, by Lemma 6.6,

If = &l pesiB S = 8il00 forallr > Oand g € H, 75 4. (6.18)

(p,ribpB),s

Combining estimates (6.16)—(6.18), we arrive at

O (s Oy S =&ilh0n — +1DA/DNED) T g1 i,

(p,ribnB),s

b
forall f € B((;,r;b,,B),s’ g€ H;,f;’;B andt > 0.

One gets rid of g; estimating g; by g in a way analogous to the proof of [30,
Theorem 1.1 (i)]. Thus,

O fo DL,y SIF =80 A+ DADI=D) T rp,

B(p,r:hnB),s
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forall f € B> 3,geH’““”Bandz‘>0 Hence, for all f € B” andt > 0,

(p r;b, B),
Oc(f Doy S Ko(f b0 BE o VHES ). 6.19)

If we change the variable t* to t179, with 6 = o/(k + o), set bo(t) = b(r~1=0/ky,
and observe that B’ H*t o b p)6.s:by» then we can use the Holmstedt
formula

(prb B),s

(prb B),s — (Lprb,,B7

_ o dun1/s
Ko(f 1! ™ bo(0); (X, Vo,sipy, V) ~ (/ by Ko(f,u: X, I'S2)
0
with X = L, ,.p,pand ¥ = H;f‘; > Which is proved in [31, Theorem 3.1 ¢)]. Thus,
KO(f t eb()(t) Bpr b, B),s’ H;_:Uan)

t
m(/o[ bo@KoCF 5 Ly Hy 37, ) 1)

1/s

or, after the substitution u = v<*°

the variable t, one obtains

Ko(f, tb(1/0); B, o HEES, 1)

under the integral sign and after cancelling the change of

t 1/s
(/O [v="b(1/0)Ko(f V¥ Ly b, HEES, B)]S ) ,
which together with (6.19) and (6.14), implies the assertion of the theorem. O
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