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Abstract
We study the reflections of locally free Caldero–Chapoton functions associated to represen-
tations of Geiß–Leclerc–Schröer’s quivers with relations for symmetrizable Cartan matrices.
We prove that for rank 2 cluster algebras, non-initial cluster variables are expressed as locally
free Caldero–Chapoton functions of locally free indecomposable rigid representations. Our
method gives rise to a new proof of the locally free Caldero–Chapoton formulas obtained
by Geiß–Leclerc–Schröer in Dynkin cases. For general acyclic skew-symmetrizable cluster
algebras, we prove the formula for any non-initial cluster variable obtained by almost sink
and source mutations.
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1 Introduction

Cluster algebras are invented by Fomin andZelevinsky [12] in connectionwith dual canonical
bases and total positivity. A cluster algebraA(B) associated to a skew-symmetrizable matrix
B is a subalgebra of Q(x1, . . . , xn) generated by a distinguished set of generators called
cluster variables obtained by certain iterations called mutations. A first remarkable feature is
that they turn out to be Laurent polynomials with integer coefficients. Much effort has been
taken to give formulas or interpretations of these Laurent polynomials since the invention of
cluster algebras.

The classification of finite type cluster algebras is identical to the Cartan–Killing classi-
fication of finite root systems [11]. In particular, non-initial cluster variables are naturally in
bijection with positive roots of the corresponding root system. Meanwhile, Gabriel’s theo-
rem [15] states that the indecomposable representations of a Dynkin quiver are in bijection
with positive roots, thus further in bijection with non-initial cluster variables. Caldero and
Chapoton [5] showed that any non-initial cluster variable can be obtained directly from
its corresponding quiver representation as the generating function of Euler characteristics
of quiver Grassmannians of subrepresentations, which we now call the Caldero–Chapoton
function.

Caldero and Keller [4] have extended the above correspondence to cluster algebras associ-
ated to acyclic quivers, that is, non-initial cluster variables ofA(Q) are in bijection with real
Schur roots in the root system associated to Q, and are again equal to the Caldero–Chapoton
functions of the corresponding indecomposable rigid representations.

Geiß, Leclerc and Schröer [20] have defined a class of Iwanaga–Gorenstein algebras H
associated to acyclic skew-symmetrizable matrices, generalizing the path algebras of acyclic
quivers. These algebras are defined over arbitrary fields so certain geometric constructions
valid for quivers carry over to them. The authors introduced locally free Caldero–Chapoton
functions for locally free H -modules and showed that in Dynkin cases those of locally
free indecomposable rigid modules are exactly non-initial cluster variables [16]. Their proof
however does not explicitly interpretmutations of cluster variables in terms of representations
but actually relies on [19] a realization of the positive part of the enveloping algebra of a
simple Lie algebra using locally free H -modules and a known connection between cluster
algebras of Dynkin types and (dual) enveloping algebras [32].

In this paper, we study the recursion of locally free Caldero–Chapoton functions of mod-
ules under reflection functors. These functors, introduced in [20] for H -modules, generalize
the classical Bernstein–Gelfand–Ponomarev reflection functors [2] for representations of
Dynkin quivers. We show that this recursion coincides with cluster mutations that happen at
a sink or source, leading to our main results:

(1) Non-initial cluster variables of a rank 2 cluster algebra are exactly locally free Caldero–
Chapoton functions of locally free indecomposable rigid H -modules.

(2) In Dynkin cases, we obtain a new proof of the aforementioned correspondence in [16]
which does not rely on results in [19] and [32].

(3) In general, any non-initial cluster variable obtained from almost sink and source muta-
tions is expressed as the locally free Caldero–Chapoton function of a unique locally free
indecomposable rigid H -module.

We next provide a more detailed summary of this paper.
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1.1 Rank 2 cluster algebras

Let b and c be two non-negative integers. The cluster algebra A(b, c) is defined to be the
subalgebra of Q(x1, x2) generated by cluster variables {xn | n ∈ Z} satisfying relations

xn−1xn+1 =
{
1 + xb

n n is odd

1 + xc
n n is even.

Every cluster variable xn is viewed as a rational function of x1 and x2. The cluster algebras
A(b, c) are said to be of rank 2 because the cardinality of each cluster {xn, xn+1} is 2.

Let c1 and c2 be two positive integers such that c1b = c2c. Let g := gcd(b, c). Let Q be
the quiver

1
... 2ε1

α1

α2

αg

ε2 .

Following [20], we define H = H(b, c, c1, c2) to be the path algebra CQ modulo the ideal

I := 〈εc1
1 , ε

c2
2 , ε

b/g
2 αk − αkε

c/g
1 | k = 1, 2, . . . , g〉.

Denote by rep H the category of finitely generated left H -modules. For any M ∈ rep H
and i ∈ {1, 2}, the subspace Mi := ei M is a finitely generated module over the algebra
Hi := ei Hei ∼= C[ε]/(εci ). We say that M ∈ rep H is locally free (l.f. for short) if Mi is a
free Hi -module for i = 1, 2. For such M , we define its rank vector

rankM := (m1, m2) ∈ N2

where mi denotes the rank of Mi as a finitely generated free Hi -module. Let E1 (resp. E2)
be the locally free module with rank vector (1, 0) (resp. (0, 1)).

To any locally free M ∈ rep H with rankM = (m1, m2), we associated a Laurent poly-
nomial

X M (x1, x2) = x−m1
1 x−m2

2

∑
r=(r1,r2)∈N2

χ(Grl.f.(r, M))xb(m2−r2)
1 xcr1

2 ∈ Z[x±
1 , x±

2 ], (1.1)

where Grl.f.(r, M) is the locally free quiver Grassmannian (see Definition 4.1) which is
a quasi-projective complex variety parametrizing locally free submodules of M with rank
vector r, and χ(·) denotes the Euler characteristic in complex analytic topology. The Laurent
polynomial X M is the locally free Caldero–Chapoton function associated to M .

Our first main result is

Theorem 1.1 (Theorem 5.7) For bc ≥ 4, there is a class of locally free indecomposable rigid
H-modules M(n) parametrized by {n ∈ Z | n ≤ 0 or n ≥ 3} such that

X M(n)(x1, x2) = xn .

In fact, this equality gives a bijection between all locally free indecomposable rigid H-
modules (up to isomorphism) and non-initial cluster variables of A(b, c).

Remark 1.2 When bc < 4, the cluster variables xn are periodic, that is, there are only finitely
many distinguished xn . These cases actually fall into another class of cluster algebras of finite
types (or Dynkin types), which will be discussed in Sect. 1.3.
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Example 1.3 Let (b, c) = (2, 3) and (c1, c2) = (3, 2). Then the algebra H = H(b, c, c1, c2)
is the path algebra of the quiver Q

1 2ε1
α

ε2

modulo the relations ε31 = 0 and ε22 = 0. According to the construction in Remark 5.2, we
list first a few M(n) ∈ repl.f. H for n ≥ 3.

(1) M(3) = E1. One calculates the only non-empty quiver Grassmannians’ Euler character-
istics χ(Grl.f.((0, 0), E1)) = χ(Grl.f.((1, 0), E1)) = 1. Thus X M(3) = x−1

1 (1 + x32 ) =
x3.

(2) M(4) = I2, the injective hull of E2. It is obtained in a similar way as the module
N in Example 5.5. It is easy to see that χ(Grl.f.((0, 0), I2)) = χ(Grl.f.((2, 1), I2)) =
χ(Grl.f.((0, 1), I2)) = 1 as in each case, the quiver Grassmannian consists of a single
subrepresentation. We have χ(Grl.f.((1, 1), I2)) = χ(P1) = 2 according to Corollary
4.10. Thus

X M(4) = x−2
1 x−1

2 (x21 + x62 + 1 + 2x32 ) = x4.

(3) M(5) is calculated in Example 5.5. Computing X M(5) is not so easy, but via (the proof
of) Lemma 4.7, we have

X M(5) = x−5
1 x−3

2

(
x61 + 3x41 (1 + x32 ) + 3x21 (1 + x32 )

3 + (1 + x32)
5
)

= x5.

1.2 Higher rank cluster algebras

Extending the construction of A(b, c) to any n × n integral skew-symmetrizable matrix B,
there is an associated (coefficient-free) cluster algebraA(B) ⊂ Q(x1, . . . , xn)with the initial
seed

� = (B, (x1, . . . , xn)).

Here we briefly review the construction by Fomin and Zelevinsky [12]. The previous defini-

tion of A(b, c) in rank 2 corresponds to B =
[
0 −b
c 0

]
.

Let Tn be the infinite simple n-regular tree emanating from a given root t0 such that
the n edges incident to any vertex are numbered by {1, . . . , n}. We associate � to t0, and
inductively if �t = (Bt = (bt

i j ), (x1;t , . . . , xn;t )) is associated to some vertex t ∈ Tn , then

�t ′ :=μk(�t ) := (
μk(Bt ), (x1;t ′ , . . . , xn;t ′)

)
(1.2)

is associated to t ′ for t k t ′ in Tn , where μk(Bt ) is Fomin–Zelevinsky’s matrix mutation
of Bt in direction k and

xi;t ′ := xi;t for i 
= k and xk;t ′ := x−1
k;t

( n∏
i=1

x
[bt

ik ]+
i;t +

n∏
i=1

x
[−bt

ik ]+
i;t

)
.

In this way, each t ∈ Tn is associated with a well-defined seed (Bt , (x1;t , . . . , xn;t ))
where Bt is an n × n integral skew-symmetrizable matrix and each rational function
xi;t ∈ Q(x1, . . . , xn) is called a cluster variable. The cluster algebraA(B) is then defined to
be the subalgebra of Q(x1, . . . , xn) generated by all cluster variables. The exchange between
�t and �t ′ for t k t ′ is usually called a cluster mutation.
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1.3 Locally free Caldero–Chapoton formulas

Let (C, D,�) be an n × n symmetrizable Cartan matrix C = (ci j ), a symmetrizer D =
diag(ci ), and an acyclic orientation � (see Sect. 2 for precise definitions). Geiß, Leclerc
and Schröer [20] have associated a finite dimensional K -algebra H = HK (C, D,�) to the
triple (where K is a field), generalizing the path algebra of an acyclic quiver. Similar to the
rank 2 case, there are locally free H -modules, forming the subcategory repl.f. H ⊂ rep H .
Analogously, each M ∈ repl.f. H has its rank vector rankM ∈ Nn . Let Ei be the locally free
H -module with rank vector αi := (δi j | j = 1, . . . n).

We define the bilinear form 〈−,−〉H : Zn ⊗ Zn → Z such that on the standard basis
(αi )

n
i=1,

〈αi , α j 〉H =

⎧⎪⎨
⎪⎩

ci if i = j,

ci ci j if ( j, i) ∈ �,

0 otherwise.

The skew-symmetrization of 〈−,−〉H (on the basis (αi )i ) defines a skew-symmetric matrix
DB (thus defining a skew-symmetrizable matrix B = B(C,�) = (bi j ) actually having
integer entries), i.e. explicitly, we have

bi j =

⎧⎪⎨
⎪⎩

ci j if ( j, i) ∈ �,

−ci j if (i, j) ∈ �,

0 otherwise.

Definition 1.4 [16, Definition 1.1] For a locally free HC(C, D,�)-module M , the associated
locally free Caldero–Chapoton function is

X M :=
∑
r∈Nn

χ(Grl.f.(r, M))

n∏
i=1

v
−〈r,αi 〉H −〈αi ,rankM−r〉H
i ∈ Z[x±

1 , . . . , x±
n ],

where vi := x1/ci
i .

Suppose that k ∈ {1, . . . , n} is a sink of � and let sk(H) := H(C, D, sk(�)) be the
reflection of H at k. There is the (sink) reflection functor (see Sect. 3)

F+
k : rep H → rep sk(H),

which generalizes the classical BGP reflection functor on quiver representations.
The following proposition gives an algebraic identity on Caldero–Chapoton functions

under reflections. It is the key recursion that makes connection with cluster mutations.

Proposition 1.5 (Lemma 4.7 and Corollary 4.8) Let M be a locally free H-module such that
the map Mk,in is surjective. Then the reflection M ′ := F+

k (M) ∈ rep sk(H) is also locally
free, and

X M (x1, . . . , xn) = X M ′(x ′
1, . . . , x ′

n),

where

x ′
i = xi for i 
= k and x ′

k = x−1
k

(
n∏

i=1

x [bik ]+
i +

n∏
i=1

x [−bik ]+
i

)
.
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For B = B(C,�), an easy calculation shows that when k is a sink or source, μk(B) =
B(C, sk(�)). This hints that the recursion in Proposition 1.5 is closely related to cluster
mutations as in (1.2) at sink or source, which actually leads to our next main result

Theorem 1.6 (Theorem 7.4) For any non-initial cluster variable x in A(B) obtained by
almost sink and source mutations, there is a unique locally free indecomposable rigid H-
module M such that x = X M .

If C is of Dynkin type, it is known that any non-initial cluster variable can be obtained
by almost sink and source mutations. Therefore our method provides a new proof of the
following theorem of Geiß–Leclerc–Schröer [16, Theorem 1.2 (c) and (d)].

Theorem 1.7 (Theorem 6.3) If C is of Dynkin type, then the map M → X M induces a
bijection between isomorphism classes of locally free indecomposable rigid H-modules and
the non-initial cluster variables of A(B).

1.4 Other related work

Caldero and Zelevinsky [6] studied how the Caldero–Chapoton functions of representations
of generalized Kronecker quivers behave under reflection functors and used them to express
cluster variables of skew-symmetric rank 2 cluster algebras. Our result in rank 2 can thus be
seen as a generalization to the skew-symmetrizable case.

We remark that the recursion in Proposition 1.5 has already been achieved in the skew-
symmetric case for any reflection, not necessarily at sink or source, of any quiver byDerksen–
Weyman–Zelevinsky [9, 10]. Extending their theory, especially obtaining Caldero–Chapoton
type formulas, to the skew-symmetrizable case in full generality remains an open problem;
see for example [1, 7, 22, 23, 27, 28].

There are several earlier works generalizing Caldero–Chapoton type formulas (or in the
name of cluster characters) to the skew-symmetrizable case. Demonet [8] has obtained
cluster characters for acyclic skew-symmetrizable cluster algebras by extending [18] to an
equivariant version. Rupel [29, 30] has used representations of valued quivers over finite
fields to obtain a quantum analogue of Caldero–Chapoton formula for quantum acyclic
symmetrizable cluster algebras. The representation theories used in those work are however
different from the one initiated in [20] which we follow in this paper.

Fu, Geng and Liu [14] have obtained locally free Caldero–Chapoton formulas for finite
type Cn cluster algebras with respect to not necessarily acyclic clusters. In [26] with
Labardini-Fragoso, we prove locally free Caldero–Chapoton formulas with respect to any
cluster for cluster algebras associated to surfaces with boundary marks and orbifold points,
which include finite type Cn and affine type C̃n .

1.5 Organization

The paper is organized as follows. In Sect. 2, we recall the algebras H(C, D,�) defined by
Geiß–Leclerc–Schröer and review some necessary notions including locally free H -modules.
In Sect. 3, we review the definition of reflection functors for H -modules and their properties.
In Sect. 4 we study the reflections of F-polynomials of locally free modules, leading to a
cluster type recursion of locally free Caldero–Chapoton functions. In Sects. 5, 6 and 7, we
apply the results obtained in Sect. 4 to rank 2, Dynkin, and general cases respectively to
obtain locally free Caldero–Chapoton formulas of cluster variables for skew-symmetrizable
cluster algebras.
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2 The algebras H(C,D,Ä)

In this section, we review the algebras H(C, D,�) defined in [20] and some relevant notions.

2.1 Let (C, D,�) be a symmetrizable Cartan matrix C , a symmetrizer D of C , and an
acyclic orientation � of C . Let I = {1, . . . , n}. Precisely, the matrix C = (ci j ) ∈ ZI×I

satisfies that

• cii = 2 for any i ∈ I and ci j ≤ 0 for i 
= j , and
• there is some symmetrizer D = diag(c1, . . . , cn) where ci ∈ Z>0 for i ∈ I such that

DC is symmetric.

An orientation of C is a subset � ⊂ I × I such that

• {(i, j), ( j, i)} ∩ � 
= ∅ if and only if ci j < 0, and
• if (i, j) ∈ �, then ( j, i) /∈ �.

Define Q◦ = Q◦(C,�) := (Q◦
0, Q◦

1, s, t) to be the quiver with

• the set of vertices Q◦
0 := I , and

• the set of arrows Q◦
1 := {α(k)

i j : j → i | (i, j) ∈ �, k = 1, . . . , gi j } where
gi j := gcd(ci j , c ji ).

We say� acyclic if the quiver Q◦ is acyclic, i.e., has no oriented cycles. Define Q = Q(C,�)

to be the quiver obtained from Q◦ by adding one loop εi : i → i to each vertex i ∈ I .
Following [20], we define (over some ground field K ) the algebra H := HK (C, D,�) to

be the path algebra K Q modulo the ideal generated by the set of relations I consisting of

• ε
ci
i = 0 for i ∈ I ,

• ε
f j i

i α
(k)
i j = α

(k)
i j ε

fi j
j for (i, j) ∈ � and k = 1, . . . , gi j where fi j := − ci j/gi j .

The opposite orientation of � is

�∗ := {(i, j) | ( j, i) ∈ �},
which clearly is an orientation of C . We denote H∗ := H(C, D,�∗).

2.2 From now on, we will always assume that � is acyclic. For i ∈ I , let

Hi := ei Hei ∼= K [εi ]/(εci
i ),

which is a subalgebra of H . For (i, j) ∈ �, define the Hi -Hj -sub-bimodule

i H j := 〈α(k)
i j | k = 1, . . . , gi j 〉 ⊂ H .

If (i, j) ∈ �, then ( j, i) ∈ �∗. Consider the algebra H∗ = H(C, D,�∗). We define
j Hi := j (H∗)i , which is an Hj -Hi -bimodule.

As a right Hj -module, i H j is free of rank −c ji with the basis given by

{ε f j i −1− f
i α

(k)
i j | 0 ≤ f ≤ f j i − 1, 1 ≤ k ≤ gi j }.

While as a left Hi -module, i H j is free of rank −ci j with the basis

{α(k)
i j ε

f
j | 1 ≤ k ≤ gi j , 0 ≤ f ≤ fi j − 1}.

123
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There is then an Hi -Hj -bimodule isomorphism

ρ : i H j → HomHj ( j Hi , Hj ), ε
f j i −1− f

i α
(k)
i j → (α

(k)
j i ε

f
i )∗ (2.1)

for 0 ≤ f ≤ f j i − 1 and 1 ≤ k ≤ gi j . For more details, we refer to [20, Section 5.1].

2.3 Let rep H denote the category of finitely generated left H -modules. We will often treat
rep H as the equivalent category of quiver representations of Q satisfying relations in I. For
M ∈ rep H and i ∈ I , the subspace Mi := ei M is a finitely generated module over Hi .

Definition 2.1 We say that M ∈ rep H is locally free if for each i ∈ I , the Hi -module Mi is
free, i.e. is isomorphic to H⊕ri

i for some ri ∈ N.

Denote the full subcategory of locally free H -modules by repl.f. H . For M ∈ repl.f. H ,
define its rank vector

rankM := (r1, . . . , rn) ∈ ZI

where ri stands for the rank of ei M as a free Hi -module. Let Ei be the locally free H -module
such that rankEi = αi := (δi j | j ∈ I ) ∈ ZI .

We remark that Hi itself is the only indecomposable projective (also injective) Hi -module.
Any indecomposable Hi -module is isomorphic to the submodule Hiε

k
i ⊂ Hi for some

k ∈ {0, . . . , ci − 1}.

2.4 Any M ∈ rep H is determined by the Hi -modules Mi for i ∈ I and the Hi -module
homomorphisms

Mi j : i H j ⊗Hj M j → Mi , (α
(k)
i j , m) → M

α
(k)
i j

(m)

for any (i, j) ∈ �. We will later describe an H -module M by specifying the data (Mi , Mi j ).
When there is no ambiguity, the subscript Hj under the tensor product will be omitted,

hence the simplified notation i H j ⊗ M j .

3 Reflection functors

The Bernstein–Gelfand–Ponomarev reflection functors [2] are firstly defined to relate repre-
sentations of an acyclic quiver Q with that of the reflection of Q at a sink or source vertex.
These functors have been generalized to act on representations of H(C, D,�) in [20]. In
this section, we recall their definitions and review some useful properties.

For an orientation � of C and i ∈ I , the reflection of � at i is the following orientation
of C

si (�) := {(r , s) ∈ � | i /∈ {r , s}} ∪ {(s, r) ∈ �∗ | i ∈ {r , s}}.
We denote si (H) := H(C, D, si (�)). Denote

�(i,−) := { j ∈ I | (i, j) ∈ �} and �(−, i) := { j ∈ I | ( j, i) ∈ �}.
A vertex i ∈ I is called a sink (resp. source) of � if it is a sink (resp. source) of the quiver
Q◦, i.e. �(−, i) = ∅ (resp. �(i,−) = ∅). The only cases we will need are reflections at a
sink or source.
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3.1 Sink reflection

Let k be a sink of �. In this subsection we define the sink reflection functor

F+
k : rep H → rep sk(H).

Denote M(k,−) := ⊕
j∈�(k,−) k Hj ⊗ M j . Consider the Hk-module morphism

Mk,in := (Mkj ) j : M(k,−) −→ Mk .

Let Nk be ker Mk,in as an Hk-module. Denote the inclusion Nk ⊂ M(k,−) by

(β jk) j : Nk → M(k,−), β jk : Nk → k Hj ⊗ M j .

The isomorphism ρ : k Hj → HomHj ( j Hk, Hj ) (2.1) induces an isomorphism

ρ : k Hj ⊗ M j → HomHj ( j Hk, M j ).

Then further by the tensor-hom adjunction, we have

HomHk (Nk, k Hj ⊗ M j ) ∼= HomHj ( j Hk ⊗ Nk, M j ),

under which β jk corresponds explicitly to the map

N jk : j Hk ⊗ Nk → M j , (α, n) → 〈α, ρ(β jk(n))〉 for n ∈ Nk andα ∈ j Hk . (3.1)

Now we define F+
k (M) = (Nr , Nrs) with (r , s) ∈ sk(�), where

Nr :=
{

Mr , if r 
= k,

Nk, if r = k
and

Nrs :=
{

Mrs if (r , s) ∈ � and r 
= k,

Nrk if (r , s) ∈ �∗and s = k.

For a morphism f = ( fi )i∈I : M → M ′ in rep H , the morphism

F+
k ( f ) = ( f ′

i )i∈I : F+
k (M) → F+

k (M ′)

is defined by setting f ′
i = fi for i 
= k and f ′

k to be naturally induced between kernels. Thus
F+

k is functorial.

3.2 Source reflection

For k a source of �, we define the source reflection functor

F−
k : rep H → rep sk(H).

Denote M(−,k) := ⊕
j∈�(−,k) k Hj ⊗ M j . Consider the Hk-module morphism

Mk,out := (M jk) j : Mk → M(−,k)

where each component M jk : Mk → k Hj ⊗ M j for (k, j) ∈ � is defined through the
structure morphism M jk as follows. In fact, by the tensor-hom adjunction, we have the
canonical isomorphism

HomHj ( j Hk ⊗ Mk, M j ) ∼= HomHk (Mk,HomHj ( j Hk, M j )),
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where the later is further identifiedwithHomHk (Mk, k Hj ⊗M j ) induced by the isomorphism

ρ : k Hj → HomHj ( j Hk, Hj ).

Hence there is some M jk ∈ HomHk (Mk, k Hj ⊗ M j ) that M jk ∈ HomHj ( j Hk ⊗ Mk, M j )

corresponds to.
Let Nk be coker Mk,out as an Hk-module. Denote the quotient M(−,k) → Nk by

(Nkj ) j : M(−,k) → Nk, Nkj : k Hj ⊗ M j → Nk .

We define F−
k (M) = (Nr , Nrs) with (r , s) ∈ sk(�), where

Nr :=
{

Mr , if r 
= k,

Nk, if r = k
and

Nrs :=
{

Mrs if (r , s) ∈ � and s 
= k,

Nks if (r , s) ∈ �∗ and r = k.

Analogously to F+
k , it is clear that F−

k is also functorial.

3.3 Some properties of reflection functors

For i ∈ I , let Si be the simple H -module supported at the vertex i . Note that Si is at the same
time the socle and the top (or head) of Ei . The following lemma is straightforward.

Lemma 3.1 For any M ∈ rep H, we have

HomH (M, Sk) = 0 ⇔ HomH (M, Ek) = 0 ⇔ Mk,in is surjective, and

HomH (Sk, M) = 0 ⇔ HomH (Ek, M) = 0 ⇔ Mk,out is injective.

Proposition 3.2 ([20, Proposition 9.1 and Corollary 9.2]) Let H = H(C, D,�) and k be a
sink of �. The pair of reflection functors

F+
k : rep H → rep sk(H) and F−

k : rep sk(H) → rep H

are (left and right) adjoint (additive) functors. They define inverse equivalences on subcate-
gories

T H
k := {M ∈ rep H | HomH (M, Sk) = 0} ⊂ rep H and

Ssk (H)
k := {M ∈ rep sk(H) | Homsk (H)(Sk, M) = 0} ⊂ rep sk(H).

We now focus on the actions of reflection functors on locally free modules.

Lemma 3.3 ([17, Lemma3.6])Suppose that k is a sink (resp. source) of � and M a locally free
rigid H-module, with no direct summand isomorphic to Ek. Then we have HomH (M, Ek) =
0 (resp. HomH (Ek, M) = 0). In particular, the map Mk,in (resp. Mk,out) is surjective (resp.
injective).

Proof The case where k is a sink is [17, Lemma 3.6]. The other case is simply a dual version.
��

Let L = Zn . We think of rank vectors of locally free H -modules as living in L via
Nn ⊂ Zn . For i ∈ I , define the reflection

sk : L → L, sk(αi ) := αi − ckiαk for any i ∈ I .
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Proposition 3.4 ([20, Proposition 9.6] and [17, Lemma 3.5]) If k is a sink (resp. source) of
� and M is a locally free rigid H-module, then F+

k (M) (resp. F−
k (M)) is locally free and

rigid. If furthermore Mk,in is surjective (resp. Mk,out is injective), then

rankF±
k (M) = sk(rankM).

Remark 3.5 We remark that the functor F+
k (resp. F−

k ) preserves indecomposability if Mk,in

is surjective (resp. Mk,out is injective) by Proposition 3.2 and Lemma 3.1.

4 Locally free Caldero–Chapoton functions

4.1 Locally free Caldero–Chapoton functions

Let H = HC(C, D,�).

Definition 4.1 For M ∈ repl.f. H and a rank vector r = (ri )i∈I , the locally free quiver
Grassmannian is

Grl.f.(r, M) := {N | N is a locally free submodule of M and rankN = r}.
Remark 4.2 It is clear that the set Grl.f.(r, M) can be realized as a locally closed subvariety
of the product of ordinary Grassmannians

∏
i∈I Gr(ciri , Mi ). We take its analytic topology

and denote by χ(·) the Euler characteristic.
Definition 4.3 For M ∈ repl.f. H , we define its locally free F-polynomial as

FM (y1, . . . , yn) :=
∑
r∈Nn

χ(Grl.f.(r, M))

n∏
i=1

yri
i ∈ Z[y1, . . . , yn].

Recall that we have defined in Sect. 1.3 the bilinear form 〈−,−〉H : Zn × Zn → Z and
the skew-symmetrizable matrix B = (bi j ) associated to (C,�).

Definition 4.4 For M ∈ repl.f. H with rankM = (mi )i∈I , the associated locally free Caldero–
Chapoton function is the Laurent polynomial

X M :=
∑
r∈Nn

χ(Grl.f.(r, M))

n∏
i=1

v
−〈r,αi 〉H −〈αi , rankM−r〉H
i ∈ Z[x±

1 , . . . , x±
n ],

where vi := x1/ci
i .

Remark 4.5 Using the F-polynomial FM , the Caldero–Chapoton function X M can be rewrit-
ten as

X M =
n∏

i=1

x
−mi +∑n

j=1[−bi j ]+m j

i ·
∑
r∈Nn

χ(Grl.f.(r, M))

n∏
i=1

x
∑n

j=1 bi j r j

i

=
n∏

i=1

x
−mi +∑n

j=1[−bi j ]+m j

i · FM (ŷ1, . . . , ŷn),

where ŷ j = ∏n
i=1 x

bi j
i . Another way to write X M is

X M =
n∏

i=1

x−mi
i ·

∑
r∈Nn

χ(Grl.f.(r, M))

n∏
i=1

x
∑n

j=1[−bi j ]+m j +bi j r j

i .
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We note that every term in the summation is an actual monomial since [−bi j ]+m j + bi j r j ≥
0 because we need r j ≤ m j for the quiver Grassmannian to be non-empty. Moreover,
for r = 0 and r = rankM , χ(Grl.f.(r, M)) = 1 and the two corresponding monomials
are coprime. Therefore

∏n
i=1 xmi

i can be characterized as the minimal denominator when
expressing X M = f /g as a quotient of a polynomial f and a monomial g. We thus call
rankM the d-vector of the Laurent polynomial X M .

Example 4.6 For k ∈ I and Ek ∈ repl.f. H , the only non-empty locally free quiver Grass-
mannians are Grl.f.(0, Ek) = {0} and Grl.f.(αk, Ek) = {Ek}. Thus we have

X Ek =
n∏

i=1

v
−〈αi ,αk 〉H
i +

n∏
i=1

v
−〈αk ,αi 〉H
i = x−1

k

(
n∏

i=1

x [bik ]+
i +

n∏
i=1

x [−bik ]+
i

)
.

4.2 The key recursion

The following is the key proposition on the recursion of F-polynomials under reflections.

Proposition 4.7 Let M ∈ repl.f. H be of rank (mi )i∈I and k be a sink of H. Suppose that the
map

Mk,in :
⊕

j∈�(k,−)

k Hj ⊗ M j → Mk

is surjective. Then the reflection M ′ := F+
k (M) is locally free over sk(H) with the rank vector

(m′
i )i∈I such that m′

i = mi for i 
= k and

m′
k = −mk +

∑
j∈�(k,−)

bkj m j .

Their F-polynomials satisfy the equation

(1 + yk)
−mk FM (y1, . . . , yn) = FM ′(y′

1, . . . , y′
n).

where

y′
i = yi ybki

k /(yk + 1)bki for i 
= k, and y′
k = y−1

k .

Proof The first half of the statement is simply a recast of Proposition 3.4 without the hypoth-
esis and conclusion on the rigidity. Explicitly, we observe that M ′

k and Mk naturally fit into
the following exact sequence (of Hk-modules)

0 −→ M ′
k

M ′
k,out−−−→

⊕
j∈�(k,−)

k Hj ⊗ M j
Mk,in−−−→ Mk −→ 0. (4.1)

Since M j is free over Hj of rank m j , we have that for any j ∈ �(k,−), the bimodule

k Hj ⊗ M j is isomorphic to k H
⊕m j
j , thus a free left Hk-module of rank bkj m j . The exact

sequence splits since Mk is free. Then M ′
k is also free. The calculation on its rank m′

k follows
from the exact sequence.

Next we prove the recursion on F-polynomials.
Step I. Let e = (ei )i ∈ NI be a rank vector. Decompose Grl.f.(e, M) into constructible

subsets Z̃e;r (M) as follows. Let N ⊂ M be a locally free submodule. Denote

N(k,−) :=
⊕

j∈�(k,−)

k Hj ⊗ N j .
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Then Mk,in(N(k,−)) is an Hk-submodule of Mk . For r ∈ N, let Z̃e;r (M) be the subset of
Grl.f.(e, M) consisting of N ⊂ M such that

rank E(Mk,in(N(k,−))) = r .

where E(·) denotes the injective hull (of an Hk-module). Then Grl.f.(e, M) is a disjoint union
of (finitely many) Z̃e;r (M) when r runs over N and thus

χ(Grl.f.(e, M)) =
∑
r∈N

χ(Z̃e;r (M)).

Step II. Meanwhile for M ′ ∈ repl.f. sk(H), a rank vector e and s ∈ N, let X̃e;s(M ′) be
the constructible subset of Grl.f.(e, M ′) consisting of locally free submodules N ⊂ M ′ such
that

rank F((M ′
k,out)

−1(N(−,k))) = s,

where we denote

N(−,k) :=
⊕

j∈sk (�)(−,k)

k Hj ⊗ N j ,

and F(·) stands for the (isomorphism class of) maximal free submodule of an Hk-module.
Decomposing Grl.f.(e, M ′) into subsets X̃e;s(M ′) where s runs over N, we have

χ(Grl.f.(e, M ′)) =
∑
s∈N

χ(X̃e;s(M ′)).

Step III. Let e′ denote the rank vector (with n − 1 entries) obtained from e by forgetting
the k-th component. Define for r ∈ N the subset

Ze′;r (M) ⊂
∏
i 
=k

Grl.f.(ei , Mi ) :=
∏
i 
=k

{(Ni )i 
=k | Ni ⊂ Mi , Ni is free of rank ei }

such that

(1) (Ni )i 
=k is closed under the actions of arrows in (the quiver of) H that are not incident
to k;

(2) The injective hull of Mk,in(N(k,−)) is of rank r .

There is the natural forgetful map

π : Z̃e;r (M) → Ze′;r (M), N → (Ni )i 
=k .

The fiber over a point (Ni )i 
=k ∈ Ze′;r (M) is

V = V(ek, Mk,in(N(k,−)), Mk) := {Nk | Mk,in(N(k,−)) ⊂ Nk ⊂ Mk, Nk is free of rank ek}.
Notice that V is determined (up to isomorphism) by the isomorphism class of Mk,in(N(k,−))

as Hk-module. This means we can if necessary decompose Ze′;r (M) further into (finitely

many) locally closed subsets
∐

j∈J Z j so that each π−1(Z j )
π−→ Z j is a fiber bundle. It is

shown in Proposition 4.9 that the Euler characteristic of a fiber V is
(mk−r

ek−r

)
. Therefore we

have

χ(Z̃e;r (M)) =
∑
j∈J

χ(π−1(Z j )) =
∑
j∈J

(
mk − r

ek − r

)
χ(Z j ) =

(
mk − r

ek − r

)
χ(Ze′;r (M)).

(4.2)
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For M ′ and s ∈ N, we define the subset

Xe′;s(M ′) ⊂
∏
i 
=k

Grl.f.(ei , M ′
i ) :=

∏
i 
=k

{(Ni )i 
=k | Ni ⊂ M ′
i , Ni is free of rank ei }

such that

(1) (Ni )i 
=k is closed under the actions of arrows in (the quiver of) sk(H) not incident to k;
(2) The rank of a maximal free Hk-submodule of (M ′

k,out)
−1(N(−,k)) is s.

Then we have the forgetful map

ρ : X̃e;s(M ′) → Xe′;s(M ′), N → (Ni )i 
=k,

whose fiber at (Ni )i 
=k ∈ Xe′;s(M ′) is

W = W(ek, (M ′
k,out)

−1(N(−,k)))

:= {Nk | Nk ⊂ (M ′
k,out)

−1(N(−,k)) ⊂ M ′
k, Nk is free of rank ek},

having Euler characteristic, according to Corollary 4.10, χ(W) = ( s
ek

)
. Analogous to (4.2),

we have

χ(X̃e;s(M ′)) =
(

s

ek

)
χ(Xe′;s(M ′)). (4.3)

Step IV. Now recall that M and M ′ are reflections of each other, i.e. M ′ = F+
k (M), with

rank vectors (mi )i and (m′
i )i respectively such that

mi = m′
i for i 
= k and mk + m′

k =
∑

j∈�(k,−)

bkj m j .

We claim that for any e′ = (ei )i 
=k

Xe′;s(M ′) = Ze′;r (M) for r + s =
∑

j∈�(k,−)

bkj e j . (4.4)

In fact, let Ni be a free submodule (of rank ei ) of Mi for any i 
= k and then we have from
(4.1) the following short exact sequence of Hk-modules

0 −→ (M ′
k,out)

−1(N(−,k)) −→ N(k,−) −→ Mk,in(N(k,−)) −→ 0,

where by our abuse of notation, the Hk-module N(−,k) (which is for the orientation sk(�))
is actually the same as N(k,−) for �. Denote A = (M ′

k,out)
−1(N(−,k)), B = N(k,−), and

C = Mk,in(N(k,−)). The injection A → B then factors through the injective hull E(A) of
A as B is free and thus injective. Thus C ∼= E(A)/A ⊕ B/E(A) where B/E(A) is free.
The number of indecomposable summands of E(A)/A is easily seen to be rank E(A) −
rank F(A). The number of indecomposable summands of C , which equals rank E(C), is just
rank B − rank F(A). We now have the equality

rank E(Mk,in(N(k,−))) + rank F((M ′
k,out)

−1(N(−,k))) = rank N(k,−) =
∑

j∈�(k,−)

bkj e j .

Then one sees from their definitions that Xe′,s(M ′) and Ze′;r (M) for any r and s such that
r + s = rank N(k,−) define the exact same tuples (Ni )i 
=k in

∏
i 
=k Grl.f.(ei , Mi ), hence (4.4).
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Now we rewrite the F-polynomials as

FM (y1, . . . , yn) =
∑
e∈Nn

∑
r∈N

χ(Z̃e;r (M))ye

(4.2)=
∑
e∈Nn

∑
r∈N

(
mk − r

ek − r

)
χ(Ze′;r (M))ye

=
∑

e′∈Nn−1

∑
r∈N

χ(Ze′;r (M))yr
k (1 + yk)

mk−r
∏
i 
=k

yei
i ,

FM ′(z1, . . . , zn) =
∑
e∈Nn

∑
s∈N

χ(X̃e;s(M ′))ze

(4.3)=
∑
e∈Nn

∑
s∈N

(
s

ek

)
χ(Xe′;s(M ′))ze

=
∑

e′∈Nn−1

∑
s∈N

χ(Xe′;s(M ′))(1 + zk)
s
∏
i 
=k

zei
i .

Let zi = y′
i := yi ybki

k /(yk + 1)bki for i 
= k and zk = y′
k := y−1

k . Finally we have

FM ′(y′
1, . . . , y′

n) =
∑

e′∈Nn−1

∑
s∈N

χ(Xe′;s(M ′))
(

yk

1 + yk

)−s+∑
j 
=k bk j e j ∏

i 
=k

yei
i

(4.4)=
∑

e′∈Nn−1

∑
r∈N

χ(Ze′;r (M))

(
yk

1 + yk

)r ∏
i 
=k

yei
i

= (1 + yk)
−mk FM (y1, . . . , yn).

��
Corollary 4.8 In the setting of the above Lemma 4.7, we have

X M (x1, . . . , xn) = X M ′(x ′
1, . . . , x ′

n),

where x ′
i = xi for i 
= k and

x ′
k = x−1

k

(∏
i∈I

x [bik ]+
i +

∏
i∈I

x [−bik ]+
i

)
= x−1

k

⎛
⎝1 +

∏
i∈�(k,−)

x−bik
i

⎞
⎠ .

Proof We first derive from Lemma 4.7 that

(1 + ŷk)
−mk FM (ŷ1, . . . , ŷn) = FM ′(ŷ′

1, . . . , ŷ′
n),

where ŷ j := ∏n
i=1 x

bi j
i and ŷ′

j := ∏n
i=1(x ′

i )
b′

i j where (b′
i j ) :=μk(B) or explicitly b′

i j = −bi j

if i = k or j = k and b′
i j = bi j otherwise. In fact, this equality directly follows from the

algebraic equations

y′
j |yi ←ŷi ,i=1,...,n = ŷ′

j , j ∈ I .

Then we spell out the two sides of the desired equation in the form of Remark 4.5. Now
it amounts to show

n∏
i=1

x
−mi +∑n

j=1[−bi j ]+m j

i = (1 + ŷk)
−mk

n∏
i=1

(x ′
i )

−m′
i +

∑n
j=1[−b′

i j ]+m′
j ,
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which is straightforward to check. ��
We finish this section by proving the following proposition (and Corollary 4.10) which

has been used in the proof of Lemma 4.7.

Proposition 4.9 Let M be a (finitely generated) C[ε]/(εn)-module whose (any) maximal free
submodule F(M) is of rank m. Let L ⊂ M be a submodule such that E(L) the injective hull
of L is of rank �. Assume further that L is contained in a free submodule of M. Then for any
integer e with � ≤ e ≤ m, the variety

V = V(e, L, M) := {N | L ⊂ N ⊂ M, N is free of rank e}
has Euler characteristic

(m−�
e−�

)
.

Proof By the assumption that L is contained in some free submodule of M , we can realize
the injective hull E(L) such that L ⊂ E(L) ⊂ M . Then one can decompose M into inde-
composable direct summands M = ⊕

a∈A Ma such that E(L) = ⊕
a∈C Ma where C is a

subset of the maximal subset B ⊂ A such that for any a ∈ B, the summand Ma is free
(of rank 1). Hence we have |C | = � and |B| = m. The decomposition can be particularly
arranged so that L = ⊕

a∈C (L ∩ Ma) (each summand being non-zero) since the injective
hull is additive.

To compute the Euler characteristic of V = V(e, L, M), we define an algebraic C∗-action
on V and use the well-known fact [3, Corollary 2] that the Euler characteristic χ(V) equals
that of the fixed point subset. We first let the multiplicative group C∗ act on M = ⊕

a∈A Ma

with distinct weights on different summands Ma , i.e. for any z ∈ C∗ and (ma)a∈A ∈ M ,

z · (ma)a∈A = (zλa ma)a∈A ∈ M

where (λa)a∈A ∈ ZA are pairwise different. Since theC∗-action commutes with the action of
ε, it induces an action of C∗ on the set of all submodules of M preserving their isomorphism
types. Also notice that a submodule N ⊂ M is fixed if and only if N = ⊕

a∈A(N ∩ Ma).
Therefore the submodule L is fixed by the action and the C∗ acts on V . Now the fixed points
in V are exactly those N = ⊕

a∈D Ma such that C ⊂ D ⊂ B with |D| = e, and there are(m−�
e−�

)
of them. Consequently χ(V) equals

(m−�
e−�

)
the number of fixed points. ��

Corollary 4.10 Let M be a C[ε]/(εn)-module whose (any) maximal free submodule is of rank
m. Then for any 0 ≤ e ≤ m, the variety

W(e, M) := {N | N ⊂ M, N is free of rank e}
has Euler characteristic

(m
e

)
.

Proof In the setting of Proposition 4.9, letting L = 0, the result follows. ��

5 The rank 2 case

The purpose of this section is to prove Theorem 1.1 (Theorem 5.7). In fact, the construction of
the algebra H in Sect. 1.1 can be seen as within the general framework introduced in Sect. 2,
which we explain in below.

Let I = {1, 2}. Let C be the Cartan matrix(
2 −b

−c 2

)
for b, c ∈ Z≥0.
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There are only two possible orientations, i.e. � = {(1, 2)} or {(2, 1)}. We take � = {(2, 1)}.
The associated matrix B is

(
0 −b
c 0

)
. Assume in the rest of this section that bc ≥ 4. The

rest cases are of Dynkin types which will be covered in the next Sect. 6.
Let D = diag(c1, c2) be a symmetrizer of C . One easily sees that H := H(C, D,�) is

the same as H(b, c, c1, c2) defined in Sect. 1.1, where we denote the arrow αk there by α
(k)
21 .

It is clear that

s1(�) = s2(�) = �∗ = {(1, 2)}.
Denote H∗ := H(C, D,�∗). Then there are reflection functors

F± : rep H → rep H∗, F± : rep H∗ → rep H .

We omit the subscripts in the reflection functors since the sign ± already specifies which
vertex the reflection is performed at. Next we define a class ofmodules obtained from iterative
reflections.

Definition 5.1 We define for n ≥ 0 the following H -modules

M(n + 3) :=
{

(F+)n E1 if n is even,

(F+)n E2 if n is odd
and M(−n) :=

{
(F−)n E2 if n is even,

(F−)n E1 if n is odd.

Remark 5.2 Let us clarify the above construction of M(n +3). For any n ≥ 0 and 0 ≤ k ≤ n,
let

H (k) :=
{

H if k is even,

H∗ if k is odd.

Nowwe have a sequence of functors F (k) := F+ : rep H (k+1) → rep H (k) for 0 ≤ k ≤ n−1.
Then M(n + 3) is obtained by iteratively applying F (k), i.e.

M(n + 3) :=
{

F (0) ◦ F (1) ◦ · · · ◦ F (n−1)(E1) if n is even,

F (0) ◦ F (1) ◦ · · · ◦ F (n−1)(E2) if n is odd.

The modules M(−n) are defined using F− in a similar way.

Lemma 5.3 For any n ≥ 0, the H-module M = M(n + 3) (resp. M(−n)) is locally free,
indecomposable and rigid. The map M2,in (resp. M1,out) is surjective (resp. injective).

Proof It follows from Proposition 3.4 that any M(n + 3) or M(−n) is locally free and rigid
because so is E1 or E2.

Now assume that for any 0 ≤ k ≤ n the modules M(k + 3) and M(−k) are all inde-
composable and that the map M1,out is surjective for M(k + 3) and M2,in is injective for any
M(−k). Denote the rank vectors by α(n) := rankM(n). Now by the construction of M(n+4)
and M(−(n + 1)) and Proposition 3.4, we have that these two modules are locally free and
rigid, and

α(n + 4) = s1s2s1 · · · (α〈n+4〉), α(−(n + 1)) = s2s1s2 · · · (α〈−(n+1)〉),

where 〈n〉 ∈ {1, 2} is congruent to n modulo 2. It is then known that (in the case bc ≥ 4) both
α(n + 4) and α(−(n + 1)) are real positive roots of C (other than the simple roots α1 and
α2) and in particular are strictly positive linear combinations of α1 and α2; see for example
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[31, Section 3.1]. By Remark 3.5, M(n + 4) and M(−(n + 1)) are also indecomposable. So
they cannot have any summand isomorphic to E1 or E2. Now by Lemma 3.3, the induction
is completed. ��

Remark 5.4 In fact, by [21], locally free indecomposable rigid H -modules are parametrized
by their rank vectors as real Schur roots of C (depending on �). Since the rank vectors
α(n) = rankM(n) for n ≤ 0 and n ≥ 3 are exactly the real Schur roots (see for example
[31]), we know that {M(n) | n ≤ 0 or n ≥ 3} fully lists locally free indecomposable rigid
H -modules.

Example 5.5 Recall the algebra H considered in Example 1.3 where b = 2 and c = 3. We
calculate N := F+

2 (E1) ∈ rep s2(H) as follows. First, we have

N1 = (E1)1 = H1 and N2 = 2H1 ⊗ H1 = (H2 · α21) ⊕ (H2 · α21ε1) ⊕ (H2 · α21ε
2
1).

The structure map N12 : 1H2 ⊗ N2 → N1 is given by

α12 ⊗ α21h → 0 and α12 ⊗ ε2α21h → h

for any h ∈ H1. Then one sees N ∼= I1 ∈ rep s2(H), which is locally free, indecomposable
and rigid, and rankN = (1, 3) = s2(rankE1).

We next calculate M = M(5) := F+
1 F+

2 (E1) = F+
1 (N ). By definition, M2 = N2 and

M1 = ker(1H2 ⊗ N2
N12−−→ N1),

which is a free H1-module of rank 5 having the basis

e1 := α12 ⊗ α21, e2 :=α12 ⊗ α21ε1, e3 :=α12 ⊗ α21ε
2
1,

e4 := α12 ⊗ ε2α21ε1 − ε1α12 ⊗ ε2α21, e5 := α12 ⊗ ε2α21ε
2
1 − ε1α12 ⊗ ε2α21ε1.

Thus M1 ∼= C15 as a vector space with the basis {εk
1e j | 1 ≤ j ≤ 5, 0 ≤ k ≤ 2}. The action

of α21 on this basis is calculated in the table below (only non-zero terms shown).

εk
1e j ε21e1 ε21e2 ε21e3 ε1e4 ε21e4 ε1e5 ε21e5

Mα21(·) α21 α21ε1 α21ε
2
1 −ε2α21 ε2α21ε1 −ε2α21ε1 ε2α21ε

2
1

For example, we have by (3.1) that

Mα21(ε1e5) = 〈α21, ρ(ε1α12)〉 ⊗ ε2α21ε
2
1 − 〈α21, ρ(ε21α12)〉 ⊗ ε2α21ε1 = −ε2α21ε1.

Recall the definition of the cluster variables xn of rank 2 cluster algebras given in Sect. 1.1.
We rewrite Corollary 4.8 in the current rank 2 situation.

Corollary 5.6 Let M ∈ repl.f. H such that M2,in is surjective. Then M ′ := F+
2 (M) ∈ rep H∗

is locally free and M ′
2,out is injective such that rankM ′ = s2(rankM). We further have

X M (x1, x2) = X M ′(x ′
1, x ′

2)

where x ′
1 = x1 and x ′

2 = x−1
2 (1 + xb

1 ).

The following is the main result of this section.
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Theorem 5.7 The map

M → X M ∈ Z[x±
1 , x±

2 ]
induces a bijection

{M(n) | n ≤ 0, n ≥ 3} ←→ {xn | n ≤ 0, n ≥ 3}
such that X M(n) = xn. In particular, each xn is distinct for n ∈ Z.

Proof We prove by induction on n that

X M(n+3) = xn+3 and X M(−n) = x−n for n ≥ 0 (5.1)

using the recursion Corollary 5.6. For n = 0, we have M(0) = E2 and M(3) = E1, thus by
direct computation (as in Example 4.6)

X M(0) = x−1
2 (1 + xb

1 ) = x0 and X M(3) = x−1
1 (1 + xc

2) = x3.

Assume that the statement (5.1) is true for some n ≥ 0. By the obvious symmetry between
H and H∗ by switching the orientation, we have by the induction hypothesis that

xn+4 = X M(n+3,H∗)(x3, x2),

where the notation M(n + 3, H∗) stresses that the module M(n + 3, H∗) is constructed for
H∗ instead of H . We would like to apply Corollary 5.6 to M := M(n + 3, H∗) and the sink
reflection functor

F+
1 : rep H∗ → rep H .

The condition that M1,in is surjective is guaranteed by Lemma 5.3 (applied to the algebra
H∗). Then by Corollary 5.6, we have

X M(n+3,H∗)(x3, x2) = X M(n+4,H)(x1, x2)

where M(n + 4, H) = F+
1 (M(n + 3, H∗)) and x1 = x−1

3 (1 + xc
2). Immediately we obtain

xn+4 = X M(n+4,H)(x1, x2).

The proof for M(−n) for n ≥ 0 uses a similar induction.
Now that xn = X M(n) is a Laurent polynomial in x1 and x2, the unique minimal common

denominator (up to a scalar) is easily seen to be xα(n). Since the positive roots α(n) are
distinct, so are the cluster variables xn . ��

Remark 5.8 To a pair (b, c) ∈ Z2
>0, one can also associate an algebra H(b, c) defined as the

path algebra CQ of the quiver Q = 1 2ε1
α

ε2 modulo the relations εc
1 = 0

and εb
2 = 0. When b and c are coprime, the algebra H(b, c) is the same as H(C, D,�)

for D =
[

c 0
0 b

]
. However, when b and c are not coprime, the algebra H is not included

in the construction of [20]. We note that Theorem 1.1 can be easily adapted to using the
algebras H(b, c). In the case b = c = 2, the algebra H(b, c) coincides with a construction
in [25] where the ordinary Caldero–Chapoton functions are shown to give cluster variables
of a generalized cluster algebra.
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6 Dynkin cases

The purpose of this section is to give a new proof of Theorem 1.7 (Theorem 6.3). Let C be of
Dynkin type and B = B(C,�) the associated skew-symmetrizable matrix. Denote by +

C
the set of positive roots associated to C .

Definition 6.1 A sequence i = (i1, . . . , ik+1) ∈ I k+1 is called adapted to an orientation �

of C (or �-adapted) if

i1 is a sink for �,
i2 is a sink for si1(�),

...

ik is a sink for sik−1 · · · si2si1(�).

The following lemma is well-known; see for example [24, Chapter 3].

Lemma 6.2 Let β be a positive root for C and � be an orientation. Then there always exists
a sequence i = (i1, . . . , ik+1) adapted to � for β such that

sik (αik+1) ∈ +
C ,

sik−1sik (αik+1) ∈ +
C ,

...

β = si1 · · · sik−1sik (αik+1) ∈ +
C .

It is clear that for such a sequence i in the above lemma, ik+1 must not be equal to ik . To
any sequence i = (i1, . . . , ik+1), consider the following path in Tn

t0
i1

t1
i2 · · · ik

tk
ik+1

tk+1.

Recall the clustermutations as introduced in Sect. 1.3which generate cluster variables. Recur-
sively performing cluster mutations from t0 to tk+1 we obtain an n-tuple (x1;tk+1 , . . . , xn;tk+1)

of cluster variables associated to tk+1. We denote xi := xik+1;tk+1 .
Suppose that i is adapted to � for a positive root β as in Lemma 6.2. Note that i� is a

source for the orientation �� := si� · · · si1(�) for � = 1, . . . , k. Let H� := H(C, D,��) for
� = 1, . . . , k and H0 := H . We have source reflection functors

F−
i�

: rep H� → rep H�−1.

Define the module

Mi := F−
i1

· · · F−
ik

(Eik+1) ∈ rep H .

Theorem 6.3 ([16, Theorem 1.2]) The map M → X M induces a bijection between isomor-
phism classes of locally free indecomposable rigid H(C, D,�)-modules and the non-initial
cluster variables of the cluster algebra A(B).

Proof For i adapted to � for a positive root β, we show by induction on the length of i that

Mi is locally free, indecomposable and rigid with rank vectorβ, and that X Mi = xi. (�)
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If i = (i) is of length one, then Mi = Ei . Notice that i is not necessarily a sink or source.
As in Example 4.6, we have

X Ei = x−1
i

⎛
⎝ n∏

j=1

x
[b ji ]+
j +

n∏
j=1

x
[−b ji ]+
j

⎞
⎠ = x(i).

Assume that (�) is true for any i of length no greater than k ∈ N. Let i = (i�)
k+1
�=1 and i

′ be
the sequence

(i2, i3, . . . , ik+1) ∈ I k,

which is adapted to the orientation si1(�). By assumption, the module

Mi′ := F−
i2

· · · F−
ik

(Eik+1) ∈ rep si1(H)

is locally free, rigid and indecomposable with rank vector β ′ := si2 . . . sik (αik+1) and that
X Mi′ = xi′ ∈ A(μi1(B)). Since si1(β

′) = β and β ′ ∈ +(C), the positive root β ′ cannot
be a positive multiple of αi1 . Thus the indecomposable module Mi′ does not have any direct
summand isomorphic to Ei1 . By Lemma 3.3, the map (Mi′)i1,out is injective. By Proposition
3.4, we have that Mi = F−

i1
(Mi′) is locally free, rigid and indecomposable with rank vector

β = si1(β
′).

Applying Corollary 4.8 to Mi ∈ rep H and Mi′ ∼= F+
i1

(Mi) ∈ rep si1(H), we have

X Mi(x1, . . . , xi1 , . . . , xn) = X Mi′ (x1, . . . , x ′
i1 , . . . , xn),

where

x ′
i1 = x−1

i1

⎛
⎝1 +

∏
j∈�(i1,−)

x
−b ji1
j

⎞
⎠ .

Notice that

X Mi′ (x1, . . . , x ′
i1 , . . . , xn) = xi′(x1, . . . , x ′

i1 , . . . xn) = xi(x1, . . . , xi1 , . . . , xn) ∈ A(B).

Hence X Mi = xi ∈ Z[x±
1 , . . . , x±

n ], which completes the induction and proves (�).
By [20, Theorem 1.3], the module Mi constructed from i only depends on the positive

root β and the (thus well-defined) map β → Mi induces a bijection from +
C to locally free

indecomposable rigid H -modules (up to isomorphism). Thus the formula xi = X Mi implies
that the cluster variable x(β) := xi also only depends on β. In view of Remark 4.5, each x(β)

has d-vector β. By [11], these x(β) are exactly the non-initial cluster variables of A(B),
hence the desired bijection. ��

7 Beyond Dynkin and rank 2 cases

For (C, D,�)which is neither of Dynkin type nor in rank 2, in general we will not be able to
reach all locally free indecomposable rigid modules by reflections. In this section, we prove
locally free Caldero–Chapoton formulas for cluster variables that can be obtained by almost
sink and source mutations. In particular, any cluster variable on the bipartite belt [13] can be
obtained this way.

Definition 7.1 (cf. [29]) A sequence i = (i1, . . . , ik+1) ∈ I k+1 is called admissible to an
orientation � of C if
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i1 is a sink or source for �,
i2 is a sink or source for si1(�),

...

ik is a sink or source for sik−1 · · · si2si1(�).

Let B = B(C,�) and A(B) be the (coefficient-free) cluster algebra associated to B. As
defined in Sect. 6, for an arbitrary sequence i, there is the cluster variable xi ∈ A(B) by
successive cluster mutations.

Definition 7.2 We say that the cluster variable xi ∈ A(B) corresponding to a sequence
i = (i�)� is obtained by almost sink or source mutations if i is admissible to �.

Remark 7.3 We note that by definition the last index ik+1 can be arbitrary in I . It is the only
step in the mutation sequence (μi1 , . . . , μik+1) that may not be at a sink or source, thus the
term almost.

The following is our main result in this section.

Theorem 7.4 For any admissible sequence i, either the cluster variable xi is an initial one
or there is a locally free indecomposable rigid H(C, D,�)-module Mi such that

X Mi(x1, . . . , xn) = xi.

Moreover, the module Mi is uniquely determined (up to isomorphism) by xi.

Proof We slightly modify the functors F±
i to define the operations

F±
i : rep H ∪ {x1, . . . , xn} → rep si (H) ∪ {x1, . . . , xn}

such that

F±
i (M) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F±
i (M) if M ∈ rep H not isomorphic to Ei ,

xi if M ∼= Ei ,

Ei if M = xi ,

x j if M = x j for j 
= i .

For an admissible sequence i, let

Mi := F±
i1

F±
i2

· · · F±
ik

(Eik+1) ∈ rep H ∪ {x1, . . . , xn}
where each sign is chosen on whether i� is a sink or source of si�−1 · · · si1(�). We define
X Mi as in Definition 1.4 if Mi is a locally free H -module or X Mi := xi if Mi = xi for some
i ∈ {1, . . . , n}. We next show by induction on the length of i that

• if Mi is indeed a module, then it must be locally free, indecomposable and rigid, and
• X Mi = xi.

The induction is a slightmodification of the proof ofTheorem6.3. For i = (i)of length one,
M(i) = Ei and the statement is clearly true. Assume that the statement is true for i of length
no greater than k. Let i = (i�)� be of length k + 1 admissible to � and i′ = (i2, . . . , ik+1),
which is admissible to si1(�). By assumption, either

(1) Mi′ ∈ rep si1(H) is locally free indecomposable rigid or
(2) Mi′ = xi for some i ∈ I .
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In both cases, we have by assumption that X Mi′ = xi′ ∈ A(μi1(B)).
In case (1), there are three sub-cases

(1.1) Mi′ ∼= Ei1 ;
(1.2) i1 is a sink of si1(�) and (Mi′)i1,in is surjective by Lemma 3.3;
(1.3) i1 is a source of si1(�) and (Mi′)i1,out is injective by Lemma 3.3.

In case (2), there are two sub-cases

(2.1) i = i1 and thus F±
i1

(Mi) = Ei ;

(2.2) i 
= i1 and thus F±
i1

(Mi) = xi .

By Corollary 4.8, it is easy to check that in each of the sub-cases we have

X Mi(x1, . . . , xi1 , . . . , xn) = X Mi′ (x ′
1, . . . , x ′

i1 , . . . , x ′
n)

where x ′
i = xi if i 
= i1 and x ′

i1
= x−1

i1

(∏
j x

[b ji1 ]+
j + ∏

j x
[−b ji1 ]+
j

)
and by Proposition 3.4

if Mi = F±
i1

(Mi′) is a module, it is locally free, indecomposable and rigid. In all cases, we
have

X Mi(x1, . . . , xi1 , . . . , xn) = xi′(x ′
1, . . . , x ′

i1 , . . . , x ′
n) = xi ∈ A(B),

which finishes the induction.
By the Caldero–Chapoton formula, the rank vector rankMi is just the d-vector of xi, thus

only depending on xi; seeRemark 4.5. It is shown in [21] that any locally free indecomposable
rigid module is determined by its rank vector (which in particular is a real Schur root of
(C,�)). Thus Mi is uniquely determined by xi. ��
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